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Abstract  

 

 

Pipelines are the most practical option for transporting large volumes of captured CO2 

to appropriate storage sites as part of the Carbon Capture and Storage (CCS) process. 

Proper maintenance, including periodic blowdown of pipelines or pipeline sections, is 

necessary for their safe operation, a pre-requisite for the public acceptance of CCS.  

 

Given the relatively high Joule-Thomson coefficient of CO2, blowdown can present 

significant risks to pipeline infrastructure. Depressurisation will result in rapid cooling 

of the inventory, potentially to below the CO2 triple point temperature (216 °K); and 

adjoining pipe wall, which may cool below its ductile to brittle transition temperature, 

resulting in a significant decrease in its resistance to brittle fracture.  

 

In this thesis a rigorous CFD model for pipeline outflow, based on the Euler equations, 

is coupled with a Finite Element model of heat conduction (referred to hereafter as 

FEM-O) in order to predict transient pipe wall temperatures during the depressurisation 

of CO2 pipelines. The Peng Robinson Equation of State (EoS) is selected from a range 

of EoS including the Soave-Redlich-Kwong, Span and Wagner and GERG 2008 for use 

with FEM-O. The selection was based on a review of the literature, the accepted 

computational efficiency of cubic EoS and a comparison of outflow predictions with 

large-scale experimental data generated by the UK National Grid. New formulations of 

two and three pipe junction boundary conditions are developed for FEM-O in order to 

model controlled venting of CO2 pipelines.  

 

FEM-O is validated against data gathered from various large-scale dense phase CO2 

release experiments conducted by the UK National Grid. These included two full bore 

rupture experiments of a 144 m long, 0.15 m diameter shock tube, a pseudo-steady state 

release through two 0.05 m diameter pipes joined in series and the blowdown of a large 

CO2 pipe system through a 5.88 m long, 0.08 m diameter vertical vent pipe connected to 
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a T-junction. One shock tube experiment utilised a binary mixture of dense phase CO2 

with N2. The rest of the tests employed pure, dense phase CO2.  

 

Allowing for uncertainty in the experimental data, FEM-O predicted the range and rate 

of outer pipe wall cooling to ± 4 °C throughout each decompression test. Outer pipe 

wall temperatures were observed and predicted to fall from ambient temperatures to as 

low as 247 K over ca. 25 s. Fluid pressure and rapid transient predictions closely 

matched the experimental data. Fluid temperature was consistently under predicted by 

FEM-O. For the pseudo steady-state experiment, fluid pressure around the junction of 

the pipes was under predicted by ca. 5 bara (12 %) and fluid temperature predictions by 

less than 1 %. No experimental wall temperature data was recorded. For the venting of a 

pipeline system through a T-junction; FEM-O significantly over predicted fluid and 

pipe wall temperatures compared to the experimental data. This resulted from the 

assumption of isentropic fluid flow through the T-junction, which in this experiment 

caused the model to converge on an unrealistic solution for fluid entropy in the fitting.  

 

A verification study was also performed to investigate the performance of the FEM 

steady state pipe wall temperature calculation algorithm, the sensitivity of the pipe wall 

temperature predictions to the discretisation of the solution domain and to various 

different boundary conditions applied. Further, the performance of the newly formulated 

junction boundary conditions was verified. Lastly a large scale venting experiment was 

simulated to investigate flow regimes in the inventory. The results demonstrate the 

minimum requirements for the discretisation of the solution domain in order to maintain 

accuracy. The uninsulated boundary condition appears to under predict transient wall 

temperature while the insulated and buried boundary conditions display the expected 

performance. The new pipeline junction boundary conditions display the expected 

performance. The large scale venting simulation results suggest the inventory stratifies 

within seconds of the initiation of venting. 

 

The accuracy of FEM-O wall temperature predictions are shown to be dependent on the 

applicability of the fluid model to the blowdown scenario. For FBR scenarios transient 

pipe wall temperature predictions agree well with the available experimental data. 
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However improvements cannot be claimed when simulating venting scenarios. The 

Finite Element computer code has been prepared in modular form and may be readily 

integrated with other blowdown models. 
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Chapter 1: Introduction  

 

 

The release of anthropogenic greenhouse gases (GHG) is now accepted as the main 

driver for the observed changes in global climate (United Nations, 2014a), including 

higher average global temperatures, changes in rainfall patterns and extreme weather 

events. The United Nations Framework Convention on Climate Change commits 

signatories to stabilising atmospheric GHG concentrations “at a level that would prevent 

dangerous anthropogenic interference with the climate system” (United Nations, 

2014b).  

 

The burning of fossil fuels for energy and in other industrial processes contributes 

significantly to emissions of GHGs. In 2010 alone ca. 31.85 Gt of CO2 was released to 

the atmosphere, of which ca. 13.2 Gt of CO2 (40 %) was derived from the energy sector 

(IPCC, 2014). CO2 emissions from the energy sector are expected to rise to ca. 15.4 Gt 

between 2010 and 2040 while retaining a share of 40 % of global CO2 emissions over 

the same period. This is despite an expected increase in uptake of renewable energy 

technologies, especially in the developing world (IEA, 2013, 2014).  

 

Given the continued use of fossil fuels for generating energy and in industry, Carbon 

Capture and Storage (CCS) has attracted increasing attention as a method of reducing 

the resulting CO2 emissions. CCS involves the capture of waste CO2 from large fixed 

emitters, its transportation via pipeline to deep geological storage sites and its long term 

sequestration (≥10
3
 years) (Bachu et al., 2007).  

 

The effective deployment of CCS will require the development of extensive high 

pressure pipeline networks linking CO2 emitters to storage sites. As CCS pipelines will 

inevitably run close to population centres their safe operation is paramount. Given their 

huge capacity (typically several hundred tonnes), even a small puncture could result in 

the release of a significant mass of inventory. Gaseous CO2 is odourless, colourless, 

more dense than air and at concentrations ≥ 10 % v/v causes instantaneous 
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unconsciousness and rapidly results in death (Kruse and Tekiela, 1996). Thus any leak 

from a CO2 pipeline represents a significant hazard. 

 

An essential part of the hazard assessment for any pipeline carrying a pressurised 

inventory is the analysis of the consequences of pipeline rupture and of outflow from 

the pipeline. Prediction of the transient outflow rate is central to assessing all 

consequences for the pipeline system once outflow begins. For CO2 pipelines these 

include cooling in the pipe wall and the associated risk of brittle fracture, the possible 

formation of solid inventory and its ejection from the pipeline and the atmospheric 

dispersion of the escaping inventory (Bilio et al., 2009).  

 

During outflow from a CO2 pipeline significant cooling of the inventory will increase 

the probability of the pipe wall cooling below its Ductile to Brittle Transition 

Temperature (DBTT), at which point its resistance to brittle fracture decreases 

significantly (P. Zhang, 2014). Propagation of a brittle fracture will result in the 

relocation of the CO2 release point, the effective escalation of the release to a Full Bore 

Rupture (FBR) and the release of a massive amount of inventory in a very short space 

of time.  

 

The formation of solid inventory in the pipeline during outflow may result in the fouling 

of equipment, such as valves, impairing their normal operation. Ejection of solid CO2 

will alter the behaviour of the dispersing inventory cloud.  

 

Therefore, a model for predicting outflow from CO2 pipelines should accurately predict 

discharge rate and cooling in the inventory and pipe wall. Additionally, given the 

potential geographical extent of a CCS pipeline network, the model should also account 

for network characteristics such as junctions and changes in pipeline geometry and 

inclination.  

 

Significant research effort has been directed toward the development of accurate and 

robust mathematical models for predicting transient discharge rates from pressurised 

pipelines. More rigorous models, such as the two fluid model OLGA (Bendiksen et al., 
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1991), account for thermal and mechanical non-equilibrium effects in the inventory. 

OLGA has been shown to be of limited use in modelling unsteady flows in ruptured 

hydrocarbon pipelines (Shoup et al., 1998) due to its reliance on certain empirical data, 

such as for the transition between the various flow regimes, and numerical stability 

issues. There is also little information concerning the formulation of the choking 

condition at the rupture plane, vital for modelling transient outflow. Additionally, 

OLGA accounts for heat transfer between the ambient and pipe wall using a constant 

heat transfer coefficient. This severely limits its applicability to modelling CO2 pipeline 

blowdown as phase changes in the inventory during blowdown would result in 

significant changes to the heat transfer coefficient with time.  

 

For failure scenarios where a high degree of turbulence is expected in the inventory less 

rigorous models may be suitable. Brown et al. (2013) developed a Homogeneous 

Relaxation Model (HRM) of pipeline blowdown in which mechanical equilibrium in the 

inventory is assumed, non-equilibrium liquid-vapour mass transfer is accounted for by 

relaxation to thermodynamic equilibrium. As the model does not account for phase slip 

its application is limited to modelling of Full Bore Rupture (FBR), the most catastrophic 

and least common type of failure.  

 

Mahgerefteh and co-workers (see for example Mahgerefteh and Atti, 2006; 

Mahgerefteh and Wong, 1999; Oke et al., 2003) developed a pipeline outflow model 

based on the Homogeneous Equilibrium Model (HEM). The model accounts for rapid 

pressure and thermal transients in the fluid during depressurisation and frictional 

effects. Heat transfer between the inventory and ambient is modelled using an energy 

balance across the pipe wall. Comparison of the simulated results with corresponding 

experiments and real pipeline failure events, such as the Piper Alpha tragedy, show very 

good agreement.  

 

In reviewing the literature it was observed that heat transfer between a pipeline and the 

ambient is not always accounted for in discharge models. Predictions from such models 

may therefore be expected to diverge from reality. This is a particular problem for CO2 

pipeline modelling, where prolonged cooling of the inventory during outflow can have a 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 1   13 

significant impact on transient fluid properties. Where external heat transfer is 

accounted for, the pipe wall conduction models used have not been validated due to a 

lack of appropriate experimental data.  

 

The aim of this work is to develop a mathematical model to better assess the hazards 

associated with the blowdown of CO2 pipeline networks. The specific objectives are: 

- to develop a heat conduction model for calculating transient pipe wall 

temperatures and heat transfer between the ambient and pipeline inventory 

during outflow; 

o to integrate the above model with an appropriate outflow model and 

validate its performance; 

- to formulate and validate flexible models for two and three pipe junctions which 

minimise runtime while maintaining accuracy; 

- to investigate the applicability of the model to simulating CO2 pipeline outflow 

under a number of scenarios. 

 

This thesis is divided into nine chapters.  

 

In chapter 2 relevant literature is reviewed. The chapter includes brief discussions of the 

transportation of CO2 by pipeline and the risks associated with venting of such 

pipelines. Mathematical models for pipeline outflow reported in the literature are 

reviewed with specific consideration of their ability to predict discharge rate, rapid fluid 

transients and pipe wall temperatures. Modelling of network features such as junctions 

are also considered. Pipe wall heat conduction models are discussed. In addition, a 

review of the work investigating Equations of State (EoS) for modelling CO2 properties 

is presented.  

 

In chapter 3 the theoretical background and formulation of the pipeline blowdown 

model OUTFLOW (see section 2.4.4) employed in this study is presented. A complete 

description of the previously reported heat transfer model and associated correlations is 

included.  
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In chapter 4 the Method of Characteristics (MOC), the numerical solution technique 

used in OUTFLOW, is presented. Boundary conditions for modelling pipeline 

blowdown are described.  

 

In chapter 5 OUTFLOW is first used to model CO2 shock tube decompression using a 

range of EoS. Based on a comparison of predicted and experimental data an EoS is 

selected for the modelling work in this thesis. OUTFLOW pipe wall temperature 

predictions are then validated against experimental shock tube data.  

 

In chapter 6 the formulation of a Finite Element heat conduction model and its 

integration with OUTFLOW to create the composite model FEM-O is presented. FEM-

O fluid and pipe wall temperature predictions are then validated against experimental 

shock tube data.  

 

In chapter 7 new pipeline junction boundary conditions are proposed for two and three 

pipe junctions. The new boundary conditions are implemented in FEM-O and validated 

against appropriate experimental data.  

 

In chapter 8 a verification study of FEM-O is presented. The sensitivity and accuracy of 

the FEM calculations to factors including the solution domain discretisation and FEM 

boundary conditions are investigated. In addition, a verification study is performed on 

the new junction boundary conditions presented and validated in chapter 7. Finally, 

venting of a long CO2 pipeline is simulated and the flow regime within the inventory 

(e.g. annular, stratified, turbulent) during outflow investigated by comparison with 

experimentally derived flow regime data.  

 

Chapter 9 presents the conclusions of this thesis and suggestions for future work. 
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Chapter 2: Literature Review  

 

 

2.1 Introduction 

 

Pipelines provide the means to move large quantities of fluid inventories over long 

distances with relative ease. Proper maintenance, including periodic emptying of whole 

pipelines or pipeline sections for inspection and possible repair, is central to their 

continued safe operation. Emptying of a pipeline must be carried out in a controlled 

fashion to avoid infrastructure damage and to minimise process risks.  

 

The UK Pipeline Safety Regulations 1996 (HSE, 1996) require that the risks associated 

with the construction and operation of major accident hazard (MAH) pipelines, which 

include CO2 pipelines (Shuter et al., 2011), are as Low As Reasonably Practicable 

(ALARP). In the context of CO2 pipelines outflow models can contribute significantly 

to understanding the outflow process and to minimising process risks.  

 

In this chapter a range of topics relevant to modelling the blowdown of pipelines are 

reviewed. First, a brief discussion of the transportation of CO2 for Carbon Capture and 

Storage (CCS) is presented. The pipeline blowdown process is then addressed and 

important phenomena and risks specific to CO2 pipelines are identified.  

 

In the next section a review of published outflow models is presented and their 

applicability to modelling outflow from CO2 pipelines is discussed. In particular, their 

accuracy in predicting depressurisation rate, rapid transients in the inventory, discharge 

rate and pipe wall temperatures are highlighted. This is followed with a discussion of 

the modelling of heat exchange in pipeline models.  

 

Finally, a brief review of work to identify a suitable Equations of State (EoS) for use in 

modelling CO2 pipeline venting is presented. 
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2.2 CO2 transportation for Carbon Capture and Storage (CCS) 

 

It has been assumed in the preceding text that land based transportation of CO2 for CCS 

will be by pipeline, however in offshore transportation scenarios this may not be the 

most practicable method. In this section a brief discussion of the transportation of CO2 

is presented.  

 

CCS is a bridging technology being researched in order to reduce CO2 emissions from 

large scale emitters while replacement low carbon technologies are developed and 

introduced. CCS research has focussed overwhelmingly on the application of the 

technology to fossil fuel power stations.  

 

While fossil fuel power stations emit a continuous flow of CO2, and any CO2 injection 

site for deep underground storage will rely on such a continuous stream, power stations 

have not been built with any regard to the proximity of suitable long term CO2 storage 

sites. Pipelines therefore represent the ideal transportation method, allowing for 

continuous transportation of large volumes of CO2 from fixed sources to storage sites 

over long distances. Pipeline transportation is limited however by the availability of 

land, the topography (see also section 7.1) and, given the potential for off-shore CO2 

storage, the depth of water in which pipelines can currently be built (see for example 

Golomb, 1993). Transportation by ship, or a combination of pipeline and ship transport, 

may thus be considered when warranted (Svensson et al., 2004). Road or rail transport 

of CO2 has not been seriously considered for CCS (Golomb, 1997; Skovholt, 1993). 

 

The economics of CO2 transportation by pipeline have been studied by many 

researchers. McCoy and Rubin (2008) reported the development of a sophisticated 

engineering-economic model for estimating the cost of transporting varying amounts of 

CO2 over a range of distances in the USA. The model accounted for construction, 

operation and maintenance of the pipeline in the transportation cost. Other studies have 
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relied on the use of commercially available software such as ASPEN PLUS (Zhang et 

al., 2006).  

 

Shafeen et al. (2004) presented transportation cost estimates for CO2 from the 

Nanticoke power plant (Ontario) to a local geological storage site below Lake Erie. In 

this example an appropriate injection site was fortuitously close to Nanticoke; only 

112 km for a direct pipeline. For many power stations however, this will not be the case. 

Additionally, as the costs associated with CO2 storage will vary geographically the most 

economic storage solution may not be the closest. Skovholt (1993) reported the 

financial advantages of using larger diameter pipelines, even after investment and 

operational costs are accounted for. Chandel et al. (2010) further demonstrated the 

economies of scale a trunk pipeline could achieve.  

 

Minimising the risks associated with CO2 transport will be vitally important to the 

public acceptability of CCS; public opposition to one large-scale CCS storage 

experiment in Hawaii resulted in its relocation to Norway and subsequent cancellation 

(IPCC, 2005). Deliberate blowdown of a pipeline presents significant risks to the public 

and pipeline itself. In the next section this process is briefly discussed to illustrate key 

risks.  

 

2.3 CO2 pipeline blowdown and associated risks 

 

Unless otherwise stated, the terms blowdown and venting are used interchangeably in 

this thesis to refer to the controlled emptying of a pipeline. Where relevant, 

depressurisation through an accidental rupture (puncture or full bore (guillotine) rupture 

(FBR)) is specified.  

 

Bilio et al. (2009) presented an excellent discussion of key factors expected to affect the 

safe operation of a CO2 pipeline. Of particular relevance to pipeline blowdown are the 

purity of the inventory and the associated risk of solids formation during blowdown, the 
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risk of fracture and the risks posed by the dispersing inventory cloud. In this section 

these factors are discussed within the context of a pipe undergoing blowdown.  

 

Based on the description provided by Fairuzov (1998), the blowdown process in CO2 

pipelines may be divided into three stages:  

1) Decompression wave propagation – rapid depressurisation of the fluid occurs 

upon rupture of the pipeline. The resultant decompression wave propagates 

along the pipe at the local speed of sound. Outflow is choked.  

2) Flashing boundary propagation – a flashing boundary subsequently propagates 

along the pipeline at the local speed of sound. Depressurisation continues at a 

reduced rate and significant cooling will be observed in the CO2 inventory and 

the pipe wall in contact with it. 

3) Two phase discharge – two phase discharge occurs, the flashing front travels 

throughout the fluid, resulting in flashing along the full length of the pipe. 

Possible stratification of the inventory. Inventory and pipe wall temperatures 

continue to drop.  

 

Introducing impurities to a CO2 inventory will change the fluid’s properties; different 

behaviour at every stage of the blowdown process will be seen as a result. Of particular 

significance for ductile fracture and dispersion behaviour respectively will be changes 

in the speed of sound in the fluid and to the composition and properties of the inventory 

as it is discharged.  

 

A pipeline is at risk of ductile fracture formation during stage 1 of blowdown only. 

Ductile fractures evolve from small cracks in the pipe wall originating at a rupture; if 

the pressure exerted on a crack tip exceeds the material crack arrest pressure a ductile 

fracture will be initiated. If the crack velocity then exceeds the decompression wave 

velocity a long running fracture will result (Mahgerefteh et al., 2012a). Fluid properties 

therefore directly affect the formation and behaviour of ductile fractures.  

 

A pipeline undergoing venting is at risk from brittle fractures during stage 3 of 

blowdown; prolonged cooling of the pipe wall may result in it falling below its Ductile 
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to Brittle Transition Temperature (DBTT). At this point a significant drop in the wall 

fracture toughness occurs and the risk of brittle fracture increases significantly. Brittle 

fracture propagation depends on both thermal stresses in the pipe wall and pressure 

stresses exerted on it by the fluid (Mahgerefteh and Atti, 2006; Zhang, 2014).  

 

A further risk for the pipeline during stage 3 of blowdown is that the fluid properties 

may pass the inventory triple point, resulting in the formation of solids. Solids may foul 

the internal surfaces of pipeline infrastructure such as valves, inhibiting their function.  

 

Evidence for CO2 pipeline failure 

CO2 pipelines are an established technology. In the mid-western USA more than 

2500 km of pipelines carry 50 MtCO2 y
-1

 for enhanced oil recovery (IPCC, 2005). Gale 

(2004) presented data for the number of reported incidents in CO2 pipelines in the USA 

between 1990 and 2001. In this period 10 incidents were reported: 4 involving relief 

valve failure, 3 involving weld/gasket/valve packing failure, 2 due to corrosion and 1 

due to outside force. Gale (2004) concluded that CO2 and natural gas pipelines were 

equally prone to incidents. It was noted that the CO2 pipeline incident data was limited 

based on the small sample size.  

 

In the absence of historical experience modelling studies can provide legitimacy to 

concerns over ductile and brittle fracture in CO2 pipelines. Mahgerefteh et al. (2012a) 

predicted the formation of long running ductile fractures following FBR of CO2 

pipelines operating at a range of conditions and with various inventories. 

 

Zhang (2014) presented a model for the prediction of brittle fracture propagation 

following the puncture of buried CO2 pipelines, reporting that under certain 

circumstances the pipe wall could cool below its DBTT and brittle fractures propagate. 

Unfortunately however, appropriate experimental data was not available to validate this 

model.  
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2.4 Review of outflow models  

 

In the previous section the blowdown process in CO2 pipelines was described and key 

risks associated with it were discussed. The relationship between the fluid properties, 

wall temperatures and ductile and brittle fracture during venting/blowdown of CO2 

pipelines was presented. The significance of the chemical composition of the inventory 

was also discussed.  

 

In order to model depressurisation of a CO2 pipeline and hence accurately illustrate the 

risks associated with the process, an outflow model must produce accurate transient 

fluid property and pipe wall temperature predictions. It should also account for heat 

transfer between the ambient and inventory. 

 

In this section models for simulating outflow from pipelines are reviewed and their 

methods of accounting for heat transfer discussed. Where available, data for the 

validation of the discussed models is presented.  

 

2.4.1 Summary of published outflow models  

 

Denton (2009) reviewed the reported state of the art pipeline outflow models. More 

recently Brown (2011) expanded and updated this review. Relevant models reviewed by 

Brown (2011), and some recently reported models, are summarised in table 2.1. 

Included in the table are their methods of calculating pipe wall heat conduction. Models 

that neglect pipe wall heat conduction are not included in the review.  

 

  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 2   21 

Table 2.1: State of the art outflow models with details of their mechanisms for 

modelling pipe wall heat conduction.  

Model Heat conduction calculation 

OLGA (Bendiksen et al., 1991) Heat conduction in the pipe wall not discussed, 

fluid/wall heat transfer coefficient calculated 

internally, user specified pipe wall/ambient 

heat transfer coefficient  

FaNM 

(Fairuzov, 1998a, 1998b, 1999, 2000) 

Heat conduction in pipe wall not calculated, 

fluid/pipe wall/ambient heat transfer calculated 

using modified energy conservation equation  

University College London model  

OUTFLOW 

(Atti, 2006; Mahgerefteh et al., 1999 

to 2012; Oke et al., 2003) 

Heat conduction in pipe wall calculated using 

transient energy balance, fluid/pipe 

wall/ambient heat transfer accounted for 

SLURP_HEM_HT (Cumber, 2007) Fluid/pipe wall heat transfer accounted for 

Machnet (Terenzi, 2005) Fluid/pipe wall/ambient heat transfer 

calculated by solving the Fourier equation in 

cylindrical geometry 

GasDECOM (Botros et al., 2004 to 

2013) 

No published details found 

Brown et al. (2014) 2-D heat conduction in pipe wall cross-section 

calculated using Finite Difference method, 

assumed perfect insulation for this publication 

Burlutskiy (2013, 2014) Neglects heat transfer 

CFD-DECOM 

(Xu et al., 2014) 

Heat conduction in pipe wall calculated using 

Finite Volume method, assumed perfect 

insulation for this publication 
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2.4.2 OLGA (Bendiksen et al., 1991) 

 

OLGA is a two-phase flow model based on the solution of the conservation equations 

for mass, momentum and energy. Separate continuity equations are applied for gas, 

liquid bulk and liquid droplets, these may be coupled through interfacial mass transfer. 

Two momentum equations are used for either liquid films or gas with possible liquid 

droplets. One energy equation is applied for the whole mixture. An equation of state 

such as the Peng-Robinson (PR) (Peng and Robinson, 1976) or Soave-Redlich-Kwong 

(SRK) (Soave, 1972) is employed to calculate fluid properties. An implicit finite 

difference scheme is used to solve the relevant conservation equations.  

 

Heat transfer between the pipe wall and inventory is calculated within OLGA. A pipe 

wall composed of multiple materials of varying heat transfer properties can be 

simulated, the wall description along different lengths of the pipe can be varied. The 

pipe can be simulated as totally insulated using the user specified heat transfer 

coefficient between the pipe wall and ambient. Different frictional factors are used for 

the various flow regimes. 

 

OLGA was originally developed to model the slow transients associated with terrain-

induced slugging, pipeline start-up, shut-in and variable production rates. Successive 

iterations addressed the simulation of stratified/annular flow regimes and extended the 

model for hydrocarbon mixtures (Bendiksen et al., 1991). The numerical solution 

scheme employed gave rise to numerical diffusion of sharp slug fronts and tails, 

resulting in the incorrect prediction of slug size. This was addressed by introducing a 

Lagrangian type front tracking scheme (Nordsveen and Haerdig, 1997).  

 

Validation 

OLGA was validated by Shoup et al. (1998) against field data obtained by Deepstar for 

blowdown of a 5.28 km, 0.102 m internal diameter (ID) onshore pipeline with varying 

inclination and containing gas condensate at 4.8 MPa (700 psig). The precise mixture 

composition was not given. The pipeline was blown down through a 2.54 cm choked 
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opening. In order to simulate blowdown it was assumed that release occurs through a 

valve situated at the end of the pipeline.  

 

Figures 2.1 and 2.2 present the observed and predicted pressure history and gas flow 

rate respectively at the release end of the pipeline. As may be observed, while OLGA 

was able to predict the trends in behaviour, it was not able to precisely predict the real 

pressure or flow rate at the release end. However, better agreement between observed 

and predicted pressure data was achieved further from the release point during the first 

minutes of blowdown.  

 

Figure 2.1: Pressure at the release end of the pipe. OLGA Simulations versus Field 

Test (Shoup et al., 1998). 

 

Figure 2.2: Gas flow rate at the release end of the pipe. OLGA Simulations versus 

Field Test (MMSCFD – million standard cubic feet per day) (Shoup et al., 1998). 
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OLGA was used to simulate experimental decompression tests by Botros et al. (2007). 

The tests were performed using a 172 m long, 49.5 mm ID instrumented shock-tube rig. 

Decompression of the pipeline was initiated upon failure of a rupture disc.  

 

Figure 2.3 shows the variation of pressure with time during the first 1000 ms of 

discharge for Case 2: a conventional gas mixture (ca. 95.6 % methane) at an initial 

pressure and temperature of 105.8 bara and -25.6 °C. Data is shown from instruments 

located 23.1 m (P14), 47.1 m (P19) and 71.1 m (P24) from the rupture point. As was 

observed by Botros et al. (2007), the predicted speed of the decompression wave is 

significantly slower than observed experimentally, the predicted pressure drop is also 

greater.  

 

 

Figure 2.3: Comparison between OLGA and experimental data for Case 2 at P14, 

P19 and P24 (Botros et al., 2007). 
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2.4.3 Fairuzov (1998a, 1998b, 1999, 2000) 

 

Fairuzov (1998a) reported that, of the pipeline outflow models reviewed for that 

publication, all neglected the thermal capacitance of the pipe wall and most assumed 

that fluid flow in the pipeline was adiabatic.  

 

In a later publication (Fairuzov, 2000) it was observed that the traditional approach to 

solving the two phase conjugate heat transfer problems in pipelines was to couple 

separate models for fluid flow and transient heat conduction in the wall using 

experimentally derived correlations for boiling heat transfer. However in a pressurised 

pipeline undergoing blowdown the flashing of the inventory occurs due to 

depressurization, rather than heating of the fluid.  

 

Fairuzov (1998a) presented a new approach to solving the problem of transient 

conjugate heat transfer in flashing liquid flows in pipelines to address these issues. The 

outflow model developed is based on equations for the conservation of mass, 

momentum and energy. A novel formulation of the energy equation accounts for the 

heat capacitance of the pipe wall. Conjugate heat transfer calculations for predicting 

fluid/pipe wall heat transfer are not required. The external heat flux is calculated from 

Newton’s cooling law. The thermodynamic and transport properties of the fluid were 

calculated with a computer code developed by Solorzano et al. (1996), which utilised 

the SRK EoS. The governing equations were solved using the Gear method (Gear, 

1971). The model assumed: 

- flow is one-dimensional; 

- homogeneous equilibrium in the inventory at saturation conditions;  

- the fluid and pipe wall were in local thermal equilibrium;  

- axial heat transfer in the pipe wall was negligible.  

 

The model was validated against experimental data reported by Tam and Cowley 

(1988). The experiment considered was the FBR of a 100 m long pipeline with an ID of 

150 mm. The pipeline was suspended on 20 load cells spaced at 5 m intervals to 

measure discharge rate, fluid temperature and pressure was measured along the full 
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length of the pipe using 10 thermocouples and 10 pressure sensors. The pipeline 

inventory was pressurised LPG (95 mole% propane with 5 mole% butane) at initial 

conditions of 11.25 bar and 19.9 °C. Given the short length of the pipeline the 

assumption of thermal equilibrium between the fluid and pipe wall was not achieved. 

Nonetheless it was assumed that a small part of the inner wall was in thermal 

equilibrium with the fluid, the thickness of this thermally penetrated layer was estimated 

to be ca. 1 mm.  

 

Figure 2.4 presents the variation of predicted and experimental pipeline inventory with 

time. Figures 2.5 and 2.6 present the variation of predicted and experimental fluid 

pressures and temperatures respectively at the open and closed ends of the pipeline. As 

may be observed, in all cases the agreement of the model with the experimental data is 

reasonable.  

 

Referring to figure 2.5, predicted fluid pressures are presented assuming a thermally 

penetrated layer of 1 mm or adiabatic expansion of the inventory. As may be observed, 

adiabatic expansion results in significant under prediction of the fluid pressure at the 

closed end in the later stages of blowdown.  

 

 

Figure 2.4: Predicted and experimental pipeline inventory during blowdown of a 

100 m pipeline containing LPG (Fairuzov, 1998a).  
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Figure 2.5: Predicted and experimental fluid pressures during blowdown of a 

100 m pipeline containing LPG (Fairuzov, 1998a).  

 

Figure 2.6: Predicted and experimental fluid temperatures during blowdown of a 

100 m pipeline containing LPG (Fairuzov, 1998a). 

 

Given the assumption of a thermally penetrated layer on the inner pipe wall, no wall 

temperature predictions were reported.  
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Fairuzov (1998b) subsequently reformulated the model using the Euler equations for 

conservation of mass, momentum and energy. The model assumptions remained the 

same as presented above and the energy equation was formulated to account for the heat 

capacitance of the pipe wall. A new dimensionless term governing the effect of thermal 

capacity of the pipe wall on the behaviour of the flashing liquid flow was also 

introduced into the energy equation. The governing equations were solved via their 

conversion into a system of finite difference equations using the RELAP5 numerical 

solution scheme (Ransom and Trapp, 1978). The reformulated model does not consider 

the dynamics of the depressurisation wave (Fairuzov, 1998b). The new model (hereafter 

referred to as FaNM) was successfully validated against the same experimental data 

used previously (Fairuzov, 1998a).  

 

In two subsequent publications the range of applicability of FaNM (Fairuzov, 1998b) 

was investigated by comparison with another outflow model (referred to hereafter as 

FaCon). FaCon (Fairuzov, 2000) was formulated in an identical fashion to FaNM with 

the exception of using a conventional formulation of the energy equation. The source 

term for heat flux in the energy equation is calculated from Newton’s cooling law. Heat 

conduction in the pipe wall was calculated separately by solving the heat conduction 

equation in one (radial) dimension using the Finite Volume method (FVM). FaCon was 

successfully validated using the same experimental data used previously (Fairuzov, 

1998a). It was demonstrated (Fairuzov, 2000) that for long pipes (fL/D = 200) 

undergoing FBR the relative error between FaNM and FaCon predictions for fluid 

temperature, fluid/wall interface temperature and outer wall temperature were 

consistently small (<2 %). For shorter pipe lengths (fL/D = 2) the blowdown was too 

fast to achieve local thermal equilibrium between the pipe wall and fluid. FaNM is 

therefore inappropriate for modelling blowdown of short pipes. Fairuzov (1999) also 

demonstrated the capability of FaNM to accurately model blowdown following either 

FBR or puncture (AdCd/A = 0.05) of a long pipeline (fL/D = 200).  

 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 2   29 

2.4.4 University College London outflow model (Atti, 2006; Mahgerefteh 

et al., 1999 to 2012; Oke et al., 2003) 

 

The UCL outflow model, referred to hereafter as OUTFLOW, was developed over a 

number of years to model transient outflow from ruptured pipelines. The historical 

development of the model is given by Brown (2011).  

 

In this section the ability of OUTFLOW to accurately model pipeline depressurisation, 

fluid properties and discharge rate is demonstrated by comparison with experimental 

data. Development of this model for pipeline network simulation is also discussed. 

 

OUTFLOW solves the conservation equations for mass, momentum and energy for one 

dimensional fluid flow in a pipeline using the Method of Characteristics (MOC). A 

cubic EoS is used to calculate fluid properties (Mahgerefteh et al., 2007; Mahgerefteh et 

al., 2006b; Mahgerefteh et al., 1999). The constituent phases in the inventory are 

assumed to be in mechanical and thermal equilibrium. Heat transfer between the 

ambient and pipe wall is accounted for through a transient energy balance (Atti, 2006) 

from which the pipe wall temperature was calculated. Newton’s cooling law is applied 

to calculate heat flux to the inventory.  

 

Oke et al. (2003) developed OUTFLOW to model punctures in long pipelines and 

validated it against appropriate field data from the Isle of Grain depressurisation test 

P40 (Richardson and Saville, 1996). This test involved the depressurisation of an 

isolated 100 m long, 0.154 m ID pipeline containing commercial LPG through a 

0.150 m diameter puncture located at the end of the pipe. The inventory had an initial 

pressure and temperature of 21.6 bara and 293.15 K respectively.  

 

Simulated fluid pressure data from the closed and open ends of the pipeline is compared 

with the corresponding experimental data in figure 2.7. Variation in the predicted and 

experimental total pipe inventory is shown in figure 2.8.  

 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 2   30 

 

Figure 2.7: Experimental and OUTFLOW simulated pressure histories at the 

closed and open ends of the pipe for Isle of Grain test P40 (Oke et al., 2003).  

Curve A – experimental data (closed end)  

Curve B – OUTFLOW predictions (closed end)  

Curve C – experimental data (open end) 

Curve D – OUTFLOW predictions (open end) 
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Figure 2.8: Experimental and OUTFLOW simulated total line inventory for Isle of 

Grain test P40 (Oke et al., 2003).  

Curve A – experimental data  

Curve B – OUTFLOW predictions  

 

As may be observed, the OUTFLOW pressure predictions agree reasonably well with 

the experimental data, especially at the open end of the pipeline. Reasonable agreement 

between the simulated and observed line inventory is also observed during the first ca. 

15 s of discharge.  

 

More recently Mahgerefteh et al. (2012b) used OUTFLOW to simulate decompression 

wave speeds in gas phase CO2 inventories during FBR of a shock tube. Predicted data 

was compared against the corresponding experimental data, reported by Cosham et al. 

(2011). The shock tube used was insulated, 144 m long with an internal diameter of 

146 mm (a complete description of the experimental setup is presented in section 5.2.1). 

Cosham et al. (2011) reported that a variety of inventories were investigated, including 

pure CO2 and CO2 with impurities relevant to CCS.  
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Figures 2.9 and 2.10 compare the OUTFLOW simulated decompression wave speeds 

for pure CO2 and CO2 with 4.03 mole% N2 respectively with the corresponding 

experimental data. Simulated decompression wave speeds are calculated at transducers 

P13 and P14 (paired, located 1.84 m from the rupture plane) and transducers P15 and 

P16 (paired, located 2.44 m from the rupture plane). The PR EoS (Peng and Robinson, 

1976) was used in simulations.  

 

As may be observed, reasonable agreement is obtained between the experimental and 

simulated data down to ca. 15 barg. Small differences between the simulated and 

experimental data were reported to be due to inaccurate prediction of fluid speed of 

sound by the EoS. In both figures, plateaux in curves C (associated with a phase change 

from gaseous to a two phase inventory) occur at significantly lower pressures than 

predicted by OUTFLOW. This was ascribed to delayed nucleation by Cosham et al. 

(2011), which OUTFLOW is unable to account for.  

 

Within the limits of the model, therefore, OUTFLOW is able to simulate fluid 

properties in an inventory with reasonable accuracy during pipeline blowdown.  
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Figure 2.9: Comparison of fluid pressure with decompression wave speed for pure 

CO2 (initial conditions: 38.1 barg, 278.15 K) (Mahgerefteh et al., 2012a).  

Curve A: data from transducers P13 and P14 (1.84 m from rupture plane). 

Curve B: data from transducers P15 and P16 (2.44 m from rupture plane). 

Curve C: experimental data. 
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Figure 2.10: Comparison of fluid pressure with decompression wave speed for 

95.97 mole% CO2 with 4.03 mole% N2 (initial conditions: 37.9 barg, 278.35 K) 

(Mahgerefteh et al., 2012a).  

Curve A: data from transducers P13 and P14 (1.84 m from rupture plane). 

Curve B: data from transducers P15 and P16 (2.44 m from rupture plane).  

Curve C: experimental data. 
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Mahgerefteh et al., (2006a) further developed OUTFLOW to model outflow following 

rupture in pipeline networks. A detailed description of the boundary conditions used to 

model fluid flow through junctions is presented in section 4.3.3.  

 

In the absence of suitable real data, OUTFLOW simulations were performed to 

investigate the effects of pipeline configuration on the discharge process. Three 

configurations of a 25 km pipeline were simulated; these are shown in figure 2.11.  

 

 

Figure 2.11: Pipeline network configurations simulated by Mahgerefteh et al., 

(2006a).  

 

Maintaining an overall length of 25 km, the pipeline ID and wall thickness was 0.419 

and 0.019 m respectively in every subsection. The pipeline was modelled as fully 
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insulated in each configuration; each pipeline and subsection was horizontal. The 

inventory was 90 mole% CH4 and 10 mole% C2H6 at an initial temperature and pressure 

of 283 K and 117 bara and at rest prior to rupture.  

 

Fluid pressures at the rupture plane and intact ends were compared for all 

configurations, as shown in figure 2.12.  

 

 

Figure 2.12: Fluid pressures at the rupture plane and intact ends of the pipeline for 

all configurations (Mahgerefteh et al., 2006a).  

Curves A1 and 2: intact and rupture plane data respectively, configuration A 

Curves B1 and 2: intact and rupture plane data respectively, configuration B 

Curves C1 and 2: intact and rupture plane data respectively, configuration C 

 

As may be observed from curve C1, depressurisation is predicted to occur fastest for 

pipe configuration C. Comparison of the rupture plane fluid velocities supports this 

conclusion, with fluid velocity beginning to decline significantly earlier than observed 

for the other configurations. However, no significant differences were reported in the 
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discharge rates from each configuration. The total mass discharged from each 

configuration was not reported, nor was a discussion of mass conservation in the study. 

Additionally, very limited data for fluid properties at the inlet or outlet of any junction 

was reported (only fluid velocity data at the T-junction, pipe configuration C).  

 

In summary, OUTFLOW has been developed over a number of years to model outflow 

from pipelines. The model’s accuracy in predicting depressurisation rate, discharge rate 

and rapid transients in the inventory has been demonstrated. Development of the model 

to simulate outflow from pipeline networks has also been discussed.  

 

2.4.5 SLURP (Cleaver et al., 2003; Cumber, 2007) 

 

Cleaver et al. (2003) developed SLURP for simulating the outflow rate from ruptured 

pipelines transporting compressed volatile liquids. The mathematical basis of SLURP is 

the same as that originally developed by Morrow (1982) with the extension of the 

thermodynamic property model to account for a wide range of fluids with a consistent 

degree of accuracy (Cleaver et al., 2003).  

 

The main assumptions in SLURP include; for failure along the pipe length, outflow 

from each ruptured end is not affected by outflow from the other, the pipeline is 

infinitely long and the outflow from the pipeline is always choked. Cleaver et al. (2003) 

do not report that heat transfer between the ambient and the pipeline is accounted for.  

 

Cumber (2007) extended SLURP (SLURP_FAUSKE) by reverting to the homogeneous 

equilibrium flow assumption (SLURP_HEM) by assuming no phase slip and accounting 

for fluid/wall heat transfer (SLURP_HEM_HT). 

 

To study the impact of these extensions to SLURP a number of propane outflow 

scenarios were modelled and the results compared against PROFES predictions. Heat 

transfer through the pipe wall was not accounted for in the PROFES predictions. Table 

2.2 shows the failure scenarios examined.  
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Table 2.2: Failure scenarios used in the comparison of predicted outflow of 

propane at 15 °C from a pipeline using SLURP and PROFES (Cumber, 2007). 

Case Initial pressure (barg) Pipe diameter (mm) 

P1 45 250 

P2 70 250 

P3 20 250 

 

Figure 2.13 shows the comparison of the variation of mass flow rate with time for case 

P1. As it may be observed, the SLURP models predict a higher flow rate than that given 

by PROFES, with SLURP_FAUSKE giving the closest agreement. It is also observed 

that the inclusion of heat transfer effects (SLURP_HEM_HT) has little impact on the 

predicted outflow. Cumber (2007) stated that this was consistent with the findings of 

Webber et al. (1999) where including wall heat transfer tended to improve predictions 

of temperature and pressure profiles but not the discharge rate as compared to measured 

data. 
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Figure 2.13: Comparison of predicted release rate for a propane pipeline at an 

initial pressure of 46 bara and 15 °C (Cumber, 2007). 

 

While Cleaver et al. (2003) validated SLURP against various Isle of Grain tests when 

originally presenting their model, Cumber (2007) compared the upgraded SLURP 

against PROFES simulations only.  

 

2.4.6 Machnet (Terenzi, 2005) 

 

Terenzi (2005) presented Machnet (Machnet_Real) developed to investigate the impact 

of real gas behaviour on the interaction between pipeline decompression and ductile 

fracture propagation. Homogeneous equilibrium is assumed between gas and liquid. 

Thermodynamic properties, such as the void fraction, are determined by linear 
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interpolation using a look up table with the density and specific internal energy as 

independent variables. Fluid/wall heat transfer is calculated by solving the Fourier 

equation in cylindrical geometry between the external environment and the fluid. The 

Colebrook-White correlation (Keenan and Neumann, 1946) is used to account for 

frictional effects along the pipeline. The resulting governing system of equations is 

resolved using Roe’s method, a Finite Volume conservative scheme of the Godunov-

type (Godunov et al., 1979). 

 

Terenzi (2005) also developed a model for the decompression of a pipeline transporting 

an ideal gas (Machnet_Ideal) by assuming zero heat transfer and frictionless flow to 

derive a solution for the pressure at the exit plane and decompression wave speed. 

 

Machnet_ideal and Machnet_real predictions were compared with the results of tests 

conducted at the Foothills Pipelines Northern Alberta Burst Test Facility (NABT) 

(Picard and Bishnoi, 1988). Terenzi (2005) presented a comparison of experimental and 

simulated data for NABT test 5 only; this test involved the release of natural gas (ca. 

85 % methane) at 7.544 MPa and 18.5 °C from a pipeline with ID 1422 mm and ca. 

60 m long.  

 

Figure 2.14 presents data for the variation of the ratio of pressure to initial pressure and 

void fraction, both as a function of expansion wave velocity. Machnet_Ideal and 

Machnet_Real predictions (using the PR and SRK EoS) are compared with 

experimental data. As may be observed, Machnet_Real predictions using both EoS 

show reasonable agreement with the experimental data. Machnet_Ideal over-predicts the 

wave speed throughout the decompression process. Additionally, the fluid void fraction 

falls slightly from unity when the pressure ratio reaches ca. 0.55. At this point 

Machnet_Real predictions using the PR and SRK EoS begin to diverge from the 

experimental data. 
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Figure 2.14: Measured and calculated decompression wave speed results of NABT 

Test 5 (Picard and Bishnoi, 1988). 

 

No further experimental comparisons were conducted by Terenzi (2005) and figure 2.14 

was the only quantitative validation data presented. Therefore the ability of 

Machnet_Ideal to model outflow and de-pressurisation of pipelines cannot be verified.  

 

2.4.7 Two-phase fluid model of Brown et al. (2014) 

 

CCS pipelines are expected to transport CO2 in the liquid phase in order to maximise 

mass flow rate. Consequently two phase flow is to be expected as a pipeline is vented or 

blown down, with the potential for the inventory to stratify. In fact recent work 

conducted as part of the CO2PipeHaz project (“CO2PipeHaz,” 2012) has demonstrated 

that stratification occurs only when the pipeline is punctured. High speed video 

recording of fluid flow through a transparent section of a pipe undergoing blowdown 

demonstrates that the greater turbulence within the fluid during FBR ensures the 

complete entrainment of the evolving vapour within the liquid (see figure 2.15).  
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Figure 2.15: Fluid flow patterns captured following puncture (a) and FBR (b) of a 

pipeline containing dense phase CO2 (Brown et al., 2013).  

 

To model outflow following failure of a high pressure CO2 pipeline Brown et al. (2014) 

developed a two-fluid transient flow model. The model was based on the single pressure 

two-fluid model described by, for example, Stewart and Wendroff (1984). Phase 

interaction terms were modelled using simple constitutive relations which assumed a 

constant thermal relaxation time and interphase drag coefficient. Pipe wall temperature 

is calculated by solving the transient heat conduction equation in two dimensions using 

a Finite Difference method, the heat transfer rate between it and each fluid phase is 

calculated using the Dittus-Boelter (1985) correlation. It was assumed that only forced 

convective heat transfer occurs within the pipe and the pipe was perfectly insulated.  

 

The model was validated against experimental data gathered from the FBR of a 256 m 

long, 233 mm ID pipeline filled with CO2 containing ca. 0.2 % v/v of air to a pressure 

of 36 bara and 274 K. The pipeline was insulated with 50 mm thick glass wool along its 

entire length. The validation was used to study the impact of the model’s constitutive 

parameters on simulated temperature and pressure profiles.  

 

Figure 2.16 presents the experimental and simulated fluid pressures from 6 m upstream 

of the rupture plane. Simulations were conducted using a variety of thermal relaxation 

times (τ). Predicted data generated using a homogeneous equilibrium model is also 

included for reference (Brown et al., 2013). As may be observed the two-fluid model is 

able to predict trends in the experimental data. However, no single relaxation time was 

able to predict fluid pressure over the whole time period presented.  
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Figure 2.16: Variation of experimental and predicted fluid pressure using various 

thermal relaxation times (τ) 6 m upstream of the rupture plane (Brown et al., 

2014).  

 

Figure 2.17 presents a comparison of the experimental and predicted liquid and vapour 

temperatures from 6 m upstream of the rupture plane. Simulations were conducted using 

a variety of thermal relaxation times (τ). As for the fluid pressure predictions, with an 

appropriate relaxation time the temperature of both fluid phases may be predicted. 

However, when compared with figure 2.16 it may be observed that while a relaxation 

time of 5x10
-4

 s produces the best pressure predictions following passage of the 

decompression wave, it consistently produces the worst temperature predictions in both 

phases.  
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Figure 2.17: Variation of experimental and predicted liquid (a) and vapour (b) 

temperatures using various thermal relaxation times (τ) 6 m upstream of the 

rupture plane (Brown et al., 2014). 

 

A comparison of the predicted and experimental wall temperatures was not presented.  

 

2.4.8 CFD-DECOM (Xu et al., 2014) 

 

The model CFD-DECOM was developed to model both fast depressurisation as well as 

slow blowdown of pipelines. The model is based in the conservation equations for mass, 

momentum and energy, which are solved using a finite volume approach based on the 

arbitrary Lagrangian-Eulerian method (ALE) (Xu et al., 2014). Homogeneous 

equilibrium in the inventory is assumed. The Peng-Robinson EoS (1976) was employed 

to calculate thermodynamic properties and phase equilibrium data for the fluid. Pipe 

wall heat conduction is calculated in two dimensions using a method “similar to 

Fairuzov's (2000) approach” (Xu et al., 2014). The source term for heat flux in the 

energy equation is calculated from Newton’s cooling law. Two-dimensional heat 

conduction in the pipe wall was calculated separately. 

 

CFD-DECOM was successfully validated against pipeline decompression data reported 

by Botros et al. (2007) and the Isle of Grain tests P40, 42, 61 and 65. Selected validation 

results against the former are reproduced below.  
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The pipeline modelled was 172 m long with an ID of 49 mm, the wall thickness was 

5 mm and the roughness 0.05 mm. As the real pipe was insulated it was modelled 

assuming no heat transfer between the pipe wall and ambient. The inventory consisted 

of a rich gas mixture (ca. 69 % CH4, 21 % C2H6, 9 % C3H8) at an initial temperature and 

pressure of 268.2 K and 9.95 MPa respectively.  

 

Figures 2.18 and 2.19 present the experimental pressure and temperature data from the 

vicinity of the rupture plane respectively, together with the corresponding CFD-

DECOM data. As may be observed, the predicted time at which the decompression 

wave arrives at the transducers agrees well with the experimental pressure data, 

fractionally poorer agreement is seen in the temperature comparison at transducer T14. 

Referring to figure 2.18, from 0.1 s differences of up to ca. 1 MPa may be observed 

between the experimental and predicted fluid pressures at both P8 and P10.  

 

 

Figure 2.18: Experimental and CFD-DECOM predicted fluid pressures near the 

rupture plane (transducers P8 and P10 are 1.64 m and 4.04 m from the rupture 

plane respectively) (Xu et al., 2014). 
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Figure 2.19: Experimental and CFD-DECOM predicted fluid temperatures near 

the rupture plane (transducers T8 and T14 are 1.64 m and 23.05 m from the 

rupture plane respectively) (Xu et al., 2014). 

 

The authors concluded that for all five experimental comparisons performed to validate 

CFD-DECOM, the predicted pressure, temperature and inventory data vs. time were all 

in reasonably good agreement with the experimental data.  

 

2.4.9 Conclusions of reviewed outflow models 

 

In this section various pipeline outflow models have been reviewed with reference to 

the model requirements for simulating of CO2 pipeline venting. These were the 

necessity to accurately model transient fluid properties and wall temperatures, and 

account for fluid/pipe wall/ambient heat transfer. It is notable that for each model no 

wall temperature calculations were published, the implications of which will be 

discussed in section 2.5.  
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For the models SLURP_HEM_HT and Machnet_Real insufficient data was reported by 

the researchers to properly assess their suitability for modelling venting. GasDECOM 

was not considered as no data was found concerning the model’s formulation. The 

model of Burlutskiy (2013, 2014) neglected heat transfer with the wall. The models of 

Brown et al. (2014) and Xu et al. (2014) were reported after the work described in this 

thesis was begun. 

 

Of the models formulated around the conservation equations for mass, momentum and 

energy, OLGA tended to under-predict pressure at the rupture plane, occasionally by 

significant margins. Further, OLGA predictions for pipeline discharge and rapid 

transients were not consistently accurate. OUTFLOW and FaNM predictions for 

pipeline inventory and fluid properties were shown to be accurate. OUTFLOW was 

shown to predict rapid transients in the fluid with acceptable accuracy; no equivalent 

data was reported for FaNM. A further advantage of OUTFLOW is the reported ability 

to model pipeline junctions.  

 

The model OUTFLOW is selected for use in this work based on the above review. 

Based on the conservation equations, it requires an EoS to calculate the thermodynamic 

and phase properties of the inventory. In section 2.6 a brief review of the literature is 

presented regarding work to identify an EoS appropriate for modelling CCS processes.  

 

2.5 Discussion of pipeline wall temperature modelling 

 

In reviewing the literature concerning pipeline outflow models it is notable that none 

presented data concerning transient pipe wall temperatures during outflow. The 

conjugation of the fluid and associated pipe wall heat conduction models was also not 

described in detail. When reviewing the literature no suitable experimental data to 

validate wall temperature predictions was discovered, indicating the past importance of 

this information when modelling outflow from hydrocarbon pipelines. However as 

discussed in section 2.3, significant cooling of a CO2 pipeline wall can occur during 

venting/blowdown. Thus at the very least the validation of a pipe wall temperature 
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model is necessary before it may be reliably used to investigate the hazards associated 

with CO2 pipeline blowdown.  

 

As part of the COOLTRANS research project National Grid UK recorded pipe wall 

temperature and fluid data from large scale CO2 blowdown experiments. This data was 

used to validate the pipe wall temperature predictions from OUTFLOW, a description 

of the experiments and comparison of predicted and experimental results is presented in 

sections 5.2 and 5.4 respectively. As may be observed, cooling in the pipe wall is 

significantly over-predicted by OUTFLOW. The development of OUTFLOW to model 

CO2 pipeline venting/ blowdown therefore requires the implementation of an accurate 

heat conduction model to calculate transient pipe wall temperatures. This model must be 

compatible with the Method of Characteristics (MOC).  

 

Zhang (2014) developed and integrated a brittle fracture model with OUTFLOW. This 

model replaced the transient energy balance model of Atti (2006) with the heat 

conduction equation, written in three dimensions and solved using the Finite Volume 

method (FVM). Wall stresses in the vicinity of a rupture were calculated using the 

Finite Element analysis tool ABAQUS (SIMULIA, 2011). The wall temperature 

predictions of this model were not validated against experimental data. 

 

Pipe wall heat conduction also plays a significant role in the steady state operation of 

pipelines. Zhu et al. (2013) investigated the factors affecting the thermal performance of 

two pipelines carrying crude and refined oil which were buried in the same trench. 

Incompressible fluid flow was modelled using the Navier-Stokes equations. Heat 

conduction in two dimensions was calculated for a cross section of the two pipe walls 

and surrounding soil at various distances along the length of the pipes. The cross-

sectional area was discretised using a progressive triangular array generated with 

GAMBIT 2.3. All computations were carried out by with the FVM commercial CFD 

code FLUENT 13.0 (Ansys, n.d.).  

 

The model was successfully validated using steady state fluid temperature data recorded 

from a pipeline carrying crude oil, located 1.2 m from a refined oil pipeline buried in the 
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same trench. A comparison of the simulated and observed steady state crude oil 

temperatures are shown in figure 2.20 along a 300 km length of pipeline.  

 

 

Figure 2.20: Comparison of simulated and actual steady state crude oil 

temperatures along a 300 km length of pipeline (Zhu et al., 2013).  

 

Neither predicted nor recorded pipe wall temperature data was reported by Zhu et al. 

(2013).  

 

Yapıcı and Albayrak (2004) investigated heat conduction and thermal stresses in a pipe 

contained flowing fluid (fully developed laminar regime) and subject to uniform and 

non-uniform external heat flux. Fluid flow was modelled using equations for continuity, 

momentum and energy; heat conduction in the pipe wall was calculated in two 

dimensions (axial and radial). The governing equations were solved by FDM using 

FLUENT 4.5 (Ansys, n.d.). Simulation results were not compared against experimental 

data.  

 

Al-Zaharnah et al. (2000) investigated thermal stresses in a pipe system in which a pipe 

containing flowing fluid in a fully developed laminar regime was subjected to a uniform 

external heat flux on the outer pipe wall. Fluid flow was modelled using equations to 

describe continuity, momentum and energy. The pipe wall conduction equation was 
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written in two dimensions (axial and radial). The governing fluid equations and 

conduction equation were solved using an FVM approach. Simulation results were not 

compared with experimental data.  

 

As discussed above, the Finite Volume and Finite Difference methods (FVM and FDM 

respectively) are used extensively in modelling pipeline systems. FDM involves the 

discretisation of a problem such that dependent variables exist only at discrete points in 

the domain, thus a problem involving calculus is transformed into an algebraic problem. 

FVM is a variation on the FDM, where the equation(s) governing the problem are 

applied in integral form to control volumes within the domain (Tannehill et al., 1997). 

This allows the calculation of properties at the centre of the control volume and on its 

boundaries.  

 

The FDM requires the domain to be discretised in a regular fashion throughout, 

although for the FVM nodes need not be at the centre of the control volume. FDM type 

methods become difficult to use when the solution domain possess irregular geometry, 

such as might be found on the valve and pipe infrastructure connecting a vent pipe to a 

main pipe section.  

 

The Finite Element method (FEM) has also found extensive applications in modelling 

heat conduction in domains with complex geometry (Lewis et al., 2004). The method 

discretises the domain into a mesh of interconnected elements. The partial differential 

equations describing the domain are reduced to a system of linear or non-linear 

simultaneous equations, thus a continuous problem is reduced to one with a finite 

number of unknowns at specified points, referred to as nodes. There is no requirement 

for element shapes to be regular or nodes to conform to a regular grid pattern, thus 

complex surface geometries on the domain boundary may be easily represented.  

 

Given the flexibility of the FEM in discretising the solution domain it is selected for 

integration with OUTFLOW to model pipe wall temperatures during venting of CO2 

pipelines. The greater flexibility of this model compared to the FDM allows significant 
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potential for further development of OUTFLOW to model heat conduction in complex 

pipeline infrastructure, such as valves.  

 

2.6 Equations of State for modelling CO2 pipeline outflow 

 

Equations of state (EoS) are algebraic expressions that relate the temperature, pressure 

and molar volume of real fluids (Sinnott, 1999). They are often developed and 

optimised in order to model specific systems; such as solids formation during CO2 

pipeline blowdown (Martynov et al., 2014, 2013), or CO2 pipelines during normal 

operation (Demetriades et al., 2013). Selection of the most appropriate EoS for CFD 

work can improve the accuracy of any data generated (Li and Yan, 2009a). 

 

2.6.1 Criteria for selecting an Equation of State 

 

An EoS for modelling blowdown of CO2 pipelines should not be so complex as to 

present numerical or analytical difficulties in application. It should accurately represent 

the fluid properties over the range of conditions expected during blowdown (ca. 150 to 

1 bara and ambient temperatures to at least 216 K), and especially the vapour-liquid 

equilibrium (VLE) properties. Accuracy should be maintained when any relevant 

impurities are added to the fluid. The suitability of a proposed EoS should be assessed 

by comparison of calculated properties with real data.  

 

The available CO2 experimental data useful for validating EoS predictions has been 

recorded over the last 111 years (see Li et al., 2011). Inevitably some of this work has 

been carried out with equipment and to standards that are now obsolete, use of some 

experimental data must therefore be carefully considered. Figure 2.21 represents 

graphically the areas of the P/T phase diagram for which VLE experimental data exists, 

and indicates which CO2 mixture the data is associated with. Figure 2.22 presents the 

same information for experimentally measured mixture volume (Li et al., 2011). 
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Li et al. (2011) identified various knowledge gaps in the published experimental data. 

Referring to figure 2.21, the available data for CO2/H2S, CO2/CO and CO2/SO2 does not 

consistently extend to lower pressures and temperatures surrounding the saturation line 

of pure CO2. Additionally, little VLE data is available for multi-component CO2 

mixtures such as CO2/CH4/N2, CO2/N2/O2, CO2/CH4/H2S and CO2/CO/H2. For the 

volume property, Li et al. (2011) found no data for CO2/O2 and CO2/CO. Referring to 

figure 2.22, it may be observed that data for mixtures containing H2, Ar and H2S is 

limited.  

 

 

Figure 2.21: T/P ranges for which experimental VLE data for various CO2 

mixtures relevant to CCS is available (Li et al., 2011). 
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Figure 2.22: T/P ranges for which experimental mixture volume data for various 

CO2 mixtures relevant to CCS is available (Li et al., 2011). 

 

2.6.2 Li and Yan (2009a, 2009b) 

 

Two recent studies investigated the applicability of eight EoS for calculating the VLE 

and volume data of CO2 mixtures with impurities relevant to CCS (Li and Yan, 2009a, 

2009b). The EoS investigated are shown in table 2.3 together with the mixing rules used 

with each. 

 

In the equations presented in table 2.3; P, R, T and V represent the pressure, universal 

gas constant, temperature and molar volume respectively. The a, b and c terms are 

parameters of the EoS. The parameters i and j are the component indices, ai, aj, bi and ci 

are parameters in the mixing rule equations, xi and xj are the mole fractions in the liquid 

phase for components i and j, kij is the binary interaction parameter. For the PT EoS the 

equation set 2.3 was used in (Li & Yan, 2009a) and set 2.4 in (Li & Yan, 2009b). 
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Inappropriate kij values can result in poor EoS calculation accuracy, see for example 

Ikeda and Schaefer (2011). The optimum value of kij for a mixture can vary depending 

on the property being calculated. Li and Yan (2009a, 2009b) determined optimum 

values of kij for calculating VLE, gas and liquid volumes for each mixture investigated 

using the available experimental data. These values of kij were used for all calculations. 
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Table 2.3: The EoS and associated mixing rules use in the studies of Li and Yan (2009a, 2009b).  

Equation of State Formulation Mixing Rule set Set number 

Peng-Robinson (PR)  

(Peng and Robinson, 1976) 
𝑃 =

𝑅𝑇

𝑉 − 𝑏
−

𝑎(𝑇)

𝑉(𝑉 + 𝑏) + 𝑏(𝑉 − 𝑏)
 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2(1 − 𝑘𝑖𝑗)𝑗𝑖 ;  

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖  

2.1 

modified PR (MPR1)  

(Li and Yan, 2009b) 
𝑃 =

𝑅𝑇

𝑉 − 𝑏
−

𝑎

(𝑉 + 𝑐)(𝑉 + 𝑏 + 2𝑐) + (𝑏 + 𝑐)(𝑉 − 𝑏)
 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2(1 − 𝑘𝑖𝑗)𝑗𝑖 ;  

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖 ; 𝑐 = ∑ 𝑥𝑖𝑐𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖 

2.2 

Patel-Teja (PT)  

(Patel and Teja, 1982) 
𝑃 =

𝑅𝑇

𝑉 − 𝑏
−

𝑎(𝑇)

𝑉(𝑉 + 𝑏) + 𝑐(𝑉 − 𝑏)
 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2(1 − 𝑘𝑖𝑗)𝑗𝑖 ;  

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖 ; 𝑐 = ∑ 𝑥𝑖𝑐𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖 

2.3 

  
𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2𝑘𝑖𝑗𝑗𝑖 ;  

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖 ; 𝑐 = ∑ 𝑥𝑖𝑐𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖 

2.4 

Redlich-Kwong (RK)  

(Redlich and Kwong, 1949) 
𝑃 =

𝑅𝑇

𝑉 − 𝑏
−

𝑎 𝑇0.5⁄

𝑉(𝑉 + 𝑏)
 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2(1 − 𝑘𝑖𝑗)𝑗𝑖 ;  

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖 

2.5 

Soave-Redlich-Kwong (SRK)  

(Soave, 1972) 
𝑃 =

𝑅𝑇

𝑉 − 𝑏
−

𝑎(𝑇)

𝑉(𝑉 + 𝑏)
 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2(1 − 𝑘𝑖𝑗)𝑗𝑖 ;  

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖 

2.6 

 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 2   56 

Table 2.3 (cont.): 

Equation of State Formulation Mixing Rule set Set number 

modified SRK (MSRK)  

(Peneloux and Rauzy, 1982) 
𝑃 =

𝑅𝑇

𝑉 − 𝑏
−

𝑎

(𝑉 + 𝑐)(𝑉 + 𝑏 + 2𝑐)
 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2(1 − 𝑘𝑖𝑗)𝑗𝑖 ;  

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖 ; 𝑐 = ∑ 𝑥𝑖𝑐𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖 

2.7 

improved SRK (ISRK)  

(Ji and Lempe, 1997) 
𝑃 =

𝑅𝑇

𝑉 + 𝑐 − 𝑏
−

𝑎(𝑇)

(𝑉 + 𝑐)(𝑉 + 𝑏 + 𝑐)
 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2(1 − 𝑘𝑖𝑗)𝑗𝑖 ;  

𝑏 = ∑ ∑ 𝑥𝑖𝑥𝑗 (
𝑏𝑖𝑖+𝑏𝑗𝑗

2
) (1 − 𝑙𝑖𝑗)𝑗𝑖 ; 

𝑐 = ∑ 𝑥𝑖𝑐𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖; 𝑙𝑖𝑗 = 𝑙𝑗𝑖 

2.8 

3P1T  

(Yu et al., 1987) 
𝑃 =

𝑅𝑇

𝑉 − 𝑏
−

𝑎(𝑇)

𝑉(𝑉 + 𝑐) + 𝑏(3𝑉 + 𝑐)
 

𝑎 = ∑ ∑ 𝑥𝑖𝑥𝑗𝑎𝑖

1

2𝑎
𝑗

1

2(1 − 𝑘𝑖𝑗)𝑗𝑖 ;  

𝑏 = ∑ 𝑥𝑖𝑏𝑖𝑖 ; 𝑐 = ∑ 𝑥𝑖𝑐𝑖𝑖 ; 𝑘𝑖𝑗 = 𝑘𝑗𝑖 

2.9 
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Li and Yan (2009b) used EoS equation sets 2.1, 2.2 and 2.4 to 2.8 to calculate the 

volumes of CO2 mixtures with varying concentrations of CH4, H2S, SO2, Ar and N2. 

Calculations for each mixture were also made over a range of temperatures and 

pressures corresponding to the available experimental data. Calculated data was 

compared to experimental data in terms of Absolute Average Deviation (AAD). A 

summary of which EoS predicted vapour and liquid volumes with the lowest and 

highest overall AAD for each mixture is given in table 2.4. 

 

Table 2.4: Summary of the EoS with the lowest and highest AAD for calculating 

liquid volume (Vl) and gas volume (Vg) properties of each mixture (Li and Yan, 

2009b). 

Mixture 
EoS with lowest AAD EoS with highest AAD 

Vl Vg Vl Vg 

CO2/CH4 PT PT ISRK ISRK 

CO2/H2S PT MPR ISRK RK 

CO2/N2 PR PT ISRK ISRK 

CO2/Ar PT PR MSRK MPR 

CO2/SO2 PT ISRK ISRK RK 

 

Li and Yan (2009b) investigated the effect of using different values of kij on the AAD of 

the volume calculations for the mixtures discussed. It was observed that the AAD could 

be very high, especially if the calculation involved a saturated gas/liquid. In the absence 

of the large amount of data required to calculate kij a value of 0 (zero) can be used (or 1 

for the PT EoS), this would have the effect of ignoring attractive forces between 

particles. It was reported that in this scenario the PR and PT EoS were generally 

superior to the other EoS investigated for calculating vapour and liquid phase densities.  

 

It was concluded that the PR and PT EoS (equation sets 2.1 and 2.4 respectively) were 

generally superior to the others considered for calculating the volume properties for 

each mixture (Li and Yan, 2009b). 
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Li and Yan (2009a) also evaluated the ability of various cubic EoS to calculate the VLE 

of pure CO2 and CO2 with various impurities relevant to CCS. The mixtures considered 

were CO2 with CH4, H2S, SO2, Ar, N2 and O2. The EoS investigated were the PR, PT, 

RK, SRK and 3P1T (equation sets 2.1, 2.3, 2.5, 2.6 and 2.9 respectively).  

 

Calculated and experimental data was compared and the results summarised in terms of 

AAD. For pure CO2 all the EoS, with the exception of the RK, were able to calculate 

the saturation pressure with an AAD less than 3 %, the SRK EoS was the best with an 

AAD of 1.05 %. Table 2.5 summarises the AAD of the EoS for the calculation of 

saturation pressure (Ps) and mole fraction of CO2 in the vapour phase (ys,CO2) for each 

mixture (Li and Yan, 2009a). From the data presented it was concluded that the PR, PT 

and SRK are superior to the RK and 3P1T for the calculation of VLE data for the CO2 

mixtures investigated. 

 

Table 2.5: AAD of the EoS when calculating the VLE properties of binary CO2 

mixtures (saturation pressure, Ps, mole fraction of CO2 in the vapour phase, ys,CO2) 

(Li and Yan, 2009a). For some mixtures no data was reported, this is denoted by –. 

  PR PT RK SRK 3P1T 

CO2/CH4 
Ps 1.68 2.00 5.73 1.87 20.74 

ys,CO2 2.63 3.14 16.71 2.79 26.95 

CO2/O2 
Ps 4.17 3.62 4.08 4.02 3.50 

ys,CO2 2.89 2.74 14.90 3.44 14.13 

CO2/H2S 
Ps 1.22 1.48 3.41 1.32 3.32 

ys,CO2 4.54 4.28 9.28 4.49 4.79 

CO2/N2 
Ps 2.08 1.62 4.08 1.79 3.10 

ys,CO2 2.23 2.17 5.25 2.83 13.15 

CO2/Ar 
Ps 2.88 2.85 5.43 3.36 9.79 

ys,CO2 – – – – – 

CO2/SO2 
Ps 4.64 4.67 10.62 4.28 4.17 

ys,CO2 – – – – – 
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The authors further investigated the effects of changing the kij on the calculation 

accuracy of the EoSs. It was concluded that the calibrated kij values did not necessarily 

improve calculation accuracy for saturated pressure compared with literature values, 

however the accuracy of calculated saturated vapour compositions were improved (Li 

and Yan, 2009a).  

 

2.6.3 Non cubic Equations of State  

 

Non cubic EoS have also been considered for modelling of CCS processes. A review of 

the available research is given in Li et al. (2011) and a brief summary is given here.  

 

Li et al. (2011) discussed the investigation of various virial and extended virial 

equations for modelling the thermodynamic properties of CO2 with impurities. From the 

evidence reviewed it was observed that their performance in modelling CO2 fluids was 

not significantly greater than that seen for cubic EoS.  

 

The Statistical Associating Fluid Theory (SAFT) EoS has been considered for 

modelling of CCS processes including transport and storage because it is capable of 

modelling the thermodynamic properties of several complex fluids. SAFT can also be 

used to reliably explore areas of a phase diagram some distance from areas with 

supporting experimental data (Li et al., 2011). Ji et al. (2005) have studied the 

interaction of CO2/H2O and CO2/H2O/NaCl systems using a SAFT type EoS, 

concluding that the EoS was able to represent the density and equilibrium concentration 

data for both mixtures. 

 

The GERG EoS (Kunz et al., 2007) has also been considered for modelling of CCS 

systems (Li et al., 2011). Its formulation is explicit in the reduced Helmholtz energy; 

this allows for the calculation of all thermodynamic properties from combinations of the 

Helmholtz derivatives but also makes its implementation into simulation tools complex. 

A limitation of the EoS is that it cannot be used with mixtures that contain sulphur. In 

one study (Li et al., 2007) the accuracy ascribed to the GERG was not obtained when 
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calculating volume or VLE data for CO2 rich mixtures. In this study the AAD of the 

calculated liquid volume of CO2 mixtures could reach as high as 18 %, a considerably 

higher AAD than that reported by the GERG manual  

 

2.6.4 Summary  

 

In this section a brief review of the literature investigating the suitability of various EoS 

for modelling CCS processes was presented. Among the cubic EoS considered, the SRK 

was identified as producing the most accurate predictions for the saturation pressure of 

pure CO2 between ca. 300 to 220 K. When compared with experimental data, among the 

EoS considered the SRK, PR and PT were reported as generally superior for calculating 

the VLE properties and the PR and PT EoS for calculating volume properties of CO2 

mixtures.  

 

The importance of a calibrated binary interaction parameter for accuracy of the EoS was 

identified. In the absence of calibration data the binary interaction parameter may be 

assigned a value of 0 (zero) or 1. When a value of “0” is used with the PR, or “1” with 

the PT, these EoS were identified as more likely to produce accurate data compared to 

the other EoS considered in table 2.3.  

 

2.7 Conclusion 

 

In this chapter a brief discussion of the pipeline transportation of CO2 for CCS and the 

necessity and risks associated with venting/blowdown of such pipes was presented. The 

depressurisation rate, propagation of rapid transients, discharge rate and pipe wall 

temperature were identified as key parameters of the process that any outflow model 

must be capable of capturing to properly model the outflow of CO2 from a pipeline. 

Various outflow models were reviewed and the model OUTFLOW was selected for use 

in this thesis based on its demonstrated accuracy in modelling the above phenomena.  
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None of the pipeline outflow models reviewed, including OUTFLOW, had had wall 

temperature predictions validated against experimental data. Comparison of wall 

temperature predictions from OUTFLOW against experimental data recently generated 

by National Grid UK revealed the inaccuracy of these predictions. Therefore a review of 

wall temperature models reported in the literature was presented and an FEM model of 

heat conduction selected for implementation in OUTFLOW. This model was selected 

based on its flexibility in modelling complex geometries and potential for development 

to model complex pipeline infrastructure such as valves.  

 

Finally, a brief review of the reported work to identify an EoS for modelling pipeline 

transport of CO2 was presented. The PR and PT EoS were identified from a selection of 

cubic EoS as most consistently accurate in calculating VLE and fluid volume properties 

of pure CO2 and binary CO2 mixtures.  

 

In the following two chapters the formulation of the model OUTFLOW is presented.   
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Chapter 3: Background theory for the transient 

pipeline flow model OUTFLOW 

 

 

3.1 Introduction 

 

For the accurate prediction of fluid flow from a pressurised pipeline a simulation model 

must account for: 

- rapid transients in a single and/or two phase flowing fluid;  

- the thermo-physical behaviour of the fluid mixture;  

- the interaction of the fluid with the pipe wall.  

 

The Navier-Stokes conservation equations represent the most complete formulation that 

describes any fluid flow situation. These equations allow for the variation of fluid 

properties in three dimensions in space, as well as in time. However, as every term in 

the equations must be resolved when solving the full system of equations their use is 

computationally demanding. Depending on the type of flow, certain terms in the 

equations will have a negligible effect on the final solution and so may be safely 

ignored.  

 

The final form of the Navier-Stokes equations, depending on the assumptions and 

simplifications made, may be linear, quasilinear or nonlinear, parabolic or hyperbolic in 

nature. Consequently, the method of their numerical resolution must be selected 

appropriately. 

 

This chapter presents the governing model assumptions and the mathematical 

formulation of the model OUTFLOW, reviewed in section 2.4.4. 
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3.2 Model assumptions 

 

The most important underlying assumptions in the formulation of OUTFLOW are: 

- steady state flow exists prior to rupture; 

- flow is predominantly one-dimensional, except in the vicinity of a puncture 

where it is assumed to be two-dimensional;  

- for full bore rupture (FBR) the Homogeneous Equilibrium Model (HEM) is 

applied, this treats the constituent phases as if they are in thermal and 

mechanical equilibrium; 

- each pipeline segment (in individual pipelines or networks) is rigidly clamped, 

of uniform cross sectional area and possess inelastic walls. 

 

3.3 Formulation of the governing conservation equations 

 

The governing equations for generalised, unsteady, one-dimensional fluid flow may be 

expressed in terms of combinations of primitive parameters e.g. pressure, entropy, 

density, enthalpy. For OUTFLOW these equations are formulated in terms of pressure, 

entropy and fluid velocity.  

 

The mass, momentum and energy conservation equations are thus given by Oke (2004): 

 

(
𝜕𝑃

𝜕𝑡
+ 𝑢

𝜕𝑃

𝜕𝑥
) − 𝜑 (

𝜕𝑠

𝜕𝑡
+ 𝑢

𝜕𝑠

𝜕𝑥
) + 𝜌𝑎2

𝜕𝑢

𝜕𝑥
= 0 3.1 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
) +

𝜕𝑃

𝜕𝑥
= 𝛽𝑥 − 𝜌𝑔 sin(𝜃) 

3.2 

𝜌𝑇 (
𝜕𝑠

𝜕𝑡
+ 𝑢

𝜕𝑠

𝜕𝑥
) = 𝑄ℎ − 𝑢𝛽𝑥 

3.3 

Where P, u and s are the pressure, velocity and entropy as a function of time, t, and 

space, x. ρ, a, T and φ are the density, speed of sound, temperature and isochoric 

thermodynamic function (see section 3.5.3) of the homogeneous fluid. Qh, θ and g are 
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the heat transferred through the pipe wall to the fluid, the angle of inclination of the 

pipeline relative to the horizontal and the acceleration due to gravity respectively. βx is 

the frictional force term, given by:  

 

𝛽𝑥 = −
2𝜌𝑢|𝑢|𝑓𝑤

𝐷
 

3.4 

Where fw is the Fanning friction factor and D is the pipeline diameter.  

 

3.4 Cubic Equations of State (EoS) 

 

The conservation equations contain more than three independent variables and must 

therefore be solved in conjunction with a fourth equation. For this an appropriate EoS is 

used, as well as for calculating fluid thermodynamic and phase equilibrium data.  

 

In the model OUTFLOW three cubic EoS are available: the Soave-Redlich-Kwong 

(SRK) (Soave, 1972), the Peng-Robinson (PR) (Peng and Robinson, 1976) and the 

Modified Peng-Robinson (MPR) (Wu and Chen, 1997). These are given below in 

equations 3.5, 3.6 and 3.7 respectively.  

 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎(𝑇)𝛼

𝑉(𝑉 + 𝑏)
 

3.5 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎(𝑇)𝛼

𝑉2 + 2𝑏𝑉 − 𝑏2
 

3.6 

𝑃 =
𝑅𝑇

𝑉 − 𝑏
−

𝑎(𝑇)𝛼

𝑉(𝑉 + 𝑏) + 0.645𝑏(𝑉 − 𝑏)
 

3.7 

Where: 

 

𝑎(𝑇) = 𝛺𝑎

𝑅2𝑇𝑐
2

𝑃𝑐
2

 
3.8 
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𝑏(𝑇) = 𝛺𝑏

𝑅𝑇𝑐

𝑃𝑐
 

3.9 

For the SRK Ωa = 0.42747 and Ωb = 0.08664. For the PR Ωa = 0.45724 and 

Ωb = 0.07780. For the MPR Ωa = 0.44720 and Ωb = 0.08070. 

 

For mixtures: 

 

𝑎 = ∑∑𝑦𝑖𝑦𝑗𝑎𝑖𝑗

𝑗𝑖

 3.10 

𝑎𝑖𝑗 = (1 − 𝐾𝑖𝑗)√𝑎𝑖𝑎𝑗 3.11 

𝑏 = ∑𝑦𝑖𝑏𝑉 𝑖

𝑖

 3.12 

Where Pc, Tc and V are the critical pressure (kN/m
2
), critical temperature (K) and molar 

volume (m
3
/kmol) respectively. In addition, R and α are the universal gas constant 

(kJ/(kmol.-K)) and alpha function, while Kij, yi and yj are the binary interaction 

parameter and component mole fractions respectively. 

 

Given the fluid molecular weight (MW) (kg/kmol), the fluid density is given by: 

 

𝜌 =
𝑀𝑊

𝑉
 

3.13 

The form of the generalised alpha function used in conjunction with the SRK, PR and 

MPR EoS is given by: 

 

𝛼 = (1 + 𝜅(1 − 𝑇𝑟
0.5))

2
 3.14 
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Where for each EoS: 

 

SRK: 𝜅 = 0.480 + 1.574𝜔 − 0.176𝜔2 3.15 

PR: 𝜅 = 0.37464 + 1.54226𝜔 − 0.26992𝜔2 3.16 

MPR: 𝜅 = 0.41510 + 1.52174𝜔 − 0.22170𝜔2 3.17 

Tr is the reduced temperature and ω the accentric factor. 

 

3.5 Hydrodynamic and thermodynamic relations for the HEM 

 

Comparisons with experimental data have shown that the HEM assumption is 

applicable to the modelling of outflow from long (>100 m) pipelines undergoing full 

bore rupture (Chen, 1995; Mahgerefteh et al., 1999).  

 

The main equations used in the calculation of two-phase fluid density, speed of sound, 

the heat transferred to the fluid (Qh) and the pertinent hydrodynamic relations are 

presented in the following sections. 

 

3.5.1 Two-phase fluid density 

 

Based on the HEM assumption the pseudo-mixture density is given by: 

 

𝜌 =
𝜌𝑔𝜌𝑙

𝜌𝑔(1 − 𝜒) + 𝜌𝑙𝜒
 

3.18 

𝜌𝑔 =
𝑃𝑀𝑔

𝑍𝑔𝑅𝑇
 

3.19 
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𝜌𝑙 =
𝑃𝑀𝑙

𝑍𝑙𝑅𝑇
 

3.20 

Where ρl and ρg are the liquid and gas densities respectively. χ is the fluid quality, 

defined as the mass of vapour per unit mass of the bulk fluid. Z is the fluid 

compressibility.  

 

3.5.2 Single and two-phase speed of sound (Atti, 2006) 

 

For single-phase real fluids, the speed of sound (a) in the fluid may be expressed 

analytically (Picard and Bishnoi, 1987): 

 

𝑎2 =
𝛾

𝜅𝜌
 3.21 

Where γ is the ratio of specific heats and κ the isothermal coefficient of volumetric 

expansion, given by (Walas, 1985): 

 

𝛾 =
𝐶𝑃

𝐶𝑉
 

3.22 

𝜅 = −𝜌 (
𝜕𝑉

𝜕𝑃
)

𝑇
 

3.23 

Cp and Cv are the specific heats at constant pressure and volume respectively. V is the 

specific volume of the fluid and the term (
𝜕𝑉

𝜕𝑃
)

𝑇
 in equation 3.23 can be obtained by 

differentiating the PR and MPR EoS (equations 3.6 and 3.7 respectively): 

 

(
𝜕𝑉

𝜕𝑃
)

𝑇
= (

−𝑅𝑇

(𝑉 − 𝑏)2
−

2𝑎(𝑇)𝛼(𝑉 + 𝑏)

(𝑉2 + 2𝑏𝑉 − 𝑏2)2
)

−1

 
3.24 

(
𝜕𝑉

𝜕𝑃
)

𝑇
= (

−𝑅𝑇

(𝑉 − 𝑏)2
−

𝑎(𝑇)𝛼(2𝑉 + 1.645𝑏)

(𝑉(𝑉 + 𝑏) + 0.645𝑏(𝑉 − 𝑏))
2)

−1

 

3.25 
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For two-phase flows equation 3.21 is evaluated numerically (Mahgerefteh et al., 2000): 

 

𝑎2 = (
∆𝑃

𝜌(𝑇, 𝑃) − 𝜌(𝑇∗, 𝑃 − ∆𝑃)
)
𝑠

 
3.26 

Where the subscript s denotes a constant entropy condition and ΔP denotes an 

incremental change in the fluid pressure (ΔP = 1x10
-6

 bar). T* is the fluid temperature 

obtained from a pressure-entropy flash at the incremented pressure. 

 

3.5.3 Evaluation of the thermodynamic function φ 

 

The isochoric thermodynamic function φ for single-phase fluids (see equation 3.1) is 

given by (Picard and Bishnoi, 1987): 

 

𝜑 = (
𝜕𝑃

𝜕𝑠
)
𝜌

=
𝜌𝜉𝑇𝑎2

𝐶𝑃
 

3.27 

Where ξ is the isobaric coefficient of volumetric expansion and is equal to 
1

𝑉
(
𝜕𝑉

𝜕𝑇
)
𝑃

. In 

the case of two-phase flows φ is calculated numerically as shown below, given that: 

 

𝜑 = (
𝜕𝑃

𝜕𝑠
)
𝜌

≝ (
𝜕𝑃

𝜕𝑠
)
𝑉

 
3.28 

Using one of Maxwell’s relations (Walas, 1985): 

 

(
𝜕𝑃

𝜕𝑠
)
𝜌

= −(
𝜕𝑇

𝜕𝑉
)
𝑆
 

3.29 

Since 𝑉 = 1
𝜌⁄ : 

 

𝑑𝑉

𝑑𝜌
= −

1

𝜌2
 

3.30 
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Equation 3.29 becomes: 

 

(
𝜕𝑃

𝜕𝑠
)
𝜌

= 𝜌2 (
𝜕𝑇

𝜕𝜌
)
𝑆

 
3.31 

Therefore, from equation 3.28: 

 

𝜑 = 𝜌2 (
𝜕𝑇

𝜕𝜌
)
𝑆

= 𝜌2 (
∆𝑇

∆𝜌
)
𝑆

 
3.32 

Equation 3.32 can be solved using the same numerical algorithm as that used for the 

solution of equation 3.26. 

 

3.5.4 Fanning Friction Factor (fw) 

 

The fanning friction factor, fw, is required for calculating the frictional force in the 

momentum equation (equation 3.2). For transitional and turbulent flows in rough pipes 

fw is determined from (N. H. Chen, 1979): 

 

1

√𝑓𝑤
= 3.48 − 1.7372 𝑙𝑛 (

𝜀

𝑟𝑖𝑛
−

16.2446

𝑅𝑒
𝑙𝑛 𝐴) 

3.33 

Where: 

 

𝐴 =
(

𝜀
𝑟𝑖𝑛

)
1.0198

6.0983
+ (

7.149

𝑅𝑒
)
0.8981

 

3.34 

 

ε, rin and Re represent the pipe roughness, pipe inner radius and Reynolds number 

respectively. 
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For turbulent flow in smooth pipelines Rohsenow et al. (1998) recommend the 

correlation proposed by Techo (1965) for determining fw: 

 

1

√𝑓𝑤
= 1.7372 ln

𝑅𝑒

1.964 ln 𝑅𝑒 − 3.8215
 

3.35 

According to Rohsenow et al. (1998) the above correlation gives predictions within 2 % 

of experimental data. 

 

The fanning friction factor for laminar fully developed flow is given by Rohsenow et al. 

(1998): 

 

𝑓𝑊 =
16

𝑅𝑒
 

3.36 

 

3.5.5 Thermal conductivity and viscosity calculations 

 

The vapour thermal conductivity and viscosity needed for determining the Nusselt, 

Reynolds and Prandtl numbers are calculated using the principle of corresponding states 

using methane as a reference fluid. The method is that described by Ely and Hanley 

(1981, 1983) for non-polar gases. It is claimed (Assael et al., 1996) that this method 

(Ely and Hanley, 1981) is one of the few schemes able to predict the viscosity and 

thermal conductivity for a wide range of non-polar components with reasonable 

accuracy.  

 

In the case of liquid mixtures containing alkanes, viscosities and thermal conductivities 

are determined from a semi-empirical scheme presented by Assael et al. (1996). The 

range of applicability of the scheme is between 280 K to 400 K and from saturation 

pressures up to 990 atms where the uncertainty in the predictions is less than 5 % 

(Assael et al., 1996). 
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For mixtures containing two-phase fluids correlations proposed by the Design Institute 

for Physical Property Data (DIPPR) (Daubert and Danner, 1990) are applied due to their 

claimed accuracy. For two-phase fluids, the mixture thermal conductivity and viscosity 

is given by: 

 

1

𝑐𝑚
=

𝜒

𝑐𝑔
+

1 − 𝜒

𝑐𝑙
 

3.37 

Where cm is the mixture property to be determined and cg and cl are the gas and liquid 

properties respectively. 

 

3.6 Fluid/wall heat transfer (Atti, 2006) 

 

3.6.1 Calculation of heat flux 

 

Heat transferred to or from a flowing pipeline inventory must pass through the 

enclosing wall. The process will be affected by the pipe wall properties and ambient 

conditions unless the pipe is perfectly insulated 

 

Newton’s cooling law (Fairuzov, 1998; Mahgerefteh et al., 1999) is commonly used for 

determining the heat transferred to a fluid flowing in a pipe. It is given by: 

 

𝑄ℎ =
4

𝐷𝑖𝑛
𝑈ℎ(𝑇𝑎𝑚𝑏 − 𝑇𝑓) 

3.38 

Where Uh, Din, Tamb, Tf and Qh denote the overall heat transfer coefficient, the pipeline 

inner diameter, the ambient and fluid temperatures and the quantity of heat transferred 

to the fluid respectively.  

 

Equation 3.38 lumps the pipe wall and the ambient as a single heat source with a 

constant heat transfer coefficient. This ignores the pipe wall as a heat repository and as a 
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conducting medium. Additionally, the use of a constant heat transfer coefficient is 

unrealistic when phase changes in the inventory are likely to occur during outflow.  

 

Therefore a transient energy balance, based on a lumped body approach (Myers, 1987), 

is applied across the fluid/wall/ambient interfaces to model the transient heat transfer 

process. The wall temperatures are updated at a given time step and used to estimate the 

heat input to the fluid in the next time interval. Figure 3.1 shows a schematic 

representation of the important heat transfer parameters. 

 

 

Figure 3.1: Schematic representation of the heat flow across the pipeline wall 

based on the lumped body approach (Atti, 2006). 

 

Tamb, hamb and Tw in figure 3.1 represent the ambient temperature, heat transfer 

coefficient of the ambient and wall temperature respectively. Tf, hf and Qh represent the 

fluid temperature, fluid heat transfer coefficient and the quantity of heat transferred to 

the fluid respectively. 
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The following assumptions are made in the lumped body approach: 

- there is no temperature stratification within the pipe wall; 

- the heat transfer coefficient between the pipe wall and either the ambient (hamb) 

or the flowing fluid (hf) is determined from the system properties at the 

beginning of a given time step and remains constant during the time step; 

- the ambient and fluid temperature employed in the energy balance are constant 

over a given time step; 

- the wall density (ρw), specific heat capacity (Cpw) and thermal conductivity (κw) 

are constant with respect to time and space; 

- heat transfer in the pipe wall is predominantly in the radial direction, 

longitudinal and tangential heat conduction in the pipe wall is neglected. 

 

Based on figure 3.1 and the above assumptions the transient energy balance across the 

pipe wall can be written as (Myers, 1987): 

 

ℎ𝑎𝑚𝑏
𝑖−1 𝐴𝑜𝑢𝑡(𝑇𝑎𝑚𝑏 − 𝑇𝑤) − ℎ𝑓

𝑖−1𝐴𝑖𝑛(𝑇𝑤 − 𝑇𝑓) = 𝜌𝑤𝐶𝑝𝑤𝑉𝑤
𝑑𝑇𝑤

𝑑𝑡
 

3.39 

Where Tw is the wall temperature at the end of a given time step ∆t, i-1 refers to 

property values at the beginning of the given time step, Vw is the pipe volume per unit 

length, Aout and Ain are the outer and inner pipe wall surface areas per unit length 

respectively. For a cylindrical pipeline Vw, Aout and Ain may be expressed as: 

 

𝑉𝑤 = 𝜋 (
𝐷𝑜𝑢𝑡

2 − 𝐷𝑖𝑛
2

4
) 3.40 

𝐴𝑜𝑢𝑡 = 𝜋𝐷𝑜𝑢𝑡 3.41 

𝐴𝑖𝑛 = 𝜋𝐷𝑖𝑛 3.42 

Where Dout and Din are the outer and inner diameters of the pipe respectively.  
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By multiplying out, collecting like terms and rearranging, equation 3.39 can be 

rewritten: 

 

𝑑𝑇𝑤

𝑑𝑡
+ (

ℎ𝑎𝑚𝑏
𝑖−1 𝐴𝑜𝑢𝑡 + ℎ𝑓

𝑖−1𝐴𝑖𝑛

𝜌𝑤𝐶𝑝𝑤𝑉𝑤
)𝑇𝑤 =

ℎ𝑎𝑚𝑏
𝑖−1 𝐴𝑜𝑢𝑡𝑇𝑎𝑚𝑏 + ℎ𝑓

𝑖−1𝐴𝑖𝑛𝑇𝑓

𝜌𝑤𝐶𝑝𝑤𝑉𝑤
 3.43 

Equation 3.43 can be expressed as: 

 

𝑑𝑇𝑤

𝑑𝑡
+ 𝐿𝑇𝑤 = 𝑀 

3.44 

Where: 

 

𝐿 =
ℎ𝑎𝑚𝑏

𝑖−1 𝐴𝑜𝑢𝑡 + ℎ𝑓
𝑖−1𝐴𝑖𝑛

𝜌𝑤𝐶𝑝𝑤𝑉𝑤
 3.45 

𝑀 =
ℎ𝑎𝑚𝑏

𝑖−1 𝐴𝑜𝑢𝑡𝑇𝑎𝑚𝑏 + ℎ𝑓
𝑖−1𝐴𝑖𝑛𝑇𝑓

𝜌𝑤𝐶𝑝𝑤𝑉𝑤
 3.46 

Equation 3.44 is a linear first order differential equation, and has a general solution 

given by (Stroud, 1995): 

 

𝑇𝑤𝑒∫𝐿𝑑𝑡 = ∫𝑀𝑒∫𝐿𝑑𝑡 𝑑𝑡 
3.47 

The evaluation of equation 3.47 is subject to the following boundary condition: 

 

𝑇𝑤 = 𝑇𝑤
𝑖−1 𝑤ℎ𝑒𝑛 𝛥𝑡 = 0 3.48 

Since the parameters L and M (equations 3.45 and 3.46) contain variables that are 

assumed to be constants within a given time step (∆t), integrating equation 3.47 gives: 

 

𝑇𝑤𝑒𝐿𝛥𝑡 =
𝑀

𝐿
𝑒𝐿𝛥𝑡 + 𝑀𝐶 

3.49 
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Where C is the constant of integration. By applying the boundary condition given in 

equation 3.48, C can be evaluated as: 

 

𝐶 =
𝑇𝑤

𝑖−1

𝑀
−

1

𝐿
 3.50 

Substituting equation 3.50 into equation 3.49 and rearranging: 

 

𝑇𝑤 =
𝑀

𝐿
+ (𝑇𝑤

𝑖−1 −
𝑀

𝐿
) 𝑒−𝐿𝛥𝑡 

3.51 

Using the expressions for L and M given in equations 3.45 and 3.46 the updated wall 

temperature at the end of a time step ∆t can be obtained. 

 

Applying Newton’s cooling law, the heat transferred to the fluid (Qh) in a given time 

step may then be calculated by (Atti, 2006):  

 

𝑄ℎ =
4

𝐷𝑖𝑛
ℎ𝑓(𝑇𝑤 − 𝑇𝑓) 

3.52 

 

3.6.2 Fluid/wall heat transfer coefficients (FHTC) 

 

Two heat transfer correlations are used depending on the nature of the flowing fluid. For 

single phase fully developed flow in rough pipes the correlation of Bhatti and Shah 

(1987) is used: 

 

𝑁𝑢 =
𝑅𝑒𝑃𝑟(𝑓 2⁄ )

1 + (𝑓 2⁄ )0.5[4.5𝑅𝑒𝜀
0.2𝑃𝑟0.5 − 8.48]

 
3.53 
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The roughness Reynolds number (Reε) is given by: 

 

𝑅𝑒𝜀 =
𝜌𝜀𝑢

𝜇𝑓

√
𝑓

2
 3.54 

 

The fanning friction factor, f, employed in equations 3.53 and 3.54 is calculated from 

the correlation proposed by Nikuradse (1933) and is given by: 

 

1

√𝑓
= 3.48 − 1.737 ln (

𝜀

𝑟
) 

3.55 

Where Re, Pr, Nu, ρ, μf, ε and r represent the Reynolds number, Prandtl number, 

Nusselt number, fluid density, fluid viscosity, pipe wall roughness and pipe radius 

respectively.  

 

For two phase flow in pipelines heat transfer is assumed to be by forced convection 

only, the correlation of Steiner and Taborek (1992) is used:  

 

ℎ𝐹𝐶

ℎ𝑙
= 𝐹𝑡𝑝 = ((1 − 𝑥)1.5 + 1.9𝑥0.6 (

𝜌𝑙

𝜌𝑣
)
0.35

)

1.1

 3.56 

Where hFC is the fluid heat transfer coefficient (adjusted for forced convection in the 

inventory), x is the flow quality (i.e. vapour fraction), ρv and ρl are the vapour and liquid 

densities respectively and Ftp is the two phase flow convective factor. hl is the heat 

transfer coefficient for the liquid phase in the pipeline, given by Rohsenow et al. (1998):  

 

ℎ𝑙𝐷𝑖𝑛

𝜅𝑙
= 0.023 [

𝜌𝑚𝑖𝑥𝑢(1 − 𝑥)𝐷𝑖𝑛

𝜇𝑙
]

0.8

[
𝜇𝑙𝐶𝑝𝑙

𝜅𝑙
]
0.4

 3.57 

Where the two-phase mixture density, mix, is given by: 

 

𝜌𝑚𝑖𝑥 =
𝜌𝑣𝜌𝑙

𝜌𝑣(1 − 𝑥) + 𝜌𝑙𝑥
 3.58 
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The subscript l represents liquid phase properties. κ, Din, u, μ, and Cp represent the 

thermal conductivity, inner pipe diameter, fluid velocity, viscosity and specific heat of 

the liquid respectively. 

 

3.6.3 Pipe wall/ambient heat transfer coefficients 

 

For insulated or buried pipelines a constant heat transfer coefficient between the pipe 

wall and the ambient (hamb) is used over the full length of the pipeline. For pipelines 

exposed to the open air both natural and/or forced convection are accounted for, the heat 

transfer coefficient is given by (Incropera and DeWitt, 1996; Rohsenow et al., 1998):  

 

ℎ𝑎𝑚𝑏 = (ℎ𝑛𝑎𝑡
3 + ℎ𝑓𝑜𝑟

3 )
1
3 

3.59 

Where hamb, hnat and hfor are the total convective, natural and forced convection heat 

transfer coefficients respectively. 

 

Natural convection 

For natural convection the correlation proposed by Churchill and Chu (1975) for flow 

over horizontal cylinders is used: 

 

ℎ𝑛𝑎𝑡𝐷𝑜𝑢𝑡

𝜅𝑓𝑖𝑙𝑚
=

[
 
 
 
 

0.60 +
0.387𝑅𝑎𝐷

1
6⁄

[1 + (0.559 𝑃𝑟𝑓𝑖𝑙𝑚⁄ )
9

16⁄
]

8
27⁄

]
 
 
 
 
2

 3.60 

 

Where Dout is the outer diameter of the pipe, κ the thermal conductivity and the 

subscript film represents ambient fluid properties evaluated at the film temperature, Tfilm: 

 

𝑇𝑓𝑖𝑙𝑚 =
(𝑇𝑠 + 𝑇𝑎𝑚𝑏)

2
 

3.61 
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Ts represents the surface temperature (i.e. Tw). The Rayleigh, Prandtl and Grashof 

numbers are respectively defined as: 

 

𝑅𝑎𝐷 = 𝐺𝑟𝑓𝑖𝑙𝑚𝑃𝑟𝑓𝑖𝑙𝑚 3.62 

𝑃𝑟𝑓𝑖𝑙𝑚 =
𝐶𝑝𝑓𝑖𝑙𝑚𝜇𝑓𝑖𝑙𝑚

𝜅𝑓𝑖𝑙𝑚
 

3.63 

𝐺𝑟𝑓𝑖𝑙𝑚 =
𝜌𝑓𝑖𝑙𝑚

2 𝑔𝜉𝑓𝑖𝑙𝑚(𝑇𝑠 − 𝑇𝑎𝑚𝑏)𝐷𝑜𝑢𝑡
3

𝜇𝑓𝑖𝑙𝑚
2  3.64 

Where Cp, μ and g represent the specific heat at constant pressure, viscosity and 

gravitational acceleration. ξfilm is the isobaric volumetric expansion coefficient, given by 

(Incropera and DeWitt, 1996): 

 

𝜉𝑓𝑖𝑙𝑚 = −
1

𝜌𝑓𝑖𝑙𝑚
(
𝛿𝜌𝑓𝑖𝑙𝑚

𝛿𝑇𝑓𝑖𝑙𝑚
)

𝑝

 3.65 

 

Forced convection 

For forced convection over a cylinder the heat transfer correlation proposed by 

Churchill and Bernstein (1977) is used. The correlation is recommended for RePr > 

0.2 and is given by: 

 

ℎ𝑓𝑜𝑟𝐷𝑜𝑢𝑡

𝜅𝑓𝑖𝑙𝑚
=

[
 
 
 
 

0.30 +
0.62𝑅𝑒

𝑓𝑖𝑙𝑚

1
2⁄ 𝑃𝑟

𝑓𝑖𝑙𝑚

1
3⁄

[1 + (0.4 𝑃𝑟𝑓𝑖𝑙𝑚⁄ )
2

3⁄ ]

1
4⁄
[1 + (

𝑅𝑒𝑓𝑖𝑙𝑚

282000
)

5
8⁄

]

4
5⁄

]
 
 
 
 

 3.66 
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3.7 The Steady State Isothermal Flow Model (Oke, 2004) 

 

The steady state isothermal flow model presented here is based on the one-dimensional 

continuity and momentum equations presented in section 3.3. 

 

From equation 3.1, the steady state expression is obtained by setting the time derivatives 

to zero and can be written as: 

 

𝜕𝜌𝑢

𝜕𝑥
= 0 

3.67 

Integrating equation 3.67 gives (Oke, 2004): 

 

𝜌𝑖𝑢𝑖 = 𝜌𝑖−1𝑢𝑖−1 3.68 

Where the subscripts i-1 and i represent the previous and current grid points under 

consideration respectively. Equation 3.68 is the governing equation for mass 

conservation during steady state flow in a constant diameter pipeline.  

 

From equation 3.2 the steady state momentum equation in one-dimension can be 

expressed as: 

 

𝜌𝑢
𝑑𝑢

𝑑𝑥
= −

𝑑𝑃

𝑑𝑥
− 𝜌𝑔 sin(𝜃) + 𝛽 

3.69 

Where, the steady state frictional force term β is given by equation 3.4 (see also section 

3.5.4). Substituting the expression for β into equation 3.69 and rearranging gives (Oke, 

2004): 

 

𝜌𝑑𝑃 − (𝜌𝑢)2
𝑑𝜌

𝜌
= −(

2𝑓𝑤(𝜌𝑢)2

𝐷
+ 𝜌2𝑔 sin(𝜃))𝑑𝑥 3.70 
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The above equation can be expressed as: 

 

𝜌𝑑𝑃 + 𝐾1

𝑑𝜌

𝜌
= (𝐾2 + 𝜌2𝐾3)𝑑𝑥 3.71 

Where: 

 

𝐾1 = −(𝜌𝑢)2 3.72 

𝐾2 = −
2𝑓𝑤(𝜌𝑢)2

𝐷
 

3.73 

𝐾3 = −𝑔 sin(𝜃) 3.74 

Rearranging equation 3.71 and taking the limits results in (Oke, 2004): 

 

∫
𝜌

(𝐾2 + 𝜌2𝐾3)

𝑃𝑖

𝑃𝑖−1

𝑑𝑃 + 𝐾1 ∫
𝜌

𝜌(𝐾2 + 𝜌2𝐾3)

𝜌𝑖

𝜌𝑖−1

𝑑𝜌 = ∫ 𝑑𝑥

𝑥𝑖

𝑥𝑖−1

 3.75 

 

After resolving the integrals on the LHS the final form of equation 3.75 is given by 

(Oke, 2004): 

 

1

2
[

𝜌

(𝐾2 + 𝜌2𝐾3)𝑃𝑖

+
𝜌

(𝐾2 + 𝜌2𝐾3)𝑃𝑖−1

]

+
𝐾1

2𝐾2
[2𝑙𝑛 (

𝜌𝑖

𝜌𝑖−1
) − 𝑙𝑛 (

(𝐾2 + 𝜌𝑖
2𝐾3)

(𝐾2 + 𝜌𝑖−1
2 𝐾3)

)] = 𝑥𝑖 − 𝑥𝑖−1 

3.76 

 

The following outlines the algorithm used in OUTFLOW for calculating the isothermal 

steady state drop (as summarised by Denton, (2009)): 

 

1. Collate data at pipeline inlet (e.g. fluid pressure, temperature, velocity, etc.) 
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2. Divide the pipeline into sections (grids) with the distance between the grids 

being ∆= 𝑥𝑖 − 𝑥𝑖−1;  

3. Guess the downstream pressure at the next grid point i.e. Pi;  

4. In conjunction with an EoS, evaluate the expression on the LHS of equation 

3.76; 

5. If equation 3.76 is satisfied, then the guessed downstream pressure is adopted as 

the solution. The fluid velocity ui can then be obtained by applying equation 

3.68. If the equation is not satisfied, go back to step 3 and update the guessed Pi; 

6. Update the flow properties at this grid point and calculate the pressure drop at 

the next grid using steps 3-5 until the variables at the final grid is calculated. 

 

3.8 Hyperbolicity of the governing conservation equations 

 

The partial differential equations (PDEs) which describe the conservation of mass, 

momentum and energy, coupled with an appropriate EoS, constitute a system of 

equations that are essentially the Euler equations with additional terms due to friction 

and heat transfer in the momentum and energy equations respectively. 

 

The selection of an appropriate numerical technique for the solution of the governing 

PDEs is dependent on their mathematical nature. It is shown below that the system of 

conservation equations are quasilinear and hyperbolic. 

 

A partial differential equation is said to be quasilinear if all derivatives of the dependent 

function f(x,t) are linear, while their corresponding coefficients may contain non-linear 

terms (Prasad and Ravindran, 1985), i.e. it is in the following form: 

 

𝑎(𝑥, 𝑡, 𝑢)𝑓𝑡 + 𝑏(𝑥, 𝑡, 𝑢)𝑓𝑥 = 𝑐(𝑥, 𝑡, 𝑢) 3.77 

Where ft and fx are the partial derivatives of the function u in terms of t and x 

respectively.  
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Writing equations 3.1, 3.2 and 3.3 as: 

 

(
𝜕𝑃

𝜕𝑡
+ 𝑢

𝜕𝑃

𝜕𝑥
) − 𝜑 (

𝜕𝑠

𝜕𝑡
+ 𝑢

𝜕𝑠

𝜕𝑥
) + 𝜌𝑎2

𝜕𝑢

𝜕𝑥
= 0 

3.78 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
) +

𝜕𝑃

𝜕𝑥
= 𝛼 

3.79 

𝜌𝑇 (
𝜕𝑠

𝜕𝑡
+ 𝑢

𝜕𝑠

𝜕𝑥
) = 𝜓 

3.80 

Where: 

 

𝛼 = 𝛽𝑥 − 𝜌𝑔 sin(𝜃) 3.81 

𝜓 = 𝑄ℎ − 𝑢𝛽𝑥 3.82 

It may be observed that equations 3.78 to 3.80 are linear in the partial derivative terms. 

Additionally, terms that are coefficients of the partial derivatives, such as the density, ρ, 

or the fluid speed of sound, a, are nonlinear functions of P, s and u. The governing 

equations therefore possess a quasilinear structure. 

 

Equations 3.78 to 3.80 may also be written in the general form: 

 

𝐴
𝜕𝑈

𝜕𝑡
+ 𝐵

𝜕𝑈

𝜕𝑥
= 𝐶 3.83 

Where A, U, B and C are given by: 

 

𝑈 = (
𝑃
𝑠
𝑢
) 3.84 

𝐴 = (

1 −𝜑 0
0 0 𝜌
0 𝜌𝑇 0

) 3.85 
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𝐵 = (
𝑢 −𝜑𝑢 𝜌𝑎2

1 0 𝜌𝑢
0 𝜌𝑇𝑢 0

) 3.86 

𝐶 = (
0
𝛼
𝜓

) 3.87 

A system of PDEs, as given by equation 3.83, is said to be hyperbolic if the 

eigenvalues, satisfying equation 3.88, are real and distinct (Prasad and Ravindran, 

1985): 

 

|𝐵 − 𝜆𝐴| = 0 3.88 

Thus for the conservation equations the above equation may be expressed as: 

 

|𝐵 − 𝜆𝐴| = |

(𝑢 − 𝜆) 𝜑(𝜆 − 𝑢) 𝜌𝑎2

1 0 𝜌(𝑢 − 𝜆)

0 𝜌𝑇(𝑢 − 𝜆) 0

| = 0 3.89 

 

Hence the determinant is: 

 

(𝑢 − 𝜆)[0 − 𝜌2𝑇(𝑢 − 𝜆)2] − 𝜑(𝜆 − 𝑢)[0 − 0] + 𝜌𝑎2[𝜌𝑇(𝑢 − 𝜆) − 0] = 0 3.90 

Factorising equation 3.90 and dividing through by ρ
2
T gives: 

 

(𝑢 − 𝜆)[𝑎2 − (𝑢 − 𝜆)2] = 0 3.91 

Solving equation 3.91 to obtain the roots gives: 

 

𝜆1 = 𝑢 3.92 

𝜆2 = 𝑢 − 𝑎 3.93 
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𝜆3 = 𝑢 + 𝑎 3.94 

It can be seen that the eigenvalues (λi) are real and distinct, therefore the quasilinear 

governing equations are hyperbolic. This implies that the behaviour of the physical 

system described by these equations will be dominated by wave-like phenomena 

(Prasad and Ravindran, 1985). 

 

3.9 Conclusion  

 

In this chapter the mass, momentum and energy conservation equations for transient 

fluid flow in a pipeline following its failure were presented. These were expressed in 

terms of pressure, entropy and velocity due to the proven accuracy and computational 

efficiency of this formulation. These equations were shown to be quasilinear and 

hyperbolic.  

 

The conservation equations coupled with a cubic Equation of State represent the core of 

the model OUTFLOW. The various hydrodynamic and thermodynamic relations for 

predicting pertinent fluid properties such as the fluid speed of sound, viscosity and 

phase dependent friction factor were presented. 

 

The main features of the lumped body approach for modelling heat transfer effects 

between the fluid/pipe wall and pipe wall/ambient were presented. The correlations used 

to account for the varying heat transfer contribution from different fluid phases are also 

presented.  

 

Finally, the steady state isothermal model based on a real fluid was presented. 
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Chapter 4: Application of the Method of 

Characteristics (MOC) to the modelling of fluid flow 

in pipelines 

 

 

4.1 Introduction 

 

The Euler equations for unsteady real fluid flow were first presented in chapter 3 

(equations 3.1 to 3.3 respectively), where they were shown to be hyperbolic and 

quasilinear. These equations cannot be solved analytically as they contain terms that are 

unknown or non-linear functions of their dependent and independent variables (see 

Flatt, 1986; Mahgerefteh et al., 1999). 

 

Three numerical techniques are commonly employed for resolving hyperbolic partial 

differential equations. These are: 

1. Finite Difference Methods (FDM) 

2. Finite Volume Methods (FVM) 

3. Method of Characteristics (MOC) 

 

The FDM is a general mathematical technique that is widely applied to PDEs. It 

involves discretising the spatial domain into a series of nodes forming a grid. Finite 

approximations are then substituted for the derivatives in the PDEs to produce a system 

of algebraic relations to calculate fluid properties at all grid points. However, numerical 

diffusion associated with the FDM makes it unsuitable for modelling the transient flow 

following pipeline failure (Mahgerefteh et al., 2009). 

 

Similarly, the FVM breaks the system up into a set of discrete cells. The integral of the 

PDEs over each cell is approximated to produce a system of algebraic relations. The 

application of the FVM to hyperbolic PDEs has received significant attention in recent 
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years (Brown, 2011; Leveque, 2002; Toro, 2009). The development of a FVM 

specifically for the resolution of governing conservation equations in OUTFLOW was 

addressed by Brown (2011). In this work it was demonstrated that the FVM generally 

performed well except when simulating FBR of an initially liquid state inventory. This 

makes an FVM solution to the Euler equations of limited use for a CO2 pipeline outflow 

model. 

 

The MOC is a mathematical technique that is particularly suited to solving systems of 

hyperbolic PDEs with two independent variables such as distance and time. The MOC 

resolves the system of PDEs into a system of ordinary differential equations 

(compatibility equations) through a particular co-ordinate change. These co-ordinates 

represent curves (characteristic lines) in the space-time plane along which the 

compatibility equations hold. The compatibility equations can be solved using finite-

difference methods. The method is particularly suitable for systems containing complex 

boundary conditions as each boundary condition may be applied individually to each 

characteristic curve moving into the computational domain.  

 

In this chapter, the formulation and implementation of the MOC used to solve the 

conservation equations governing single/two-phase homogeneous flow in pipeline 

networks is outlined. Various boundary conditions required to simulate blowdown of a 

pipeline are presented.  

 

4.2 Formulation of the MOC 

 

4.2.1 Discretisation methods of the space-time plane 

 

There are two main grid discretisation methods for the MOC. These are the 

Characteristic Grid method (CG) (Wylie and Streeter, 1993) and the Inverse Marching 

method or the Method of Specified Time Intervals (MST) (Flatt, 1986). 
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In the case of the CG method, the position of the new solution is not known a priori. 

This is determined by the intersection of the left and right running characteristics with 

the origins located at points where the solution is already known or obtained from the 

initial data. A free-floating grid is developed in the x – t plane as shown in figure 4.1. 

This method is particularly accurate as the solution progresses naturally along the 

characteristic lines. In the case where more than two characteristic lines are present, i.e. 

when an energy equation is solved, the intersection of the path line between the known 

initial points requires interpolation. 

 

 

Figure 4.1: The Characteristic Grid. 

 

In the MST (see figure 4.2) the location of the solution points in the space-time grid is 

specified a priori and the characteristic lines are traced backwards in time to their origin 

in the previous time line. This method requires interpolation to locate the intersection of 

all three characteristic lines on the previous time line and as a result can lead to a greater 

loss of accuracy than the CG method.  

 

x = 0 x = L 

t t 

C+ C- 
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Figure 4.2: The Method of Specified Time Intervals.  

 

While the CG method may be more accurate it does not allow for the introduction of 

boundary conditions at predefined times. In contrast, the MST method allows control of 

the time at which input variables are given at boundaries. This means that the 

implementation of models for systems that commonly prevail in reality, such as valve 

closure or pump shutdown, is much less cumbersome. For this reason, the MST is used 

in implementing the Euler equations in OUTFLOW. 

 

4.2.2 Numerical formulation of the MOC 

 

The solution of PDEs using the MOC comprises two steps: 

1. Conversion of the PDEs into a system of ordinary differential equations (ODEs) 

called the compatibility equations. 

2. Solution of the compatibility equations based on the MST method employing an 

Euler predictor-corrector technique (Zucrow and Hoffman, 1975) . 

 

 

 

 

  x 

t 
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Step 1 – Conversion of the PDEs to ODEs 

The governing conservation equations (continuity, momentum and energy) for unsteady 

fluid flow were presented in chapter 3 and are repeated below.  

 

(
𝜕𝑃

𝜕𝑡
+ 𝑢

𝜕𝑃

𝜕𝑥
) − 𝜑 (

𝜕𝑠

𝜕𝑡
+ 𝑢

𝜕𝑠

𝜕𝑥
) + 𝜌𝑎2

𝜕𝑢

𝜕𝑥
= 0 

3.78 

𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
) +

𝜕𝑃

𝜕𝑥
= 𝛼 

3.79 

𝜌𝑇 (
𝜕𝑠

𝜕𝑡
+ 𝑢

𝜕𝑠

𝜕𝑥
) = 𝜓 

3.80 

Where: 

 

𝛼 = 𝛽𝑥 − 𝜌𝑔 sin(𝜃) 3.81 

𝜓 = 𝑄ℎ − 𝑢𝛽𝑥 3.82 

Following Atti (2006), the conservation equations may be replaced by three 

compatibility equations (equations 4.1, 4.3 and 4.5), which are valid only along the 

corresponding characteristic curves (equations 4.2, 4.4 and 4.6 respectively). For the 

Path line (C0) the compatibility and characteristic curve equations are respectively given 

by: 

 

𝑑0𝑠 =
𝜓

𝜌𝑇
𝑑0𝑡 

4.1 

𝑑0𝑡

𝑑0𝑥
=

1

𝑢
 

4.2 
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For the positive Mach line (C+) the compatibility and characteristic curve equations are 

respectively given by: 

 

𝑑+𝑃 + 𝜌𝑎𝑑+𝑢 = (𝑎𝛼 +
𝜑𝜓

𝜌𝑇
)𝑑+𝑡 

4.3 

𝑑+𝑡

𝑑+𝑥
=

1

𝑢 + 𝑎
 

4.4 

For the negative Mach line (C-) the compatibility and characteristic curve equations are 

respectively given by: 

 

𝜌𝑎𝑑−𝑢−𝑑−𝑃 = (𝑎𝛼 −
𝜑𝜓

𝜌𝑇
)𝑑−𝑡 

4.5 

𝑑−𝑡

𝑑−𝑥
=

1

𝑢 − 𝑎
 

4.6 

The positive (C+) and negative (C-) Mach lines govern the speed at which expansion and 

compression waves propagate, while the path line (C0) dictates the rate of flow through 

any given point along the pipeline. 

 

Step 2 – Solution of the compatibility equations 

As described above, the solution of the compatibility equations requires the tracing of 

the characteristic lines in a discretised x – t plane as shown in figure 4.3. 

 

It is assumed that the fluid properties are already known at grid points i-1, i and i+1 at 

time t1. The initial conditions at points p, o and n are evaluated by linear interpolation. 

The compatibility equations are solved using a finite difference method to predict the 

flow variables P, h and u at point j (the intersection point of the characteristic curves at 

the next time step, t1 + Δt1). 
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Figure 4.3: A schematic representation of Path line (C0) and Mach lines (C+, C-) 

characteristics at a grid point along the time (t) and space (x) axes. 

 

The time step (Δt) employed is calculated subject to the Courant-Friedrichs-Lewy 

(CFL) criterion (Courant et al., 1967; Mahgerefteh et al., 2009). This criterion is a 

requirement for the stability of the numerical scheme employed. It is given by: 

 

∆𝑡 ≤
∆𝑥

|𝑢 + 𝑎|𝑚𝑎𝑥
 

4.7 

 

4.2.3 Finite difference solution of the compatibility equations 

 

A full description of the finite difference method used to resolve the compatibility 

equations is given by Atti (2006). A summary of the key points is given here. 

 

An Euler predictor-corrector finite difference technique is used to numerically solve the 

compatibility and characteristic equations 4.1 to 4.6. The method consists of an explicit 

predictor step (first order approximation), which is used as an estimate of the fluid 

x 

C+ 

C0 

C- 

x 

i-1 i+1 i n p o 

t 

t1 

t1+t j 
j+1 j-1 
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properties at the solution point. As the characteristics lines are curved rather than linear 

it is necessary to minimise any error introduced in this step. This is achieved with a 

corrector step (second order approximation) which refines the initial estimate for an 

implicit approximation of the time step. 

 

First order approximation – predictor step 

In the predictor step the Path line, positive and negative Mach line compatibility 

equations (equations 4.1, 4.3 and 4.5) are respectively expressed in finite difference 

form as (Atti, 2006): 

 

(𝑠𝑗 − 𝑠0) = (
𝜓

𝜌𝑇
)
0

(𝑡𝑗 − 𝑡0) 
4.8 

(𝜌𝑎)𝑝(𝑢𝑗 − 𝑢𝑝) + (𝑃𝑗 − 𝑃𝑝) = (𝑎𝛼 +
𝜑𝜓

𝜌𝑇
)

𝑝

(𝑡𝑗 − 𝑡𝑝) 
4.9 

(𝜌𝑎)𝑛(𝑢𝑗 − 𝑢𝑛) − (𝑃𝑗 − 𝑃𝑛) = (𝑎𝛼 −
𝜑𝜓

𝜌𝑇
)

𝑛

(𝑡𝑗 − 𝑡𝑛) 
4.10 

The subscripts assigned to the various properties in equations 4.8 to 4.10 denote the 

location in space and time, as shown in figure 4.3.  

 

To calculate the points xp, xo and xn the characteristic line equations 4.2, 4.4 and 4.6 are 

written in first order finite difference form (equations 4.11, 4.12 and 4.13). Linear 

interpolation formulae for u and a at points p, o and n (see figure 4.3) are then combined 

with the corresponding equations 4.11, 4.12 and 4.13 to produce a pair of equations for 

each point, these are solved simultaneously to yield values for u and a. Substituting the 

calculated values for up, ap, un, an, and uo into their corresponding equations 4.11, 4.12 

or 4.13 yields the locations of points xp, xo and xn.  

 

𝜆0 = 𝑢𝑜 =
𝑥𝑖 − 𝑥𝑜

𝛥𝑡
⇒ 𝑥𝑜 = 𝑥𝑖 − 𝑢𝑜𝛥𝑡 4.11 
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𝜆+ = 𝑢𝑝 + 𝑎𝑝 =
𝑥𝑖 − 𝑥𝑝

𝛥𝑡
⇒ 𝑥𝑝 = 𝑥𝑖 − (𝑢𝑝 + 𝑎𝑝)𝛥𝑡 4.12 

𝜆− = 𝑢𝑛 − 𝑎𝑛 =
𝑥𝑖 − 𝑥𝑛

𝛥𝑡
⇒ 𝑥𝑛 = 𝑥𝑖 − (𝑢𝑛 + 𝑎𝑛)𝛥𝑡 4.13 

The fluid properties (P, S and u) are then linearly interpolated from those at the grid 

points i-1, i and i+1(Atti, 2006).  

 

With all the necessary values calculated at t1 the fluid properties at point j are then 

calculated using equations 4.8 to 4.10. 

 

Second order approximation – corrector step 

In order to improve the accuracy of the first order solution, a second order 

approximation to the compatibility equations is employed. The second order finite 

difference form of the Path line, positive and negative Mach line compatibility 

equations (equations 4.1, 4.3 and 4.5) are respectively expressed as (Atti, 2006): 

 

(𝑠𝑗 − 𝑠0) =
1

2
[(

𝜓

𝜌𝑇
)
0

+ (
𝜓

𝜌𝑇
)
𝑗

] (𝑡𝑗 − 𝑡0) 4.14 

1

2
((𝜌𝑎)𝑝 + (𝜌𝑎)𝑗)(𝑢𝑗 − 𝑢𝑝) + (𝑃𝑗 − 𝑃𝑝)

=
1

2
((𝑎𝛼 +

𝜑𝜓

𝜌𝑇
)

𝑝

+ (𝑎𝛼 +
𝜑𝜓

𝜌𝑇
)

𝑗

) (𝑡𝑗 − 𝑡𝑝) 

4.15 

1

2
((𝜌𝑎)𝑛 + (𝜌𝑎)𝑗)(𝑢𝑗 − 𝑢𝑛) − (𝑃𝑗 − 𝑃𝑛)

=
1

2
((𝑎𝛼 −

𝜑𝜓

𝜌𝑇
)

𝑛

+ (𝑎𝛼 −
𝜑𝜓

𝜌𝑇
)

𝑗

)(𝑡𝑗 − 𝑡𝑛) 

4.16 
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The second order approximations to the characteristic equations 4.2, 4.4 and 4.6 are 

respectively given by: 

 

1

2
(𝜆0 + 𝜆𝑗) =

1

2
(𝑢𝑜 + 𝑢𝑗

𝑟) =
𝑥𝑖 − 𝑥𝑜

𝛥𝑡
⇒ 𝑥𝑜 = 𝑥𝑖 −

𝛥𝑡

2
(𝑢𝑜 + 𝑢𝑗

𝑟) 
4.17 

1

2
(𝜆+ + 𝜆𝑗) =

1

2
(𝑢𝑝 + 𝑢𝑗

𝑟) +
1

2
(𝑎𝑝 + 𝑎𝑗

𝑟) =
𝑥𝑖 − 𝑥𝑝

𝛥𝑡
⇒ 𝑥𝑝

= 𝑥𝑖 −
𝛥𝑡

2
(𝑢𝑝 + 𝑢𝑗

𝑟 + 𝑎𝑝 + 𝑎𝑗
𝑟) 

 

4.18 

1

2
(𝜆− + 𝜆𝑗) =

1

2
(𝑢𝑛 + 𝑢𝑗

𝑟) −
1

2
(𝑎𝑛 + 𝑎𝑗

𝑟) =
𝑥𝑖 − 𝑥𝑛

𝛥𝑡
⇒ 𝑥𝑛

= 𝑥𝑖 −
𝛥𝑡

2
(𝑢𝑛 + 𝑢𝑗

𝑟 − 𝑎𝑛 − 𝑎𝑗
𝑟) 

4.19 

 

The subscript j together with superscript r refer to the solution condition at the previous 

iteration step, r. 

 

In a similar manner employed in the predictor step, the positions xp, xo and xn are 

calculated using equations 4.17, 4.18 and 4.19. The fluid properties at these points are 

then found by linear interpolation. Fluid properties at point j are then determined using 

equations 4.14 to 4.16. This calculation is repeated until a certain tolerance (ca. 10
-5

) is 

satisfied for the three independent flow variables, i.e. P, S and u. 

 

4.3 Boundary conditions for simulating outflow from pipelines 

 

In this section the boundary conditions required to simulate outflow from a multi-

segment pipeline following failure are presented. These include: 

- intact pipeline end; 

- reservoir at the pipe inlet;  

- junction of multiple pipelines;  

- full-bore rupture/orifice at pipeline end. 
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4.3.1 The intact end boundary condition 

 

At the intact end of the pipeline, only the negative Mach line (C-) and Path line (C0) 

characteristics are applicable and so only two compatibility equations are valid. In this 

case one boundary condition must be supplied in order to determine the pertinent flow 

variables P, S and u. Figure 4.4 shows the grid scheme at the intact end point. 

 

 

Figure 4.4: Grid scheme showing the active characteristic lines (C0 and C-) at the 

inlet intact end point. 

 

The first order finite difference approximation of the negative characteristic equation, C-

(equation 4.10), can be written as: 

 

𝑃𝑗 = 𝐾2 + (𝜌𝑎)𝑛(𝑢𝑗 − 𝑢𝑛) + 𝑃𝑛 4.20 
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Where, 𝐾2 is given by: 

 

𝐾2 = (
𝜑𝜓

𝜌𝑇
− 𝑎𝛼)

𝑛

∆𝑡 
4.21 

Applying the boundary condition that the velocity at the closed end is equal to zero to 

equation 4.20 gives: 

 

𝑃𝑗 = 𝐾2 + (𝜌𝑎𝑢)𝑛 + 𝑃𝑛 4.22 

The upstream entropy may then be calculated using the path line characteristic (equation 

4.8): 

 

𝑠𝑗 = (
𝜓

𝜌𝑇
)

0

∆𝑡 + 𝑠0 
4.23 

The corrector step as described in section 4.2.3 is then employed to calculate the flow 

variables at the intact end. 

 

4.3.2 Reservoir at the pipe inlet 

 

The reservoir boundary condition is similar to the intact end boundary condition 

presented above. The reservoir is assumed to be infinite, therefore the net fluid 

movement within it is assumed to be nil and the fluid pressure at the inlet to the attached 

pipeline is constant.  

 

As fluid only flows out of the reservoir the Path and positive Mach line would both be 

traced into the reservoir, this however takes them out of the computational domain and 

so two boundary conditions must be supplied instead: 

 

𝑃𝑗 = 𝑃res 4.24 
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𝑢𝑗 = 0 4.25 

Where Pres is the reservoir pressure. Fluid entropy at the pipeline inlet is then calculated 

at each time interval from the Path line characteristic, equation 4.8. 

 

4.3.3 Junction of multiple pipe sections 

 

Two pipe junctions 

Denton's (2009) model for the effect of pressure losses between segments in pipeline 

networks is applied in this study and outlined below. Figure 4.5 is a schematic 

representation of the characteristic lines at a typical bend or connector. B1 and B2 refer 

to the flow boundaries at the common junction associated with pipeline 1 and 2 

respectively. 

 

 

Figure 4.5: Schematic representation of characteristic lines upstream and 

downstream of a 2-way junction. 

 

At the boundary B1, only the positive Mach line (C+) and Path line (C0) characteristics 

lie within the computational domain. Similarly, at B2 only the negative Mach line (C-) 

and the Path line (C0) are applied. The solution at points B1 and B2 are denoted by j1 and 

Pipeline 1 Pipeline 2 

Pj1 

Sj1 

uj1 

Pj2 

Sj2 

uj2 

Flow variables 

upstream of the 

pipeline junction 

Flow variables 

downstream of the 

pipeline junction 
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j2 respectively. Kloss coefficients are used to account for pressure losses due to friction or 

changes in flow direction across the fitting (Perry et al., 2008). These coefficients are 

determined empirically for different types of fittings, and are employed in calculating 

the pressure drop resulting from flow across a given fitting (Perry et al., 2008). 

 

The pressure drop at the pipeline junction is given by: 

 

𝑃𝑗1 = 𝑃𝑗2 + 𝐾𝑝𝑙 4.26 

Where: 

 

𝐾𝑝𝑙 = 0.5(𝜌𝑗1𝑢𝑗1|𝑢𝑗1| − 𝜌𝑗2(1 + 𝐾𝑙𝑜𝑠𝑠)𝑢𝑗2|𝑢𝑗2|) 4.27 

And 𝜌𝑗, 𝑢𝑗  and 𝑃𝑗 are the density, velocity and pressure at junction j. 

 

The coefficient Kloss accounts for the pressure drop resulting from the losses described 

above. Its values are obtained from the literature (Perry et al., 2008). These loss 

coefficients are relatively insensitive to the Reynolds number for Re ≥ 500 (Perry et al., 

2008). As flow conditions where Re ≥ 20,000 are likely to be prevalent at pipeline 

junctions during the depressurisation process, constant loss coefficients are utilised in 

this study. These are summarised in table 4.1. 

 

Table 4.1: Kloss for turbulent flow through fittings and valves (Perry et al., 2008). 

Type of fitting Kloss  

45° elbow (standard) 0.35 

90° elbow (standard) 0.75 

Coupling/Union 0.04 

Tee (standard, branch blanked off) 0.40 

Gate valve (open) 0.17 

Angle valve (open) 2 
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Taking the junction as a control volume, assuming no mass accumulation and 

considering flow into the junction as positive, applying a continuity equation gives:  

 

𝜌𝑗1𝑢𝑗1𝐴𝑗1 + 𝜌𝑗2𝑢𝑗2𝐴𝑗2 = 0 4.28 

Where, 𝐴𝑗 is the cross-sectional area of the pipeline. 

 

If continuity is satisfied across the boundaries, the flow transport properties obtained are 

adopted as the required solution.  

 

Junction of three pipes (Oke, 2004) 

This boundary condition assumes the flow is split from a trunk pipeline into two 

downstream pipelines. Analysis of the flow is similar to that across the junction of two 

pipes. Figure 4.6 is a schematic representation of characteristic lines at a three pipe 

junction. B1, B2, and B3 represent the flow boundaries at the common junction 

associated with pipelines 1, 2 and 3 respectively. 

 

At B1 the positive Mach (C+) and Path line (C0) compatibility equations are active, 

while at B2 and B3 the negative Mach (C-) and Path line (C0) compatibility equations are 

applied. As for the two pipeline junction, pressure losses across the junction are 

accounted for using the coefficient Kloss, pressure drop across the junction is therefore 

calculated separately for flow between pipes 1 and 2 and pipes 1 and 3: 

 

𝑃𝑗1 = 𝑃𝑗2 + 𝐾𝑝𝑙12 4.29 

𝑃𝑗1 = 𝑃𝑗3 + 𝐾𝑝𝑙13 4.30 

Where Kpl is calculated from equation 4.27 and values of Kloss are given in table 4.1.  
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Figure 4.6: Schematic representation of characteristic lines upstream and 

downstream of a junction of three pipelines.  

 

Assuming no mass accumulation in the junction, the continuity of flow through the 

junction is given by: 

 

𝜌𝑗1𝑢𝑗1𝐴𝑗1 − (𝜌𝑗2𝑢𝑗2𝐴𝑗2 + 𝜌3𝑢𝑗3𝐴𝑗3) = 0 4.31 

Where Ajn is the cross-sectional area of the pipe. 

 

The two and three pipe boundary conditions account for variation in the direction of 

fluid flow as well as for pressure losses in the junction fitting and differing pipeline 

diameters between the pipes connected to the junctions.  
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4.3.4 Full bore rupture at the downstream end 

 

Two distinct types of flow are assumed to occur at the release plane during outflow 

from a pipeline: 

1. Critical/choked flow 

2. Non-choked flow. 

 

During choked flow the release flow rate is at a maximum and the fluid at the orifice is 

assumed to undergo an isentropic expansion from a pressure above the ambient. For 

single-phase flow the release velocity is equal to the sonic velocity at the prevailing 

pressure.  

 

Once the pressure at the release plane has reached the ambient pressure the flow is no 

longer choked. The release velocity in this case is subsonic and the discharge is driven 

only by the momentum of the remaining fluid inventory. 

 

At the rupture plane only the C+ and C0 characteristics are applicable. In the absence of 

a simple analytical relationship expressing the expansion process across the release 

plane, a ‘ghost’ cell adjacent to the boundary cell, as depicted in figure 4.7, is used to 

apply suitable conditions to the C- characteristic. The ghost cell is a fictitious node (i+1) 

lying at the same position as node i as illustrated in figure 4.7.  

 

The introduction of this extra node allows the solution along the negative characteristic. 

The flow properties at point j are then obtained just as for interior points. Interpolation 

is not required within the ghost cell as all the properties within it are spatially invariant.  
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Figure 4.7: Diagram illustrating characteristic lines at the rupture plane based on 

the concept of a ghost cell. 

 

The flow variables Po1, So1 and uo1 (see figure 4.7) at the release plane are calculated 

using the method described in section 4.3.5. 

 

Mass flow rate is conserved across the release plane. While the expansion process at the 

release plane is assumed to be isentropic, non-isentropic effects may occur during 

puncture due to the hydraulic resistance posed by the release orifice. Hence, the actual 

flow rate of the exiting fluid may be smaller than the assumed isentropic flow rate with 

the ratio between the two being equal to the discharge coefficient Cd. 

 

Therefore the mass flow rate both approaching and leaving the release plane can be 

expressed as:  

 

𝑢𝑗𝜌𝑗𝐴𝑝𝑖𝑝𝑒 = 𝐶𝑑𝜌𝑜1𝑢𝑜1𝐴𝑜1 4.32 
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Where Ao1 and Apipe are the orifice area and pipe areas respectively. Ρo1 and uo1 are the 

fluid density and fluid velocity respectively. 

 

4.3.5 Discharge rate calculation algorithm  

 

As discussed in the previous section, while the discharge pressure is above the 

downstream pressure the flow is choked and the mass flow rate at the release plane is at 

a maximum. When the pressure at the release plane drops to the downstream pressure, 

the flow is no longer choked and the release rate is calculated accordingly.  

 

Figure 4.8 shows the relevant pressures at the release plane that govern the discharge 

process. Pj, Po1 and Pd represent the pressure of the fluid approaching the release plane, 

the discharge pressure and the downstream or ambient pressure respectively. 

 

 

Figure 4.8: A schematic representation of pertinent pressures at the rupture plane 

governing the discharge rate. 

 

The choked and non-choked discharge rates are calculated by applying an energy 

balance across the release plane. As mentioned previously the expansion process is 

assumed to be isentropic. Any additional non-isentropic effects are accounted for by 

introducing a discharge coefficient (Cd; see equation 4.32).  
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The energy balance across the release plane, ignoring changes in potential energy 

between the flow approaching and exiting the failure plane, is given by: 

 

ℎ𝑗 +
1

2
𝑢𝑗

2 = ℎ𝑜1 +
1

2
𝑢𝑜1

2  
4.33 

Where the subscripts j and o1 represent the upstream and release plane conditions 

respectively.  

 

In the case of choked/critical flow the velocity uo1 is replaced by the local single/two-

phase speed of sound, ao1. The release pressure (Po1) is then obtained by solving 

equation 4.33 using Brent's (2002) algorithm. The iterative solution of equation 4.33 

involves guessing and updating the discharge pressure, Po1, in conjunction with 

pressure-entropy (isentropic) flash calculations until equation 4.33 is satisfied. Once a 

solution is obtained, other flow variables at the release plane (ρo1, To1 and ho1) are 

determined from a corresponding pressure-entropy (Po1-sj) flash calculation.  

 

For non-critical flow the release pressure, Po1, is equal to the ambient pressure, Pd. The 

remaining outflow variables, such as ρo1, To1 and ho1, may be calculated using a 

pressure-entropy (Po1-sj) flash calculation. The release velocity uo1 may then be 

obtained from equation 4.33.  

 

Once the release plane flow conditions are determined uj is updated using equation 4.32 

and employed in the corrector steps (see section 4.2.3) until convergence is achieved. 

The corresponding calculation flow logic diagram for determining the discharge rate is 

shown in figure 4.9. 
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Figure 4.9: Calculation algorithm for obtaining flow variables at the discharge 

plane (Brown, 2011). 

 

  

NO 
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equation 4.33 
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4.4 Conclusion 

 

In this chapter the formulation of the MOC based on the Method of Specified Time 

intervals (MST) was presented. The governing conservation equations were converted 

into compatibility and characteristic equations. These were then discretised using the 

Euler predictor-corrector technique. By assuming that the fluid properties varied 

linearly between grid points algebraic expressions for the fluid variables at the next time 

step along the pipeline length were obtained. 

 

The compatibility equations were combined with appropriate boundary conditions to 

model the fluid dynamics following the failure of multi-segment pipeline networks. The 

frictional losses due to fittings, changes in pipeline diameter and changes in elevation 

were accounted for by the introduction of a loss coefficient, Kloss. 
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Chapter 5: Validation of OUTFLOW for CO2 

pipeline modelling 

 

 

5.1 Introduction 

 

Mathematical simulation models can make a significant contribution to the design and 

safe operation of industrial processes. However, the predictive accuracy of such models 

must first be demonstrated against relevant experimental data. In section 2.4.4 the 

accuracy of the model OUTFLOW in predicting depressurisation rate, discharge rate 

and rapid transients in the inventory was demonstrated. OUTFLOW pipe wall 

temperature predictions have not been validated previously due to a lack of appropriate 

experimental data.  

 

A review of EoS for calculating the properties of CO2 and CO2 mixtures was also 

presented in chapter 2. For models such as OUTFLOW, which are based on the solution 

of the mass, momentum and energy conservation equations, an appropriate EoS must be 

used to determine the thermodynamic properties and phase split of the inventory. For 

CO2 inventories, a particular requirement is that the EoS is able to accurately calculate 

the fluid critical and triple point conditions and thermodynamic properties along the 

fluid saturation line.  

 

Various studies have investigated the accuracy of several EoS for calculating CO2 fluid 

properties, as discussed in section 2.6. However, these studies have focused on binary 

and ternary mixtures and have not considered the full range of impurities expected from 

the various potential CCS capture technologies in a single mixture. Additionally there is 

no reported work systematically investigating the impact of these various EoS on the 

predictive accuracy of any transient outflow models.  
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The work presented in this chapter therefore addresses the following objectives:  

- the identification of an appropriate EoS for modelling CO2 pipeline blowdown 

with OUTFLOW; 

- the validation of OUTFLOW pipe wall temperature predictions. 

 

The work presented in this chapter comprises three parts. In the first a detailed 

description of four large scale CO2 shock tube blowdown experiments is presented. The 

transient fluid property and pipe wall temperature data recorded during these 

experiments is used extensively in this chapter and in chapter 6 to assess the accuracy of 

simulation results. The experiments described were conducted by the UK National Grid 

as part of the COOLTRANS research programme (UKCCSRC, 2012).  

 

In the second section simulation data of CO2 shock tube blowdown, generated using 

OUTFLOW incorporating various EoS, is compared against corresponding 

experimental data. Based on the degree of agreement between data sets an appropriate 

EoS is selected for all the subsequent simulation work presented in this thesis.  

 

In the third part of this chapter OUTFLOW pipe wall temperature predictions during 

pipeline blowdown are validated against experimental data. 

 

  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 5   109 

5.2 Description of the National Grid shock tube experiments (Cosham 

et al., 2011, 2012) 

 

5.2.1 Experimental setup 

 

The shock tube used was 144 m long and built from carbon steel. Average values for the 

pipeline internal diameter (ID), wall thickness and roughness were reported as 

146.36 mm, 10.97 mm and 0.005 mm respectively. The shock tube had a downward 

slope of 0.5° towards the open end and was insulated with a 25 mm thick layer of 

closed-cell rubber foam. The downward slope was ignored in simulations due to its 

small magnitude.  

 

Figure 5.1 shows a photograph of the shock tube taken from the rupture end. As may be 

observed, the shock tube was anchored at this end using a large concrete block that fully 

surrounded the pipe. Smaller anchor blocks were also placed at regular intervals along 

the length of the shock tube. A smaller diameter recirculation pipe (ca. 100 mm ID), 

used to maintain the homogeneity of the inventory and isolated prior to blowdown, was 

connected to the shock tube at both ends. The rear end of the shock tube was sealed with 

a domed cap and the rupture end with a bursting disk. Blowdown was initiated by 

explosively cutting the bursting disk to produce a clean Full Bore Rupture (FBR).  

 

 

Figure 5.1: An image of the shock tube test rig from the rupture end, the primary 

anchor block and re-circulation pipe are visible in the left foreground. 
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The shock tube was instrumented with various transducers distributed along its full 

length. The type and technical specifications of the instruments used are detailed in 

table 5.1; their locations and numbering on the shock tube are detailed in table 5.2. 

 

Transducers FP01 to FP35 were temperature compensated Kulite CT-375M fast 

response pressure transducers mounted flush to the internal bore of the shock tube. 

These were installed at 12 and 3 o’clock positions in locations 1 to 9 (see table 5.2), the 

remainder were installed at the 12 o’clock position. Transducers WT01 to WT14 were 

welded tip, PTFE insulated Type T thermocouples mounted on the outer surface of the 

pipe wall, under the insulation. The type and manufacturer of the fluid temperature 

transducers FT01 to FT07 was not specified. In this study they have been assumed to be 

the same as the wall temperature thermocouples in all respects. They were mounted at 

45° to the pressure transducers. All of the instrumentation was calibrated.  

 

Table 5.1: Technical specifications for the instruments mounted on the National 

Grid shock tube. The fluid temperature transducers have been assumed to be the 

same make and manufacture as the wall temperature transducers. 

Instrument Range Sensitivity Accuracy/resolution 
Frequency 

(KHz) 

FP-X – Kulite 

CT-375M fast 

response 

pressure 

transducers 

0.35 – 210 

bar; 77.65 – 

393.15 K 

0.05 – 0.1 MPa 0.05 – 0.1 MPa 150 – 1400 

WT-X – Type T 

thermocouples 

-73.15 – 

533.15 K 

- ± 2.2 K - 

FT-X – Fluid 

thermocouples 

-73.15 – 

533.15 K 

- ± 2.2 K - 
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Table 5.2: A summary of the instruments available on the National Grid shock 

tube and their locations relative to the open end (Cosham et al., 2011, 2012). (FP = 

fluid pressure, FT = fluid temperature, WT = wall temperature). 

Instrument 

location 

Pressure 

Transducers  

Temperature 

Transducers  

Distance from 

open end (m) 

1 FP01, FP02 - 0.0864 

2 FP03, FP04 WT01, FT02 0.34 

3 FP05, FP06 - 0.54 

4 FP07, FP08 - 0.74 

5 FP09, FP10 - 0.94 

6 FP11, FP12 - 1.24 

7 FP13, FP14 WT02, FT03 1.84 

8 FP15, FP16 - 2.44 

9 FP17, FP18 - 3.64 

10 FP19 - 4.84 

11 FP20 WT03 6.04 

12 FP21 - 9.04 

13 FP22 - 13.54 

14 FP23 WT04, FT04 18.04 

15 FP24 - 22.54 

16 FP25 WT05 30.04 

17 FP26 WT06 42.04 

18 FP27 WT07, FT05 54.04 

19 FP28 WT08 66.04 

20 FP29 WT09 77.94 

21 FP30 WT10, FT06 89.94 

22 FP31 WT11 101.94 

23 FP32 WT12 113.94 

24 FP33 WT13, FT07 125.94 

25 FP34 WT14, FT01 137.94 

26 FP35 - 143.775 
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5.2.2 Experimental methodology and tests conducted 

 

The shock tube was first purged with CO2 before being charged for each experiment. 

For experiments using impure CO2 the shock tube was partially filled with CO2 before 

the calculated mass of other gas was added. Additional CO2 was then added to achieve 

the desired pressure.  

 

The recirculation loop includes a pump and heat exchangers. While the shock tube is 

being charged the fluid is circulated through the recirculating loop to encourage mixing. 

During the final stages of filling the heat exchanger is used to achieve the desired 

inventory temperature.  

 

For impure inventories samples were taken and tested using gas chromatography. The 

inventory was considered homogeneously mixed if two consecutive tests performed at 

least one hour apart yielded essentially the same results.  

 

Once the desired initial test conditions (i.e. temperature, pressure, composition) were 

achieved the pump in the recirculation loop was shut down and the loop isolated from 

the shock tube. Inventory temperature and pressure in the shock tube were allowed to 

equilibrate for typically 10 to 15 minutes. The blowdown experiment was then initiated 

by explosively cutting the rupture disk.  

 

Various blowdown experiments with different inventory compositions and initial 

properties were conducted by National Grid (Cosham et al., 2011, 2012). Recorded data 

from four such experiments is used extensively in this thesis. The inventory 

compositions and basic test conditions for these experiments are presented in table 5.3.  
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Table 5.3: Feed composition and initial test conditions for selected CO2 shock tube 

experiments (Cosham et al., 2011, 2012).  

Experiment 

Feed Composition 

Feed Temperature 

(°C) 

Feed Pressure 

(bara) 

Ambient 

Temperature (°C) Component Mole % 

1 CO2 100 5.1 39.11 17.5 

2 
CO2 95.97 

5.3 38.91 20.4 
N2 4.03 

3 CO2 100 5.2 153.4 10.2 

4 
CO2 95.92 

20.0 141.41 0.3 
N2 4.08 

 

5.2.3 Experimental data recorded 

 

The list of instruments in table 5.2 represents the complete selection of instruments that 

could be mounted on the shock tube, and their locations. Not all instruments were used 

in each test and of those that were some did not record useable data. Additionally, only 

limited experimental data has been shared by National Grid. 

 

For experiments 1 and 2, the available experimental data has been published as plots of 

the fluid pressure against decompression wave speed (calculated using the data captured 

from transducers FP03 to FP18). Additionally data for the variation of fluid pressure 

with time during the first second of decompression has been published for experiment 1 

only (Cosham et al., 2011).  

 

Limited experimental data has been published for experiments 3 and 4, see for example 

Cosham et al. (2012). Further data from experiments 3 and 4 used in this thesis was 

made available by National Grid as part of the COOLTRANS research programme 

(UKCCSRC, 2012). Pressure and temperature history data was provided from 

transducers FP35, FT01 and FT07 for both experiments 3 and 4. Additionally, pressure 

history data from the first 2 s of discharge was available from transducers FP25, FP28 
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and FP31 for experiment 3 only. Wall temperature history data from both experiments 

was available from transducers WT02 to WT14.  

 

5.2.4 Simulating the National Grid experiments 

 

Throughout this thesis the National Grid shock tube experiments described in this 

section are referred to as “experiment number”. All simulations are referred to as “Test 

number”; those simulations based on National Grid experiments are clearly indicated.  

 

All simulations assume that the inventory is at rest and homogeneously mixed, with no 

variation in fluid properties along the length of the shock tube, prior to blowdown. 

Additionally, it is assumed that there is no longitudinal variation in wall temperature 

prior to blowdown 

 

5.3 Selection of an Equation of State for modelling outflow 

 

In this section work to identify an appropriate EoS for modelling CO2 pipeline 

blowdown is presented. Various EoS are available for use in OUTFLOW to calculate 

the fluid density, speed of sound and phase split; parameters required for the accurate 

modelling of rapid transients. The available experimental data from experiments 1 and 

2, consisting of plots of recorded pressure vs. decompression wave speed, may therefore 

be used to assess the accuracy of an EoS in calculating the above parameters, and 

therefore its suitability for modelling CO2 pipeline blowdown. 

 

5.3.1 Simulating gas phase shock tube experiments 1 and 2 

 

Simulations of experiments 1 and 2 (see table 5.3) were conducted using OUTFLOW, 

these are numbered Tests 1 and 2 respectively. A complete list of the simulation 

parameters is given in table 5.4. Outflow from the shock tube was simulated for 5 s 

following FBR in each case.  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 5   115 

 

Table 5.4: Simulation parameters used for modelling the National Grid 

experiments 1 and 2, blowdown of a shock tube containing gas phase CO2.  

Inputs Test 1 Test 2 

P
ip

el
in

e 
ch

a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end Closed end 

Downstream fitting Rupture disk Rupture disk 

Pipe length (m) 144 144 

Pipe external diameter (mm) 171.94 171.94 

Pipe wall thickness (mm) 10.97 10.97 

Pipe roughness (mm) 0.0000043 0.0000043 

Pipe orientation to the 

horizontal plane (°) 
0 0 

Heat transfer option Insulated Insulated 

Heat transfer coefficient 

(W/m
2
K) 

5 5 

In
v
en

to
ry

 a
n

d
 a

m
b

ie
n

t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 100 CO2 95.97 

  N2 4.03 

Fluid temperature (°K) 278.25 278.45 

Fluid pressure (bara) 39.11 38.91 

Ambient temperature (°K) 290.65 293.55 

Ambient pressure (bara) 1.01 1.01 

F
a
il

u
re

 

p
a
ra

m
et

er
s Failure mode FBR FBR 

Failure location relative to 

upstream end (m) 
144 144 

Discharge coefficient 1 1 

O
th

er
 p

a
ra

m
et

er
s 

Number of pipe grid points 100 100 

Simulation model HEM HEM 

Equation of State 
SRK, PR, MPR, 

PRSV-1 

SRK, PR, MPR, 

PRSV-1 

Friction factor correlation 
Chen (Equation 

3.33) 

Chen (Equation 

3.33) 

Total depressurisation time 

(s) 
5 5 
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5.3.2 Equations of State investigated for modelling pipeline blowdown 

 

Tests 1 and 2 were simulated using four cubic EoS:  

- Soave Redlich-Kwong (SRK) (Soave, 1972) (equation 3.5, section 3.4) 

- Peng-Robinson (PR) (Peng and Robinson, 1976) (equation 3.6, section 3.4) 

- modified PR (MPR) of Wu and Chen (1996) (equation 3.7, section 3.4) 

- modified PR (PRSV-1) of Stryjek and Vera (1986) 

 

The PRSV-1 EoS retains the basic form of the PR EoS given in section 3.4. However, 

the κ function used in equation 3.14 is modified by Stryjek and Vera (1986): 

 

𝜅 = 𝜅0 + 𝜅1(1 + 𝑇𝑟
0.5)(0.7 − 𝑇𝑟) 5.1 

𝜅0 = 0.378893 + 1.4897153𝜔 − 0.17131848𝜔2 + 0.0196554𝜔3 5.2 

The binary interactions parameters used in OUTFLOW have not been calibrated for 

CO2 and its mixtures, therefore based on the work of Li and Yan (2009a, 2009b) (see 

section 2.6.2) both the PR and the SRK EoS are included in this study. It has been 

reported however that the PR EoS can produce errors in calculated density of up to 

15 %, especially at low temperatures (ca. -50 °C) (UCL, 2010). The PRSV-1 EoS has 

been reported to produce more accurate vapour pressure predictions at reduced 

temperatures (Tr) ≤ 0.7 for a variety of compounds, including CO2, compared with the 

PR EoS (Stryjek and Vera, 1986). Reduced temperature is calculated from T/Tc. For 

pure CO2 a Tr of 0.7 corresponds to a fluid temperature of 213 K; 3 K below the triple 

point temperature. The PRSV-1 therefore has the potential to maintain calculation 

accuracy in the event that inventory properties pass the triple point during 

depressurisation. The MPR EoS is included in the present investigation as it has been 

shown to produce excellent agreement with the SW density predictions for pure CO2 in 

the liquid and vapour phases and along the saturation line. The SW EoS may be 

considered as a bench mark as it is primarily based on fitting to experimental data (Span 

and Wagner, 1996).  
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The GERG 2008 EoS (Kunz et al., 2007) was developed for modelling natural gas 

mixtures and it has since been considered for CCS systems. Its reported accuracy in the 

temperature/pressure range for CCS is reported to be high (Li et al., 2011). However its 

use in OUTFLOW resulted in prohibitively long computational run times. As the SW 

EoS possesses a similar level of complexity to the GERG, its incorporation into 

OUTFLOW was not attempted.  

 

Cosham et al. (2011) simulated National Grid experiments 1 and 2 using the isentropic 

decompression model DECOM. This model utilised the Span and Wagner (1996) EoS 

(SW) for Test 1 and the GERG 2008 EoS (Kunz et al., 2007) for Test 2. 

 

Therefore in this study OUTFLOW results for Tests 1 and 2 generated with the SRK, 

PR, MPR and PRSV-1 EoS were compared with both the available experimental and 

DECOM data.  

 

The OUTFLOW predicted decompression wave speed is calculated by subtracting the 

fluid velocity, u, from the speed of sound, a, (i.e. a – u) at the grid point closest 

(1.44 m) to the rupture plane (referred to as point A hereafter).  

 

5.3.3 Comparison of the performance of selected EoS 

 

Figures 5.2 and 5.3 present the comparisons of the experimental and simulated fluid 

pressure against decompression wave speed for Tests 1 and 2 respectively. OUTFLOW 

simulations were conducted using the EoS equations 3.6, 3.7, PRSV-1 (3.6 with 5.1) 

and 3.5 (PR, MPR, PRSV-1 and SRK respectively). As the raw experimental data was 

unavailable, it was instead extracted from pressure vs decompression wave speed 

figures presented in Cosham et al. (2011). As stated above (see table 5.1), the claimed 

certainty in the measured pressures is ±0.05-0.1 MPa.  
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Referring to the data in figures 5.2 and 5.3, several trends may be observed. In order of 

appearance, decreasing fluid pressure is associated with decreasing decompression wave 

speed in both the experimental and simulated data. Slight plateaux in the fluid pressure 

(indicated on the figures) resulting from discontinuities in the speed of sound are 

observed in each curve. These occur due to the transformation of the inventory from 

vapour to a two-phase mixture. For all cases, the predicted plateaux occur at higher 

pressures than observed experimentally. This was attributed by Cosham et al. (2011) to 

delayed nucleation in the inventory which is not accounted for in OUTFLOW.  

 

The simulated and experimental data are in reasonable agreement for two phase fluids at 

pressures above ca. 16 bara. Below 10 bara the experimental decompression wave speed 

reaches 0 m/s, indicating the decompression wave has been ejected from the shock tube. 

In contrast DECOM predicts the decompression wave is ejected from the shock tube as 

the pressure reaches ca. 14 bara. OUTFLOW, with all the cubic EoS considered, 

predicts that below 16 bara the decompression wave speed remains relatively constant at 

ca. 40 m/s. This prediction follows from the equation used to calculate decompression 

wave speed at point A (1.44 m behind the rupture plane). In practise OUTFLOW 

predicts the ejection of the decompression wave from the shock tube as the pressure at 

the rupture plane passes ca. 10 bara. 
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Figure 5.2: Simulated and experimental fluid pressure vs. decompression wave 

velocity for Test 1 (pure CO2; see table 5.4). 
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Figure 5.3: Simulated and experimental fluid pressure vs. decompression wave 

velocity for Test 2 (CO2 with 4.03 mol% N2 impurity; see table 5.4).  
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data and the OUTFLOW data generated using all the cubic EoS considered. All the 

OUTFLOW simulations predict very similar decompression wave speeds, these are in 

best agreement with the experimental two phase decompression wave speed at pressures 

between 16 and 25 bara. It may therefore be inferred that when incorporated in 

OUTFLOW there is little difference in the performance of the cubic EoS considered for 

calculating fluid density, phase split and speed of sound between ca. 16 to 40 bara. This 

pressure range is relatively small however, especially in the context of CO2 pipeline 

transportation.  

 

Analysis of the available OUTFLOW simulation data indicates that a reduced inventory 

temperature, Tr, of 0.7 is not reached in either test before the decompression wave is 

ejected from the shock tube. No experimental temperature data was available to confirm 

this prediction. Assessing the accuracy of the PRSV-1 at lower temperatures was 

therefore not possible for Tests 1 and 2.  

 

Figure 5.4 presents the fluid pressure/time histories from transducers FP20, FP22 and 

FP23 (see table 5.2) for Test 1, together with the corresponding simulated data 

generated using OUTFLOW incorporating the PR EoS. Experimental data is available 

for the first 1000 ms following FBR. As may be observed, following test initiation the 

recorded pressure first increases before dropping sharply, this is due to the explosive 

cutting of the rupture disk and passage of the decompression wave. After this a short 

plateau is observed at each transducer, corresponding to the change from single to a two 

phase mixture. Both phenomena are indicated on figure 5.4. The recorded pressure then 

continues to decrease. 

 

As may be observed, the predicted pressure histories at each transducer show relatively 

good agreement with the experimental data during the first 1000 ms of blowdown. In 

particular there is good agreement in the times at which the simulated and experimental 

decompression waves reach each transducer position (as indicated by the time at which 

the pressure changes from the initial pressure). The data demonstrates the ability of the 

PR EoS to accurately model rapid transients in vapour phase and saturated CO2 at 

Tr > 0.7.  
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Figure 5.4: Test 1 experimental and PR simulated fluid pressure histories from 

transducers FP20, FP22 and FP23 during the first 1000 ms of blowdown. 

 

Summary of results 

OUTFLOW simulations of Tests 1 and 2 (pure CO2 and CO2 with 4.03 % N2 
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agreement with experimental decompression wave speed between 16 and 25 bara 

compared to the DECOM data. Insufficient experimental data was available to properly 

assess the claimed advantages of the MPR and PRSV-1 EoS over the PR EoS. 

Comparison of Test 1 experimental and simulated pressure histories from various 

transducers demonstrated that the PR EoS is able to accurately predict depressurisation 

rate and decompression wave speed in the inventory. The PR EoS has therefore been 

selected for use in all modelling work in this thesis.  
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5.4 Validation of the OUTFLOW wall temperature model 

 

In this section experimental pipe wall temperature data recorded from the National Grid 

shock tube experiments 3 and 4 (see table 5.3) are used to validate OUTFLOW pipe 

wall temperature predictions.  

 

5.4.1 Description of the simulations conducted 

 

Simulations of experiments 3 and 4 (see table 5.3) were conducted using OUTFLOW, 

these are numbered Tests 3 and 4 respectively. A complete list of the simulation 

parameters is given in table 5.5.  

 

A description of experiments 3 and 4, including of the data recorded, has been presented 

in section 5.2.  

 

Data from wall temperature transducers WT02 to WT14 (see table 5.2) was used to 

validate the wall temperature predictions of OUTFLOW.  
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Table 5.5: Simulation parameters for Tests 3 and 4, the blowdown of a shock tube 

containing dense phase CO2.  

Inputs Test 3 Test 4 
P

ip
el

in
e 

ch
a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end Closed end 

Downstream fitting Rupture disk Rupture disk 

Pipe length (m) 144 144 

Pipe external diameter (mm) 171.94 171.94 

Pipe wall thickness (mm) 10.97 10.97 

Pipe roughness (mm) 0.0000043 0.0000043 

Pipe orientation to the 

horizontal plane (°) 
0 0 

Heat transfer option Insulated Insulated 

Heat transfer coefficient 

(W/m
2
K) 

5 5 

In
v
en

to
ry

 a
n

d
 a

m
b

ie
n

t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 100 CO2 95.92 

  N2 4.08 

Fluid temperature (°K) 278.35 293.15 

Fluid pressure (bara) 153.41 141.41 

Ambient temperature (°K) 283.35 273.45 

Ambient pressure (bara) 1.01 1.01 

F
a
il

u
re

 

p
a
ra

m
et

er
s Failure mode FBR FBR 

Failure location relative to 

upstream end (m) 
144 144 

Discharge coefficient 1 1 

O
th

er
 p

a
ra

m
et

er
s 

Number of pipe grid points 144 144 

Simulation model HEM HEM 

Equation of State PR (equation 3.6) PR (equation 3.6) 

Friction factor correlation 
Chen (Equation 

3.33) 

Chen (Equation 

3.33) 

Total depressurisation time 

(s) 
25 25 
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5.4.2 OUTFLOW wall temperature validation results 

 

Figure 5.5 presents experimental and OUTFLOW predicted pipe wall temperature 

profiles for Test 3 at time intervals of 0, 5, 10, 15 and 20 s following rupture. The 

experimental temperature profiles at each time interval are based on data from 

transducers WT02 to WT14. Before FBR considerable variation in the experimental 

pipe wall temperatures was observed; this can be ascribed to instrument calibration. 

Thermocouples WT05, WT08 and WT10 reported an initial pipe wall temperature 

closest to the calculated initial wall temperature (281.75 K). Wall temperature histories 

from these transducers are compared with the corresponding simulated data in figure 

5.6. The locations of these instruments are indicated in figure 5.5.  

 

Referring to figures 5.5 and 5.6 it may be observed that the temperature of the pipe wall 

prior to blowdown is over predicted. Cooling of the pipe wall is predicted to occur 

immediately upon rupture in contrast to the experimental data which indicates a distinct 

delay in the onset of cooling. Referring to figure 5.6, a decrease in the predicted rate of 

cooling, resulting from rapid transients in the inventory, is observed between ca. 3 and 

5 s. Cooling of the pipe wall is predicted to cease significantly earlier than observed 

experimentally (at ca. 15 s), and at significantly colder temperatures.  

 

Figure 5.7 presents the experimental and predicted wall temperature profiles at various 

times for Test 4. Figure 5.8 presents the corresponding experimental and simulated wall 

temperature histories at transducers WT04, WT08 and WT11. As may be observed the 

Test 4 pipe wall temperature predictions display the same trends in behaviour as 

discussed for Test 3.  

 

In summary, the accuracy of the OUTFLOW predicted wall temperature data was poor. 

The model OUTFLOW (reviewed in section 2.4.4) is therefore inappropriate for 

investigating pipe wall cooling in CO2 pipelines during blowdown.  

 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 5   126 

 

Figure 5.5: Experimental and OUTFLOW predicted pipe wall temperature 

profiles at various times for Test 3 (pure CO2; see table 5.5). 

 

Figure 5.6: Experimental and OUTFLOW predicted pipe wall temperature 

histories at transducers WT05, 08 and 10 for Test 3 (pure CO2; see table 5.5). 
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Figure 5.7: Experimental and OUTFLOW predicted pipe wall temperature 

profiles at various times for Test 4 (CO2 with 4.08 mol% N2; see table 5.5). 

 

Figure 5.8: Experimental and OUTFLOW predicted pipe wall temperature 

histories at transducers WT04, 08 and 11 for Test 4 (CO2 with 4.08 mol% N2; see 

table 5.5). 
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5.5 Conclusion 

 

In this chapter an EoS appropriate for modelling the blowdown of CO2 pipelines was 

selected based on a comparison of the performance of various EoS when used to model 

blowdown of a shock tube using OUTFLOW. Of the EoS considered, the PR EoS was 

selected for use in this thesis as it was demonstrated to be able to model rapid transients 

in the gas phase inventory with acceptable accuracy. 

 

The wall temperature predictions of the model OUTFLOW were validated against 

shock tube decompression data for dense phase CO2 inventories. Model predictions 

were seen to significantly over predict the degree of cooling and under predict duration. 

The OUTFLOW wall temperature model reported in section 3.6 is therefore shown to 

be inappropriate for modelling CO2 pipeline venting.  

 

In the next chapter the development of a Finite Element model of heat conduction for 

use in calculating heat conduction in a pipe wall is presented. The integration of this 

model with OUTFLOW is described and the new composite model is validated against 

data from experiments 3 and 4. 
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Chapter 6: Development and validation of a Finite 

Element heat conduction model for calculating 

transient pipe wall temperatures during outflow 

from pipelines 

 

 

6.1 Introduction 

 

As discussed in chapter 1, the prediction of the transient discharge rate from a failed 

pipeline is central to predicting all hazards associated with a release. In the specific case 

of pipelines carrying CO2 for CCS an important consequence of pipeline failure is rapid 

cooling in the pipe wall driven by the depressurisation of the inventory. Thus any 

discharge model applied to CO2 pipeline failure modelling must also be capable of 

predicting transient temperature changes in a pipe wall adjoining an inventory.  

 

The discharge model OUTFLOW was reviewed in chapter 2 and shown to be able to 

accurately model depressurisation rate, discharge rate and rapid transients in an 

inventory following pipeline failure. However, the validation of the OUTFLOW wall 

temperature model, presented in chapter 5, demonstrated that it is not capable of 

accurately predicting transient wall temperatures following pipeline failure.  

 

In this chapter the development and integration into OUTFLOW of a Finite Element 

model for heat conduction in a pipe wall is presented. The composite model, referred to 

as FEM-O, is then validated. The selection of a Finite Element model for modelling 

wall temperatures is discussed in section 2.5 and a description of the experiments used 

in the validation of FEM-O is presented in section 5.2.  
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6.2 A Finite Element Model (FEM) of heat conduction 

 

As discussed in section 2.5, a FEM model of heat conduction was selected for 

modelling pipe wall temperatures during venting/blowdown of CO2 pipelines. This 

model was selected for its flexibility in discretising the solution domain. This flexibility 

will allow the future extension of the model to simulating transient temperature changes 

in complex inline infrastructure such as valves or pipeline junctions.  

 

In this section the formulation of the FEM heat conduction model and its integration 

with OUTFLOW is described. The combined models are referred to as FEM-O.  

 

6.2.1 Discretisation and boundary conditions for the solution domain  

 

In section 3.6.1 it was noted that the OUTFLOW wall temperature model assumes only 

radial heat transfer through the wall. This assumption may not be suitable for short vent 

pipes where longitudinal heat conduction may be significant. Given the conservation 

equations 3.1 to 3.3 are solved for one dimensional, homogeneous equilibrium flow, a 

two dimensional (axial and radial) heat conduction model for the pipe wall and 

surrounding material is the most complex the fluid model can exploit. 

 

Axial node coordinates 

The rectangular solution domain representing the pipe wall is therefore discretised into a 

two dimensional mesh of regularly sized triangular elements with nodes located at each 

element corner, as illustrated in figure 6.1.  

 

 

Figure 6.1: An illustration of a Finite Element mesh composed of triangular 

elements (three rows and eight columns of nodes in this schematic).  
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When solving the conservation equations, heat flux between the pipe wall and fluid is 

accounted for by the term Qh in the energy conservation equation 3.3 only. Thus each 

fluid grid point is associated with a column of FEM nodes at the same axial coordinate 

to simplify the calculation of Qh. The number of fluid grid points, assumed to be evenly 

distributed in the fluid, is specified by the user. A total of eleven rows of nodes are used 

in the FEM mesh, their radial coordinates are dependent on the environment in which 

the pipeline is modelled. 

 

Radial node coordinates 

The pipeline may be modelled as exposed to air, insulated or buried. The ten rows of 

elements in the FEM solution domain are grouped accordingly, as shown in figure 6.2. 

Permanent boundary conditions applied to the solution domain are also illustrated.  

 

Figure 6.2: Subdivisions of, and boundary conditions applied to, the FEM solution 

domain to model heat conduction in the pipe wall of pipes exposed to air, insulated 

or buried.  

 

When modelling as pipe exposed to air all ten rows of elements are used to represent the 

pipe wall. For insulated or buried pipes five rows of elements are used to represent the 

Half of elements in solution domain – pipe wall 

Half of elements in solution domain – pipe wall/insulation/soil 

  

  

Forced convective heat transfer between fluid 

and inner surface of solution domain 

Combination of forced and natural convective heat transfer 

between atmosphere and outer surface of solution domain 

 

No heat transfer on 

short boundaries 
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pipe wall and five rows the insulation or soil. The pipe wall thickness is specified by the 

researcher. The insulation layer thickness is assumed to be two and a half times that of 

the pipe wall, alternatively the soil burial depth has been assumed to be 1.5 m. Radial 

coordinates of the FEM nodes are calculated accordingly. Thus elements corresponding 

to the different materials are different sizes, however all elements corresponding to a 

particular material are the same size. 

 

With the dimensions of the solution domain specified the coordinates of the nodes 

within it and the shape function for each node, Ni, may be calculated, where the 

subscript i denotes the node.  

 

Development of a sparse FEM grid 

Early testing of FEM-O demonstrated that the FEM model consumed a significant 

amount of computer memory, resulting in prohibitively long computational run times 

for longer pipelines. A sparse FEM grid system was therefore developed for use when 

the number of fluid grid points was greater than 200. In this case, the ratio of fluid grid 

points to columns of FEM nodes is reduced from 1:1 to 10:1. As discussed previously, it 

is assumed that fluid grid points remain equally distributed. The columns of FEM nodes 

remain equally spaced in the solution domain. Flux values at fluid grid points without a 

corresponding column of FEM nodes are calculated by interpolating values between 

relevant FEM nodes.  

 

6.2.2 Formulation of the Finite Element heat conduction model 

 

Two dimensional heat conduction in a substance with isotropic thermal conductivity 

and no heat generation is given by: 

 

𝛿

𝛿𝑥
(𝑘

𝛿𝑇

𝛿𝑥
) +

𝛿

𝛿𝑦
(𝑘

𝛿𝑇

𝛿𝑦
) = 𝜌𝑐𝑝

𝛿𝑇

𝛿𝑡
 

6.1 
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Where T is the temperature, t the time, x is the axial pipeline coordinate and y the radial 

coordinate. k, ρ and cp are the thermal conductivity, density and heat capacity of the 

pipe wall respectively.  

 

Convective boundary conditions are applied between the pipe wall and fluid and 

insulation/soil and atmosphere, these are respectively given by: 

 

𝑘
𝛿𝑇

𝛿𝑥
𝑙 + 𝑘

𝛿𝑇

𝛿𝑦
𝑚 + ℎ(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑓) = 0 𝑜𝑛 𝛤𝑖𝑛𝑛𝑒𝑟 6.2 

𝑘
𝛿𝑇

𝛿𝑥
𝑙 + 𝑘

𝛿𝑇

𝛿𝑦
𝑚 + ℎ(𝑇𝑖𝑛𝑠 − 𝑇𝑎𝑚𝑏) = 0 𝑜𝑛 𝛤𝑜𝑢𝑡𝑒𝑟 6.3 

Where h is the convective heat transfer coefficient, Tamb the ambient temperature, Tins 

the temperature of the insulation/soil surface, Twall the temperature of the wall surface 

and Tf the fluid temperature. l and m are direction cosines normal to the boundary, Γ 

represents the boundary.  

 

Heat transfer between the short ends of the FEM mesh and the ambient is ignored, as 

indicated in figure 6.2. 

 

Using the Galerkin Method, the temperature over the solution domain is discretised as 

follows: 

 

𝑇(𝑥, 𝑦, 𝑡) = ∑𝑁𝑖(𝑥, 𝑦)𝑇𝑖(𝑡)

𝑛

𝑖=1

 6.4 

Where Ni are the element shape functions, n is the number of nodes in the element and 

Ti(t) are the time dependent nodal temperatures.  

 

The Galerkin representation of equation 6.1 is: 

 

∫ 𝑁𝑖 [
𝛿

𝛿𝑥
(𝑘

𝛿𝑇

𝛿𝑥
) +

𝛿

𝛿𝑦
(𝑘

𝛿𝑇

𝛿𝑦
) − 𝜌𝑐𝑝

𝛿𝑇

𝛿𝑡
] 𝑑𝛺

𝛺

= 0 6.5 
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Where Ω is the two dimensional solution domain. Using Green’s Lemma (Lewis et al., 

2004), the first two terms of equation 6.5 may be re-written: 

 

∫ 𝑁𝑖

𝛿

𝛿𝑥
(𝑘

𝛿𝑇

𝛿𝑥
) 𝑑𝛺

𝛺

= ∫ 𝑁𝑖𝑘
𝛿𝑇

𝛿𝑥
𝑙𝑑𝛤

𝛤

− ∫
𝛿𝑁𝑖

𝛿𝑥
𝑘

𝛿𝑇

𝛿𝑥
𝑑𝛺

𝛺

 6.6 

∫ 𝑁𝑖

𝛿

𝛿𝑦
(𝑘

𝛿𝑇

𝛿𝑦
)𝑑𝛺

𝛺

= ∫ 𝑁𝑖𝑘
𝛿𝑇

𝛿𝑦
𝑚𝑑𝛤

𝛤

− ∫
𝛿𝑁𝑖

𝛿𝑦
𝑘

𝛿𝑇

𝛿𝑦
𝑑𝛺

𝛺

 6.7 

 

Equation 6.5 may therefore be written in the form: 

 

−∫ [𝑘
𝛿𝑁𝑖

𝛿𝑥

𝛿𝑇

𝛿𝑥
+ 𝑘

𝛿𝑁𝑖

𝛿𝑦

𝛿𝑇

𝛿𝑦
+ 𝑁𝑖𝜌𝑐𝑝

𝛿𝑇

𝛿𝑡
] 𝑑𝛺

𝛺

+ ∫ 𝑁𝑖𝑘
𝛿𝑇

𝛿𝑥
𝑙𝑑𝛤

𝛤

+ ∫ 𝑁𝑖𝑘
𝛿𝑇

𝛿𝑦
𝑚𝑑𝛤

𝛤

= 0 

6.8 

 

By applying the shape function and integrating over the boundary, equation 6.2 may be 

re-written as: 

 

∫ 𝑁𝑖𝑘
𝛿𝑇

𝛿𝑥
𝑙𝑑𝛤

𝛤

+ ∫ 𝑁𝑖𝑘
𝛿𝑇

𝛿𝑦
𝑚𝑑𝛤

𝛤

= −∫ 𝑁𝑖ℎ(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑓)𝑑𝛤
𝛤

 6.9 

 

Equation 6.3 may be manipulated in a similar fashion. 

 

Substituting the spatial approximation given in equation 6.4, and equation 6.9, into 

equation 6.8 yields:  

 

−∫ [𝑘
𝛿𝑁𝑖

𝛿𝑥

𝛿𝑁𝑗

𝛿𝑥
𝑇𝑗(𝑡) + 𝑘

𝛿𝑁𝑖

𝛿𝑦

𝛿𝑁𝑗

𝛿𝑦
𝑇𝑗(𝑡) + 𝑁𝑖𝜌𝑐𝑝

𝛿𝑁𝑗

𝛿𝑡
𝑇𝑗(𝑡)] 𝑑𝛺

𝛺

− ∫ 𝑁𝑖ℎ(𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑓)𝑑𝛤
𝛤

= 0 

6.10 
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Where i and j represent the nodes. Equation 6.10 may be written in the more convenient 

form: 

 

[𝐶𝑖𝑗] {
𝛿𝑇𝑗

𝛿𝑡
} + [𝐾𝑖𝑗]{𝑇𝑗} = {𝑓𝑖} 6.11 

Where: 

 

[𝐶𝑖𝑗] = ∫ 𝜌𝑐𝑝𝑁𝑖𝑁𝑗𝑑𝛺
𝛺

 6.12 

[𝐾𝑖𝑗] = ∫ [𝑘
𝛿𝑁𝑖

𝛿𝑥

𝛿𝑁𝑗

𝛿𝑥
{𝑇𝑗} + 𝑘

𝛿𝑁𝑖

𝛿𝑦

𝛿𝑁𝑗

𝛿𝑦
{𝑇𝑗}] 𝑑𝛺

𝛺

+ ∫ ℎ𝑁𝑖𝑁𝑗𝑑𝛤
𝛤

 6.13 

{𝑓𝑖} = +∫ 𝑁𝑖ℎ𝑇𝑎𝑑𝛤
𝛤

 6.14 

Equation 6.11 may be solved for the nodal temperatures at a given time using simple 

matrix manipulations.  

 

6.2.3 Integration of the FEM with OUTFLOW 

 

As discussed previously, the composite model of OUTFLOW with the FEM is referred 

to as FEM-O. 

 

The material properties and thickness of the pipe wall and external environment are 

assumed to be uniform for each pipeline section. Additionally, the pipe wall thickness 

may vary between pipe sections, however each section is assumed to have the same 

external environment. Therefore, when modelling venting of a buried pipeline for 

example, both the main and vent pipes may have different wall thicknesses but both are 

modelled assuming they are buried. This limitation to FEM-O is due to limits in the 

flexibility of the discharge model OUTFLOW. The material properties of the pipe wall, 

insulation and soil used in FEM-O are presented in table 6.1.  
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Table 6.1: Material properties of the pipeline, insulation and soil used in the FEM 

(Almanza et al., 2004). 

Material 
Density 

(kg/m
3
) 

Heat capacity 

(J/kg.K) 

Thermal conductivity 

(W/m
2
.K) 

Pipe wall 7854.0 434.0 53.65 

Foam insulation  

(polyethylene) 

32.5 2906.0 0.0484 

Soil (moist clay) 1700.0 1000.0 0.8 

 

The fluid model calculates fluid properties at each grid point in sequence while the 

FEM calculates wall temperatures at all nodes simultaneously. Thus the fluid model 

must complete the calculation for each pipe section before the wall temperatures of the 

section are calculated.  

 

When calculating the fluid properties of the system prior to rupture the pipe wall is 

assumed to be the same temperature as the ambient. The FEM subsequently calculates 

the real wall temperature by iterating over short time steps until further iterations result 

in no significant change (<1x10
-3

 K) in nodal temperatures.  

 

When performing transient fluid property calculations, FEM-O uses the calculated wall 

temperatures from the previous time interval to calculate fluid properties throughout the 

pipeline. The wall temperatures are then updated before the calculation advances to the 

next time interval. The time step size from the fluid model, based on the Courant-

Friedrichs-Lewy (CFL) criterion (equation 4.7), is also used in the FEM calculation. 

The use of a short time step, especially during the early stages blowdown, is used to 

maintain the accuracy of predictions.  

 

The calculation algorithm illustrating the integration of the FEM conduction model with 

the outflow model is presented in figures 6.3 and 6.4. 
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Figure 6.3: Calculation algorithm for obtaining pipe wall temperatures during 

outflow, part A. The subscripts w, t, p and i refer to the wall, time, pipe and grid 

point respectively.  

 

Define simulation input parameters  

Calculate P, S and u for fluid grid point np,i at 

time t using Tw,i,t-1 

YES NO All grid points in 

pipeline solved? 

Set initial wall temperature, Tw,t-1, to ambient 

Perform PS flash to calculate fluid properties 

including T for fluid grid point np,i 

All pipelines 

solved? 

Advance to 

next pipe 

NO 

Advance 

to i=i+1 

YES 

Proceed to wall temperature calculations, see 

figure 6.4 
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Figure 6.4: Calculation algorithm for obtaining pipe wall temperatures during 

outflow, part B. T represents the temperature, the subscripts w, t, p and i refer to 

the wall, time/iteration, pipe and grid point respectively. 

 

YES NO First time entering 

FEM model 

Change in all node 

temperatures between 

iterations <1x10
-3

 K 
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NO 
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NO 

Discretise solution domain, 

set iteration parameters 

Calculate wall temperatures at 

all nodes in pipe np at time t 

All pipelines 

solved? 

NO 

YES YES 

Return to figure 6.3, box 3, to begin 

calculations for new time interval 

Advance 

to t=t+1 
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6.2.4 Further development of FEM-O for modelling CO2 pipeline 

blowdown 

 

As discussed in section 3.6.2, for two phase inventories FEM-O utilises the Steiner and 

Taborek (1992) correlation for calculating the fluid/pipe wall heat transfer coefficient 

(FHTC). This correlation modifies the liquid only FHTC using the two phase flow 

convective factor Ftp (equation 3.56). The formulation of equation 3.56 was reported as 

suitable for fluids with a vapour fraction less than 60 %. This represents a significant 

limitation to FEM-O as, depending on the nature of a pipeline failure, the proportion of 

vapour in a CO2 inventory may evolve above 60 %. Alternatively during venting the 

proportion of vapour in an inventory will certainly evolve above 60 %.  

 

Steiner and Taborek (1992) presented an extended Ftp equation for fluids containing 

high vapour fractions (i.e. >60 %) and demonstrated its improved performance 

compared with equation 3.56. This extended equation for Ftp is shown in equation 6.15. 

 

 

Where hFC is the fluid heat transfer coefficient (adjusted for forced convection) and hl is 

the heat transfer coefficient for the liquid phase only (see equation 3.57). x is the 

inventory vapour fraction, ρv and ρl are the vapour and liquid densities respectively, hv 

and hl are respectively the pure vapour and liquid heat transfer coefficients and Ftp is the 

two phase flow convective factor.  

 

Equation 6.15 was integrated into FEM-O to calculate the FHTC at fluid nodes where 

the proportion of vapour exceeded 60 %. At nodes where the vapour fraction is less than 

60 % the original formulation for Ftp (equation 3.56) is retained.  

 

ℎ𝐹𝐶

ℎ𝑙
= 𝐹𝑡𝑝 = ([(1 − 𝑥)1.5 + 1.9𝑥0.6(1 − 𝑥)0.01 (

𝜌𝑙

𝜌𝑣
)
0.35

]

−2.2

+ [
ℎ𝑣

ℎ𝑙
𝑥0.01 {1 + 8(1 − 𝑥)0.7 (

𝜌𝑙

𝜌𝑣
)
0.67

}]

−2

)

−0.5

 

6.15 
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6.3 Validation of FEM-O 

 

In this section FEM-O fluid pressure, temperature and pipe wall temperature predictions 

are validated against experimental data recorded during the blowdown of a shock tube 

containing dense phase CO2 inventories.  

 

6.3.1 Description of the simulations conducted 

 

Simulations of experiments 3 and 4 (see table 5.3) were conducted using FEM-O, these 

are numbered Tests 5 and 6 respectively. The simulation parameters for Tests 5 and 6 

are the same as used previously for Tests 3 and 4; they are repeated below in table 5.5 

for convenience.  

 

A detailed description of experiments 3 and 4, including of the data recorded, has been 

presented in section 5.2.  

 

The measured experimental data from pressure transducer FP35, fluid temperature 

transducers FT01 and FT07 and wall temperature transducers WT02 to WT14 was used 

to validate FEM-O. Additionally, detailed fluid pressure data during the first 500 ms of 

discharge from transducers FP25, FP28 and FP31 was used for model validation. The 

locations of the specified instruments on the shock tube are detailed in table 5.2.  
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Table 6.2: Simulation parameters for Tests 5 and 6, the blowdown of a shock tube 

containing pure and impure dense phase CO2 respectively.  

Inputs Test 5 Test 6 
P

ip
el

in
e 

ch
a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end Closed end 

Downstream fitting Rupture disk Rupture disk 

Pipe length (m) 144 144 

Pipe external diameter (mm) 171.94 171.94 

Pipe wall thickness (mm) 10.97 10.97 

Pipe roughness (mm) 0.0000043 0.0000043 

Pipe orientation to the 

horizontal plane (°) 
0 0 

Heat transfer option FEM – Insulated FEM – Insulated 

In
v
en

to
ry

 a
n

d
 a

m
b

ie
n

t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 100 CO2 95.92 

  N2 4.08 

Fluid temperature (°K) 278.35 293.15 

Fluid pressure (bara) 153.41 141.41 

Ambient temperature (°K) 283.35 273.45 

Ambient pressure (bara) 1.01 1.01 

F
a
il

u
re

 

p
a
ra

m
et

er
s Failure mode FBR FBR 

Failure location relative to 

upstream end (m) 
144 144 

Discharge coefficient 1 1 

O
th

er
 p

a
ra

m
et

er
s 

Number of pipe grid points 144 144 

Simulation model HEM HEM 

Equation of State PR (equation 3.6) PR (equation 3.6) 

Friction factor correlation 
Chen (Equation 

3.33) 

Chen (Equation 

3.33) 

Total depressurisation time 

(s) 
25 25 
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6.3.2 FEM-O validation results  

 

In this section the validation of the FEM-O wall temperature model is discussed first, 

the validation of the fluid model is subsequently addressed.  

 

Figure 6.5 presents experimental and FEM-O predicted outer pipe wall temperature 

profiles for Test 5 at time intervals of 0, 5, 10, 15 and 20 s following rupture. The 

experimental temperature profiles at each time interval are based on data from 

transducers WT02 to WT14. As discussed previously for Test 3, a uniform temperature 

in the pipe wall was not recorded prior to blowdown. Thermocouples WT05, WT08 and 

WT10 recorded initial temperatures closest to the calculated initial wall temperature 

(281.0 K). Thus temperature histories from these instruments are compared with the 

corresponding simulated data in figure 6.6. The corresponding Test 3 OUTFLOW 

predictions at these transducers are also shown in the figure for comparison. 

 

Referring to figure 6.5, although the recorded wall temperature profiles display 

considerable fluctuations along the length of the pipe at each time interval, the trends in 

the profiles are clear. The experimental and predicted wall temperature profiles are 

generally in good agreement. During the later stages of blowdown a trend may be 

observed for FEM-O predicted temperatures to be fractionally lower than observed 

experimentally. This is due to the earlier predicted onset of cooling, discussed in 

reference to figure 6.6. Unrealistic wall temperatures are predicted at the extreme ends 

of the shock tube wall at both 5 and 10 s, the cause of which is not known. 

 

Referring to figure 6.6, it may be observed that the experimental pipe wall temperatures 

remain unchanged until ca. 2 s after blowdown was initiated. This is likely due to 

boundary layer effects in the accelerating fluid, the mounting of the relevant instruments 

on the external surface of the pipe may also contribute. From ca. 2 s steady cooling is 

observed until blowdown nears completion, barring small peaks in the wall temperature 

histories at ca. 273 K. These are probably due to the formation of water ice on the outer 

surface of the shock tube. 
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Figure 6.5: Experimental and FEM-O predicted outer pipe wall temperature 

profiles at various times for Test 5 (pure CO2, see table 5.5).  

 

Figure 6.6: Experimental and FEM-O predicted outer pipe wall temperature 

histories at transducers WT05, 08 and 10 for Test 5 (pure CO2, see table 5.5).  
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Comparing the observed and predicted wall temperature data from WT05, WT08 and 

WT10 in figure 6.6, the predicted initial temperatures are higher than observed 

experimentally and cooling is predicted to begin earlier (boundary layer effects are not 

accounted for in FEM-O). Except at WT05 (30 m from the open end), the rate of wall 

cooling varies during the first ca. 6 s of blowdown. This results from rapid transients in 

the fluid altering the local depressurisation rate at the closed end of the shock tube 

during this period. After ca. 6 s no rapid transients exist in the system and the cooling 

rate generally matches that observed experimentally. The degree and duration of cooling 

predicted at each transducer closely matches the experimental data. The significant 

overall improvement of the FEM-O over OUTFLOW predictions is also readily 

discernible in the data from Tests 3 and 5.  

 

Considering Test 6, the initial simulation of this test failed to accurately predict the pipe 

wall temperature prior to blowdown. As a result transient wall temperature predictions 

also showed poor agreement with the experimental data. In order to accurately predict 

the initial pipe wall temperature the FEM steady state algorithm was altered to ignore 

heat transfer between the atmosphere and the pipe insulation. No alterations were made 

to the transient FEM algorithm. This alteration was only used when simulating Test 6.  

 

Test 6 was simulated again with the discussed alteration to the FEM steady state 

algorithm. Figure 6.7 presents the experimental and FEM-O predicted outer pipe wall 

temperature profiles for Test 6 at 0, 5, 10, 15 and 20 s following rupture. Experimental 

temperature profiles at each time interval are based on data from transducers WT02 to 

WT14. Thermocouples WT04, WT09 and WT11 recorded initial temperatures closest to 

the calculated initial wall temperature (293.15 K). Thus temperature histories from these 

instruments are compared with the corresponding simulated data in figure 6.8. The 

corresponding Test 4 OUTFLOW predictions from these transducers are also shown in 

the figure for comparison. 
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Figure 6.7: Experimental and FEM-O predicted outer pipe wall temperature 

profiles at various times for Test 6 (CO2 with 4.08 mol% N2, see table 5.5). 

 

Figure 6.8: Experimental and FEM-O predicted pipe wall temperature histories at 

transducers WT04, 09 and 11 for Test 6 (CO2 with 4.08 mol% N2, see table 5.5). 
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Referring to figure 6.7, although a uniform pipe wall temperature was not recorded prior 

to FBR, the calculated initial wall temperature is in good agreement with the 

experimental data. The recorded wall temperature profiles display increasingly large 

fluctuations along the length of the pipe up to 10 s after rupture. Nonetheless trends in 

all wall temperature profiles remain clear. Between 5 and 10 s wall temperatures are 

predicted to be significantly cooler than observed experimentally due to the earlier onset 

of cooling predicted by FEM-O (see also figure 6.8). Unrealistic pipe wall temperatures 

are also predicted at the ends of the pipe wall. 

 

Referring to figure 6.8, steady cooling of the pipe wall was observed experimentally 

from ca. 2 s after FBR. The rate of cooling was observed to decrease from ca. 15 s as 

blowdown nears completion. As observed for Test 5, cooling in the pipe wall was 

predicted to begin earlier than observed experimentally, thus accounting for the 

difference between the experimental and predicted wall temperature profiles at 5 and 

10 s. The predicted rate and range of cooling shows reasonable agreement with the 

experimental data. The significant overall improvement of the FEM-O over OUTFLOW 

predictions is also readily discernible in the data from Tests 4 and 6. No effect on the 

predicted rate of cooling is observed from rapid transients in the inventory.  

 

In summary, FEM-O wall temperature predictions for Tests 5 and 6 show good 

agreement with the corresponding experimental data and are significantly more accurate 

than the corresponding OUTFLOW predictions. In both simulations FEM-O was able to 

predict the wall temperature prior to blowdown with reasonable accuracy. Although the 

onset of cooling in Tests 5 and 6 was predicted to occur earlier than observed 

experimentally, the degree and duration of predicted pipe wall cooling was in good 

agreement with the relevant experimental data in both tests.  

 

Turning to the FEM-O fluid property predictions for Tests 5 and 6, figure 6.9 presents 

the experimental and predicted fluid pressure histories at FP35 for both tests. 

Experimental data for the first 500 ms following rupture of Test 5 is available and 

discussed in reference to figure 6.10. No comparable data is available for Test 6.  
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Referring to figure 6.9, the predicted and experimental data is generally in good 

agreement. The FEM-O predicted Test 5 pressure history of fluctuates between ca. 0.5 

and 8 s and the Test 6 pressure history between ca. 0.5 and 3 s. These fluctuations are 

caused by predicted rapid transients in the inventory. Small, brief increases in 

experimental pressure are recorded at ca. 18 and 14 s for Tests 5 and 6 respectively 

(indicated in figure 6.9). At comparable times plateaux in the corresponding 

temperature histories at FT01 were recorded (see figure 6.11). These features coincide 

with the triple point properties of pure CO2 (216.6 K and 5.16 bara, calculated in 

REFPROP (Lemmon et al., 2013) using the PR EoS). The formation of solid CO2 in the 

inventory of both Test 5 and 6 is therefore a realistic possibility.  

 

Figure 6.10 presents the Test 5 experimental and predicted fluid pressure histories at 

transducers FP25, FP28 and FP31 (see table 5.2) during the first 500 ms of blowdown. 

Pressure spikes in the inventory resulting from the explosive cutting of the rupture disk 

are indicated on the figure. FEM-O models the failure of a pipeline as an instantaneous 

event thus the pressure spikes are not mirrored in the simulated data.  

 

The arrival of the explosive and decompression waves at each transducer is very closely 

matched by the arrival of the predicted decompression wave. The reflected explosive 

and decompression waves may be observed arriving at each transducer from ca. 290 ms 

while the reflected predicted decompression wave arrives later. This may be significant 

when modelling venting as in such events the decompression wave is expected to 

dissipate in the pipe system over time. Notwithstanding the above, the time difference 

between the return of the reflected experimental and simulated decompression waves to 

each transducer is extremely small. The ability of the PR EoS to model rapid transients 

in pure, dense phase CO2 is therefore shown to be satisfactory. It may be inferred from 

this result that for the blowdown scenario simulated (Test 5, based on experiment 3) the 

PR EoS calculates the properties of dense phase CO2 with reasonable accuracy, 

including fluid density. 
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Figure 6.9: Experimental and FEM-O predicted fluid pressure histories at FP35 

for Tests 5 (pure CO2) and 6 (CO2 with 4.08 mol% N2, see table 5.5).  

 

Figure 6.10: Test 5 experimental and FEM-O predicted fluid pressure histories at 

transducers FP25, 28 and 31 during the first 500 ms of blowdown. 
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Figures 6.11 and 6.12 present the experimental and predicted fluid temperature histories 

at transducers FT01 and FT07 respectively for Tests 5 and 6. As may be observed, 

FEM-O consistently under-predicts the fluid temperature for both tests and at both 

transducers. The predicted and experimental temperatures diverge from ca. 14 and 9 s 

for Tests 5 and 6 respectively. The minimum predicted fluid temperatures significantly 

under-predict the experimental temperatures by the end of blowdown. The FEM-O data 

presented therefore suggests the two phase flow convective factor equation 6.15 might 

be increasingly inaccurate when applied to fluids with vapour fractions > 95 %. 

 

Concerning the experimental data reported in figures 6.11 and 6.12, it should be noted 

that the minimum fluid temperature recorded during blowdown was the same in both 

tests. The proportion of impurity in the CO2 inventory for Test 6 (4.08 mole% N2) is not 

unrealistic (de Visser et al., 2008). Thus the data suggests that for CO2 inventories with 

the expected range of purity; ca. >91 % CO2 considered by, for example, National Grid 

UK (Cosham et al., 2011) and ca. >96 % recommended by the DYNAMIS Project (de 

Visser et al., 2008), the duration of a release is the dominant factor in determining the 

likely minimum temperature reached by the fluid during blowdown. Thus when 

simulating very prolonged blowdown events the PRSV-1 EoS (with calibrated binary 

interaction parameters) may prove to be more appropriate for use than the PR EoS.  

 

Although not presented in chapter 5, the OUTFLOW fluid temperature histories 

predicted for Tests 3 and 4 at FT01 are almost identical to those shown for FEM-O in 

figures 6.11 and 6.12. It may therefore be concluded that while the FEM model is 

sensitive to the predicted fluid temperatures the fluid model is less sensitive to the wall 

temperature predictions.  
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Figure 6.11: Experimental and FEM-O predicted fluid temperature histories at 

FT01 for Tests 5 (pure CO2) and 6 (CO2 with 4.08 mol% N2, see table 5.5).  

 

Figure 6.12: Experimental and FEM-O predicted fluid temperature histories at 

FT07 for Tests 5 (pure CO2) and 6 (CO2 with 4.08 mol% N2, see table 5.5).  
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It was noted that FEM-O simulation run times were significantly longer than the 

corresponding OUTFLOW run times, as shown in table 6.3.  

 

Table 6.3: A comparison of simulation run times for Tests 3 to 6. 

 OUTFLOW FEM-O 

Test 3/Test 5 14 min. 54 sec. 4 hrs 15 min. 

Test 4/Test 6 26 min. 26 sec. 4 hrs 35 min. 

 

This has significant implications for the applicability of FEM-O to simulating systems 

composed of multiple pipes, such as would be expected during venting or when 

simulating outflow from networks of pipelines.  

 

6.4 Conclusion 

 

In this chapter a Finite Element model for calculating transient heat conduction in a pipe 

wall was developed and integrated with the model OUTFLOW. The resulting composite 

model, referred to as FEM-O, was then validated. 

 

The Finite Element model developed was formulated to calculate pipe wall heat 

conduction in two dimensions. Boundary conditions of forced convective heat transfer 

and a mixture of natural and forced convective heat transfer are applied to the inner and 

outer surfaces of the FEM solution domain respectively. The pipeline may be modelled 

as exposed to air or insulated/buried. The two dimensional heat conduction equation for 

the pipe wall, including terms for convective heat transfer at the boundaries, was 

converted to Finite Element form using the Galerkin Method.  

 

The properties of the inventory are calculated at each fluid grid point in sequence, 

however properties at each FEM node are calculated simultaneously. Heat flux values at 

each fluid grid point are therefore calculated using fluid property data from the current 

time step and wall temperature data from the previous time step. The small time step 
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used, especially during the early stages of blowdown, minimises any inaccuracy 

associated with this method. The fluid/pipe wall heat transfer coefficient was also 

updated to account for the potentially high vapour content of CO2 inventories during 

outflow. 

 

FEM-O fluid pressure, temperature and pipe wall temperature predictions were 

validated against shock tube decompression data for dense phase CO2 inventories. A 

detailed description of the experiments and recorded data used in the validation has 

been presented in section 5.2.  

 

FEM-O demonstrated the ability to accurately model the degree and duration of cooling 

in the pipe wall during blowdown for both pure (Test 5) and impure (Test 6) CO2 

inventories. In both tests the predicted onset of cooling was earlier than observed 

experimentally, although uncertainty in the precise start time of the experiment or 

instrument lag may have contributed to this. Unrealistic pipe wall temperatures were 

predicted at the extreme ends of the pipe. Their cause is unknown and they do not 

appear to significantly affect the accuracy of the results. Wall temperature predictions 

were seen to be sensitive to variations in predicted fluid properties. Fluid pressure 

predictions showed good agreement corresponding experimental data. Rapid fluid 

transients in Test 5 were predicted with good accuracy by FEM-O. Fluid temperatures 

were consistently under-predicted.  

 

Finally, it was observed that although FEM-O produces significantly improved wall 

temperature predictions compared with OUTFLOW, the simulations run times were 

also much greater.   
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Chapter 7: Modelling of fluid flow through pipeline 

junctions 

 

 

7.1 Introduction 

 

As discussed in section 2.2, pipelines are the most practical transportation option for 

large scale CCS operations. Given the geographical spread of CO2 sources such as 

power stations, CCS pipelines can be expected to extend over long distances and 

varying topographies. Given the myriad difficulties in operating multiple smaller 

pipelines they will be grouped into networks (Chandel et al., 2010).  

 

Given their potential length, sections of a pipe network undergoing venting/with a 

failure are likely to possess varying inclination; this will affect the overall outflow 

process and therefore the properties of the dispersing inventory cloud. Additionally, the 

section may possess a T-junction, further complicating the outflow process. Given that 

CO2 is more dense than air, odourless and causes instantaneous unconsciousness and 

ultimately death at concentrations ≥ 10 % v/v (Kruse and Tekiela, 1996), a proper 

understanding of the discharge process is therefore vital. This requires an outflow model 

with the demonstrated ability to model fluid flow through pipeline junctions.  

 

In this chapter the pipeline junction boundary conditions presented in section 4.3.3 are 

considered for modelling the venting of CO2 pipelines. In the first part of the chapter 

potential weaknesses are identified and new formulations for the boundary conditions 

proposed. In the second and third sections the new two and three pipe junction boundary 

conditions are respectively validated against available experimental data provided by 

the UK National Grid. All simulations in this chapter are performed with FEM-O.  
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7.2 Justification and New Model Description 

 

The boundary conditions for modelling fluid flow through pipeline junctions have been 

presented in section 4.3.3. Referring to figures 4.5 and 4.6, fluid properties at the 

terminal node in each pipe connected to the junction are described by one Path line and 

one Mach line each. Referring to figure 4.3, the position of point o is always upstream 

of node i at t1, and therefore indicates the direction of flow. The boundary conditions 

should therefore account for variation in the direction of flow. However, their 

implementation in OUTFLOW is such that the Path line compatibility equations from 

all nodes are included simultaneously in the calculation at each time step, thus 

describing a scenario in which fluid flows into the junction from all directions. When 

combined with the indicated Mach line equations (figures 4.5 and 4.6), this system of 

equations may not necessarily result in reduced accuracy. Indeed previous tests with 

OUTFLOW have produced logical and coherent results, although these have not been 

validated. The computational effort required to obtain a solution, and therefore the 

simulation run-time, is surely high however.  

 

The Test 5 run-time with FEM-O was 4 hours and 12 minutes; the same test performed 

with OUTFLOW had a run-time of 14 minutes 54 seconds (see table 6.3). Reduction of 

the run-time, with a potential increase in accuracy at any pipeline junctions, would 

represent a significant improvement to FEM-O. In this section new formulations of the 

junction boundary conditions, intended to reduce run-time and increase accuracy, are 

presented.  

 

New boundary conditions for an N-pipe junction 

Figures 7.1 and 7.2 present schematic representations of the new application of the 

MOC to the junction of two and three pipes respectively. B1, B2 and B3 represent the 

boundary planes between fluid and connectors in the two and three way junctions. C0 

represents the Path line and C+ and C- the positive and negative Mach lines respectively. 

Pjn, sjn and ujn are the fluid pressure, entropy and velocity at Bn. As may be observed, 

the Path lines are now only included in the upstream pipes.  
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Figure 7.1: Application of the MOC to the simulation of fluid flow across the 

junction of two pipes.  

 

Figure 7.2: Application of the MOC to the simulation of fluid flow across the 

junction of three pipes assuming a single downstream pipe. 
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The predictor step of the Euler predictor/corrector algorithm is retained to estimate 

initial values for P, s and u at each boundary plane. A numerical algorithm (Moré et al., 

1980) (referred to hereafter as ZERO_N) based on a modification of the Powell hybrid 

method (Rabinowitz, 1970) is used to iteratively refine these estimates to meet a pre-

defined set of convergence criteria. These criteria are expressed as a number of non-

linear functions equal to the number of variables submitted to ZERO_N. The functions 

are the relevant Mach and Path line equations indicated in figures 7.1 and 7.2 (equations 

4.1, 4.3 and 4.5) and a combination of the boundary equations 7.1 to 7.4:  

 

𝑃𝑛 = 𝑃𝑣 + 𝐾𝑝𝑙 7.1 

𝜌1𝑢1𝐴1 = 𝜌2𝑢2𝐴2 7.2 

𝜌3𝑢3𝐴3 =
𝜌1𝑢1𝐴1

𝑥1
+

𝜌2𝑢2𝐴2

𝑥2
 

7.3 

2𝑠𝑣 = 𝑠1 + 𝑠2 7.4 

Where: 

 

𝐾𝑝𝑙 = 0.5(𝜌2[1 + 𝑘]𝑢2|𝑢2| − 𝜌1𝑢1|𝑢1|) 7.5 

𝑥𝑛 = 1 +
(𝑉𝑛 𝑉𝑇⁄ ) − 0.5

0.5
 

7.6 

Pn, ρn, un and An represent the fluid pressure, density, velocity and cross sectional area 

of pipe n at Bn respectively. The subscript v refers to the junction outlet properties. Kpl 

(Swaffield and Boldy, 1993) is the calculated pressure loss between Bn and Bv for a two 

pipeline junction. k is a constant that depends on the nature of the fitting (elbow, 

constriction, etc.). Example values of k are given in table 7.1 (Perry et al., 2008).  
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Table 7.1: k values for turbulent flow through fittings and valves (Perry et al, 

2008). 

Type of fitting k  

45° elbow (standard) 0.35 

90° elbow (standard) 0.75 

Coupling/Union 0.04 

Tee (standard, branch blanked off) 0.40 

Gate valve (open) 0.17 

Angle valve (open) 2 

 

When modelling venting through a T-junction the variable Kpl is calculated from 

equation 7.5 based on the fluid properties in the vent and either pipe 1 or 2, whichever 

has the greater volume. It is then applied to calculate the pressure drop between both 

main pipe sections and the vent. So long as the dimensions of the two main pipe 

sections, and by extension the fluid velocities out of them, remain similar this 

assumption is reasonable.  

 

To ensure mass conservation it has been assumed that the mass of inventory flowing out 

of each main pipe (i.e. pipes 1 and 2 in a three pipe junction) is proportional to the ratio 

of their volumes. xn is a coefficient which accounts for this, and is given by equation 

7.6, where Vn and VT are the volume of pipe n and the total volume of the pipes 1 and 2 

respectively. 

 

The new formulations of the boundary conditions presented here have been designed to 

model venting from pipelines. It is assumed that: 

- the pipeline section is isolated and the inventory is at rest prior to venting 

- during venting flow through the junction is isentropic 

- no backflow occurs between the main pipes 

- there is no mass accumulation in the junction 
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In summary, for a two pipe junction the n variables and non-linear functions provided to 

ZERO_N are: 

- P1, P2, u1, u2, s1 

- C+ and C0 from pipe 1, C- from pipe 2 (equations 4.3, 4.1 and 4.5 respectively), 

and equations 7.1 and 7.2  

 

For a three pipe junction the n variables and non-linear functions provided to ZERO_N 

are: 

- P1, P2, P3, u1, u2, u3, s1, s2 and s3 

- C+, C0, from pipes 1 and 2, C- from pipe 3 (equations 4.3, 4.1 and 4.5 

respectively), and equations 7.1 (used twice, for n = 1 and n = 2), 7.3 and 7.4 

 

7.3 Validation of the two pipe junction model 

 

The new two pipe junction boundary condition presented in section 7.2 was validated 

against a release of pure, dense phase CO2 through a two pipe system in an experiment 

designed to mimic steady state venting. The experiment, referred to hereafter as 

experiment 5, was performed by the UK National Grid as part of the COOLTRANS 

research programme (UKCCSRC, 2012). The experimental data has not been published.  

 

7.3.1 Description of the two pipe venting experiment 

 

Experiment 5 was designed to mimic the steady state release of pure, dense phase CO2 

through a vent pipe. A schematic of the experimental apparatus is presented in figure 

7.3.  
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Figure 7.3: A schematic of the pseudo steady state CO2 release experiment 5. 

 

The vent was built in two sections, referred to as pipe 1 and pipe 2. Pipe 1 is a 12 m 

long, 49 mm ID horizontal section, pipe 2 is a 1.71 m long vertical section with the 

same ID; the two are connected using a 90° elbow joint. Neither pipe was insulated 

against the external environment Opposite the elbow joint pipe 1 was connected to a 

large, horizontal CO2 vessel (600 mm ID, 24 m long) via a flexible connector, a precise 

description of which was not provided by National Grid. The CO2 vessel was also 

connected to a high pressure N2 reservoir via a 132 m long, 150 mm ID buffer pipe. 

Details of the N2 reservoir were not provided by National Grid.  

 

Experiments were prepared by charging the CO2 vessel and buffer pipe with pure CO2 

and allowing the internal conditions to equilibrate. Venting was initiated by opening a 

rapid response valve installed along pipe 1, the precise location of which was not 

reported. Pressure was maintained in the CO2 vessel by allowing N2 from the reservoir 

to replace CO2 released through the vent pipe. The experiment was halted before N2 

could enter the CO2 vessel.  

 

Pressure and temperature data is available from four transducer locations, detailed in 

table 7.2 and shown in figure 7.3. The types and technical specifications of the 

transducers at each location are given in table 7.3. The distance between transducer 

locations 3 and 4 was reported as 9 m although their precise positions were not 
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specified. In this work their locations (distance from the open end) have been estimated 

from photographs and do not account for the length of the elbow joint, which is 

unknown. Instrument locations 1, 2 and 3 are downstream of the rapid response valve 

and exposed to the atmosphere prior to test initiation.  

 

The CO2 properties in the vessel, recorded immediately before venting was initiated, are 

presented in table 7.4. 

 

Experiment 5 was simulated with FEM-O using both the pipe junction boundary 

conditions described in section 4.3.3 and those described in section 7.2 (referred to 

hereafter as the old and new junction models respectively). The simulation is numbered 

Test 7. To simulate the effect of the CO2 vessel the reservoir boundary condition was 

used (see section 4.3.2). An 8 s duration release through the vent was simulated; during 

the first 4 s the reservoir was modelled as open, after 4 s the reservoir was closed to 

simulate the effects of closing the rapid response valve on pipe 1. The simulated closure 

of the reservoir is instantaneous. A complete list of the parameters used in the Test 7 

simulations is given in table 7.5. 
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Table 7.2: Pressure and temperature transducer locations relative to the rupture 

plane for the pseudo steady state CO2 release experiment 5. * These distances are 

estimated from photographs of the experiment. 

Transducer 

location 

Fluid 

Pressure 

Transducer 

Fluid 

Temperature 

Transducer 

Pipe 

number 

Distance from 

open end (m) 

1 FP01 FT01 2 0.075 

2 FP02 FT02 2 1.56 

3 FP03 FT03 1 1.91* 

4 FP04 FT04 1 10.91* 

 

Table 7.3: The types and technical specifications of the instruments used in the 

pseudo-steady state release experiment 5.  

Instrument 

type 
Range (bar) Sensitivity Accuracy/resolution 

Frequency 

(KHz) 

FP-X – Kulite 

CT-375M fast 

response 

pressure 

transducers 

0.35 – 210 

bar; 77.65 – 

393.15 K 

0.05 – 0.1 MPa 0.05 – 0.1 MPa 150 – 1400 

FT-X – Type T 

thermocouples 

-73.15 – 

533.15 K 

- ± 2.2 K - 

 

Table 7.4: Inventory composition and initial fluid conditions for the pseudo steady 

state release of CO2 through a vent pipe. 

Experiment 

Feed Composition 

Feed Temperature 

(°C) 

Feed Pressure 

(bara) 

Ambient 

Temperature (°C) Component Mole % 

5 CO2 100 8.16 150.71 10.0 
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Table 7.5: Simulation parameters for the pseudo steady state release of CO2 from a 

reservoir through a vent pipe. 

Inputs 
Test 7 

Pipe 1 Pipe 2 
P

ip
el

in
e 

ch
a
ra

ct
er

is
ti

cs
 

Upstream fitting Reservoir 
2 pipe junction 

(90° bend) 

Downstream fitting 
2 pipe junction 

(90° bend) 
Release plane 

Pipe length (m) 12 1.71 

Pipe external diameter (mm) 60.33 60.33 

Pipe wall thickness (mm) 5.54 5.54 

Pipe roughness (mm) 0.018 0.018 

Pipe orientation to the 

horizontal plane (°) 
0 90 

Heat transfer option 
FEM – 

Exposed to air 

FEM – 

Exposed to air 

In
v
en

to
ry

 a
n

d
 

a
m

b
ie

n
t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 – 100 

Fluid temperature (°K) 281.31 

Fluid pressure (bara) 150.71 

Ambient temperature (°K) 283.15 

Ambient pressure (bara) 1.01 

F
a
il

u
re

  

p
a
ra

m
et

er
s 

Failure mode FBR 

Failure location relative to 

upstream end (m) 
13.71 

Discharge coefficient 1 

Time of reservoir shutoff (s) 4.0 

O
th

er
 p

a
ra

m
et

er
s Number of pipe grid points 50 50 

Simulation model HEM 

Equation of State PR (equation 3.6) 

Friction factor correlation Chen (Equation 3.33) 

Total depressurisation time 

(s) 
8 
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7.3.2 Two pipe junction validation results 

 

The FEM-O simulation run time for Test 7 using the old junction model was 13 hours 

52 minutes, in contrast the new junction model run time was 7 hours 51 minutes, a 

significant improvement.  

 

Experimental data from transducer locations 2 and 3 was used to validate the new two-

pipe junction model. Figures 7.4 and 7.5 present the experimental and FEM-O 

simulated fluid pressure and temperature at FP02 and FT02 (located just after the 

junction, see table 7.2) respectively. The experimental data is plotted such that the time 

of valve closure coincides with simulated reservoir closure at 4 s. In all cases, the 

reported trends in fluid properties at FP02 and FT02 were the same as those upstream of 

the junction at FP03 and FT03, thus the data from upstream of the junction is not 

shown.  

 

As may be observed in figure 7.4, the constant experimental pressure at FP02 before 

valve closure indicates an essentially steady state release was achieved during venting. 

The experimental pressure loss through the junction was ca. 5.49 bara.  

 

FEM-O predicts steady state outflow at FP02 with both junction models from ca. 0.5 s 

after initiation of the simulation until reservoir shutdown at 4.0 s. A relatively constant 

rate of pressure loss is then predicted with both junction models, barring a brief 

decrease in depressurisation rate caused by fluctuation of the fluid velocity following 

reservoir closure. This behaviour is more distinct in the predicted data due to the 

assumption of instantaneous reservoir shutdown. The new junction model predicts a 

slightly lower steady state pressure compared to the old junction model, both models 

under-predict the experimental fluid pressure. Steady state pressure losses through the 

junction are predicted to be ca. 2.19 bara and 3.23 bara when using the old and new 

junction models respectively. 
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Figure 7.4: A comparison of experimental and FEM-O predicted fluid pressures at 

FP02 (see table 7.2) for Test 7, reservoir shutdown occurred at 4.0 s. 

 

Figure 7.5: A comparison of the Test 7 experimental and FEM-O predicted fluid 

temperatures at FT02 (see table 7.2), reservoir shutdown occurred at 4.0 s. 
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Referring to figure 7.5, the experimental data reports a constant steady state 

temperature, with junction temperature losses of ca. 2°K. Fluid temperature is not 

observed to change significantly for ca. 0.7 s following reservoir shutdown, this may be 

due to instrument time lag. Otherwise the trends in the predicted fluid temperature data 

closely match those in the corresponding pressure data. 

 

Predicted fluid pressure, velocity and entropy data for Test 7, generated using both 

junction models, was also analysed. No unusual behaviour in the fluid pressure and 

velocity predictions was observed. However, fluctuations in fluid entropy were 

discovered in the predicted data. Figure 7.6 presents the predicted fluid entropy profiles 

for Test 7 at 2.0 s after test initiation, data generated using both the old and new 

junction models is presented. As may be observed, fluctuations in fluid entropy are 

predicted at the inlet of pipe 1 and at the release plane by both junction models and in 

the vicinity of the junction by the old junction model only. The latter fluctuation is 

associated with the predicted change of the fluid from pure liquid to a liquid-vapour 

mixture. When using the new junction model this phase transition is predicted to occur 

at the junction itself rather than in pipe 1. The remaining fluctuations are not associated 

with any unexplained fluid phenomena and so are assumed to result from the 

application of the relevant boundary conditions to the system.  

 

Figure 7.7 presents the FEM-O predicted pipe wall temperature profiles for Test 7 at 

2.0 s after test initiation using the old and new junction models. As may be observed, 

fluctuations in the predicted fluid entropy are mirrored by fluctuations in the wall 

temperature at corresponding locations.  
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Figure 7.6: A comparison of the FEM-O predicted fluid entropy profiles in the 

pipe system 2 s after the initiation of Test 7. 

 

Figure 7.7: FEM-O predicted pipe wall temperatures 2 s after simulation initiation 

for Test 7.  
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Referring to figure 7.4, the trends in experimental and FEM-O predicted fluid pressures 

are the same, however the differences in steady state pressures are significant. Table 7.6 

presents the Test 7 experimental and FEM-O predicted (new junction model) steady 

state fluid pressures at each transducer location 2.0 s after test initiation.  

 

Table 7.6: Test 7 experimental and FEM-O predicted (new junction model) fluid 

pressures 2.0 s after test initiation. * Distances estimated from photographs of the 

experiment. 

Transducer 
Distance from 

open end (m) 

Experimental 

pressure (bara) 

FEM-O 

pressure (bara) 
% difference  

FP01 0.075 32.79 26.79 -18.2 

FP02 1.56 39.47 34.25 -13.2 

FP03 1.91* 44.95 37.47 -16.6 

FP04 10.91* 79.7 45.57 -43 

 

As may be observed there is a significant, although relatively consistent, percentage 

difference between the experimental and predicted pressures at transducers FP01 to 

FP03. At FP04 the FEM-O predicted pressure is 43 % smaller than that observed 

experimentally. The implementation of the reservoir boundary condition (see section 

4.3.2) may have contributed to this difference. This boundary condition assumes the 

reservoir is infinite and net fluid movement within it is nil, thus the fluid velocity at the 

inlet to pipe 1 is assumed to be 0 m/s. However, given the size of the CO2 vessel used in 

Test 7 (600 mm ID, 24 m long) this assumption is unlikely to remain valid. To test this 

conclusion, as well as investigate further the relationship between fluid entropy and pipe 

wall temperature, the reservoir boundary condition was modified to allow for fluid 

velocities greater than 0 m/s at the pipe inlet. The modified boundary condition holds 

the pressure and entropy at the pipe inlet at their initial values while updating the 

velocity at each time interval. Velocity at the inlet was therefore calculated from the 

negative Mach line compatibility equation 4.5.  
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Using the modified reservoir boundary condition and the new junction model Test 7 

was simulated with FEM-O (simulation parameters are given in table 7.5). Fluid 

pressures were significantly over-predicted compared to the available experimental data 

at all transducer locations. Fluid temperatures were also over-predicted with increasing 

severity as distance from the reservoir increased. The infinite reservoir assumption is 

therefore more appropriate for modelling fluid outflow for Test 7. 

 

The predicted fluid pressure, velocity and entropy data was analysed. No unexplained 

trends in the pressure and velocity predictions were discovered. No fluctuations in fluid 

entropy were predicted at the inlet if pipe 1. Figure 7.8 shows the pipe wall temperature 

profiles 2.0 s after initiation of Test 7 using the original and modified reservoir 

boundary conditions. As may be observed, fluctuations in the wall temperature 

predicted at the inlet of pipe 1 were also eliminated with the modified reservoir 

boundary condition. 

 

 

Figure 7.8: FEM-O predicted pipe wall temperature profiles 2 s after initiation of 

Test 7 using the original and modified reservoir boundary conditions. 
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A clear relationship between fluctuations in the predicted fluid entropy (figure 7.6) and 

unrealistic pipe wall temperature predictions (figures 7.7 and 7.8) at the inlet to pipe 1 is 

therefore demonstrated. Re-examination of the Test 5 and 6 results revealed the same 

relationship when the closed end and rupture plane boundary conditions are used. The 

likely mechanism is for the fluid entropy fluctuations to produce numerical instability in 

the finite element model, resulting in unrealistic wall temperature predictions. 

 

Re-examination of the Tests 3 and 4 OUTFLOW results revealed similar, although less 

severe, fluctuations in predicted fluid entropy compared to those observed in the FEM-

O predictions. The cause of these fluctuations is not known with certainty; they may 

result from the correct function of the model following the formulation and 

implementation of the relevant boundary conditions. Alternatively an unidentified issue 

in the formulation of the boundary conditions or implementation of the MOC may 

produce them.  

 

In summary, significant savings in computational run time (ca. 45 %) have been 

achieved without significant loss of accuracy by using the new two pipe junction 

boundary condition presented in section 7.2. Fluctuations in predicted fluid entropy, 

resulting from the application of boundary conditions, have also been shown to result in 

fluctuating/unrealistic wall temperature predictions. Based on the data presented, all 

such fluctuations occur in close proximity to the ends of the pipes and do not appear to 

affect the overall quality of the wall temperature or fluid model predictions or the 

stability of the simulations.  
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7.4 Validation of the three pipe junction model 

 

In this section the three pipe junction boundary condition presented in section 7.2 is 

validated against experimental data gathered from the venting of a large CO2 pipeline 

system through a T-junction (referred to hereafter as experiment 6).  

 

Experimental 6 was conducted by the UK National Grid as part of the COOLTRANS 

research programme (UKCCSRC, 2012). Experimental data recorded from this 

experiment has not been published: 

 

7.4.1 Description of a three pipe junction venting experiment 

 

In this experiment the re-circulation loop of a large scale CO2 release experiment was 

vented through an instrumented, vertical vent pipe mounted on its top side. The re-

circulation loop incorporated a pump and heat exchanger. Data was recorded by the UK 

National Grid. A schematic of the pipe layout is shown in figure 7.9 and the dimensions 

of the pipes are presented in table 7.7.  

 

It was not possible to simulate this system exactly using FEM-O, therefore the pipe 

layout was simplified and the pump and heat exchanger removed, as shown in figure 

7.10. Pipes c, d and e (figure 7.9) have been combined into a single pipe (pipe 5, figure 

7.10) with the same ID as pipe c and a volume equal to that of pipes c, d and e 

combined. Pipe b was first subdivided into two sections in order to simulate the T-

junction, however this resulted in prohibitively long run time. Pipe b was therefore 

subdivided into three pipes (pipes 2, 3 and 4) as shown in figure 7.10, which presents 

the final schematic of the simulated system. The dimensions of the simulated pipe 

layout are given in table 7.10. 

 

Fluid property data is only available from instruments placed in the vent pipe, the 

locations of these are presented in table 7.8. The types and technical specifications of 

the instruments used at each location are given in table 7.9.  
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Experimental method 

Before venting the re-circulation loop was isolated from the main experiment using 

valves located at the ends of pipes a and f (figure 7.9), the pump and heat exchangers 

were also shut down. Venting was initiated by opening a valve at the base of the vent 

pipe. This valve was kept open for 300 s before being closed.  

 

Experiment 6 was simulated for 300 s using FEM-O, details of the finalised simulation 

inputs are given in tables 7.10 and 7.11. The simulation is numbered Test 8.  
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Table 7.7: Pipe dimensions of the re-circulating loop shown in figure 7.9. 

Pipe Length (m)  
Internal diameter 

(mm)  

Orientation relative to 

horizontal (°) 

a 12 323 0 

b 370 609 0 

c 10 430 0 

d 3 377 0 

e 10 323 0 

f (vent) 5.88 80.75 90 

 

 

 

 

 

 

 

 

 

 

Figure 7.9: A diagram of the re-circulating loop layout. 
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Figure 7.10: A diagram of the simplified re-circulating loop used in the simulation of Test 8. (Pipes 2 and 3 were initially simulated as a single 

pipe before being subdivided to reduce the run time). 
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Table 7.8: Types and locations of the instruments installed on the vent pipe of the 

re-circulating loop (pipe 6, figure 7.10).  

Transducer 

location 

Fluid 

Pressure 

Transducer  

Fluid 

Temperature 

Transducer  

Wall 

Temperature 

Transducer 

Distance from 

open end (m) 

1 FP01 FT01 WT01 0.08 

2 FP02 FT02 WT02 1.74 

3 FP03 FT03 WT03 3.4 

 

Table 7.9: The types and technical specifications of the instruments installed on the 

vent pipe of the re-circulating loop (pipe 6, figure 7.10).  

Instrument 

type 
Range Sensitivity Accuracy 

Response 

(frequency) 

FP-X – Kulite 

CT-375M fast 

response 

pressure 

transducers 

0.35 – 210 

bar; 77.65 – 

393.15 K 

0.05 – 0.1 MPa 0.05 – 0.1 MPa 150 – 1400 

FT-X – Type T 

thermocouples 

-73.15 – 

533.15 K 

- ± 2.2 K - 

WT-X – Type T 

thermocouples 

-73.15 – 

533.15 K 

- ± 2.2 K - 
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Table 7.10: Simulation parameters (pipe dimensions) used in the simulation of 

experiment 6, venting through a T-junction.  

 Inputs Test 8 
P

ip
el

in
e 

C
h

a
ra

ct
er

is
ti

cs
 

P
ip

e 
1

 

Pipeline Length (m) 12 

Pipe External Diameter (mm) 355 

Pipe Wall Thickness (mm) 16 

Pipe Orientation to the 

Horizontal Plane (°) 
0 

P
ip

e 
2

 

Pipeline Length (m) 200 

Pipe External Diameter (mm) 641 

Pipe Wall Thickness (mm) 16 

Pipe Orientation to the 

Horizontal Plane (°) 
0 

P
ip

e 
3
 

Pipeline Length (m) 165.8 

Pipe External Diameter (mm) 641 

Pipe Wall Thickness (mm) 16 

Pipe Orientation to the 

Horizontal Plane (°) 

0 

P
ip

e 
4

 

Pipeline Length (m) 4.2 

Pipe External Diameter (mm) 641 

Pipe Wall Thickness (mm) 16 

Pipe Orientation to the 

Horizontal Plane (°) 
0 

P
ip

e 
5

 

Pipeline Length (m) 17.98 

Pipe External Diameter (mm) 462 

Pipe Wall Thickness (mm) 16 

Pipe Orientation to the 

Horizontal Plane (°) 

0 

P
ip

e 
6
 (

v
en

t 

p
ip

e)
 

Pipeline Length (m) 5.88 

Pipe External Diameter (mm) 100.75 

Pipe Wall Thickness (mm) 10 

Pipe Orientation to the 

Horizontal Plane (°) 
90 

Heat Transfer Option FEM – Exposed to air 

Pipeline Roughness (mm) 0.05 
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Table 7.11: Simulation parameters (fluid, rupture and numerical) used in the 

simulation of experiment 6, venting through a T-junction. 

 Inputs Test 8 
In

le
t 

P
a
ra

m
et

er
s 

Feed Composition (mole %) CO2 93.69 

 H2 1.07 

 N2 3.36 

 O2 1.88 

Feed Inlet Temperature (°K) 279.75 

Feed Inlet Pressure (bara) 95.5 

Ambient Temperature (°K) 276.72 

Ambient Pressure (bara) 1.01 

F
a
il

u
re

 

C
o
n

d
it

io
n

s Failure Mode FBR (pipe 6) 

Failure Location Relative to High 

Pressure end (m) 
383.68 

Discharge Coefficient 1 

O
th

er
 P

a
ra

m
et

er
s 

P
ip

e 

1
 Number of Pipeline Grid Points 12 

P
ip

e 

2
 Number of Pipeline Grid Points 200 

P
ip

e 

3
 Number of Pipeline Grid Points 170 

P
ip

e 

4
 Number of Pipeline Grid Points 4 

P
ip

e 

5
 Number of Pipeline Grid Points 18 

P
ip

e 

6
 Number of Pipeline Grid Points 30 

Simulation Model HEM 

Equation of State PR (equation 3.6) 

Friction Factor Correlation Chen (Equation 3.33) 

Total Depressurisation Time (s) 300 
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7.4.2 Early T-junction simulations and refinements to FEM-O 

 

The first simulation of Test 8 with FEM-O was not successful using the new three pipe 

boundary condition described in section 7.2. Unrealistic wall temperature predictions 

near the T-junction (figure 7.10) resulted in the failure of the simulation at ca. 100 s; 

these were caused by fluctuations in the predicted fluid entropy at the corresponding 

locations. The implementation in code of the new three pipe boundary condition 

appeared to contribute to these fluctuations by not enforcing the assumption of 

isentropic flow effectively. The new three pipe junction boundary condition was 

therefore refined to rigidly enforce the assumption of isentropic flow. Equation 7.4 was 

replaced in the ZERO_N algorithm by two simpler functions:  

 

𝑠1 = 𝑠2 7.7 

𝑠2 = 𝑠𝑣 7.8 

In order to add equations 7.7 and 7.8 to ZERO_N a second non-linear function had to be 

removed; the Path line equation for the smaller of the two main pipes attached to the T-

junction was selected (in the case of Test 8 this was the Path line for pipe 4). The 

refined variables and non-linear functions provided to the ZERO_N algorithm are 

therefore:  

- P1, P2, P3, u1, u2, u3, s1, s2 and s3 

- C+ and C0 from pipe 1, C+ from pipe 2, C- from pipe 3 (equations 4.3, 4.1 and 

4.5 respectively), and equations 7.1 (used twice, for n = 1 and n = 2), 7.3, 7.7 

and 7.8  

 

The pipeline system modelled in Test 8 was the first of sufficient size to utilise the 

sparse grid system described in section 6.2.1. This grid system contributed to the 

prediction of unrealistic wall temperatures and ultimately the failure of the Test 8 

simulation, it was therefore rejected in favour of the standard grid system. In order to 

maintain the lower run times associated with the sparse grid system the number of rows 
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of nodes in the FEM mesh was reduced to three rows for a pipeline exposed to air and 

five rows for an insulated or buried pipeline (see section 8.4). Tests 5, 6 and 7 were 

repeated with the three and five row FEM meshes, the results demonstrated no loss of 

accuracy when compared with the experimental data or the simulation data presented in 

this thesis.  

 

With the refinements to ZERO_N and the FEM mesh Test 8 was successfully simulated 

in 125 hours 43 minutes. No run-time comparison was possible with the original three 

pipe junction boundary condition presented in section 4.3.3 as the relevant computer 

code was not available for use with FEM-O.  

 

7.4.3 Three pipe junction validation results 

 

Simulation data from Test 8 is compared with the corresponding experimental fluid 

pressure, fluid temperature and wall temperature data from FP03, FT03 and WT03 

(towards the base of the vent pipe) in figures 7.11, 7.12 and 7.13 respectively.  

 

Referring to figure 7.11, a peak in the experimental fluid pressure is observed as 

blowdown begins due to an initially high proportion of liquid entering the vent pipe 

(NB the real vent pipe was open to the atmosphere prior to venting). From ca. 15 s a 

steady rate of decompression is recorded until venting is halted at 300 s. FEM-O 

predicts a steady depressurisation rate from ca. 5 s. As may be observed, from this time 

onward the fluid pressure is consistently under predicted at FP03.  

 

Stratification of a CO2 inventory in a shock tube subjected to a puncture at one end has 

been observed experimentally (CO2PipeHaz, 2012), as discussed in section 2.4.7. Based 

on the available experimental data for Test 8 and the known parameters of the system, it 

is likely that the inventory has stratified by 15 s after rupture, resulting in predominantly 

vapour entering the vent pipe. FEM-O cannot account for stratification as it assumes a 

homogeneous equilibrium in the inventory. As a result the proportion of liquid predicted 
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to enter the vent, and therefore the depressurisation rate, will be over predicted, as is 

observed for Test 8.  

 

Referring to figure 7.12, following test initiation the predicted fluid temperature 

increases by ca. 17 K in the first 1 s of blowdown. After this time the trend in cooling is 

as expected given the predicted pressure profile presented in figure 7.11. Similar 

behaviour is observed in the predicted wall temperatures at WT03 (as shown in figure 

7.13) where the temperature increases by ca. 10 K before cooling occurs.  

 

 

Figure 7.11: A comparison of the Test 8 experimental and FEM-O predicted fluid 

pressure at FP03. 
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Figure 7.12: A comparison of the Test 8 experimental and FEM-O predicted fluid 

temperature at FT03. 

 

Figure 7.13: A comparison of the Test 8 experimental and FEM-O predicted vent 

pipe wall temperatures at WT03. 
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The initial increase in predicted fluid temperature results from the enforcement of 

isentropic flow through the T-junction. Figure 7.14 presents the fluid entropy profiles in 

the vicinity of the T-junction from pipes 3 to 6, 6 s after venting begins. As may be 

observed the predicted fluid entropy at both inlets and the outlet to the junction are the 

same, indicating that the ZERO_N algorithm is successfully converging to a solution. 

However the solution calculated is unrealistic compared to the entropy profiles in pipes 

3 and 4. The calculation of unrealistic solutions in ZERO_N continues for the entire 

Test 8 simulation, with cumulative effects on all fluid properties calculated from the 

EoS. The over prediction of fluid and pipe wall temperatures has been discussed in 

reference to figures 7.12 and 7.13. Fluid density predictions are also affected and as a 

result mass is no longer conserved in the simulation. From an initial inventory of 93.7 

tonnes, by 300 s 18.7 tonnes is predicted to have been ejected and 33.7 tonnes remains 

in the recirculation loop. This corresponds to a mass conservation index of 3.2.  

 

 

Figure 7.14: FEM-O predicted fluid entropy profiles in the vicinity of the T-

junction 6 s after initiation of Test 8.  
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The choice of Path line retained as a convergence criterion in ZERO_N also affects the 

solution. As discussed previously, in order to include both equations 7.7 and 7.8 in the 

ZERO_N algorithm the Path line equation from the smaller of the two main pipes (for 

Test 8 this was pipe 4) was removed from the algorithm. When Test 8 was simulated 

with the other Path line retained the higher temperatures predicted in the vent pipe were 

eliminated, however the simulation did not run to completion. 

 

Summary of results 

In summary, FEM-O significantly over predicted the depressurisation rate in Test 8 

compared to the experimental data. Analysis of the Test 8 results suggests the 

assumption of isentropic flow in a junction is inappropriate for modelling venting, 

resulting in unrealistic calculation results from all calculations carried out using the PR 

EoS. Importantly, the simulation failed to conserve mass. The evidence also suggests 

the application of the HEM model to modelling this venting experiment is 

inappropriate.  

 

The flexibility afforded by the ability to choose the convergence criteria in the ZERO_N 

subroutine provides the opportunity to develop the three pipe boundary condition 

further in order to correctly model venting. Additionally, the potential exists to model 

more complex pipeline infrastructure such as closing or opening valves.  

 

7.5 Conclusion  

 

In this chapter new formulations for two and three pipe junction boundary conditions 

were presented. These were validated against experimental pressure, fluid and wall 

temperature data from two dense phase CO2 release experiments; a pseudo steady state 

release and venting of a long pipeline through a T-junction.  

 

When simulating the pseudo steady state experiment (Test 7) the new junction model 

demonstrated a significantly reduced run time (ca. 45 %) and acceptable agreement with 

the experimental data. Neither the new or old junction model predictions were 
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significantly more accurate compared to the other. Alteration of the reservoir boundary 

condition demonstrated the sensitivity of the Finite Element conduction model to 

fluctuations in fluid entropy.  

 

Blowdown through a T-junction (Test 8) was simulated using the new junction model 

only. The depressurisation rate was significantly over-predicted in this experiment, 

partly due to the assumption of homogeneous equilibrium in the fluid. The assumption 

of isentropic flow in the T-junction resulted in the over-prediction of fluid and pipe wall 

temperatures in the vent pipe and the failure of FEM-O to conserve mass. The 

significant changes in fluid pressure and velocity inside the T-junction suggest that the 

assumption of isentropic flow is inappropriate for modelling venting.  

 

Significant improvements in FEM-O run time were also achieved by reducing the 

number of rows of nodes in the Finite Element mesh. In the case of Test 8 this also 

allowed for the use of a standard, rather than sparse FEM grid, which contributed to the 

successful completion of the Test 8 simulation. 
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Chapter 8: FEM-O verification studies 

 

 

8.1 Introduction 

 

In chapters 6 and 7 FEM-O was validated against a range of experimental data for CO2 

releases from various pipe configurations. During this validation work various 

refinements to FEM-O were implemented, these included: 

- an extended heat transfer coefficient (Steiner and Taborek, 1992) for calculating 

fluid/wall heat transfer when the vapour fraction of the inventory is > 60 %; 

- the development of new formulations for two and three pipe junction boundary 

conditions; 

- the reduction of the number of rows of nodes in the FEM mesh from 11 to 5 for 

an insulated/buried pipe and 3 for a pipe exposed to air in order to reduce 

simulation run time. 

 

Additionally, the sparse grid system was identified as a possible source of instability in 

FEM-O during the work simulating Test 8 (see section 7.4.2).  

 

In this chapter a verification study of the refined FEM-O is performed. Wherever 

possible the simulations conducted are based on the National Grid shock tube 

experiment 3 (described in section 5.2). This facilitates the analysis of verification data 

shown in this chapter as well as allowing easy comparison with the experimental and 

simulation data presented in chapter 6. 

 

In section 8.2 the pipe wall steady state temperature calculation algorithm is 

investigated by simulating heat transfer in the wall of a shock tube prior to blowdown.  

 

In section 8.3 the effect of the external pipeline environment (buried, insulated or 

exposed to air) on the transient pipe wall temperatures during blowdown is investigated. 
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Data recorded from experiment 3 is used for reference when analysing the simulation 

results. 

 

In section 8.4 the sensitivity of FEM-O predicted wall temperature results to the number 

of rows of nodes in the Finite Element mesh is investigated. Scenarios which include a 

pipeline exposed to air, insulated and buried pipelines are considered.  

 

In section 8.5 the sparse FEM grid approximation is tested. In the specific case of Test 8 

(see section 7.4.2) fluctuations in the pipe wall temperatures near the T-junction caused 

the initial simulation to fail. It was concluded that the sparse FEM grid (see section 

6.2.1) exacerbated the effect of these fluctuations on the simulation. In this section the 

sparse FEM grid is tested by simulating blowdown of a 300 m long, single section pipe. 

Pipe wall temperature predictions for this pipeline, generated using a sparse and 

standard FEM mesh are compared.  

 

In section 8.6 a verification study of the two pipe junction model developed in chapter 7 

is presented. The analysis considers fluid flow through the junction only.  

 

In section 8.7 the three pipe junction model developed in chapter 7 is considered. 

Blowdown of a pipeline system consisting of three pipes with different volumes 

connected at a junction is simulated. The analysis of this test considers fluid flow 

through the junction only. 

 

In section 8.8 the complete venting of a 250 m long horizontal pipeline is simulated 

with FEM-O. Based on the simulation data the transient fluid flow regime in the main 

pipe is assessed and the applicability of the HEM assumption to modelling venting 

discussed in light of the results.  

 

In section 8.9 conclusions for the chapter are presented.  

 

  



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 8   186 

8.2 FEM-O steady state wall temperature model 

 

In this section the FEM-O steady state pipe wall temperature calculation algorithm (see 

figure 6.4) is tested for a pipe containing an inventory of air at 1.01 bara.  

 

The dimensions of the pipe simulated are the same as those used when simulating 

experiment 3. An inventory of air is modelled. Inventory temperatures less than, the 

same as and warmer than the ambient air, to which the pipe is exposed, are considered. 

The pipe simulation parameters are detailed in table 8.1.  

 

The pipeline was simulated until the steady state wall temperatures had been 

successfully calculated. It was assumed that the inventory was at rest and 

homogeneously mixed prior to blowdown, with no variation in fluid properties along 

the length of the shock tube.  
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Table 8.1: Simulation parameters used to investigate the FEM-O steady state 

model (pipe parameters and feed composition are common between tests).  

Inputs Test 9 Test 10 Test 11 

P
ip

el
in

e 
ch

a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end 

Downstream fitting Rupture disk 

Pipe length (m) 144 

Pipe external diameter (mm) 171.94 

Pipe wall thickness (mm) 10.97 

Pipe roughness (mm) 0.0000043 

Pipe orientation to the 

horizontal plane (°) 
0 

Heat transfer option FEM – exposed to air 

In
v
en

to
ry

 a
n

d
 

a
m

b
ie

n
t 

p
a
ra

m
et

er
s 

Feed composition (mole %) 
N2 – 79.0143 %, O2 – 20.946 %, CO2 – 

0.0397 % 

Fluid temperature (°K) 283.35 283.35 303.35 

Fluid pressure (bara) 1.01 1.01 1.01 

Ambient temperature (°K) 283.35 303.35 283.35 

Ambient pressure (bara) 1.01 1.01 1.01 

F
a
il

u
re

 

p
a
ra

m
et

er
s Failure mode FBR 

Failure location relative to 

upstream end (m) 
144 

Discharge coefficient 1 

O
th

er
 p

a
ra

m
et

er
s Number of pipe grid points 144 

Simulation model HEM 

Equation of State PR (equation 3.6) 

Friction factor correlation Chen (Equation 3.33) 

Total depressurisation time 

(s) 
n/a 
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Figure 8.1 presents the FEM-O predicted steady state wall temperatures for Tests 9 to 

11. In these simulations the FEM mesh was modelled with eleven rows of nodes, the 

data presented is for the middle row. No significant temperature gradient was predicted 

through the pipe wall.  

 

As may be observed the data displays the expected trends: when the inventory and 

ambient are at 283.35 K the wall has the same temperature, when the inventory or 

ambient is warmer than the other the wall is proportionally warmer. The wall 

temperature is always closer to the ambient temperature when the ambient and 

inventory temperatures are different. This is due to the use of different heat transfer 

correlations on the inner and outer surfaces of the pipe wall and to the velocities of the 

inventory (0 m/s) and the ambient air (5 m/s).  

 

 

Figure 8.1: Steady state pipe wall temperature profiles for Tests 9 to 11.  

 

The steady state wall temperature algorithm implemented in FEM-O therefore displays 

the expected behaviour.  
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8.3 Effects of the external pipeline environment on blowdown 

 

In this section blowdown of a shock tube containing dense phase CO2 is simulated with 

FEM-O in order to investigate the effect of different external pipeline environments on 

the predicted wall temperatures. The shock tube, inventory and other simulation 

parameters are based on the National Grid shock tube experiment 3 (see section 5.2), 

with the exception that the pipe is simulated in three environments; buried, insulated 

and exposed to air (uninsulated). Simulations conducted in this section used five rows 

of nodes in the FEM mesh.  

 

Details of the simulation parameters are given in table 8.2.  

 

A detailed comparison and discussion of the available experimental and FEM-O 

predicted Test 5 data was presented in section 6.3. Therefore in this section only the 

steady state wall temperature predictions and relative trends in the simulated wall 

temperature data are discussed for Tests 5, 12 and 13.  

 

The simulated outer pipe wall temperatures 54 and 114 m from the closed end of the 

pipe are compared in figures 8.2 and 8.3 respectively for Tests 5, 12 and 13. 

Corresponding experimental data from the same locations (recorded by transducers 

WT10 and WT05 respectively, see table 5.2, section 5.2.1) is shown in figures 8.2 and 

8.3 for comparison.  
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Table 8.2: Summary of the simulation parameters used when investigating the 

impact of pipe external environment on blowdown. 

Inputs Test 5 Test 12 Test 13 

P
ip

el
in

e 
ch

a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end 

Downstream fitting Rupture disk 

Pipe length (m) 144 

Pipe external diameter (mm) 171.94 

Pipe wall thickness (mm) 10.97 

Pipe roughness (mm) 0.0000043 

Pipe orientation to the 

horizontal plane (°) 
0 

Heat transfer option 
FEM – 

insulated 
FEM – buried 

FEM – 

exposed to air 

In
v
en

to
ry

 a
n

d
 

a
m

b
ie

n
t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 – 100 %, 

Fluid temperature (°K) 278.35 

Fluid pressure (bara) 153.41 

Ambient temperature (°K) 283.35 

Ambient pressure (bara) 1.01 

R
u

p
tu

re
 

p
a
ra

m
et

er
s Failure mode FBR 

Failure location relative to 

upstream end (m) 
144 

Discharge coefficient 1 

O
th

er
 p

a
ra

m
et

er
s Number of pipe grid points 144 

Simulation model HEM 

Equation of State PR (equation 3.6) 

Friction factor correlation Chen (Equation 3.33) 

Total depressurisation time 

(s) 
25 
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Figure 8.2: Transient outer pipe wall temperatures 54 m from the closed end of a 

shock tube in various environments during blowdown.  

 

Figure 8.3: Transient outer pipe wall temperatures 114 m from the closed end of a 

shock tube in various environments during blowdown. 
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Referring to both figures, as expected the initial (i.e. steady state) predicted pipe wall 

temperature is greatest when the pipe is exposed to air and lowest when buried. This 

follows from the relative thicknesses and conductive properties of the insulation and 

soil layers in the FEM mesh (see table 6.1, section 6.2.3).  

 

Referring to the Test 12 (buried pipe) data, very limited cooling is predicted in the pipe 

wall. Due to its thickness (1.5 m) and capacity to store energy (see table 6.1) the soil 

layer acts as an effective reservoir of heat that is transferred to the pipe wall during 

blowdown.  

 

Referring to the Test 5 and 13 predictions in figures 8.2 and 8.3, the trends in pipe wall 

cooling are the same. Additionally and unexpectedly, the degree of cooling predicted is 

essentially the same for both Tests. In the scenario considered the wall of the insulated 

pipe (Test 5) would be expected to undergo more significant cooling than the 

uninsulated one (Test 13). Given the demonstrated accuracy of the Test 5 predictions 

(see section 6.3) the predicted minimum pipe wall temperatures for Test 13 must be 

considered unreliable.  

 

In summary, blowdown simulations of insulated and buried shock tubes exhibit the 

expected behaviour relative to each other. The accuracy of the predictions for an 

insulated pipe has been discussed in detail in section 6.3. Predictions for an uninsulated 

pipe display the expected trends in cooling, however the degree of cooling is greater 

than expected. Therefore, while the uninsulated pipe FEM boundary condition may still 

be used to verify model performance, predictions made with it should be validated as a 

priority.  
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8.4 Finite Element mesh – rows of nodes 

 

In this section the sensitivity of FEM-O pipe wall temperature predictions to the number 

of rows of nodes in the FEM mesh is investigated. The impact of the pipeline external 

environment (buried, insulated or exposed to air) on the size of the FEM mesh needed 

for realistic wall temperature predictions is also considered.  

 

To perform the above analysis Test 5 (based on experiment 3, the blowdown of a foam 

insulated shock tube containing dense phase CO2), which was previously simulated with 

11 rows of nodes in the FEM mesh (see section 6.3), was simulated again with 5 and 3 

rows of nodes in the mesh. Simulation parameters have been presented previously in 

table 8.2. In this section only the trends in predicted wall temperatures between different 

FEM mesh sizes are discussed.  

 

Figures 8.4 and 8.5 respectively present the FEM-O predicted outer pipe wall 

temperatures (middle row of nodes in the respective FEM meshes) 54 and 114 m from 

the closed end of the shock tube following FBR. The corresponding experimental data 

from transducers WT10 and WT05 (see table 5.2, section 5.2.1) is shown in the figures 

for comparison.  

 

Referring to both figures, it may be observed that all the FEM-O wall temperature 

predictions display the same trends in cooling for each of the mesh sizes considered. 

Barring some small numerical instability in the 5 row mesh predictions during the first 

1 s of blowdown (due to rapid transients in the fluid), only very small differences in the 

wall temperature predictions are observed between the 11 and 5 row FEM meshes. For 

modelling pipe wall cooling during blowdown these mesh sizes may thus be considered 

equally accurate.  
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Figure 8.4: Experimental and predicted outer pipe wall temperatures at 

transducer WT10 (54 m from the closed end of the shock tube) for Test 5. 

 

Figure 8.5: Experimental and predicted outer pipe wall temperatures at 

transducer WT05 (114 m from the closed end of the shock tube) for Test 5. 
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Wall temperature predictions from the 3 row FEM mesh show some evidence of more 

prolonged instability in the calculations, especially towards the closed end of the pipe 

(c.f. figure 8.4 before ca. 6 s). In this simulation the instability is not due exclusively to 

rapid transients in the inventory. Shown in figure 8.6 is the variation in node 

temperature during blowdown for the column of nodes in the FEM mesh located 54 m 

from the closed end of the pipe. Also shown are node temperature predictions at the 

same location for a Test 5 simulation using three rows of nodes with the pipe exposed to 

air (uninsulated). As may be observed for the insulated pipe, at the outer surface node 

(corresponding to the outer insulation surface) the temperature increases significantly as 

blowdown progresses. This increase in outer surface temperature is predicted along the 

full length of the pipe. In contrast, when the pipe is modelled as uninsulated the 

expected cooling is predicted throughout the FEM mesh.  

 

 

Figure 8.6: Temperature variation of the inner, middle and outer FEM nodes 54 m 

from the closed end of the pipe during blowdown. Data from the simulation of Test 

5 with 3 rows of nodes in the FEM mesh and the pipe modelled as insulated and 

uninsulated.  
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In summary, when simulating an insulated pipe using 11 and 5 rows of nodes in the 

FEM mesh the expected cooling was predicted for all nodes. When using 3 rows of 

nodes unrealistic temperatures were predicted in the nodes corresponding to the outer 

insulation surface. The same behaviour may be extrapolated to the simulation of a 

buried pipeline. For an uninsulated pipe however 3 rows of nodes in the FEM mesh was 

sufficient to produce realistic transient wall temperature predictions. Therefore when 

simulating an insulated or buried pipe a minimum of 5 rows of nodes should be used in 

the FEM mesh. For an uninsulated pipe the evidence suggests 3 rows of nodes are 

sufficient.  

 

8.5 Finite Element mesh – columns of nodes and the sparse grid 

 

In this section the effect of using a sparse FEM grid on pipe wall temperature 

predictions during blowdown is assessed. The sparse grid computer code was prepared 

to overcome the high computational demand of the FEM code and so allow for the 

modelling of long pipelines. However, as discussed in reference to Test 8 (venting 

through a T-junction, see section 7.4), its use was identified as contributing to the early 

simulation failures for that test.  

 

To test the sparse grid computer code a pipeline short enough that it may be simulated 

with the standard code, but long enough for the sparse grid approximation to be 

appropriate, must be simulated. Thus in this section blowdown of a 300 m horizontal 

pipeline containing dense phase CO2 is simulated. The pipeline is modelled as 

uninsulated; therefore 3 rows of nodes are used in the FEM grid. FBR at the pipe end is 

assumed. A complete description of the simulation parameters is presented in table 8.3.  

 

As discussed in section 6.2.1, the sparse grid reduced the number of columns of nodes 

in the FEM mesh by a factor of 10 compared to the number of fluid grid points. Thus 

for Test 14 there are 300 fluid grid points, 300 columns of nodes in the standard FEM 
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mesh and 30 columns of nodes in the sparse FEM grid. For both the standard and sparse 

FEM meshes columns of nodes are uniformly spread along the length of the pipe.  

 

Table 8.3: Details of the simulation parameters used to investigate the 

performance of the sparse grid FEM code. 

Inputs Test 14 

P
ip

el
in

e 
ch

a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end 

Downstream fitting Bursting disk 

Pipe length (m) 300 

Pipe external diameter (mm) 170 

Pipe wall thickness (mm) 10 

Pipe roughness (mm) 0.05 

Pipe orientation to the 

horizontal plane (°) 
0 

Heat transfer option FEM – exposed to air 

In
v
en

to
ry

 a
n

d
 

a
m

b
ie

n
t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 – 100 % 

Fluid temperature (°K) 298.15 

Fluid pressure (bara) 101 

Ambient temperature (°K) 293.15 

Ambient pressure (bara) 1.01 

F
a
il

u
re

 

p
a
ra

m
et

er
s Failure mode FBR 

Failure location relative to 

upstream end (m) 
300 

Discharge coefficient 1 

O
th

er
 p

a
ra

m
et

er
s Number of pipe grid points 300 

Simulation model HEM 

Equation of State PR (equation 3.6) 

Friction factor correlation Chen (Equation 3.33) 

Total depressurisation time 

(s) 
60 

 

Figure 8.7 presents the Test 14 outer pipe wall temperature profiles from 3.0 and 30.0 s 

after rupture calculated with FEM-O using both standard and sparse FEM meshes. 

Referring to the data calculated using the full mesh, fluctuations in the wall temperature 
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at the open and closed ends of the pipe (at 3.0 and 30.0 s respectively) derive from the 

application of the relevant boundary conditions as discussed previously in section 7.3.2. 

Corresponding fluctuations are predicted in the sparse mesh wall temperature profiles. 

However when using the sparse mesh these fluctuations extend much further along the 

pipe wall and thus have a greater effect on the calculation of fluid properties at the next 

time step. Additionally, pipe wall temperatures predicted using the sparse FEM mesh 

are significantly lower than those predicted with the full mesh along the whole length of 

the pipe and over the duration of the simulation. The resulting effect on the discharge 

rate is significant, as discussed in reference to figure 8.8 below. 

 

Figure 8.8 presents the predicted cumulative mass discharge for the Test 14 simulation, 

calculated using both the standard and sparse FEM meshes. It may be observed that ca. 

10 s after rupture the cumulative discharge between the different FEM meshes begins to 

diverge. This derives from the prediction of lower fluid exit velocities during blowdown 

when using FEM-O with the sparse FEM mesh. This results in a lower transient 

discharge rate and the cumulative discharge profile reported in figure 8.8.  

 

In summary, use of the sparse FEM mesh results in significantly different predictions 

for pipe wall temperature and inventory discharge rate compared to predictions made 

using the standard FEM mesh. This may be expected to have significant implications 

for any hazard assessment of a CO2 pipeline. Bearing in mind the results of the 

validation of FEM-O presented in chapter 6, the results presented in this section suggest 

the sparse FEM mesh is not suitable for modelling the blowdown of long CO2 pipelines. 

 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 8   199 

 

Figure 8.7: Test 14 outer pipe wall temperature profiles 3.0 and 30.0 s after FBR 

calculated using both standard and sparse FEM meshes.  

 

Figure 8.8: Test 14 cumulative mass discharged with time, calculated with FEM-O 

using both the standard and sparse FEM meshes.  
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8.6 Two pipe junction model verification 

 

The two pipe junction model proposed in section 7.2 was validated in section 7.3, where 

it was demonstrated that it could be used to model fluid flow with acceptable accuracy.  

 

In this section the performance of the two pipe junction model proposed in section 7.2 is 

verified by simulating the blowdown of a hypothetical shock tube with a 45° bend at its 

midpoint. The simulation parameters are detailed in table 8.4. The shock tube was 

subject to FBR at its end. The inventory was assumed to be at rest and homogeneously 

mixed prior to blowdown with no variation in fluid properties along the length of the 

shock tube. 

 

Predicted fluid pressure, velocity and entropy at the inlet and outlet of the junction 

during blowdown are presented in figures 8.9, 8.10 and 8.11 respectively.  

 

Referring to figure 8.9, the expected trends in the pressure histories at both the inlet and 

outlet of the junction are predicted. Between ca. 0.5 and 6 s decay in the fluid pressure 

appears to occur in a stepwise fashion. This is due to the movement of rapid transients 

in the fluid, which pass through the junction travelling in both directions. These 

disappear from the system by ca. 6 s, from which time the expected smooth decay in 

fluid pressure is predicted. Small fluid pressure losses (< 0.2 bara) are predicted as 

inventory passes through the junction. This results from the uniform pipe diameter in 

the system and the small angle of the junction.  

 

Referring to figure 8.10, the expected fluid velocity histories at the inlet and outlet of 

the junction are predicted. Fluctuations in velocity during the first ca. 6 s of blowdown 

are due to the propagation of rapid transients in the inventory. Small differences 

between the pipe 1 outlet and pipe 2 inlet velocities result from small decreases in fluid 

pressure through the junction.  
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Table 8.4: Simulation parameters for the two pipe junction verification test. 

Inputs 
Test 15 

Pipe 1 Pipe 2 
P

ip
el

in
e 

ch
a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end 
2 pipe junction 

(45° bend) 

Downstream fitting 
2 pipe junction 

(45° bend) 
Rupture disk 

Pipe length (m) 72 72 

Pipe external diameter (mm) 171.94 171.94 

Pipe wall thickness (mm) 10.97 10.97 

Pipe roughness (mm) 0.0000043 0.0000043 

Pipe orientation to the 

horizontal plane (°) 
0 0 

Heat transfer option 
FEM –

insulated 

FEM –

insulated 

In
v
en

to
ry

 a
n

d
 

a
m

b
ie

n
t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 – 100 

Fluid temperature (°K) 278.35 

Fluid pressure (bara) 153.4 

Ambient temperature (°K) 283.35 

Ambient pressure (bara) 1.01 

F
a
il

u
re

 

p
a
ra

m
et

er
s Failure mode FBR 

Failure location relative to 

upstream end (m) 
144 

Discharge coefficient 1 

O
th

er
 p

a
ra

m
et

er
s Number of pipe grid points 72 72 

Simulation model HEM 

Equation of State PR (equation 3.6) 

Friction factor correlation Chen (Equation 3.33) 

Total depressurisation time 

(s) 
30 
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Figure 8.9: FEM-O predicted fluid pressure at the inlet and outlet of the pipeline 

junction for Test 15. 

 

Figure 8.10: FEM-O predicted fluid velocity at the inlet and outlet of the pipeline 

junction for Test 15. 
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Figure 8.11: FEM-O predicted fluid entropy at the inlet and outlet of the pipeline 

junction for Test 15. 

 

Referring to figure 8.11 it may be observed that there is no difference in predicted fluid 

entropy between the inlet and outlet of the junction over the duration of the simulation. 

Additionally, realistic fluid entropy profiles were calculated during blowdown. Thus the 

assumption of isentropic fluid flow through the junction is observed to be successfully 

implemented and appropriate when the pipes connected to the junction have the same 

ID. The application of the new two pipe junction model to simulating venting, and the 

impact of the isentropic flow assumption on fluid entropy predictions, is considered for 

Test 17 in section 8.8.  

 

The two pipe junction model proposed in section 7.2 has therefore been shown to 

display the expected behaviour when simulating the blowdown of two pipes connected 

in series. The model has also been shown to remain stable and to produce realistic fluid 

property predictions when backflow occurs through the junction. This was unexpected 

given that the model was not designed to model backflow.  
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8.7 Three pipe junction model verification 

 

In section 7.4 the three pipe junction model proposed in section 7.2 was used to 

simulate the venting of an isolated pipeline through a vertical vent pipe (Test 8). 

Simulation results from this experiment suggest the assumption of isentropic flow 

through the junction is inappropriate when modelling venting, leading to inaccurate 

predictions and a failure to conserve mass.  

 

In this section FEM-O is applied to simulating the blowdown of a hypothetical pipeline 

system following accidental FBR of a main pipe. The pipe system consists of three 

pipes of varying length and internal diameter connected at a T-junction. The three pipe 

junction model proposed in section 7.2, with the refinements discussed in section 7.4.2, 

is used to model fluid flow in the junction. Complete details of the pipeline system and 

simulation parameters are given in table 8.5. The FBR is located at the end of pipe 3. 

The inventory was assumed to be at rest and homogeneously mixed prior to blowdown 

with no variation in fluid properties along the length of the shock tube. 

 

Figures 8.12 to 8.15 respectively present the simulated fluid pressures, velocities, flow 

rates and entropies at the inlets and outlet of the junction for Test 16.  

 

Referring to figure 8.12 the expected decrease in fluid pressure during decompression is 

observed, with pressure at the inlet of pipe 3 slightly lower than at the outlet of pipes 1 

and 2. Some small fluctuations in the predicted pressures can be observed in the first ca. 

10 s of blowdown, these are caused by rapid transients in the inventory. Additionally, as 

pipe 2 has a greater internal diameter than pipes 1 and 3, it was observed that when 

rapid transients inside pipe 2 arrived at the junction they both propagated through into 

the connecting pipes while also reflecting off the junction and back along pipe 2. This 

contributed significantly to the fluctuations in predicted fluid velocity and flow rate at 

the junction, as may be observed in figures 8.13 and 8.14 below. 
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Table 8.5: Simulation parameters for the three pipe junction verification test. 

Inputs 
Test 16 

Pipe 1 Pipe 2 Pipe 3 

P
ip

el
in

e 
ch

a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end 
3 pipe junction 

(120° bend) 

3 pipe junction 

(120° bend) 

Downstream fitting 
3 pipe junction 

(120° bend) 
Closed end FBR 

Pipe length (m) 300 100 100 

Pipe external diameter (mm) 170 220 150 

Pipe wall thickness (mm) 10 10 10 

Pipe roughness (mm) 0.05 0.05 0.05 

Pipe orientation to the 

horizontal plane (°) 
0 0 0 

Heat transfer option FEM – exposed to air 

In
v
en

to
ry

 a
n

d
 

a
m

b
ie

n
t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 – 100 

Fluid temperature (°K) 298.15 

Fluid pressure (bara) 101 

Ambient temperature (°K) 293.15 

Ambient pressure (bara) 1.01 

F
a
il

u
re

 

p
a
ra

m
et

er
s Failure mode FBR 

Failure location relative to 

upstream end (m) 
400 

Discharge coefficient 1 

O
th

er
 p

a
ra

m
et

er
s Number of pipe grid points 300 100 100 

Simulation model HEM 

Equation of State PR (equation 3.6) 

Friction factor correlation Chen (Equation 3.33) 

Total depressurisation time 

(s) 
120 
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Figure 8.12: FEM-O predicted fluid pressures at the inlets and outlet of the 

pipeline junction for Test 16. 

 

Figure 8.13: FEM-O predicted fluid velocity at the inlets and outlet of the pipeline 

junction for Test 16. 
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Figure 8.14: FEM-O predicted inventory mass flow rates at the inlets and outlet of 

the pipeline junction for Test 16. 

 

Figure 8.15: FEM-O predicted fluid entropies at the inlets and outlet of the 

pipeline junction for Test 16. 
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Referring to figure 8.13, fluctuations in the fluid velocity at the two inlets and outlet of 

the junction are clearly visible during the first ca. 10 s of blowdown. These result from 

the propagation of rapid transients in the inventory. Further, smaller fluctuations in fluid 

velocity are predicted at ca. 70 s, the cause of which is unknown. The latter are not 

considered significant as by this stage of blowdown the discharge rate has fallen below 

10 kg/s. The general trends in the predicted fluid velocities are as expected for each 

pipe.  

 

Figure 8.14 presents the mass flow rates at the inlets and outlet of the pipe junction for 

Test 16. The fluctuations in the predicted flow rate during the first ca. 10 s of blowdown 

are consistent with the variations in pressure and velocity discussed previously.  

 

It may be observed that both the fluid velocity and mass flow rates out of pipes 1 and 2 

(see figures 8.13 and 8.14) are significantly different. These differences arise from the 

different volumes of the two pipes (accounted for in the junction model by equation 7.3) 

and are of the expected magnitude. The mass conservation index for Test 16 was 

calculated as 1.067. Thus the use of only one Path line and the assumption of isentropic 

flow in the three pipe junction boundary condition does not appear to adversely affect 

the accuracy of the simulation when the pipes connected to the junction are of similar 

diameter.  

 

Referring to figure 8.15, which presents the variation of predicted fluid entropy at the 

inlets and outlet of the junction, the expected trends are observed. Isentropic flow 

through the junction is achieved.  

 

In summary, the new three pipe junction model (proposed and refined in sections 7.2 

and 7.4.2 respectively) has been shown to be able to realistically model fluid flow 

through the junction of three pipes when the pipes have similar internal diameters. The 

expected trends in the data were observed during blowdown of the pipe system. Mass 

was conserved.  
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8.8 Predicted flow regimes and pipe wall temperatures during pro-

longed venting  

 

Two phase flow is expected during blowdown of an initially dense phase CO2 pipeline 

due to vaporisation of the inventory. As demonstrated during the CO2PipeHaz project 

(“CO2PipeHaz,” 2012; see section 2.4.7), when outflow occurs through a sufficiently 

small orifice, such as a puncture, a CO2 inventory will stratify as there is insufficient 

turbulence in the inventory to drive mixing of the phases. Conversely, significant 

turbulence is expected in longer pipelines (>100 m) subject to FBR, making 

approximations such as the Homogeneous Equilibrium assumption (see section 3.5) 

used in FEM-O acceptable when modelling such failure scenarios.  

 

A degree of turbulence in the inventory is to be expected during venting as the rate of 

release will be significantly higher than that from a puncture. However, whether this is 

sufficient to drive mixing of the phases and render the HEM assumption acceptable 

when modelling venting is unconfirmed. Analysis of the Test 8 experimental and 

simulation data suggests that it is not. In the absence of experimental data the fluid flow 

regime may be calculated from simulation data using an appropriate model, such as that 

developed by Cheng et al. (2008) for CO2. Other flow regime models available in the 

literature do not account for the significant effect that high reduced pressures and low 

surface tensions can have on the two phase fluid flow characteristics of CO2. A review 

of the literature found no other flow pattern models developed specifically for CO2.  

 

In this section the venting of a long pipeline containing dense phase CO2 is simulated 

using FEM-O. The flow regime in the inventory is calculated at various times during 

venting using the flow pattern model of Cheng et al. (2008). Additionally, the variation 

in pipe wall temperatures during the venting process and the applicability of the new 

two pipe junction model to simulating venting scenarios are investigated. The 

simulation parameters are presented in table 8.6.  
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Table 8.6: Simulation parameters for Test 17, investigating a prolonged venting 

operation. 

Inputs 
Test 17 

Pipe 1 (main) Pipe 2 (vent) 
P

ip
el

in
e 

ch
a
ra

ct
er

is
ti

cs
 

Upstream fitting Closed end 2 pipe junction 

Downstream fitting 2 pipe junction Open end 

Pipe length (m) 250 10 

Pipe external diameter (mm) 610 120 

Pipe wall thickness (mm) 20 10 

Pipe roughness (mm) 0.005 0.005 

Pipe orientation to the 

horizontal plane (°) 
0 90 

Heat transfer option FEM – exposed air 

In
v
en

to
ry

 a
n

d
 

a
m

b
ie

n
t 

p
a
ra

m
et

er
s 

Feed composition (mole %) CO2 – 100 % 

Fluid temperature (°K) 285.15 

Fluid pressure (bara) 151 

Ambient temperature (°K) 283.15 

Ambient pressure (bara) 1.01 

F
a
il

u
re

 

p
a
ra

m
et

er
s Failure mode FBR 

Failure location relative to 

upstream end (m) 
260 

Discharge coefficient 1 

O
th

er
 p

a
ra

m
et

er
s Number of pipe grid points 250 10 

Simulation model HEM 

Equation of State PR (equation 3.6) 

Friction factor correlation Chen (Equation 3.33) 

Total depressurisation time 

(s) 
1500 
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Figure 8.16 presents the variation of predicted fluid pressure at the release plane for 

Test 17. As may be observed the pressure follows the expected trend during venting; 

saturation conditions are reached by ca. 10 s and the triple point pressure by ca. 660 s 

after venting begins. Two unexpected features in the pressure history are indicated on 

the figure, neither of which has a significant effect on the overall simulation results. The 

first, occurring from ca. 10 to 75 s, results from fluctuations in predicted fluid entropy 

near the release plane. The second, a small increase in fluid pressure occurring at ca. 

850 s, is predicted throughout the inventory and is especially discernible at the junction. 

It is discussed in reference to figure 8.17, which presents the fluid properties at the inlet 

and outlet of the pipe junction plotted on the CO2 phase diagram (calculated using the 

PR EoS).  

 

Referring to figure 8.17, the predicted fluid properties display the expected behaviour 

between the beginning of venting and reaching the triple point. Below triple point 

conditions the fluid pressure and temperature decrease to a minimum before increasing 

again. The pressure then drops rapidly to ambient while the temperature falls to a 

minimum of ca. 185 K. The latter increase in pressure is reported at ca. 850 s in figure 

8.16. Below the triple point predictions diverge from the sublimation line as the PR EoS 

(Peng and Robinson, 1976) is calibrated for vapour-liquid mixtures only. 

 

The fluid flow regime in the inventory is calculated in the main pipe (pipe 1, see table 

8.6) at a location 5 m from the junction of the main and vent pipes. Calculated 

following the method of Cheng et al. (2008), figure 8.18 presents the flow regime map 

15 s after venting begins. At this time the inventory has a predicted vapour quality of 

0.06 % and a mass velocity of 544 kg/m
2
s (see figure 8.18). The flow regime is 

therefore a mixture of slug and stratified-wavy flow; there is insufficient vapour to 

create a single continuous vapour volume in the main pipe and the fluid is moving with 

sufficient velocity to create waves at the liquid/vapour interface. The flow regime was 

also calculated at 240 s, 480 s and 720 s (data not shown). The flow regimes at these 

times were stratified-wavy, stratified and stratified respectively.  
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Figure 8.16: Variation of fluid pressure at the release plane for Test 17. 

 

Figure 8.17: Variation of fluid properties at the inlet and outlet of the junction for 

Test 17, plotted on the CO2 phase diagram (calculated using the PR EoS).  
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Figure 8.18: Flow regime map for Test 17 at 15 s after venting begins (S is stratified flow, SW is stratified-wavy flow, Slug is slug flow, I is 

intermittent or plug flow, A is annular flow, D is the dryout region and M is mist flow). 
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The modelling work presented suggests that the HEM assumption is inappropriate for 

modelling pipeline venting and thus that FEM-O should not be used in such scenarios. 

However this conclusion reasonably supposes that the vent pipe is connected to the top 

of the main pipe and therefore that the proportion of liquid entering it, and therefore the 

discharge rate, is over predicted by FEM-O. In practise, the venting of any pipeline will 

be conducted as quickly as is safely possible. For CO2 pipelines the process might be 

accelerated by preferentially venting the liquid inventory. This may be achieved by 

connecting the vent to the bottom of the main pipe section. Assuming the pipeline has a 

constant horizontal inclination and that blowdown is overwhelmingly dependent on 

flow in the vent pipe; from the modelling perspective the problem would then become 

one of turbulent flashing liquid flowing in a pipe, a scenario for which FEM-O is of 

proven accuracy (see chapter 6). Fluid flow through venting infrastructure of the type 

outlined might then be modelled using an appropriately calibrated value of k (see 

equation 7.5). Therefore, while the work presented in this section does not support the 

use of FEM-O for modelling venting of CO2 pipelines, further developments in the 

design of CO2 pipelines may render the model more widely useful to modelling CO2 

pipeline blowdown.  

 

Predicted pipe wall temperatures were also considered for Test 17. Figure 8.19 presents 

the variation of outer pipe wall temperature 245 m from the closed end of the main pipe 

(i.e. 5 m from the junction) and 5 m along the vent pipe (i.e. half way along). These 

locations are expected to experience the coldest temperatures without calculations being 

affected by the application of boundary conditions in the fluid model (discussed 

previously in section 7.3.2).  

 

As may be observed, in the main pipe the wall experiences a continuous rate of cooling 

and reaches a minimum temperature of 245 K at ca. 720 s. In the vent pipe the wall 

cools to significantly lower temperatures (a minimum of 206 K at 840 s). The 

fluctuations in calculated fluid properties below the triple point, discussed in reference 

to figures 8.16 and 8.17 above, are also reflected in the main and vent pipe wall 

temperature predictions. Additionally, as discussed in section 8.3 above, wall 
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temperature predictions for uninsulated pipes may be under predicted by FEM-O. Thus 

the predicted pipe wall temperatures should be considered subject to a degree of error, 

especially after ca. 660 s. However it may be reasonably concluded that the vent pipe is 

at far greater risk of cooling below its DBTT and may be expected to do so significantly 

earlier than the adjoining main pipe section.  

 

 

Figure 8.19: Outer pipe wall temperature histories in the main and vent pipes for 

Test 17. Data from locations 5 m either side of the pipeline junction.  

 

Test 17 is the first application of the new two pipe junction model to a venting scenario. 

In this simulation the ZERO_N algorithm converged to a realistic solution for fluid 

entropy at the inlet of the junction, thus predicted fluid temperatures and densities in the 

main pipe were realistic and mass was conserved during venting (discussed below). 

 

Significant acceleration of the fluid was predicted as it passed through the junction 

however. Due to the assumption of isentropic flow, an expected increase in fluid 

entropy at the junction outlet associated with such acceleration was not predicted. This 

has implications for the accurate prediction of fluid temperature, density and phase split 
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in the vent pipe. Therefore while the new two pipe junction model produces more 

realistic venting results compared with the three pipe junction model (see section 7.4.3), 

their accuracy remains uncertain due to the assumption of isentropic flow in the 

junction.  

 

In summary, in this section it has been demonstrated that during the venting of a long 

pipeline containing initially dense phase CO2 the inventory quickly stratifies. As a result 

FEM-O results for transient and cumulative discharge rate are over predicted as the 

model assumes homogeneous equilibrium in the inventory. FEM-O might still be useful 

in future for modelling venting of CO2 pipelines; a plausible scenario was discussed to 

support this assertion. The application of the new two pipe junction model to the Test 

17 venting scenario produced realistic results. However the assumption of isentropic 

flow in the junction is expected to lead to some inaccuracy in predicted fluid properties 

and pipe wall temperatures in the vent pipe. Fluid properties in the main and vent pipes 

were predicted to pass the triple point during outflow, at which point unrealistic 

behaviour was predicted. These unrealistic predictions did not significantly affect the 

simulation; a mass conservation index of 1.00 was calculated for Test 17 using the 

method discussed in Denton (2009). Minimum vent pipe wall temperatures were 

predicted to fall below 210 K.  

 

8.9 Conclusion 

 

This chapter builds on the validation work of the preceding chapters by carrying out 

verification studies of the FEM heat conduction model and the new two and three pipe 

junction models. Additionally the venting of a long pipeline was modelled and the 

applicability of FEM-O, based on the HEM, for modelling such scenarios was assessed.  

 

To verify the performance of the Finite Element model key components were 

investigated individually. These included:  

- the steady state wall temperature calculation algorithm; 

- the discretisation of the FEM solution domain; 
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- the application of external boundary conditions to the FEM mesh; 

- the sparse mesh approximation for long pipelines.  

 

Of the model components listed, the steady state model performed as expected. FEM-O 

wall temperature predictions also displayed the expected trends when the different 

external boundary conditions were applied to the solution domain. However for 

uninsulated pipes the degree of cooling predicted was greater than expected.  

 

The accuracy of the FEM calculations were shown to be dependent on the discretisation 

of the solution domain. Additionally, the external boundary condition applied also 

informed the nature of the discretisation applied to the solution domain. It was 

discovered that when the FEM mesh was modelled using uniform heat transfer 

properties a minimum of three rows of nodes was required for accurate calculations. 

When the solution domain contained non-uniform heat transfer properties, i.e. the pipe 

was buried or insulated, a minimum of five rows of nodes was required for accurate 

calculations. The sparse mesh approximation was shown to produce unacceptable 

inaccuracies in predicted wall temperature and pipeline discharge data.  

 

The performance of the two and three pipe junction models (see sections 7.2 and 7.4.2) 

was also investigated by simulating outflow from hypothetical pipelines. Both junction 

models behaved as expected: trends in the variation of fluid pressure and velocity 

through the junctions were successfully modelled, isentropic flow was achieved without 

loss of stability, finally mass was conserved. Passage of rapid fluid transients through 

the junction was also successfully modelled. The available evidence from Tests 8, 15, 

16 and 17 suggests the assumption of isentropic flow through a pipeline junction is 

acceptable when the variation in diameter between the pipes connected to the junction is 

not large.  

 

Lastly the venting of a large, hypothetical CO2 pipeline was modelled using FEM-O. 

The fluid flow regime was predicted to be a mixture of slug and stratified wavy flow 

from 15 s after venting begins before transitioning to stratified flow for the bulk of the 

decompression. The assumption of homogeneous equilibrium in the inventory is 
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therefore not appropriate when modelling CO2 pipeline venting. However a plausible 

pipeline design scenario was discussed which might allow the future use of FEM-O for 

modelling venting. This study also indicates the vent pipe is at far greater risk of falling 

below its DBTT during venting compared with the main pipe. The vent pipe was 

predicted to experience a minimum temperature of 206 K although this prediction is 

subject to a degree of error as discussed in section 8.8. Lastly, analysis of predicted 

fluid properties at the junction of the main and vent pipes  
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Chapter 9: Conclusions and future work 

 

 

9.1 Conclusions 

 

Various hazards are associated with the release of CO2 from a high pressure CCS 

pipeline including cooling in the pipe wall, solids formation and the atmospheric 

dispersion of the inventory (Bilio et al., 2009). An essential part of the hazard 

assessment for a CO2 pipeline is the prediction of the transient discharge rate and pipe 

wall temperature during a release of inventory. Many mathematical models for 

predicting transient discharge rate have been reported. However, heat transfer between 

the pipeline and ambient is not always accounted for in these models. Where it is, any 

validation work on the heat conduction models has not been reported. Additionally, in 

many cases these models are applicable to single pipelines only. 

 

This thesis addressed the modelling of transient pipe wall temperatures and of fluid flow 

in pipeline junctions during blowdown of CO2 pipelines. The main contributions are: 

- a review of the literature concerning pipeline outflow models and their methods 

of addressing heat transfer between the ambient and inventory; 

- the development of a two dimensional Finite Element heat conduction model 

and its integration with a validated pipeline outflow model; 

- validation of this conjugate model (FEM-O) against experimental pipe wall and 

fluid data during pipeline blowdown; 

- the formulation and validation against experimental data of pipeline junction 

boundary conditions for modelling fluid flow between pipes. 

 

A summary of the main findings of this work is described below. 

 

The review of the literature presented in chapter 2 identified the discharge and 

depressurisation rates, propagation of rapid transients and pipe wall temperature 
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variation as key parameters in the process of CO2 pipeline blowdown. This informed the 

subsequent review of the reported pipeline outflow models, resulting in the selection of 

the model OUTFLOW (see section 2.4.4) for use in this thesis based on its 

demonstrated ability to accurately model the above phenomena, except for transient 

pipe wall temperatures. Indeed none of the outflow models reviewed described pipe 

wall heat conduction or fluid/wall heat transfer in detail, nor were the results of these 

calculations validated against appropriate experimental data. 

 

The popularity of FDM and FVM methods for modelling heat conduction in the pipe 

wall was discussed. The requirement of regular solution domain discretisation with 

these numerical methods limits their use to simple pipeline geometries. The Finite 

Element method, which has no requirement for regular solution domain discretisation 

and so can be used to model structures with complex geometry, was selected for 

modelling pipe wall temperatures in this work. While the flexibility of the method was 

not exploited in this work, it allows for extensive future development. 

 

OUTFLOW is dependent on an EoS for calculating the thermodynamic properties of the 

inventory. Thus a review of work investigating the accuracy of various cubic EoS for 

calculating the properties of CO2 and its mixtures was conducted. This indicated no 

cubic EoS was consistently more accurate than the others tested when calculating a 

range of pure fluid and mixture properties. The importance of using a calibrated binary 

interaction parameter for the accuracy of the EoS was also highlighted. In the absence 

of a calibrated binary interaction parameter the PR or PT EoS were identified as more 

likely to produce accurate calculation results. It was also observed that no study had 

investigated the accuracy of any EoS under pipeline blowdown scenarios. 

 

A detailed summary of the formulation of the model OUTFLOW, based on the mass, 

momentum and energy conservation equations for transient fluid flow in a pipeline, was 

presented in chapter 3. These equations were expressed in terms of pressure, entropy 

and velocity and were shown to be quasilinear and hyperbolic.  
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In the same chapter the main features of the lumped body approach for modelling heat 

transfer effects between the fluid/pipe wall and pipe wall/ambient were also presented 

together with the relevant heat transfer correlations. 

 

The formulation of the Method of Characteristics based on the Method of Specified 

Time intervals was subsequently presented in chapter 4. The governing conservation 

equations were converted into compatibility and characteristic equations. These were 

then discretised using the Euler predictor-corrector technique. Boundary conditions to 

describe various pipeline features such as closed and open ends, junctions and reservoirs 

were also presented. 

 

With its formulation described and the accuracy of the fluid model discussed in chapter 

2, OUTFLOW was applied to the modelling of CO2 pipeline blowdown and the results 

were presented in chapter 5. First the accuracy of various EoS for calculating CO2 

inventory properties during blowdown of a large scale shock tube was assessed. 

OUTFLOW pipe wall temperature predictions were then validated against appropriate 

experimental data. 

 

Based on comparisons with the available experimental data the PR EoS (Peng and 

Robinson, 1976) was selected for modelling work in this thesis. The limited availability 

of experimental data was noted. Validation of the OUTFLOW wall temperature model 

revealed its accuracy to be poor when compared against experimental shock tube wall 

temperature data for pure and impure CO2 inventories.  

 

To address the weakness of the OUTFLOW wall temperature calculations a two 

dimensional Finite Element heat conduction model was developed to calculate pipe wall 

temperatures and heat transfer between the fluid and ambient. Details of its formulation, 

together with the appropriate boundary conditions, were presented in chapter 6. The 

conjugation of the fluid and FEM models to create the new model FEM-O was 

discussed. The fluid/pipe wall heat transfer correlation used in OUTFLOW was 

identified as inappropriate for CO2 inventories as its accuracy decreases when the 

proportion of vapour in a fluid increases above 60 %. Thus a refinement to the 



 DEPARTMENT OF CHEMICAL ENGINEERING 

 

 

 

Chapter 9   222 

correlation (Steiner and Taborek, 1992) was implemented in FEM-O to account for 

inventories with a high (> 60 %) proportion of vapour.  

 

The validation of FEM-O was then addressed. Both the FEM wall temperature model 

and fluid model predictions were compared against experimental shock tube 

decompression data. Pure and impure dense phase CO2 inventories were investigated. 

FEM-O pipe wall temperature predictions were shown to be accurate representations of 

the experimental data, both in terms of range of temperatures predicted and rate of 

cooling. The significantly increased simulation run time of FEM-O compared with 

OUTFLOW was noted.  

 

When modelling CO2 pipeline networks using FEM-O, the formulation of the junction 

boundary conditions was identified as increasing the simulation run time and potentially 

reducing calculation accuracy. Given the significantly greater run time of FEM-O 

compared with OUTFLOW, the development of more computationally efficient 

junction boundary conditions was undertaken.  

 

In chapter 7 new formulations for two and three pipe junction boundary conditions for 

FEM-O were presented and validated against experimental data. For the two pipe 

junction model fluid flow data between two pipes of equal internal diameter was used. 

For the three pipe junction model experimental data for venting through a T-junction 

was available.  

 

With the new two-pipe junction boundary condition significant reductions in runtime 

(ca. 45 %) were achieved. Given the nature of the experiment against which simulation 

results were validated, the results from both the old and new two pipe junction boundary 

conditions showed acceptable agreement with the experimental data. Differences 

between the predictions from each boundary condition were small.  

 

For the three pipe junction boundary condition, agreement between the predicted and 

experimental data was shown to be poor. Given the large acceleration of the inventory 

through the junction, which was not seen in the two pipe junction experiment, the 
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assumption of isentropic flow was not appropriate and lead to the calculation of 

unrealistic flow behaviour. Additionally, although unproven it is believed the inventory 

stratified during the venting experiment. In such a scenario the HEM assumption used 

in FEM-O would also contribute to the divergence between experimental and simulated 

data. 

 

With the FEM-O fluid and wall temperature predictions validated against a range of 

experimental data a verification study of the model was performed, the results of which 

were presented in chapter 8. Predictions from the steady state wall temperature 

calculation algorithm displayed the expected trends. The number of rows of nodes in the 

FEM mesh needed for accurate calculations was shown to be dependent on the external 

environment of the pipe; for buried or insulated pipelines five rows of nodes are 

required, for an uninsulated pipe three rows is sufficient. The sparse mesh 

approximation was developed to reduce the computational load associated with 

modelling of very long pipelines. It was shown to introduce significant inaccuracies into 

FEM-O simulation results.  

 

The performance of the two and three pipe junctions proposed in chapter 7 was also 

investigated. Outflow from pipeline systems composed of pipes of similar diameters 

and subject to FBR was modelled. Both junction models produced the expected trends 

in the variation of fluid pressure and velocity during outflow, isentropic flow was 

achieved without loss of stability, lastly mass was conserved. The available evidence 

from simulations suggests isentropic flow through a junction may be assumed when the 

pipes connected to the junction have similar diameters. 

 

The final study presented in chapter 8 addressed the evidence for possible stratification 

of a CO2 inventory during venting. Blowdown of a hypothetical pipeline through a 

vertical vent was modelled and the inventory flow regime calculated at various times. 

The flow regime was predicted to be stratified flow for the bulk of the decompression. 

The assumption of homogeneous equilibrium in the inventory therefore renders FEM-O 

inappropriate for modelling CO2 pipeline venting. 
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In summary, the outflow model FEM-O has been developed to simulate the variation in 

transient pipe wall temperatures during blowdown of CO2 pipelines. FEM-O was 

created by integrating the previously reported model OUTFLOW with a Finite Element 

model of heat conduction for calculating pipe wall temperatures. New boundary 

conditions for modelling fluid flow in pipeline junctions were developed for FEM-O. 

FEM-O pipe wall temperature and fluid property predictions have been successfully 

validated against a range of experimental data. Based on the literature review presented 

in chapter 2, this is the first time a pipe wall temperature model has been validated 

against large scale experimental data. Testing of the new junction boundary conditions, 

including by comparison with experimental data, demonstrated they were limited in 

their application to scenarios where isentropic flow in the junction may be assumed. 

The scenario simulated in Test 7 was one such, here simulation results showed 

reasonable agreement with the experimental data. The accumulated evidence presented 

in this thesis indicates FEM-O is inappropriate for modelling CO2 pipeline venting or 

punctures due to the HEM assumption.  

 

FEM-O has the potential to make significant contributions to the safe design and 

operation of CO2 pipelines for CCS by helping illustrate the consequences and hazards 

associated with releases from such pipelines. However the use of the HEM assumption 

renders FEM-O unsuitable for modelling venting and punctures, the two most common 

types of release event. Thus there exists significant scope for further work; suggestions 

are presented in the next section. 
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9.2 Suggestions for future work 

 

9.2.1 Extend FEM-O to model two phase flow 

 

The experimental and simulation data presented in this thesis indicates a CO2 pipeline 

inventory will stratify during venting or outflow from a puncture. In this situation the 

HEM has been shown to be inappropriate. FEM-O may be extended to modelling two 

phase flow including thermal and mechanical non-equilibrium effects. Such work would 

significantly extend the range of applicability of FEM-O, including to venting or 

outflow from punctures (the most common types of release).  

 

9.2.2 Extend the Finite Element heat conduction model to three dimensions 

(axial, radial and circumferential) 

 

Should a CO2 pipeline inventory stratify during outflow sections of the pipe wall will be 

in contact with either vapour or liquid phases for prolonged periods of time. Given the 

significant differences expected between wall-vapour and wall-liquid heat transfer 

coefficients, as well as different liquid and vapour phase temperatures, different rates of 

circumferential cooling in the pipe wall may result. Thus different sides of the pipe wall 

may be at greater risk of falling below their DBTT as outflow progresses.  

 

To assess the hazards associated with such behaviour the Finite Element heat 

conduction model presented in this thesis may be extended to calculating heat 

conduction in three dimensions (axial, radial and circumferential). It should be 

integrated with a two phase flow model, such as that described in section 9.2.1, to 

properly exploit its capability.  
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9.2.3 Modelling of heat conduction in valves 

 

Numerous pipeline scenarios exist in which fluid flows through an inline valve, 

including venting. However, the extreme inventory cooling associated with CO2 venting 

may be detrimental to a valve and should be avoided if possible (ElementEnergy, 2010). 

The flexible grid discretisation method used in the Finite Element method may be 

exploited to model transient temperature changes in the materials making up a valve. 

Such information will contribute to the development of protocols to minimise the 

exposure of the valve to extreme temperatures. 

 

9.2.4 Modelling of solids deposition on internal pipeline surfaces 

 

During blowdown of a CO2 pipeline it has been shown that the inventory properties 

may pass the CO2 triple point (see section 6.3), thus leading to the formation of solid 

CO2. Deposition of solid CO2 on the internal surface of a straight pipe does not 

necessarily increase the risks associated with blowdown, although it may be expected to 

alter the rate of heat transfer between the inventory and pipe wall. However, deposition 

on pipeline infrastructure such as valve surfaces may impair function and so increase 

the risks associated with blowdown. Modelling of such phenomena during blowdown 

should therefore be considered.  

 

9.2.5 Improving the numerical efficiency of the FEM computer code  

 

The current two dimensional implementation of the FEM in computer code utilises 

square matrices extensively. Useful data is concentrated in a single diagonal band 

within each matrix. The remaining space is populated by irrelevant data.  

 

It was observed during the development of FEM-O that for longer pipelines the size of 

the FEM matrices became extremely large, resulting in the use of large volumes of 
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computer memory and prohibitively increasing runtime. Extension of the FEM 

conduction model to three dimensions will exacerbate such problems. 

 

The development of the sparse FEM mesh approximation was one attempt to address 

this issue. As discussed previously, the attempt failed. Further efforts to improve the 

computational efficiency of the FEM computer code may nonetheless be expected to 

yield considerable practical benefits to FEM-O.  

 

9.2.6 Refinement of the three pipe junction boundary condition for 

modelling venting 

 

As demonstrated in sections 7.4 and 8.7, the proposed three pipe junction boundary 

condition may be used to model fluid flow in pipelines but is currently inappropriate for 

modelling venting due to the large acceleration of the inventory through the junction in 

such scenarios. The assumption of isentropic flow during venting was identified as one 

cause of the observed poor simulation accuracy. Scope therefore exists for further 

development of this boundary condition, possibly with a more fundamental 

investigation of fluid flow into a vent pipe located at a T-junction.  
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