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Summary 17 

Global commitments to halt biodiversity decline mean that it is essential to monitor species' 18 

extinction risk. However the work required to assess extinction risk is intensive. We demonstrate an 19 

alternative approach to monitoring extinction risk, based on the response of species to external 20 

conditions. Using retrospective IUCN Red List assessments, we classify transitions in the extinction 21 

risk of 497 mammalian carnivores and ungulates between 1975-2013. Species that moved to lower 22 

Red List categories, or remained Least Concern, were classified as "lower risk"; species that stayed 23 

in a threatened category, or moved to a higher category of risk, were classified as "higher risk". 24 

Twenty-four predictor variables were used to predict transitions, including intrinsic traits (species 25 

biology) and external conditions (human pressure, distribution state, conservation interventions). 26 

The model correctly classified up to 90% of all transitions and revealed complex interactions 27 

between variables, e.g. protected areas vs human impact. The most important predictors were: past 28 

extinction risk, protected area extent, geographical range size, body size, taxonomic family, human 29 

impact. Our results suggest that monitoring a targeted set of metrics, would efficiently identify 30 

species facing a higher risk, and could guide the allocation of resources between monitoring species' 31 

extinction risk and monitoring external conditions. 32 

 33 

Keywords 34 

biodiversity; conservation; human threats; mammals; random forest model; 35 
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Introduction 36 

 Despite a growing international commitment to conservation, the current biodiversity crisis 37 

is characterised by increasing human pressures and continuing decline in the status of many species 38 

and habitats [1]. Reversing this trend has become the aim of one of the ambitious Aichi biodiversity 39 

targets proposed for 2020 [2]: reducing the extinction risk of known threatened species. If this target 40 

is achieved, it will in turn have a positive synergistic effect other targets (such as the protection of 41 

forests and the maintenance of carbon stocks [3]). Progress towards meeting this global biodiversity 42 

target relies on monitoring the extinction risk of species and evaluating how this risk changes over 43 

time. Over recent decades, the International Union for Conservation of Nature (IUCN) has assessed 44 

the extinction risk of more than 70,000 species of plants, vertebrates and invertebrates on the Red 45 

List of Threatened species [4]. The classification of threatened species is clearly an effective 46 

conservation tool [5], with the IUCN Red List underpinning both international policy processes [2] 47 

and research aimed at improving conservation responses [6]. 48 

 However, classifying and monitoring species' extinction risk requires intensive expert effort 49 

and considerable financial resources, which is unsustainable without change in either the strategy 50 

for assessment or funding [7]. Approaches such as sampling of taxa can be used to provide short-51 

cuts, but it remains a substantial task [8]. Overall statistics from the IUCN Red List are used for 52 

measuring the status and trends of biodiversity [1,6] and for designing global-scale strategies for 53 

conservation interventions [9]. In addition, species-specific assessments inform direct actions to 54 

address particular threats at specific times and sites, requiring a comprehensive species-level 55 

approach [10]. 56 

 The extinction risk of species, assessed using the IUCN Red List criteria [11], is a 57 

consequence of their biological traits, past and current environmental conditions, direct human 58 

pressures and the interactions between these factors [12,13]. Environmental changes and pressures 59 

on species are increasing in intensity and are the main cause of current increases in extinction rates. 60 

Extinction risk modelling has been used to better represent and quantify these external drivers, 61 
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which can change and intensify over a short timeframe [14,15]. Biological traits by contrast change 62 

very slowly, and determine the way in which species respond to external pressures [13]. Historical 63 

information on species' extinction risk, and the way in which risk has changed in response to known 64 

pressures, could therefore be a good way to predict future biodiversity trends, particularly when the 65 

pressures can be effectively monitored or forecast. 66 

  Di Marco et al. undertook a retrospective assessment of the extinction risk of the world's 67 

carnivores and ungulates between 1975 and 2008 [16] by applying the current IUCN Red List 68 

criteria [11] to historical information. Studying past trends in extinction risk can indicate the 69 

circumstances under which conservation policies and strategies are or are not successful. 70 

Retrospective assessments can also guide the interpretation of future scenarios of emerging threats, 71 

for example, inferring the likely consequences of land use change or climate change [17]. 72 

Therefore, one approach to reducing the logistical and financial constraints of constant extinction 73 

risk monitoring could be to use well-validated models, based on past trends, to predict the effect of 74 

changing external pressures on future extinction risk [18,19]. 75 

 In many cases Red List categories remain stable over long periods of time, especially for the 76 

large number of species listed as being of Least Concern (LC) [11]. The most useful information 77 

therefore concerns those species whose extinction risk is likely to escalate. We use historical 78 

records to develop and refine models of change in extinction risk, for identifying those species for 79 

which high-risk combinations of biological vulnerability and extrinsic threats occur. We use current 80 

[4] and historical [16] information on Red List categories for 497 species of mammalian carnivores 81 

and ungulates in the period 1975-2013, to represent "transitions" in species' extinction risk (Fig. 1). 82 

We classified species in two groups: "lower risk" transitions, for those species not facing a 83 

significant increase in their extinction risk over time, and "higher risk" transitions, for those species 84 

facing a significant increase in their extinction risk over time (see Methods and Table S1). This 85 

approach is not analogous to measuring ordinal transitions between Red List categories (e.g. [20]), 86 

since we deliberately highlight species that will be of greatest concern to conservation, namely 87 
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those that remain at a relatively high risk of extinction over time, and those that move from lower to 88 

higher risk categories. 89 

 We acknowledge that our study species are not a representative subset of all mammals, let 90 

alone life on earth. For example, carnivores and ungulates are generally characterised by longer 91 

generation times [21] and higher risk of extinction [4] relative to other mammals. Nonetheless the 92 

high conservation attention devoted to these groups (also in relation to the many flagship species 93 

they include) makes a perfect case for testing our analytical approach. 94 

 We predicted higher and lower extinction risk transitions for species, using a comprehensive 95 

set of variables, which represent the conditions faced by the species during the study period. Our 96 

analyses therefore mimic a hypothetical situation in which relevant biological datasets and reliable 97 

forecast environmental and conservation metrics were available in the 1970s. This would have 98 

enabled conservation planners to predict which species would be in a higher or lower risk condition 99 

over the next 40 years.  100 

 101 

Methods 102 

Obtaining extinction risk transitions 103 

 We included all species of carnivores (Carnivora), ungulates (Perissodactyla and terrestrial 104 

Cetartiodactyla) and Proboscidea (discussed below together with ungulates) currently assessed in 105 

the IUCN Red List [4]. We excluded those species identified as being historically (<1970) extinct 106 

or Data Deficient (DD). We also excluded the Saudi gazelle (Gazella saudyia), declared extinct in 107 

the 1980s, since we had no detailed information available for its life history traits (apart from body 108 

mass) or spatial distribution. We considered 497 species in our analyses, representing 93% of all 109 

extant species in the study groups. 110 

 We compared the most recent species' extinction risk categories assessed in the IUCN Red 111 

List [11] with a retrospective assessment for 1975 [16]. We calculated an extinction risk transition 112 

value for each species between the two time periods in terms of the number of Red List categories 113 
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changed (Fig. 1). A negative transition (<0) characterised species that moved toward a lower 114 

category of risk, a stable transition (=0) characterised species that maintained the same Red List 115 

status, and a positive transition (>0) characterised species that moved toward a higher category of 116 

risk. 117 

 We considered changes in species' extinction risk over a c. forty-year period (1975-2013). 118 

This is a reasonable reference period for species in our study groups, as it corresponds to >10 119 

generations for small carnivores and ~2 generations for large bodied species such as elephants and 120 

rhinos [21]. 121 

 122 

Classifying extinction risk transitions 123 

 Because we were most interested in species that had fared unusually badly compared to 124 

those following an average trend over the study period, we identified species with a transition value 125 

significantly higher than random, when compared to other species within the same original 126 

extinction risk category. To do this we: (i) randomly re-assigned the observed transitions across all 127 

species within each original Red List category; (ii) compared the observed transitions with the 128 

randomly assigned transitions; (iii) repeated the previous steps 10,000 times. As an example, the 129 

transition of a species moving from LC (in 1975) to NT (in 2013) was higher than a transition 130 

randomly selected from other originally LC species in ~85% of the comparisons. Species with a 131 

transition value higher than random in ≤ 5% of the comparisons were included in the "lower risk" 132 

group. Species with a transition value higher than random in > 5% of the comparisons were 133 

included in the "higher risk" group. Importantly, a species retaining the same category over the time 134 

period (net change = 0) may have a transition value higher than random if several other species in 135 

the same original category had moved to lower categories of risk (net change < 0). 136 

 The randomization resulted in two groups containing species characterised by different 137 

extinction risk trajectories (Table S1). The "lower risk" group included species that were LC 138 
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throughout the study period, together with species that underwent a change from any category to a 139 

lower category of risk. The "higher risk" group included all species that underwent a change from 140 

any category to a higher category of risk, together with species that were originally threatened or 141 

near threatened and retained their category. This classification reflects the intrinsic properties of the 142 

Red List criteria, in particular the fact that remaining within the same Red List category has 143 

different implications depending upon the category. For example, a species classified as LC 144 

throughout the time period does not face any significant decline over time. In contrast, a species 145 

classified as Vulnerable (VU) throughout the time period faces a strong continuing decline in 146 

abundance (≥30%) and/or remains at a very low population size. The species in the latter case 147 

therefore has a much higher probability of extinction (≥ 10% in 100 years) [11]. 148 

 149 

Modelling the drivers of extinction risk transition 150 

 We modelled the probability that a species is included in the higher risk or in the lower risk 151 

group, based on its original extinction risk category and the conditions in place over the study 152 

period. Extinction risk has been shown previously to be attributable to a combination of intrinsic 153 

and extrinsic factors [13]. Following recent work [22], our model included three classes of external 154 

predictor variables and one class of intrinsic (biological) predictors (see Table 1 for a complete list 155 

and description). The external variables are intended to reflect conditions faced by the species 156 

during the study period. We measured: i) distribution state variables, such as species' range size 157 

(measured in orders of magnitude); ii) human pressure variables, such as the human influence index 158 

[23]; and iii) conservation response variables, measured as the proportional coverage and absolute 159 

extent of protected area (PAs) within species ranges (again the extent was measured as an order of 160 

magnitude). The fourth group of predictor variables reflects species life-history traits (i.e. species 161 

biology) including physical characteristics (e.g. body-size), reproductive timing (e.g. weaning age) 162 

and reproductive output (e.g. weight at birth) [24]. We used an existing dataset [25], in which 163 

multiple imputation techniques had been used to fill gaps in life-history data [26]. 164 
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 Obtaining measures of external predictor variables corresponding to exactly the same years 165 

as the assessment period was not always possible. Nonetheless most of these data refer to the 166 

second half of the study period (i.e. ≥ 1990s), where the highest decline in species status was 167 

observed [16]. We assumed that changes that occurred within a relevant part of the 40-year study 168 

period (especially the second half of the period) would serve as a valid approximation for the entire 169 

period. In addition, this reduces the risk of collinearity between predictor variables (including levels 170 

of habitat loss and other proxies of human pressure) and original threat status (derived from 171 

retrospective assessments of extinction risk in the 1960s-1970s). We decided to not include 172 

variables that could not reasonably be used as predictors of future extinction risk change. For 173 

example, measures related to species distribution such as biogeographical realm - while probably 174 

acting as a proxy for regional pressure levels - could not reasonably be used by conservation 175 

planners to predict future changes in extinction risk of species. 176 

 We used Random Forest modelling (RF) to estimate the probability that a species was 177 

included in the higher risk or in the lower risk group. RF modelling is a powerful tool for ecological 178 

analysis [27], and it has been successfully used to model extinction risk in mammals [28,29] and 179 

amphibians [30]. RF is a machine learning technique with a number of characteristics that make it 180 

suitable for extinction risk prediction [15], including: limited assumptions about data distributions, 181 

high classification stability and performance, and ability to cope with collinear predictors. In a 182 

recent test, RF showed the highest performance in predicting global mammal extinction risk among 183 

several machine learning methods [29]. Our model included several variables which are external to 184 

species biology (human pressures, habitat state, conservation responses), hence, in common with 185 

other studies [15], we did not include phylogenetic constrains into our analyses. However we tested 186 

whether this could influence our results by independently examining the effect of including 187 

taxonomy for predicting extinction risk [29].  188 

 We ran a full RF model, including all predictor variables, and ranked the variables according 189 

to their relative importance, i.e. their contribution to model's classification accuracy. Variable 190 
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importance, as well as the classification accuracy of the model, were calculated using an automated 191 

bootstrapped cross-validation procedure (implemented within the RF routine). During each iteration 192 

of the RF model, one third of the data were left out and used to cross-validate the classification 193 

ability of the model, see [31] for additional details. 194 

 Based on the final variable importance scores, we ran a series of partial RF models, each 195 

time including one additional variable following the variables' ranked importance. First we ran the 196 

model including only the most important variable, then added the second most important variable 197 

and re-ran the model, and so on until the last variable was included. We measured the performance 198 

of each partial RF model in terms of: proportion of correctly classified species (PCC), proportion of 199 

correctly classified higher risk species (sensitivity), proportion of correctly classified lower risk 200 

species (specificity), True Skill Statistic (TSS = sensitivity + specificity -1) [32]. 201 

 In order to account for the effect of including the original (1975) species Red List status in 202 

the model, we re-ran the full model after removing this variable. Because of its potential role in Red 203 

List assessments and its representation of past threat conditions [33], we also re-ran the model after 204 

removing species' range size (RangeSize). In this latter case, we also removed the variable 205 

representing extent of PA within the species range (RangeProtkm), as it has a weak positive 206 

correlation with range size (R
2
 = 0.56). We used degraded values of both range size and PA extent, 207 

i.e. order of magnitude rather than actual values (as for previous work [33]), to better represent the 208 

availability of coarse and approximate information during the study period. Finally, we built a 209 

single conditional inference classification tree to visually represent the interaction between 210 

predictor variables. 211 

 We adopted alternative classifications of extinction risk transitions and tested the 212 

performance of our model under different formats of the response variable. First, we repeated our 213 

RF modelling using ordinal changes in Red List categories as a numeric response variable (e.g. +2 214 

for a species moving from LC to VU; see also [20]). Second, we repeated our RF modelling after 215 

removing all species that did not change their Red List category between 1975-2013; in this case we 216 
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classified the remaining species in two categories: "uplisted" for species moving to higher 217 

extinction risk categories and "downlisted", for species moving to categories of lower risk. Third, 218 

we divided species in three groups: "LC to LC", including species remaining LC throughout the 219 

study period; "downlisted", including species that underwent a downlisting in their Red List 220 

category; "higher risk", following original classification already described. 221 

 The quantification of spatial variables was performed in GRASS GIS [34]. Statistical 222 

analyses were performed in R [35] using the packages 'randomForests' [31] and 'party' [36]. 223 

 224 

Results 225 

 Our classification of extinction risk resulted in 277 species being included in the lower risk 226 

group (55% of all species) and 220 species in the higher risk group (45% of species). The full RF 227 

model for classification of higher risk vs lower risk species performed well in cross-validation 228 

(Table 2): 89% of all species were correctly classified, with a sensitivity of 0.84, and a specificity of 229 

0.93 (TSS = 0.77). After removing the Red List category in 1975 from the model (i.e. the most 230 

important predictor), 82% of the species were still correctly classified, but the ability to correctly 231 

classify higher risk transitions was reduced (sensitivity = 0.78; TSS = 0.64). Subsequent removal of 232 

range size caused further deterioration in the model performance; although 79% of species were still 233 

correctly classified, there was a substantial reduction in sensitivity and TSS (sensitivity = 0.73; TSS 234 

= 0.57). 235 

 The six most important variables in the full RF model were: Red List category in 1975, PA 236 

extent (representing conservation response), range size (representing distribution state), body size 237 

(representing biology), family (representing taxonomy) and human impact index (representing 238 

human pressure) (Fig. 2A). A sequence of partial RF models, adding one variable at a time from the 239 

most important to the least important, showed that some of the variables had a contrasting effect on 240 

sensitivity and specificity. For example adding the taxonomic family to the model substantially 241 
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increased sensitivity, but reduced specificity. In contrast, adding the human influence index slightly 242 

increased both sensitivity and specificity. 243 

 The extinction risk transition of 87% of species could be correctly predicted from one 244 

variable alone (Red List category in 1975), highlighting the importance of knowing the initial 245 

condition when modelling changes in extinction risk. However this was biased toward lower risk 246 

species (specificity = 0.95 vs sensitivity = 0.78). Adding five additional variables did not 247 

substantially alter the overall classification ability, but improved the balance between specificity 248 

and sensitivity (Fig. 2A). Even after removing the Red List categories in 1975 from the model, the 249 

performance remained fairly good, but then several variables had to be included in order to 250 

correctly classify ~78% of the higher risk and ~86% of the lower risk species (Fig. 2B). Subsequent 251 

removal of range size required the use of >50% of all variables to achieve a sensitivity of ~73% and 252 

specificity of ~83% (Fig. S1). 253 

 A single conditional inference tree (Fig. 3), represents the interplay between correlates of 254 

extinction risk transitions. For example, species that were LC in 1975 had a much higher probability 255 

of being in the higher risk group if they had a relatively low coverage of PAs during the study 256 

period (<1,000 km
2
) and faced a substantial increase in human population density within their range 257 

(> 30%). 258 

 When changes in Red List categories were used as an ordinal numeric response variable, the 259 

following values were observed: -3 (n=1 species), -2 (n=3), -1 (n=11), 0 (n=369), +1 (n=79), +2 260 

(n=23), +3 (n=9), +4 (n=2). In this case the RF regression model performed poorly in terms of total 261 

variance explained (13%). The relative importance of variables in determining model performance 262 

was also different with respect to the importance measured in the transition classification model, 263 

with the 6 most important variables now being: forest cover change, family, human population 264 

change, generation length, age at first birth, proportion of protected areas (Fig S2). 265 

 When excluding species that did not undergo a change in their Red List category, our 266 

sample reduced to 15 down-listed and 113 up-listed species. The RF model then gave highly biased 267 
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results in this case, due to the high class imbalance, and classified all species as being uplisted (i.e. a 268 

complete imbalance toward sensitivity). The overall classification accuracy in this case was 269 

misleadingly high (88%), as the model was unable to predict improvement in species conservation 270 

status. 271 

 When dividing species into three groups, there were 15 downlisted species, 262 LC to LC 272 

species and 220 higher risk species. Here again, the overall classification accuracy of the model was 273 

high (89%), but  the predictive ability for the downlisted class was very low (only 1 correct 274 

prediction, Table S2). 275 

 276 

Discussion 277 

 By focusing on extinction risk transitions, we were able to distinguish between two groups 278 

of species. The higher risk group included species that remained at high extinction risk and those 279 

whose extinction risk increased between 1970 and 2010. The lower risk group included species that 280 

remained at, or improved their status to, low extinction risk during the same period. This 281 

classification is different from the Red List status, since it identifies species that are undergoing an 282 

unusual increase in extinction risk compared to other species that started the period in the same risk 283 

category. 284 

 We included candidate predictor variables from a range of classes (see Methods) and found 285 

that a small number of variables can efficiently predict the extinction risk transition of ungulates 286 

and carnivores. Interestingly, no class of predictor variables was consistently more important, and 287 

the top predictors in our model included variables of different classes. These variables have been 288 

highlighted previously [13,28] and include initial conservation status, certain biological traits 289 

(represented by body mass), levels of human encroachment (represented by the human influence 290 

index), and the degree of conservation action (represented by PA coverage). The importance of 291 

considering conservation interventions in extinction risk modelling has already been demonstrated 292 
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for Australian birds [20] and for African mammals [22], and we confirm it here in a global scale 293 

analysis. 294 

 Our results show that the probability of a species being at higher risk was reduced by some 295 

adequate level of PAs coverage (one thousand km
2
 or more; Fig. 3), while it was increased by 296 

limited PA coverage and high levels of human pressure. To a first approximation this indicates the 297 

conditions under which PAs deliver positive conservation outcomes [37]. Monitoring the progress 298 

of PA expansion and the extent of human encroachment within species ranges can therefore be 299 

strategic. Future projections of these variables may be translated into global projection of species 300 

extinction risk, and allow for a proactive planning of conservation interventions [38]. 301 

 Our models  included measures of environmental change (e.g. the amount of suitable habitat 302 

for a species during the study period) and static measures of human impact (e.g. human influence 303 

index). These classes of variables are potentially both important, they represent the extrinsic factors 304 

acting on species and the changes that occurred to the environment during the study period. Among 305 

general proxies of human pressures and habitat state, we also included information on levels of tree 306 

cover and tree cover change (see also [22]). While the role of these variables is probably more 307 

influential for forest-dependent than for non-forest species, it is known that habitat clearance has a 308 

contagious effect [39] and we use tree cover, a well mapped habitat feature at a global scale [40], to 309 

estimate the general condition of natural habitats within species ranges. 310 

 The extinction risk transition model performed well in cross validations, the classification 311 

ability was high for both lower risk and higher risk species. The availability of a dataset with 312 

retrospective extinction risk assessments [16] made it possible for us to validate our extinction risk 313 

model. This type of validation is common in other environmental science areas, such as climate 314 

change modelling, and has been used to validate models of climate change effects on species 315 

distribution [41]. We suggest that as our knowledge of past extinction risk improves, this approach 316 

could become standard practice in extinction risk modelling. 317 
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 Unlike many previous studies, we did not convert IUCN Red List categories into numerical 318 

measures of extinction risk (e.g. LC to Extinct, from 0 to 5; [20,42]), or use extinction risk 319 

probabilities described in Red List Criterion E [43]. These involve assumptions about the 320 

relationship between categories and probability of extinctions that are not supported in theory or in 321 

practice [11]. We simply assumed that species in the higher risk group have higher conservation 322 

requirements than those in the lower risk group, and found that predicting ordinal changes in Red 323 

List categories (as in [20]) was substantially less efficient than predicting extinction risk transitions. 324 

We also found that excluding those species with no change in their Red List category, or assigning 325 

stable LC species to a separate group, resulted in a biased allocation of model error with downlisted 326 

species being systematically misclassified. In this case the model is unable to predict the outcome of 327 

conservation success, i.e. those situations in which the extinction risk of a species is reduced over 328 

years. 329 

 Our results on the relative importance of different predictor variables can be used to identify 330 

priorities for future data gathering. We suggest that monitoring a set of such variables over time 331 

would allow conservationists to effectively anticipate future extinction risk. The accuracy of these 332 

predictions will rest on the assumption that these variables represent the drivers of transitions in 333 

species extinction risk. Our results demonstrates that this was the case for past extinction risk 334 

transitions, but the emergence (or the exacerbation) of new threats (such as climate change) would 335 

need to be accounted for to have a robust forecasting of extinction risk [17,44]. However, this  is 336 

not a weakness unique to our approach: threats to biodiversity change over time [45,46] and any 337 

model used to forecast extinction risk would require continuing updates and recalibration to account 338 

for emerging threats. Monitoring the emergence of new threats and the occurrence of rapid changes 339 

in external conditions, e.g. due to geopolitical rearrangements or acceleration in the use of natural 340 

resources [16], will be necessary. Yet even this would probably be easier than continuously 341 

assessing the extinction risk category of all species in real time. 342 
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 McCarthy et al. [20] investigated optimal investment strategies to prevent the extinction and 343 

minimise the number of threatened Australian birds, using conservation investments to model the 344 

probability of species moving between Red List categories. A similar approach could be combined 345 

with our modelling framework here, to measure the probability of undergoing a high risk transition. 346 

In this case the probability can be modelled as a function of the intrinsic and extrinsic conditions in 347 

place for the species, plus the conservation budget available. However, adequate information on 348 

global conservation expenditure for threatened species needs to be available to reliably model the 349 

relationship between investments and status change. 350 

 Our approach can provide guidance on how to allocate resources among monitoring of 351 

species extinction risk and monitoring of external conditions, it can inform the identification of key 352 

variables to be monitored. There is great potential for the application of our approach to other taxa, 353 

especially considering the increasing availability of retrospective extinction risk assessments for 354 

groups such as amphibians [47] and corals [48], and the potential to use historical information to 355 

perform retrospective assessments for other groups [16]. 356 

 357 
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Table 1 Description of the variables used in the model. Variables are organised in different classes: 491 

human pressure (P), species biology (B), distribution state (D), conservation response (R). 492 

Examples of previous use of the variables for predicting extinction risk in terrestrial mammals, and 493 

the original data sources for each variables are also provided. 494 

 495 

Class Variable Description and justification Examples Source 

- 
Dependent 

variable 
Extinction risk transition as described in Table S1. 

 
[4,16] 

- RL75 
Red List category in 1975, representing original species status (i.e. 

extinction risk at the beginning of the study period). 

 
[16] 

P Acc_50 

Travel distance from major cities (accessibility), measured as the 

median value of the variable within species ranges (percentiles tested: 

5, 10, 20, 50). A proxy of human encroachment. 

[22,29] 

[49] 

P AOOloss 

Proportional loss of suitable habitat within species ranges (1970-2010). 

A proxy of the main driver of mammal species decline calculated from 

back casts of global land cover changes, from the IMAGE integrated 

assessment model [50]. 

[22] 

[51,52] 

P HII_5 

Human influence index, measured as the proportion of species ranges 

where the variable had values larger than 5 (values tested: 5, 10, 20). A 

proxy of the human impact on the environment. 

[22,29] 

[53] 

P HPD90_50 

Human population density in 1990, measured as the median value the 

variable within species ranges (percentiles tested: 5, 10, 20, 50). A 

proxy of human encroachment, 

[13,22,29] 

[54] 

P PopChange 
Proportional change in human population count in 1990-2010, 

measured as the mean value observed within species range. 

 
[55] 

P ForestCG 
Proportional change in forested habitat within species ranges between 

2000-2012. A proxy of natural habitat loss. 

 
[40] 

B AFB_d Age at first birth [24,25] [56] 

B BirthW Birth weight [22] [56] 

B BodySize Body mass [13,28,29] [56] 

B DietBrdth Number of dietary categories eaten by the species [22] [56] 

B InterbInt Interbirth interval [24] [56] 

B LitPY Litters per year  [56] 

B LitSiz Litter size [22,24,29] [56] 

B WeanAge Weaning age [13,24] [56] 

B Fam Taxonomic family  [4] 

B Ord Taxonomic order [13,22] [4] 

B GenLen Generation length [24] [21] 

B HabBrdth Number of habitat layers used by each species.  [56]  

D TreeCov_50 
Median tree cover within species range in 2000 (percentiles measured: 

5, 10, 20, 50). A proxy of forests state. 

 
[40] 

D Hab 
Species habitat preferences, classified as: forest, grassland, shrubland, 

bareland, coastal or generalist (when >1 of the previous applied). 

 
[52] 

D RangeSize 
Species range size, measured as an order of magnitude (e.g. 1 for 

ranges of 10-100 km2, 2 for ranges of 100-1000 km2, etc.). 

[13,22,28] 
[4] 

R 
RangeProt_prop 

Proportion of species range covered by protected areas with an IUCN 

category I to IV. 

[22] 
[57] 

R 
RangeProtkm 

Extent of protected areas within species ranges, measured as an order 

of magnitude (as described for "RangeSize") 

 
[57] 
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Table 2 Performance of the random forest models. The full model is compared with partial models, 496 

where the original species status (RL75) and the range size (RangeSize) were removed. 497 

 498 

Metric Full model RL75 removed RL75 and RangeSize 

removed* 

PCC† 0.89 0.82 0.79 

Sensitivity 0.84 0.78 0.73 

Specificity 0.93 0.86 0.84 

TSS‡ 0.77 0.64 0.57 

 499 

*When removing the variable RangeSize the extent of protected areas within the range was also 500 

removed, to avoid a potential surrogate effect. 501 

†PCC, proportion of correctly classified species. 502 

‡TSS, true skill statistics. 503 
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Figure legends 504 

 505 

Fig. 1 Transition of species' extinction risk categories in the period 1975-2013. The plot reports the 506 

number of species (carnivores and ungulates) in each Red List category for each time period. 507 

Circles' size is proportional to the number of species while arrows represent the proportion of 508 

species moving from an initial category to a final category (arrows' width scales with the proportion 509 

of species in the original category). Data were obtained from [4,16]. 510 

 511 

Fig. 2 Performance of extinction risk models with an increasing number of variables, considering 512 

all variables (A) or all variables apart from original status (B). Variables are added iteratively to the 513 

models, from left to right according to their ranked importance in the original full model. Each 514 

series of symbols (y-axis) represents the specificity (spec) or sensitivity (sens) of a model that 515 

included the variables on its left or below it (x axis). 516 

 517 

Fig. 3 Conditional inference classification tree for extinction risk transition. Each terminal node 518 

reports (in dark grey) the proportion of higher risk species. See Table 1 for a description of the 519 

variables. 520 

 521 

Page 24 of 27

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



1975 2013

LC

NT

VU

EN

CR

LC

NT

VU

EN

CR

EW

●

●
● 1 species     308 species 1% species 100% species

Page 25 of 27

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0.5

0.6

0.7

0.8

0.9

1.0
A

m
od

el
 p

er
fo

rm
an

ce

● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

●
● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●

R
L7

5
R

an
ge

P
ro

tk
m

R
an

ge
S

iz
e

B
od

yS
iz

e
Fa

m
H

II_
5

W
ea

nA
ge

A
O

O
lo

ss
A

cc
_5

0t
h

F
or

es
tC

G
H

P
D

90
_5

0t
h

Tr
ee

C
ov

_5
0

B
ir

th
W

P
op

C
ha

ng
e

Li
tP

Y
A

F
B

_d
R

an
ge

P
ro

t_
pr

op
G

en
Le

n_
d

In
te

rb
In

t
Li

tS
iz

D
ie

tB
rd

th
H

ab O
rd

H
ab

B
rd

th

spec

sens

●

●
●

● ● ●
● ● ● ● ●

●
● ● ● ● ● ● ● ● ● ●

●

0.5

0.6

0.7

0.8

0.9

1.0
B

m
od

el
 p

er
fo

rm
an

ce

●

●

●
● ● ●

● ● ● ● ●
● ● ● ● ● ●

● ● ●
●

●
●

●

● ●

● ● ●
● ● ● ● ●

●

● ● ● ● ● ●
●

● ● ● ●

Fa
m

R
an

ge
P

ro
tk

m
R

an
ge

S
iz

e
B

od
yS

iz
e

H
II_

5
A

O
O

lo
ss

F
or

es
tC

G
W

ea
nA

ge
H

P
D

90
_5

0t
h

Tr
ee

C
ov

_5
0

P
op

C
ha

ng
e

A
cc

_5
0t

h
B

ir
th

W
A

F
B

_d
Li

tP
Y

G
en

Le
n_

d
R

an
ge

P
ro

t_
pr

op
In

te
rb

In
t

Li
tS

iz
D

ie
tB

rd
th

H
ab O
rd

H
ab

B
rd

th

spec

sens

Page 26 of 27

http://mc.manuscriptcentral.com/prsb

Submitted to Proceedings of the Royal Society B: For Review Only



  

 

 

Conditional inference classification tree for extinction risk transition. Each terminal node reports (in dark 
grey) the proportion of higher risk species. See Table 1 for a description of the variables.  
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