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Alongside advancements in gene therapy for inherited immune disorders, the need for effective alternative therapeutic
options for other conditions has resulted in an expansion in the field of research for T cell gene therapy. T cells are
easily obtained and can be induced to divide robustly ex vivo, a characteristic that allows them to be highly
permissible to viral vector-mediated introduction of transgenes. Pioneering clinical trials targeting cancers and
infectious diseases have provided safety and feasibility data and important information about persistence of
engineered cells in vivo. Here, we review clinical experiences with γ-retroviral and lentiviral vectors and consider
the potential of integrating transposon-based vectors as well as specific genome editing with designer nucleases in
engineered T cell therapies.

Introduction
Gene therapy involves the introduction of genetic
material (including DNA, RNA, small interfering
RNA or antisense oligonucleotides) into cells to
correct cellular dysfunction or to provide new functions
in order to cure or slow the progression of diseases. To
date, over 1800 gene therapy clinical trials have been
approved worldwide (Ref. 1). T cell gene therapy repre-
sents an emerging therapeutic option for use against
malignancies, infections and certain monogenic dis-
eases. The ability to harvest, manipulate and reinfuse
engineered T cells has made them attractive targets for
gene therapy. Pioneering trials have already been under-
taken to treat inherited T cell deficiency, redirect T cell
antigen specificity, confer resistance to human immuno-
deficiency virus (HIV) and incorporate suicide genes to
safeguard against graft-versus-host disease (GvHD) in
the allogeneic transplant setting. As T cells are long
lived cells, with periods of quiescence and active prolif-
eration, integrating vector systems have generally been
used to modify T cells, and here we review clinical
experiences with γ-retroviral and lentiviral vectors
(γRVs and LVs, respectively) and consider the potential
of integrating transposon-based vectors, as well as tran-
sient expression of gene-modifying nuclease enzymes.

Long-term gene expression in T cells
mediated by γRV
Murine γRV with intact long-term repeats (LTRs)
flanking a transgene expression cassette, and packaged
using stable cell lines, which provide accessory pack-
aging and envelope components, have been widely
exploited for T cell modification. Efficient γRV-
mediated gene integration requires actively proliferat-
ing target cells, and T cell activation procedures have
evolved from PHA stimulation, to activation with

anti-CD3 antibody and currently beads conjugated
with anti-CD3 and anti-CD28 antibodies.
γ-retroviral T cell gene therapies are summarised in

Table 1. Initial gene marking studies (Ref. 2) tracked
tumour-infiltrating lymphocytes mediating regression of
metastatic melanoma using a retroviral vector encoding
a gene for resistance to neomycin. Soon afterward, autolo-
gous T cells from infants with adenosine deaminase
(ADA) enzyme deficiency, a form of severe combined
immunodeficiency (SCID), were reconstituted using
γRV (Refs 3, 4). Both patients remained free from
serious infections, on reduced doses of enzyme replace-
ment (Ref. 5). Although the clinical benefit was limited
because of low gene transfer rates, retroviral gene transfer
proved feasible, and gene-modified autologous cells per-
sisted long-term without causing adverse effects.

Suicide gene therapies

Another early T cell immunotherapy trial recruited
patients with HIV infection and modified CD8+ cyto-
toxic T cells by retroviral transduction with a herpes
simplex virus thymidine kinase (HSV-TK) fusion
gene. Although technically feasible, the main limita-
tion was host-mediated immune responses against the
transgene (Ref. 6). In 1997, Bonini et al. reported the
use of allogeneic T cells engineered to express HSV-
TK to render cells sensitive to the prodrug ganciclovir
(GCV) and safeguard against GvHD (Ref. 7), and
similar studies were subsequently reported by a
number of other groups (Refs 8, 9). Donor T cells
modified with the HSV-TK suicide gene were adminis-
tered to patients with leukemic relapse and GvHD was
effectively controlled by GCV-induced elimination of
the transduced cells (Ref. 7). Tiberghien et al. also
demonstrated that the use of HSV-TK expressing
donor T cells in 12 patients at the time of allogeneic
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bone marrow transplantation was feasible and asso-
ciated with persistent circulation of modified cells,
GCV-sensitive GvHD, and the absence of acute tox-
icity (Ref. 9). A similar clinical strategy using an
almost identical vector with HSV-TK/NeoR led to sec-
ondary graft rejection in two of three treated patients
due to immunogenicity of infused T cells (Ref. 10).
In subsequent multicentre trials, leukemic patients

were infused with donor lymphocytes expressing the
HSV-TK suicide gene, following haploidentical stem-
cell transplantation. It was reported that 22 of 28 patients
who received genetically modified T cells achieved rapid
T cell immune recovery, with the development of a poly-
clonal repertoire protective against pathogens, leading to
a significant long-term reduction of infection-related
mortality. Of note, ten patients developed acute GvHD
and one developed chronic GvHD, which were con-
trolled by induction of the suicide gene (Ref. 11). In a
follow-up study of these 22 patients, new insights into
the biologic events leading to the immune reconstitution
after HSV-TK cell infusions were provided. It was

suggested that the infused T cells that carried the
suicide gene supported de novo generation of T cells
from thymus-dependent pathways, leading to long-term
immune reconstitution (Ref. 12). In other studies, trans-
duced T cells were detectable in nine leukemic patients
for up to 5 years with seven of nine patients alive and
in complete remission (Ref. 13). A recent publication
reports the production and first-in-man use of mis-
matched donor T cells modified with a γRV expressing
a HSV-TK fused to a truncated CD34 marker protein
for magnetic selection. Circulating gene-modified T
cellswere detectable by flow cytometryand bymolecular
tracking in all three subjects. Therewas resolution of viral
infections, concordant with detected antigen-specific T
cell responses, and gene-modified cells persisted for
over a year (Ref. 14).
As HSV-TK is virus-derived and immunogenic, alter-

native suicide genes have also been investigated. Di
Stasi et al. devised an inducible T cell safety switch
that is based on the human caspase 9. When exposed
to a synthetic dimerising drug, the inducible caspase 9

TABLE 1.

T CELL GENE THERAPY CLINICAL TRIALS.

Diseases targeted Vectors
designed

Strategy implemented References

Inherited
ADA γRV ADA cDNA gene transfer in autologous PBL cells (and BM) (3, 4)

Cancer
Leukaemia γRV Suicide gene transfer (ΔLNGFR/ HSV-TK, NeoR/HSV-TK) in allogeneic

PBLs
(7, 9, 10)

γRV Suicide gene transfer (ΔLNGFR/HSV-TK) in HLA-haploidentical donor
PBMCs

(11, 12, 13)

γRV Suicide gene transfer (ΔCD34/HSV-TK) in haploidentical donor PBMCs (14)
γRV Suicide gene transfer (iCasp9/ΔCD19) (15)
γRV Tumour specific CAR gene transfer (CD19) in autologous PBLs (29, 30, 31, 32)
γRV Tumour specific CAR gene transfer (CD19) in allogeneic PBLs (33)
γRV Tumour specific CAR gene transfer (CD19) in allogeneic virus-specific PBLs (34)
LV Tumour specific CAR gene transfer (CD19) in autologous PBLs (ALL) (77)

Lymphoma LV Tumour specific CAR gene transfer (CD19) in autologous PBLs (73, 78)
SB Tumour specific CAR gene transfer (CD19) in autologous PBLs (93)

Melanoma γRV Selectable marker gene transfer (NeoR) in autologous TILs (2)
γRV Tumour specific TCR gene transfer (MART-1 and gp-100) in autologous

PBLs
(16, 17, 18)

γRV Tumour specific TCR gene transfer (NY-ESO-1) in autologous PBLs (19)
γRV Tumour specific TCR gene transfer (MAGE -A3) in autologous PBLs (20)
LV Tumour specific TCR gene transfer (MAGE -A3) in autologous PBLs (79)

Neuroblastoma γRV Tumour specific CAR gene transfer (GD2) in EBV-CTLs (26, 25)
Ovarian cancer γRV Tumour specific CAR gene transfer (α Folate Receptor) in autologous PBLs (24)
Renal cell
carcinoma

γRV Tumour specific CAR gene transfer (Carbonic Anhydrase IX) in autologous
PBLs

(23)

Synovial cell
sarcoma

γRV Tumour specific TCR gene transfer (NY-ESO-1) in autologous PBLs (19)

Infectious diseases
HIV γRV Suicide gene transfer (HSVTK) in autologous CD8T cells (6)

γRV Anti-HIV Rev gene transfer in autologous CD4T cells (36)
γRV Anti-HIV ribozyme gene transfer in autologous CD4T cells (37)
γRV Anti-HIV tat ribozyme gene transfer in syngeneic CD4T cells (40)
γRV Anti-HIV Rev gene transfer in syngeneic CD4T cells (41)
γRV HIV-specific chimeric TCR gene transfer (CD4zeta) in autologous PBLs (38, 39)
LV Antisense segment targeted against HIV envelope gene (ASenv) transfer in

autologous CD4T cells
(70, 76)

γRV Gp41-derived fusion peptide inhibitor gene transfer in autologous CD4T cells (42)

BM, bone marrow; CAR, chimeric antigen receptors; CD, cluster of differentiation; EBV-CTLs, Epstein-Barr virus cytotoxic T lymphocytes;
GD2, ganglioside 2; HIV, human immunodeficiency virus; HLA, human leukocyte antigen; HSVTK, human herpes simplex virus thymidine
kinase; LV, lentiviral-vector; MAGE-A3, melanoma-associated antigen 3; MART, melanoma antigen recognized by T Cells NY-ESO;
PBMCs, peripheral blood mononuclear cells; TCR, T cell receptor; TIL, tumour-infiltrating lymphocyte; γRV, γ-retroviral vector.
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becomes activated and leads to the rapid death of cells
expressing the iCasp9/ΔCD19 construct. Five paediat-
ric patients who had undergone stem cell transplantation
for relapsed acute leukaemia were treated with high
numbers of genetically modified T cells. Four patients
developed GvHD, which was treated with a single
dose of dimerising drug, eliminating over 90% of the
modified T cells within 30 min of the administration
and ended GvHD without recurrence (Ref. 15).

αβ T cell receptor (TCR) gene therapies

Similar retroviral vectors have been used to redirect TCR
specificity using αβ TCRs. Morgan RA et.al. transduced
autologous T cells from human leukocyte antigen (HLA-
A201) melanoma patients with a retroviral vector con-
structed and optimised to express a MART-1 αβ TCR.
In 17 patients with progressive metastatic melanoma,
gene transfer efficiencies ranged from 17 to 67% in per-
ipheral blood lymphocytes. Overall, two patients (12%)
demonstrated a sustained regression of their metastatic
melanoma, with high levels of circulating engineered
cells at 1 year after infusion (Ref. 16). A follow-up
study provided a detailed longitudinal analysis of cell
persistence and transgene expression in vivo.
Interestingly, transgene expression was repressed over
time, and silencing was not associated with methylation
but rather with transcriptional down-regulation, which
was reversible upon lymphocyte reactivation (Ref. 17).
In subsequent trials carried out with higher avidity
TCRs, objective clinical responses were seen in 30%
of patients (6/20) treated with autologous MART-1
TCR modified T cells and in 19% of patients (3/16)
treated with a gp100-reactive TCR (Ref. 18). Gene trans-
fer efficiencies represented ≥10% of peripheral blood
lymphocytes in all patients 1 month following treatment.
Some subjects encountered adverse effects related to on-
target reactivity in normal tissues expressing melanin
antigens, including the eye, ear and skin.
Similar approaches have been used in patients with

refractory metastatic melanoma or metastatic synovial
cell sarcoma with NY-ESO-1-positive tumours
(Ref. 19). After approximately 1 month, gene marking
ranged between 2 and 60% of CD8+ T cells present in
peripheral blood (in 14 of the 17 treated patients). Four
of six patients with synovial cell sarcoma achieved
objective clinical responses, with one lasting 18
months, and five of 11 patients with melanoma also
achieved objective clinical responses, including two
complete responses on-going at 22 and 20 months and
one partial response on-going at 9 months. Morgan
RA et al. (Ref. 20) also reported the clinical application
ofMAGE-A3 TCR gene-modified T cells in an adoptive
cell therapy trial in nine cancer patients (seven metastatic
melanoma, one synovial sarcoma and one oesophageal
cancer). At 1 month post-treatment, TCR positive cells
in the circulation were in the range of 11–84% with a
mean of 41%, and five patients experienced clinical
regression of their cancers. However, on-target neuro-
logic toxicities were reported in three cases, and two

proved fatal (Ref. 20). Autologous lymphocytes engi-
neered to express HLA-A201/HBs183-91 αβ TCR spe-
cific for the hepatitis B virus (HBV) surface antigen
(HBsAg) have been used to target HBV-associated hepa-
tocellular carcinoma in a subject with chemoresistant
extrahepatic metastatic disease (Ref. 21). Forthcoming
trials in London aim to use the same vector platform to
target Wilms’ tumor antigen 1 (WT1), a tumour
associated antigen that may be a useful target in
relapsed acute myeloid leukaemia (AML) and
other haematological malignancies (ClinicalTrials.gov:
NCT01621724, UK-0150), as well as cytomegalovirus,
a common pathogen in immunosuppressed transplant
patients (EudraCT No: 2008-006649-18, UK-0190).

Chimeric antigen receptor (CAR) gene therapies

CARs are recombinant receptors that combine the speci-
ficity of an antigen-specific antibody with T-cell signal-
ling domains (Fig. 1) and have been recently modified
to include co-stimulation domains (Ref. 22). First-
generation CARs used in these studies were composed
of signalling domains derived from single molecules,
either the CD3-ζ chain or Fc receptor γ (FcRγ) chain.
Many trials that used gene-modified lymphocytes with
first-generation CARs encountered low levels of cell per-
sistence. For example, poor clinical responses were seen
in three patients with renal cancer who received autolo-
gous T cells transduced with a CAR directed against car-
bonic anhydrase-IX (Ref. 23) or in eight patients with
ovarian cancer who received autologous PBMCs trans-
duced to express a CAR targeting the α-folate receptor
(Ref. 24). In addition, immunogenicity of CARs was
observed, as well as on-target adverse effects in non-
tumour tissues (Ref. 23). Pule et al. engineered Epstein-
Barr virus-specific cytotoxic T lymphocytes (CTLs)
to express a CAR directed against diasialoganglioside
GD2, a non-viral tumour-associated antigen expressed
by human neuroblastoma cells. They reasoned that
these genetically engineered lymphocytes would receive
optimal costimulation after engagement of their native
receptors, enhancing survival and antitumour activity
mediated through their chimeric receptors (Ref. 25).
Four of the eight patients with evaluable tumours had evi-
dence of tumour necrosis or regression including a com-
plete and sustained remission. In a follow up study, the
analysis of the long-term fate of these low-level persisting
CAR cells was performed on a total of 19 subjects with
high-risk neuroblastoma, including the original 11
patients. CAR cells persisted at low levels for as long as
4 years, with a highly statistically significant association
between prolonged detection and the number of helper
CD4 and central memory T cells. Of the 11 patients
with active disease at the time of infusion, three patients
achieved complete response (Ref. 26).
Second-generation CARs incorporating additional

signalling domains derived from costimulatory mole-
cules such as CD28 were assessed against B cell
lymphomas expressing the CD19 antigen (Ref. 27).
Patients were simultaneously infused with two
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autologous T cell products expressing CD19 CARs;
one CAR encoded both the costimulatory CD28 and
the CD3-ζ domains, while the other encoded only the
CD3-ζ chain. Second-generation CARs drove enhanced
expansion and persistence of the modified cells as com-
pared with first-generation CARs. Kochenderfer et al.
showed their encouraging results with a patient treated
with second-generation chimeric antigen receptor T
cells directed at CD19 with a dramatic tumour regres-
sion (Ref. 28). Nonetheless, this patient was treated a
second time after relapse alongside seven others,
either chronic lymphocytic leukaemia (CLL) or B-cell
lymphoma patients. Six of the eight treated patients
obtained objective remissions (Ref. 29). Brentjens
et.al. enrolled another 10 patients with either chemo-
therapy refractory CLL or relapsed acute B lympho-
blastic leukaemia (B-ALL) on two phase 1 dose
escalation clinical trials with second-generation CARs
directed at CD19 (Ref. 30). Three of four evaluable
patients with bulky CLL exhibited either a significant
reduction or a mixed response in peripheral lymphaden-
opathy. Two recent publications with patients with
relapsed or refractory B-ALL who received autologous
CD19 CAR modified T cells also demonstrated the
marked antitumour efficacy (from 88 up to 100%)
and reliability of this therapy (Refs 31, 32). In an allo-
geneic setting, a clinical trial involving T cells obtained
from each hematopoietic stem cell transplantation
(HSCT) donors and genetically modified to express
CD19 CARs showed that a relatively small number of
these cells can cause regressions of malignancies
(CLL and Mantle Cell Lymphoma), which were refrac-
tory to other therapies, without causing GvHD
(Ref. 33). In another trial (Ref. 34), eight patients

with B-cell malignancies who had relapsed after
HSCT were infused with donor-derived virus-
specific T cells expanded with LCLs and transduced
with a γRV bearing a CD19 CAR transgene. These
infusions were safe in all patients, did not induce
GvHD, expanded in the presence of Epstein-Barr
virus (EBV) reactivation, and in two of six patients
could produce objective clinical responses (Ref. 34).
Some subjects have encountered complications

following infusion of CAR modified T cells, with
cytokine-mediated toxicities (Ref. 35). A systemic
inflammatory syndrome related to cytokine storms
mediated by tumor necrosis factor alpha (TNFα) and
interleukin-6 (IL-6) has been reported in early phase
trials, and measures taken to address such complica-
tions include the use of anti-IL-6 antibody therapy
(Refs 31, 32).
Overall, γRV genetic modification of T cells with

CARs established the first proof of concept data for
this type of cancer immunotherapy.

HIV therapies

γRV vectors have also been used to deliver transgenes
in the context of clinical gene therapy for the treatment
of HIV. In 1998, a pilot study of three HIV-seropositive
patients infused with autologous CD4 cells transduced
with a mutant protein that remains one of the most
potent inhibitors of HIV replication demonstrated per-
sistence of the Rev-transduced cells for an average of
6 months after retroviral gene transfer (Ref. 36).
Although there was no long-term benefit, a modest
survival advantage of the transduced CD4 cells was
observed. The same year, a phase 1 clinical trial
evaluating the safety and effects in asymptomatic
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FIGURE 1.

TCell and Chimeric Antigen Receptors. The αβ T cell receptor (TCR) comprises α- and β-chains associated with the γ, δ, e and ζ chains of the
CD3 complex. TCRs recognize specific antigenic peptides that have been processed and presented in association with human leukocyte antigen
(HLA) molecules expressed on the surface of target cells. Chimeric antigen receptors (CARs) are recombinant molecules composed of an
antigen-specific antibody linked through a hinge region to CD3ζ alone (first-generation), or in combination with the intracellular signalling
domain of a T cell co-stimulatory molecule, usually CD28 (second-generation), or more recently with an additional signalling domain from
a second co-stimulatory molecule such as CD137 (4-1BB) or CD134 (third-generation). These receptors mediate high affinity binding of

target cell surface proteins and are independent of HLA presentation.
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HIV-1 infected patients of autologous lymphocytes
transduced with a ribozyme that cleaves HIV-1 RNA
led to similar results (Ref. 37). Studies have also eval-
uated a receptor comprising transmembrane and extra-
cellular domains of human CD4 and the ζ-subunit of
the CD3TCR, to target the gp120 cell surface expressed
HIV glycoprotein. A phase II randomised trial showed
that infusion of gene-modified, but not unmodified, T
cells was associated with reduced HIV burden in
some subjects (Ref. 38) and found that persistence of
cells harbouring the chimeric transgene was over 1
year. Deeks’ study demonstrated rises in CD4+ T
cell levels in patients receiving ex vivo expanded
autologous T cells and modest decreases in viral reser-
voirs in HIV-infected individuals compared with con-
trols. Similar results were obtained in a study with 24
patients where CD4ζ was detected in 1–3% of blood
mononuclear cells at 8 weeks and 0.1% at 1 year
after infusion (Ref. 39). These studies confirmed the
safety and feasibility of adoptive therapy with CD4ζ
gene-modified T cells for the treatment of HIV infec-
tion. Other more recent trials also involving twins dis-
cordant for HIV infection support the hypothesis that
anti-HIV genes afford a survival advantage to T cells
and potential benefit to HIV-1 positive individuals
(Refs 40, 41). One of the most recent completed clinic-
al trials was tested in ten patients with late-stage HIV
infection (Ref. 42). The infusions of transduced T
cells with a γRV carrying a transgene encoding a
HIV entry-inhibitory peptide derived from gp41 were
well tolerated, and a significant albeit transient increase
of CD4 counts was observed after infusion. T cell gene
therapy for HIV might help generate an immune system
resistant to HIV and contribute to the control of HIV
(Ref. 43). Also, it is likely that such approaches will
have to be combined with stem cell modification and
ablative conditioning regimens to ensure long-term,
thymic and non-thymic mediated T cell recovery along-
side elimination of HIV reservoirs.

Genotoxicity

One concern associated with γRVs has been the risk of
genotoxicity associated with mutagenic effects elicited
by vector insertion near to transcription start sites and
transactivation of proto-oncogenes, although in clinical
studies, adverse effects have only been reported follow-
ing hematopoietic stem cell (HSC) modification
(Ref. 44). In clinical studies of HSC modification for
X-linked SCID-X1 (Refs 45, 46), chronic granuloma-
tous disease (Ref. 47) and Wiskott–Aldrich syndrome
(WAS) (Refs 48, 49), leukemic transformation has
been reported in Phase 1 trials. In contrast, several
hundred patients have now received γRV-modified T
cells without evidence of genotoxicity. Although theor-
etically possible, it appears that T cells have a lower risk
of transformation than HSCs (Refs 38, 50). However, in
vitro and in vivo experiments revealed the susceptibility
of primary T cells to malignant transformation, from a
rare event of T-cell immortalisation (Ref. 51) to

mature T-cell lymphomas in mice (Ref. 52). Despite
integration into genes with potential to mediate muta-
genesis, long term studies in patients followed in a clin-
ical trial have demonstrated stable gene expression
profiles and phenotype with no evidence of clonal
expansion (Ref. 53) presumably because of the differ-
entiated nature of T cells compared with HSCs.

Lentiviral-mediated T cell modification
In contrast to oncoretroviral preintegration complexes
(PICs), lentiviral PIC has the capability of actively
transporting into the nucleus through nuclear pore com-
plexes in an adenosine triphosphate (ATP)-dependent
manner (Ref. 54). Thus, HIV-1-based LVs have the
potential to transduce minimally activated cells and to
be pseudotyped with heterologous envelope proteins
such as vesicular stomatitis virus G envelope protein,
to confer broad tropism for transduction of a wide
variety of mammalian cell types including T cells
(Refs 55, 56). First-generation HIV-1 LVs used a
split packaging plasmid system and transient transfec-
tion to generate virion particles. Second-generation
vectors were devoid of viral accessory proteins (Vif,
Vpu, Vpr or Nef), deleted of U3-LTR elements
(including its thymine-adenine-thymine-adenine
(TATA)-box-, Sp1-, nuclear factor kappa B (NF-κB)-
and nuclear factor of activated T-cells (NFAT)-
binding sites) and incorporating internal promoter
sequences (Refs 57, 58). Third generation LVs are
now also Tat-independent with Rev provided in trans
by a fourth plasmid (Ref. 59). Additional heterologous
elements have improved the properties of the transdu-
cing vector, including the woodchuck hepatitis virus
post-transcriptional regulatory element used to stabilise
transgene mRNA levels and increase transgene expres-
sion, and the central polypurine tract, another cis-acting
element, is used to improve transduction efficiency
(Refs 60, 61). Additional available modifications
include the use of chromatin-insulator elements
(Ref. 62), chromatin-opening elements (Ref. 63),
bioengineered ligand/antibody-displaying envelopes
for targeted T cell transduction (Ref. 64) and tissue-
specific promoters (Refs 59, 65). Several envelope gly-
coproteins can be used to pseudotype LV particles, for
example amphotropic murine leukaemia virus (MLV)
or RD114 (type D retrovirus) envelope-pseudotyped
LVs show efficient transduction of human CD34+
haematopoietic stem cells (Ref. 66), but the vesicular
stomatitis virus G glycoprotein is widely used based
on its efficiency and broad tropism. This pseudotype
provides resistance to freeze-thawing and sufficient sta-
bility for LV to withstand concentration or purification
methods (Ref. 67). High concentrations of LV particles
are usually needed for efficient gene transfer in primary
T cells, requiring concentration of the viral stock.
Ultracentrifugation is commonly employed but also
concentrates cellular debris, membrane fragments and
proteins derived from producer cells and the culture
medium. Such materials can be toxic to target cells,
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in particular to primary cells, and may cause inflamma-
tory or immunogenic reactions for direct in vivo studies
(Refs 68, 69).
In the absence of efficient stable packaging systems,

most clinical vectors have been produced by transient
transfection methods in 293T packaging cells, and a
number of published clinical studies have now
employed this approach including anti-HIV therapy
(Ref. 70), adrenoleukodystrophy (ALD) (Ref. 71), β
Thalassemia (Ref. 72), CLL (Ref. 73), WAS
(Ref. 74), and Metachromatic Leukodystrophy
(Ref. 75). To date these vectors have a satisfactory
safety profile compared with γRVs. Previous mapping
of LVs and γRVs integration sites on the human
genome sequence found distinct target site preferences
between the two viruses. MLV-based γRVs appear to
be biased towards integration near transcription start
sites or cytosine-phosphate-guanine (CpG) islands,
whereas HIV-based LVs appear to favour integration
within active transcription regions. Clonal expansion
was reported in a trial for β Thalassemia where hemato-
poietic stem cells were modified with a LV incorporat-
ing a modified β-globin locus control region, and vector
integration into the high mobility group AT-hook 2
(HMGA2) locus disrupted endogenous microRNA
regulation, but without leukemic transformation
(Ref. 72). Of particular note, longitudinal studies of
CD4+ T lymphocytes transduced with a LV incorpor-
ating anti-HIV envelope sequences have found no evi-
dence of abnormal clonal expansions (Ref. 76).

HIV therapies

Lentiviral T cell gene therapies are summarised in
Table 1. Levine et al. carried out the first clinical trial
in which a conditionally replicating HIV-based LV
expressing an antisense gene against the HIV envelope
was introduced into T cells of five HIV-infected sub-
jects (Ref. 70). This LV retained full LTRs of HIV
with expression of the antisense element upregulated
in the presence of wild-type HIV. This LTR-dependent
transcriptional upregulation is in contrast to the major-
ity of other trials, where self-inactivating vectors with
LTRs modified by deletion of the U3 region, are used
to reduce the risk of vector mobilisation. After 1 year,
all patients showed a decrease of the viral load and
four out of five showed an increase in the number of
CD4+ T cells. The transduced cells diminished in
number after infusion but were detectable at 2 years
in three of five subjects (Ref. 70). A follow-on Phase
I/II clinical trial was initiated to evaluate the distribu-
tion of integrated vector copies in transduced CD4+
T cells before and after reinfusion with no evidence
of vector-mediated transactivation, which had caused
clonal expansions in some stem cell studies (Ref. 76).

CAR gene therapies

The groundbreaking studies on CAR came from June
lab in 2011 with CD19 CARs carried by LVs
(Refs 73, 77, 78). They tested the feasibility and

safety of CAR CD19-specific in patients with CD19-
positive lymphoid malignancies, including refractory
CLL (Ref. 73) and acute lymphoblastic leukaemia
(ALL) (Ref. 77). The LV expressed a second-generation
CAR with specificity for the B-cell antigen CD19,
coupled with 4-1BB, a costimulatory receptor in T
cells, and CD3-zeta signalling domains. Interestingly,
in the CLL setting relatively low dose anti-CD19
CAR cells underwent >1000-fold in vivo expansion.
These cells trafficked to tumour sites, persisted long-
term in vivo and induced rapid and potent antitumour
activity in the chemotherapy refractory CLL patient.
No clonal proliferation of the infused T cells was
observed, although two toxic effects were described,
an unexpected occurrence of delayed tumour lysis syn-
drome and lymphopenia. Remission was on-going 10
months after treatment (Ref. 73). The two ALL patients
developed a severe cytokine-release syndrome, and a
single course of anti-cytokine therapy, consisting of a
TNF inhibitor and anti–IL6 receptor monoclonal anti-
body, was effective in reversing the syndrome and did
not prevent expansion of CAR T cells or reduce antileu-
kemic efficacy (Ref. 77). Cells persisted as memory
CAR+ T cells and retained anti-CD19 effector
functionality, indicating the potential of this MHC-
independent approach for the effective treatment of B
cell malignancies (Ref. 78).

αβ TCR gene therapies

In a recent trial carried out with an affinity-enhanced
TCR specific for the HLA-A∗01-restricted MAGE-
A3 tumour antigen, a melanoma and a myeloma
patient were treated with autologous modified T cells.
Both subjects encountered severe cardiac toxicity
owing to off-target reactivity, developed cardiogenic
shock and died within a few days of T-cell infusion
(Refs 79, 80). This was an unexpected and unpredict-
able consequence of cross recognition of unrelated
cardiac antigen by the introduced TCR, underlining
the difficulty in modelling such consequences ahead
of clinical application.
Additional studies that are planned include treatment

of patients with locally advanced or metastatic melan-
oma, with CD8+ T cells engineered to express the
αβ chains of a high affinity TCR specific for the
HLA-A∗0201-restricted MART-1 melanoma tumour
antigen, together with the HSVl-sr39tk suicide gene,
or with autologous PBLs expressing a αβ TCR specific
for tyrosinase. For myeloma, MAGE-A3 and NY-
ESO-1 TCRs post-ASCT and for the treatment of syn-
ovial sarcoma, NY-ESO-1 TCR transgenes will also be
carried by LVs, as NY-ESO-1 and LAGE-1 TCRs for
hepatocellular carcinomas.
For HIV therapy, gag-specific TCR (the University

of Pennsylvania, Philadelphia) and RNAi (Beckman
Research Institute) are expressed in autologous T
cells and target HIV Tat and Rev. Calimmune devel-
oped a dual therapeutic anti-HIV LV that down-regu-
lates CCR5 and inhibits HIV-1 fusion via cell surface
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expression of the gp41-derived C46 peptide, initially
developed by D. von Laer’s group (Ref. 81). This
shRNA construct is being tested in Phase I/II trials
by engineering HIV-resistant hematopoietic cells and
CD4+ T cells (Ref. 82).
For ovarian cancer, an alpha-folate CAR, following a

clinical trial with γRV (Ref. 24), and a mesothelin CAR
are tested in clinical trials currently recruiting from the
University of Pennsylvania, Philadelphia. In non-
Hodgkin lymphoma, CD19 CAR only, CD19 CAR
together with a truncated EGFR in central memory T
cells, or bi-specific CMV-TCR and CD19 CAR T
cells will be infused to patients. For acute lymphoid
leukaemia, CD19 CARs have also been designed in
an autologous setting. Finally, patients with B-lymph-
oid malignancies will be infused with allogeneic
CD8T cells expressing CD19 CARs (data collec-
ted from http://www.wiley.com/legacy/wileychi/
genmed/clinical/ and http://www.clinicaltrials.gov/).
Interestingly, several companies including big pharma-
ceuticals have taken over to develop CAR T cells into
clinical products (Ref. 83).

Non-viral transposon-based T cell
engineering
Non-viral gene transfer technologies offer the prospect
of more cost effective and less biologically complex
alternatives to viral methodologies, with reduced con-
cerns related to safety, host immune response and
manufacturing costs. Plasmid-based gene transfer
could facilitate investigation of a greater variety of
transgene cassettes, and allow rapid evaluation of
new receptors. This is an important consideration in
the context of αβ TCRs, where multiple HLA-peptide
specific receptors will need to be provided, and for
CAR receptors, which continue to rapidly evolve with
revised costimulatory and selection domains.
DNA transposons have the ability to insert trans-

genes into host chromosomes for long-term transgene
expression and are derived from natural genetic ele-
ments residing in the genome as repetitive sequences
that transfer through a direct cut-and-paste mechanism,
called transposition. Sleeping Beauty, a reactivated
Tc1/mariner-like element from fossils of the salmonid
fish genome (Ref. 84), Medaka fish Tol2, a member of
the hAT family (Ref. 85) and cabbage looper moth pig-
gybac (Ref. 86), the founding member of the piggyBac
family, are all transposons that effectively transpose in
mammalian cells (Ref. 87). Advantages in using these
systems for genetic modification of T cells include
reduced costs associated with the manufacturing of
clinical-grade plasmid-based vectors, compared with
recombinant viral vectors, and reduced immunogen-
icity. In addition, transposon vectors may tolerate
larger and more complex transgenes. Unlike LTRs
of retroviruses, the terminal inverted repeats of SB
vectors have very low intrinsic enhancer/promoter activ-
ity and cannot readily activate endogenous genes that
flank the transposon integration sites. A reconstruction

based on several rounds of mutagenesis established a
functional SB transposase protein that was found to effi-
ciently catalyse transposition in human cells (Ref. 84).
Mutagenesis of the transposase gene led to a higher effi-
ciency variant (Ref. 88) with the development of the
SB100X transposase (Ref. 89).
In primary human T cells (Table 1), Huang et al.

demonstrated that SB transposons can mediate stable
transposition of reporter genes with high levels of trans-
gene expression maintained at least 4 months in vitro
(Ref. 90). Transposon constructs expressing tumour
antigen-specific TCR genes targeting p53 and MART-
1 also showed sustained expression and furthermore,
functional reactivity of transposon-engineered lympho-
cytes on encountering target antigen presented on
tumour cells. A direct comparison between transposon-
and retroviral-modified lymphocytes revealed a compar-
able transgene expression and phenotypic function
(Ref. 91). Comparison of lentiviral- and sleeping
beauty-mediated αβ TCR gene transfer supported the
exploitation of the SB plasmid based system as a flexible
and adaptable platform for accelerated, early-phase
assessment of TCR gene therapies (Ref. 92). SB delivery
of CD19 CARs has led to early-phase human trials that
are currently assessing safety and feasibility of adminis-
tering these autologous genetically modified T cells into
patients with high-risk B-lymphoid malignancies under-
going autologous HSCT. T cells with redirected specifi-
city were efficiently generated with plasmids from the
Sleeping Beauty system, and expansion was achieved
for both CD4+ and CD8+ T cells expressing CAR
with CD19+ artificial antigen-presenting cells (Refs
93, 94).
Overall, eight clinical trials have opened recently

using the Sleeping Beauty system for non-viral ex
vivo genetic modification of either autologous T
cells, HLA-matched allogeneic T lymphocytes or
umbilical cord blood lymphocytes for the treatment
of lymphoma, and autologous T cells for the treatment
of CLL at the Anderson Cancer Center and the
University of Texas (http://www.wiley.com/legacy/
wileychi/genmed/clinical/), with no acute toxicities
reported to date.

Future developments
The rapid advancement of genome editing techniques
holds much promise for the field of human gene
therapy. Among the upcoming methods of lymphocyte
genetic modification, the zinc finger nuclease (ZFN)
technology (Refs 95, 96) is currently being evaluated
in early stage clinical trials infusing HIV-resistant T
cells generated by ZFN-mediated disruption of the
CCR5 coreceptor for HIV-I (Ref. 97). A similar
concept aims to engineer T cells to express TCR or
CAR after disruption of endogenous TCR by designer
ZFNs or TALE nucleases (TALENs) is being investi-
gated. These approaches aim to eliminate alloreactivity
by knocking out αβ TCR expression and are combined
with viral or SB transfer of antigen specific receptors.
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Thus, it may be possible to generate universal allogeneic
tumour-associated antigen-specific T cells from one
donor that might be administered to multiple patients
as off-the-shelf T cell gene therapies (Ref. 98).
Sangamo have developed ZFNs to target the α and β
chain constant regions (Refs 98, 99), and Cellectis,
TALENs (Abstract ESGT, A45, Or035, http://online.
liebertpub.com/doi/pdfplus/10.1089/hum.2013.
2513). A recent publication describes TALENs efficient
genome editing in primary T lymphocytes (Ref. 100).
Expression of these reagents from transfected mRNA
is being investigated and similar approach for the transi-
ent expression of αβ specific receptors following electro-
poration of mRNA is being investigated as an alternative
to stable transduction. In some circumstances, time
limited expression of antigen specific receptors may be
desirable, allowing clinical effects with reduced risk of
sustained adverse effects (Ref. 101).
Clustered regularly interspaced short palindromic

repeats (CRISPR) are clusters of brief DNA sequences
that read similarly forward and backward, found in
many types of bacteria. Since 2013, the CRISPR/Cas
system has been used for gene editing (adding, disrupt-
ing or changing the sequence of specific genes) and
gene regulation in various species. By delivering the
Cas9 protein and appropriate guide RNAs into a cell,
the genome can be cut at any desired location
(Ref. 102). Therefore, CRISPR could make gene ther-
apies more broadly applicable, from simple genetic dis-
orders to eventually more complex diseases involving
multiple genes (Ref. 103).
Overall, engineered T cells offer enormous thera-

peutic potential, with technologies evolving to allow
modification of either autologous or allogeneic popula-
tions, which will need to be carefully assessed in well-
designed clinical studies.
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