
J. Fluid Mech., page 1 of 8, doi:10.1017/jfm.2015.491

JT

∧
Low-Reynolds-number flow past a cylinder
with uniform blowing or sucking
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We analyse the
∧
low-Reynolds-number flow generated by a cylinder (of radius a) in 1

a stream (of velocity U∞) which has a uniform through-surface blowing component 2

(of velocity Ub). The flow is characterized in terms of the Reynolds number 3

Re (= 2aU∞/ν, where ν is the kinematic viscosity of the fluid) and the dimensionless 4

blow velocity
∧
Λ (= Ub/U∞). We seek the

∧
leading-order symmetric solution of the 5

vorticity field which satisfies the near- and far-field boundary conditions. The drag 6

coefficient is then determined from the vorticity field. For the no-blow case Lamb’s 7

(Phil. Mag., vol. 21, 1911, pp. 112–121) expression is retrieved for Re→ 0. For the 8

∧
strong-sucking case, the asymptotic limit, CD∼−2πΛ, is confirmed. For blowing, the 9

limit of validity is β < 1 or Λ< 4/Re,Q3 after which the flow is unsymmetrical about 10

θ = π/2. The analytical results are compared
∧
with full numerical solutions for the 11

drag coefficient CD and the fraction of drag due to viscous stresses. The predictions 12

show good agreement for Re= 0.1 and Λ=−5, 0, 5. 13

Key words: low-Reynolds-number flows, Stokesian dynamics 14

1. Introduction 15

The modification of the flow past a body due to a uniform blowing or sucking 16

component is of fundamental importance in many areas of engineering. A through- 17

surface flux is introduced to cool turbine blades
∧
or modify the force acting on lifting 18

surfaces or can be generated by a phase change (e.g. evaporation). 19

Dukowicz (1982) derived a closed-form expression for the drag force acting on 20

a blowing/sucking sphere at low Reynolds numbers which retrieves Stokes’ (1851) 21

solution for Λ= 0. For strongly sucking flows, the flow is irrotational in the far field 22

and the drag force reduces to what is expected by a global momentum analysis. At 23

a Reynolds number of Re= 1, the difference between the full numerical results and 24

Dukowicz’s solution is
∧
approximately 10 % in the drag coefficient for blowing flows 25

(Cliffe & Lever 1985).Q4 26
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For the case of a cylinder, the complexity of the analysis is increased by the27

requirement of a far-field or Oseen correction (see the discussion by Stokes
∧
(1851)).28

The study of the force on a cylinder at low Re has been developed over the last 10029

years, and it is worth pointing out some of the historical elements, as they provide30

a guide to the different ways in which we could treat the problem in this paper.31

Later editions of Lamb’s book ‘Hydrodynamics’ include a discussion of the flow32

past a cylinder at low Re (Lamb 1932, p. 614, 1911). The technique Lamb employed33

attracted criticism in the
∧
1960s because it was not a rigorous asymptotic analysis. The34

construction technique that Lamb employed is reasonably accurate, giving predictions35

for the drag coefficient up to Re= 1 that are within 5 % of the full solution. Lamb’s36

(1911) technique follows that of Oseen, introducing a correction (advective) term to37

account for the far-field flow, but it is simpler as it makes use of a transformational38

split that is not extendable to the problem in this paper. While a matched asymptotic39

solution is mathematically rigorous and can account for the full inertia term, the40

series expansion method by Dennis & Shimshoni (1965) is just as powerful and41

accurate, though far less elegant mathematically.42

The purpose of this paper is to examine the
∧
low-Reynolds-number flow past a43

cylinder which has a through-surface component and to develop an understanding of44

the influence of Re and Λ on the drag force. The
∧
leading-order solution is calculated45

using a construction technique, which has the advantage of being simple. The fidelity46

of this approach is tested with comparisons against full numerical solutions. The47

mathematical model is described in § 2. Approximate solutions are developed in48

the limit of Λ = 0 and strongly sucking flows and described in § 3. A comparison49

between predictions and numerical solutions is shown in § 4.50

2. Mathematical model51

We consider a cylinder of radius a fixed at the origin and set in a uniform flow. To52

account for the far field at low Reynolds numbers, the Oseen approximation is applied53

which uses a linear approximation for the inertia term so that u · ∇u ≈ U∞∂u/∂x. Q554

We are interested in examining the flow past a cylinder with a through-surface flow55

so that the radial blow component is included, and therefore seek to determine the56

∧
leading-order solution to57

ρ

(
U∞

∂u
∂x
+ Uba

r
∂u
∂r

)
=−∇p+µ∇2u, (2.1)58

where µ is the dynamic viscosity, ρ is the density, Ub is the blow velocity and U∞59

is the far-field velocity. The boundary conditions imposed on the flow are60

(ur, uθ)= (Ub, 0) (2.2)61

at the surface of the cylinder (at r= a) and62

(ur, uθ)→ (U∞ cos θ,−U∞ sin θ) (2.3)63

in the far field (as r→∞).64
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2.1. Defining equations 65

A
∧
vorticity–stream function (ω–ψ) method of solution is employed (see Batchelor 66

1967, appendix 2), where the velocity and vorticity fields are defined by 67

ur = ∂ψ
∂θ
, uθ =−1

r
∂ψ

∂r
, ω=−1

r
∂

∂r

(
r
∂ψ

∂r

)
− 1

r2

∂2ψ

∂θ 2
. (2.4a−c) 68

The boundary conditions (2.2) impose significant constraints on the velocity near the 69

boundary, mainly because ∂uθ/∂θ = ∂ur/∂θ = 0. This means that 70

ω= ∂uθ
∂r

∣∣∣∣
r=a

(2.5) 71

and 72

∂ur

∂r

∣∣∣∣
r=a

=−Ub

a
(2.6) 73

(where mass conservation was used in (2.6)). From (2.1), the vorticity equation is 74

U∞
∂ω

∂x
+ Uba

r
∂ω

∂r
= ν∇2ω. (2.7) 75

Our starting point is quite similar to that of Lamb (1932) and involves expressing the 76

vorticity field
∧̃
ω (= 2aω/U∞) as 77

ω̃= e(Re/4)r̃ cos θP, (2.8) 78

giving 79

Re2

8
Λ

1
r̃

cos θP+ Re
2
Λ

r̃
∂P
∂ r̃
+
(

Re
4

)2

P= ∇̃2P, (2.9) 80

where Re = 2aU∞/ν and r̃ = r/a. Following Dukowicz (1982), we seek the
∧
leading- 81

order symmetric solution, which is of the form 82

P= P1(r̃) sin θ, (2.10) 83

where P1 satisfies 84

P′′1 +
P′1
r̃
(1− 2β)−

((
Re
4

)2

+ 1
r̃2

)
P1 = 0, (2.11) 85

where β = ReΛ/4. This is valid
∧
provided that Re2|Λ|� 1 and for β→−∞ because 86

the flow is symmetric about θ =π/2, but not for β→∞. The solution that satisfies 87

P1→ 0 as r̃→∞ is 88

P1 =C1r̃βK(1+β2)1/2(Re r̃/4). (2.12) 89

The stream function, ψ , can be constructed by writing it as the sum of the known 90

blowing and
∧
free-stream components, together with a component to be determined. As 91

such we write
∧

92

ψ =U∞a(Λθ + r̃ sin θ + f1 sin θ). (2.13) 93
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∧
Substitution of (2.13) into (2.4) gives94

f ′′1 +
f ′1
r
− f1

r2
=− 1

π

∫ π

0
sin θω̃ dθ =− 1

2π
P1(r̃)

∫ 2π

0
e(Re r̃/4) cos θ sin2 θ dθ. (2.14)95

The boundary conditions for f1 are96

f1(1)=−1, f ′1(1)=−1, lim
r̃→∞

f1(r̃)= 0. (2.15a−c)97

The right-hand side of (2.14) is defined as C1p1(r̃), where98

p1(r̃)=−r̃β
J1(iRe r̃/4)

iRe r̃/4
K(1+β2)1/2(Re r̃/4). (2.16)99

We can solve (2.14) exactly by writing f1 = r̃g1, which transforms the ordinary100

differential equation to101

d(r̃3g′1)
dr̃

=C1p1(r̃)r̃2. (2.17)102

The boundary conditions on g1 are g1(1) = −1, g′1(1) = 0 and g1 → 0 as r̃→∞.103

Integrating twice, we find two results
∧
. The first is that104

f1 =C1r̃
(
− 1

2r̃2
G(1)−

∫ r̃

∞
G(r̃)r̃−3 dr̃

)
, (2.18)105

where106

G(r̃)=
∫ ∞

r̃
p1(r̃)r̃2 dr̃. (2.19)107

The second result (which ensures that the far-field boundary condition is satisfied) is108

∧
109

C1 = 2∫ ∞
1

p1(r̃) dr̃
. (2.20)110

The integrand scales as r̃β−2 in the far field (using Kn(z)∼ exp(−z)/z1/2 and J1(iz)∼111

exp(z)/z1/2) and so the integral converges when −∞<β < 1.112

2.2. Diagnostics113

The pressure and viscous drag coefficients for characterizing the force on a cylinder114

are115

CP =
∫ 2π

0

(
1

Re
∂ω̃

∂ r̃
− 1

2
Λω̃

)
sin θ dθ, Cν =− 1

Re

∫ 2π

0
ω̃ sin θ dθ, (2.21a,b)116

which is an extension of the relationship given by Dennis & Shimshoni (1965) to117

include a through-surface flow.
∧
On substituting (2.10) into (2.21),118

CP =−C1
π

Re

(
(β + (1+ β2)1/2)K(1+β2)1/2(Re/4)+ Re

4
K(1+β2)1/2−1(Re/4)

)
,

Cν =−C1
π

Re
K(1+β2)1/2(Re/4).

 (2.22)119
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The ratio of the viscous drag to the total drag coefficient is 120

Cν

CD
= 1

β + (1+ β2)1/2 + 1+ Re
4

K(1+β2)1/2−1(Re/4)
K(1+β2)1/2(Re/4)

, (2.23) 121

where CD = CP + Cν . Since Re is small, Cν/CD is effectively a function of ReΛ.
∧
It 122

should be noted that (2.23) does not depend on C1. 123

3. Approximate solutions 124

We present a
∧
leading-order solution to (2.14) which will then be used to understand 125

two limits
∧
: (a)

∧
the no-blow

∧
case where the result reduces to Lamb’s (1911) original 126

solution and (b) strongly sucking flows.Q6 127

3.1. No-blow case (Λ= 0) 128

The purpose here is to retrieve Lamb’s solution for the no-blow case. When Λ = 0, 129

p1 can be expressed exactly as 130

p1 =−K1(Re r̃/4)
J1(iRe r̃/4)

iRe r̃/4
. (3.1) 131

Using the substitution z= Re r̃/4, the integral in (2.20) can be written as 132∫ ∞
1

p1 dr̃= 4
Re

∫ ∞
Re/4

K1(z)
J1(iz)

iz
dz= 4

Re

∫ ∞
Re/4

K1(z)

(
1
2
+
∞∑

n=1

z2n

22n+1n!(n+ 1)!

)
dz,

(3.2) 133

such that 134∫ ∞
1

p1 dr̃= 2
Re

(
K0(Re/4)+

∞∑
n=1

∫ ∞
Re/4

z2nK1(z)
22nn!(n+ 1)! dz

)
. (3.3) 135

In the limit of Re � 1, the lower limit is close to zero and it can be shown, 136

using (A 4), that 137

∞∑
n=1

∫ ∞
0

z2nK1(z)
22nn!(n+ 1)! dz= 1

2
, (3.4) 138

such that 139

C1 = Re
1
2 +K0(Re/4)

. (3.5) 140

The drag coefficient corresponding to (3.5) is 141

CD =− 2π
1
2 +K0(Re/4)

(
K1(Re/4)+ Re

8
K0(Re/4)

)
∼=− 8π

Re( 1
2 +K0(Re/4))

, (3.6) 142

where use was made of (A 2). Now, Lamb (1932, p. 616) derived the following 143

expression for vorticity
∧
: 144

ω=Ce(r̃Re/4) cos θ ∂

∂y
K0(Re r̃/4)=−C

a
Re
4

e(r̃Re/4) cos θK1(Re r̃/4) sin θ, (3.7) 145
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which is the same expression as that derived here from the vorticity equation. (
∧
It146

should be noted that there is a typographical error in Lamb’s vorticity expression,147

where ekz should read ekx; the correct analysis is given in Lamb (1911) except for148

the typographical error of
∧
‘sphere’ which should be

∧
‘cylinder’ after equation (54)

∧
.) A149

higher-order expansion of the stream function was determined,150

C= 2U∞
1
2 +K0(Re/4)

, (3.8)151

or equivalently152

CD =− 8π

Re
(

1
2 +K0(Re/4)

) . (3.9)153

Therefore, the general expression for the drag coefficient agrees exactly with Lamb’s154

expression as Re→ 0 (the difference for Re= 1 is less than 1 %).155

3.2. Strongly sucking flow (−Λ� 1)156

For strongly sucking flows where |β| � 1 and β < 0, we can write157 ∫ ∞
1

p1 dr̃

K(1+β2)1/2(Re/4)
=−1

2

(
4

Re

)β+1 ∫ ∞
Re/4

zβ
K(1+β2)1/2(z)

K(1+β2)1/2(Re/4)
dz∼= 1

2(β − (1+ β2)1/2 + 1)
,

(3.10)158

which can be substituted into (2.22), giving a drag coefficient of159

CD ≈−4π

Re
(β + (1+ β2)1/2 + 1)(β − (1+ β2)1/2 + 1). (3.11)160

This reduces to161

CD ≈−2πΛ. (3.12)162

This approximation is appropriate when |β|> 1 or Λ<−4/Re (so that the asymptotic163

approximation is valid). Equation (3.12) agrees with a global momentum analysis164

when the far-field downstream flow is irrotational
∧
, which was derived by Pankhurst165

& Thwaites (1953, appendix I) for Q7
∧
high-Re flows. This is to be expected because in166

both cases, the boundary layer is thin compared
∧
with the size of the cylinder.167

4. Numerical results168

4.1. Solution technique169

The solution for ω̃ contains an unknown, C1, which is determined from (2.20). The170

numerical solution to the Navier–Stokes equation was solved using a
∧
finite-element171

method that employs a
∧
characteristic-based split (CBS) methodology (see Zienkiewicz,172

Taylor & Nithiarasu 2005). The ACEsim code has been validated for two-dimensional173

flows (e.g. Nicolle & Eames 2011; Klettner & Eames 2012). For low Re, White174

(1945) suggests a domain width of 2000a for the no-blow case to be unaffected by175

boundedness. As the influence of boundedness is increased for strong blowing/sucking,176

the domain width was increased to 20 000a for the two cases of |Λ| = 5.177
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FIGURE 1. A comparison between the theoretical predictions and full numerical
calculations of (a) CD and (b) Cν/CD as functions of Λ. In (a,b) the dot-dashed and full
curves correspond to the predictions (2.22), (2.23) for Re = 1, 0.1 respectively and the
full numerical simulations for Re= 0.1 are represented by crosses. The numerical results
of Dennis & Shimshoni (1965) are plotted as red circles for the no-blow case. The blue
line is the strongly sucking solution, CD =−2πΛ, given in Pankhurst & Thwaites (1953,
appendix I).

4.2. Results 178

Figure 1(a) shows the drag coefficient as a function of Λ for Re = 0.1. Good 179

agreement is found between the analytical results and full numerical simulations. The 180

asymptotic limit for strongly sucking flows (CD ∼ −2πΛ) is confirmed for Re = 1. 181

Figure 1(b) shows the fraction of the total force due to viscous stresses for Re= 0.1. 182

For small |Λ| (� 1), the influence of blowing and sucking is symmetric on the drag 183

force. For strongly sucking flows, the drag force increases linearly with |Λ| because 184

the viscous stresses near the wall scale as µ|Λ|U∞/a. For strongly blowing flows, 185

CD→ 0 because the vorticity is blown off the surface of the cylinder. Therefore, the 186

influence of the through-surface flow is asymmetric on the drag force at large Λ. For 187

β > 0, the range of validity of the analysis was determined to be β < 1 or Λ< 4/Re 188

using a scaling analysis. 189

5. Conclusion 190

We identified the gap of
∧
low-Reynolds-number flow past a cylinder with a through- 191

surface flow, and studied this problem using a analytical technique that identifies the 192

∧
leading-order component to the vorticity field. For the case of Λ = 0 and Re→ 0, 193

we retrieve Lamb’s (1911) result for the drag force. For strongly sucking flows, 194

where the flow is irrotational outside the thin boundary layer, the asymptotic result 195

CD =−2πΛ is recovered. The agreement between the analytical results and the full 196

numerical solutions is good for Re= 0.1. 197

Appendix A. Useful relationships for Kn 198

We list the recurrent and asymptotic relationships that are used in this paper. 199

dKn

dz
=−Kn−1(z)− n

z
Kn(z). (A 1) 200
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The expansion for K1 is201

K1(z)= 1
z
+ z

2
log
( z

2

)
+ · · · . (A 2)202

When the argument n� 1,203

Kn(z)∼= Γ (n)2

( z
2

)−n
. (A 3)204

Another useful formula is205 ∫ ∞
0

zmKn(z) dz= 2m−1Γ

(
n+m+ 1

2

)
Γ

(
m+ 1− n

2

)
. (A 4)206
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