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Context In a previous work, we have shown that penalized
regression approaches can allow many genetic variants to
be incorporated into sophisticated pharmacokinetic (PK)
models in a way that is both computationally and
statistically efficient. The phenotypes were the individual
model parameter estimates, obtained a posteriori of the
model fit and known to be sensitive to the study design.

Objective The aim of this study was to propose an
integrated approach in which genetic effect sizes are
estimated simultaneously with the PK model parameters,
which should improve the estimate precision and reduce
sensitivity to study design.

Methods A total of 200 data sets were simulated under the
null and each of the following three alternative scenarios:
(i) a phase II study with N= 300 participants and n= 6
sampling times, wherein six unobserved causal variants
affect the drug elimination clearance; (ii) the addition of
participants with a residual concentration collected in
clinical routine (N= 300, n= 6 plus N= 700, n= 1); and
(iii) a phase II study (N= 300, n= 6) in which four
unobserved causal variants affect two different model
parameters.

Results In all scenarios the integrated approach detected
fewer false positives. In scenario (i), true-positive rates were
low and the stepwise procedure outperformed the
integrated approach. In scenario (ii), approaches performed
similarly and rates were higher. In scenario (iii), the
integrated approach outperformed the stepwise procedure.

Conclusion A PK phase II study with N= 300 lacks the
power to detect genetic effects on PK using genetic arrays.
Our approach can simultaneously analyse phase II and
clinical routine data and identify when genetic variants
affect multiple PK parameters. Pharmacogenetics and
Genomics 25:231–238 Copyright © 2015 Wolters Kluwer
Health, Inc. All rights reserved.
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Introduction
Some established drugs can show high interindividual

variability. Adverse drug reactions are an extreme con-

sequence of this variability, which account for 6.5% of

hospital admissions [1]. Ingelman-Sundberg and Gomez

[2] estimated that 10–20% of such drug reactions could

be due to genetic factors. Moreover, CYP2C9 and

VKORC1 polymorphisms have been shown to explain up

to 40% of the variability in the response to warfarin [3].

Furthermore, regulation authorities now recommend to

perform genetic association studies when a polymorphic

transporter has been shown to play a major role in the

pharmacokinetics (PK) of a drug and/or there is marked

interindividual variability or inexplicable outliers repor-

ted in phase I or subsequent studies [4]. Likewise, sev-

eral initiatives have been created to identify and control

for genetic sources of variability in drug response, such as

the recent P4Medecine [5].

However, large randomized control trials such as the

European EU-PACT [6] and the American COAG [7]

can raise inconsistent results, partly because of genetic

heterogeneity but also because they were not using the

same genetic-based dosing algorithm. Indeed, COAG

used no loading dose, so decisions were made based on

concentrations not yet at steady-state, whereas EU-

PACT used a dosing algorithm based on a nonlinear

mixed-effect (NLME) model of warfarin PK and phar-

macodynamics. One possible explanation is that doses

predicted from such a model were better tailored to

patients, which explains the EU-PACT success in

assessing the benefit of genetic-guided dosing when

COAG showed no significant differences between the

genetic-guided and standard care treatment arms.

This example provides an incentive to use NLME

models in the exploration of further genetic associations

with drug response.
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Indeed a few years ago, Lehr et al. [8] proposed a simple

but computationally intensive stepwise regression

approach to perform high throughput genetic associations

using NLME models. In a previous work, we compared

their procedure to an approach combining penalized

regression and NLME models. We showed through a

realistic simulation study that our approach was compu-

tationally and statistically efficient to analyse a large set of

single nucleotide polymorphisms (SNPs) [9]. The phe-

notypes, in both our approach and the stepwise proce-

dure, are the empirical Bayes estimates of the subject-

specific model parameters. However, the latter are

obtained a posteriori of the model fit and are known to be

sensitive to the study design.

Therefore, we propose, here, integrating penalized

regression and NLME models, in which the selection of

SNPs is simultaneous with the estimation of the model

parameters. We assessed this integrated approach

through a simulation study based on the drug metabo-

lizing enzymes and transporters (DMET) Chip [10] for

the SNP set and a moderately complex dose-

concentration model with six parameters for the drug

response. We compared its performance with the step-

wise procedure on three scenarios differing in terms of

SNP effect on PK model parameter or study design.

Methods
Nonlinear regression
To describe the time course of the drug concentration in

each participant after intake, we used a compartmental

representation of the human body. Each compartment

represented a biological unit (such as a group of organs

with similar physicochemical properties) where the drug

distributes in an homogenous fashion. The absorption

and elimination are described as first-order input and

output functions from a central unit (e.g. the systemic

circulation), and distribution to less perfused organs is

represented by additional compartments communicating

with the central unit through first-order influx and efflux.

This dynamic system can be translated in a mathematical

function nonlinear in its parameters, the absorption (ka)
and elimination (k) rates, the volumes of distribution of

the central (Vc) and peripheral (Vp) compartments and the

influx and efflux rates to a peripheral compartment

(kcp and kpc). The volumes, the elimination rate from the

central unit and the influx and efflux rates define

the time required to clear the body from the drug, as

well as the time to reach an equilibrium for a given

dosage regimen. Pharmacologists often combine those

in the elimination (Cl= k/Vc) and intercompartmental

(Q= kcp/Vc= kpc/Vp) clearances, which express the volumes

of drug cleared per time unit.

Mixed-effect framework
Each of the participants had been sampled following the

drug intake, at a number of timepoints that can differ

across individuals. The mixed-effect framework enables

a simultaneous model fit, borrowing information from

participants with several sampling times for the analysis

of participants with fewer profiles.

Let yi be the vector of concentrations of participant

i= 1, ..., N, sampled at the ni timepoints in vector ti after
intake of dose Di. f is a function that may be nonlinear in

ϕi, its parameter vector, and which specifies the con-

centration of subject i:

yi ¼ f ðfi; Di; tiÞþei
fi ¼ mþZi
Zi � N 0; Oð Þ
ei � Nð0; Inis2Þ;

ð1Þ

where ηi and εi are the vectors of random effects and

residual errors for participant i, and θ= (μ, Ω, σ) denotes
population-level model parameters for the vector of fixed

effects μ, the matrix of interindividual variance-

covariance Ω and the residual error variance σ, respec-
tively. To ensure positive concentrations, concentrations

can be modelled on the log-scale or have a proportional

residual variance at the likelihood level.

In this work, we considered the stochastic approximation

of the expectation maximization (SAEM) algorithm [11]

to obtain the model parameter estimates (see Appendix

1, Supplemental digital content 1, http://links.lww.com/
FPC/A810).

Genetic association analyses
The influence of SNPs on the PK of each individual is

incorporated in the NLME model through the addition

of a SNP-PK parameter relationship matrix Ci to Eq. (1):

fi ¼ CimþZi; ð2Þ
where Ci is a block-diagonal matrix specific to each

individual i that contains a block of SNPs under study per

PK model parameter. μ is then a stacked vector of the PK

parameter-specific regression coefficients. It contains

successively for each PK parameter (such as Cl and Vc), its
intercept and as many β as there are SNPs for that

parameter. ηi captures for each PK parameter the depar-

ture of the individual i from the population value.

Therefore, mixed effects enable to explore SNP effect

on separate PK parameters and moreover to quantify

the part of the interindividual variability explained.

However, when the number of SNPs is large or even

exceeds the number of participants, maximum likelihood

estimation can no longer be performed.

The most common method for a large number of SNPs is

the stepwise procedure. First, an NLME PK model is

fitted to the data to obtain estimates of ŷ. Thereafter, for

each participant i, an empirical Bayes estimate of each PK

parameter is derived using these ŷ and for each PK model
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parameter d the vector f̂d of size N is regressed on each

candidate SNP in a separate linear model. In a second

step, for each SNP that passes the screening step, an

NLME PK model including the SNP-PK parameter

relationship as in (2) is fitted to the data and the best

model is selected using a likelihood ratio test (LRT).

From the latter, new vectors Ẑd are derived and regressed

on each candidate SNP as in step 1.

The procedure will continue until no more SNP effect is

found on PK parameters in steps 1 or 2. In genetic

association analyses, a certain amount of correlation due

to linkage disequilibrium is expected among the SNPs.

Therefore, Lehr et al. [8] proposed that, if after the first

step there are multiple significant SNPs with r2 of 0.8 or

more, only the most significant is advanced to the next

step of the analysis.

The integrated approach, that we propose, is an auto-

matic variable selection method in which we use a

penalized regression in the maximization step of μ at each
iteration k of the SAEM algorithm, considering each PK

parameter d independently:

mdkþ1 ¼ Argminmd

XN
i¼1

ðSd ;i;k�CdimdkÞ2þPðmdkÞ; ð3Þ

where Sd,i,k is the sufficient statistic derived from the

stochastic approximation of the model likelihood for

updating μd (see details in Appendix 1, Supplemental

digital content 1, http://links.lww.com/FPC/A810), Cdi is the

block of SNPs under study for PK model parameter d and
P is the penalty term. Penalized regression shrinks effect

size coefficients of SNPs towards zero. We considered

two types of penalized regression: the Lasso and

HyperLasso (HLasso), a generalization of the Lasso. The

Lasso requires only one penalty term ξ; the higher this

term, the stronger the penalty and the fewer the SNPs

that enter the model:

PðmdkÞ ¼ x
X
v

bdvkj j;

where ξ is a regularization parameter and βdvk is the effect
size of SNP v on PK parameter d at iteration k. In con-

trast, HLasso requires two penalty terms: the shape γ and
the scale λ:

PðmdkÞ ¼ �
X
v

b2dvk
4g2

þ log Dð�2l�1Þ
bdvkj j
g

� �� �
;

where D is the parabolic cylinder function. When both γ
and λ tend towards infinity, HLasso converges to the

Lasso. Here, we set γ to 1, as it has been found to perform

well [12].

For the screening step of the stepwise procedure, the

per-test type I error α was set to achieve a target family

wise error rate (FWER) using the Sidak correction:

FWER ¼ 1�ð1�aÞNpar , where Npar is the total number of

SNP tested on all PK model parameters. For the ensuing

LRT step, the per-test type I error was set to 1%.

For the integrated approach, we set ξ and λ using an

asymptotic approximation [13], which ensures the same

target α as the screening step of the stepwise procedure:

g 0 ðbdvk ¼ 0þÞ ¼ F�1 1� a
2

� � ffiffiffiffiffiffiffi
N
s�2

r
; ð4Þ

where g′ (βdvk= 0 + ) is the first derivative of the log-prior

distribution specific to the penalized regression, Φ− 1

is the inverse normal distribution function and σ* the

standard deviation of sd,i,k (see details in Appendix 2

Supplemental digital content 2, http://links.lww.com/FPC/
A811).

Simulation study
The genotypic data for each patient were simulated using

Hapgen (Wellcome Trust Centre for Human Genetics,

Oxford, UK) [14] for 1227 genetic variants from the

DMET Chip [10] located on 171 genes involved in drug

metabolism spanning the 22 autosomes and chromosome

X. The median (range) interval covered by the SNPs is

29 (0–804) kb per gene, with 6 (1–56) SNPs per gene.

Hapgen resamples known haplotypes and can thereby

produce samples with patterns of linkage disequilibrium

mimicking those in real data. The reference haplotype

set used in our simulations comes from HapMap

release 21 for the White population. Haplotypes were

paired randomly, thus imposing Hardy–Weinberg

equilibrium. SNPs were coded 0, 1, or 2 expressing the

allele dosage.

The concentration data were simulated from a two-

compartment model. The parameter values were

inspired from a real case study with non-negligible

interindividual coefficients of variation from 30 to 70%

and heteroscedastic variance for the residual errors [9].

We simulated 200 data sets per hypothesis (null

hypothesis of no SNP effect on PK model parameters, H0

and an alternative hypothesis of existing SNP effects on

PK model parameters, H1) for three different scenarios

with different study designs or SNP effects under H1.

The first scenario corresponds to a large phase II study

with N= 300 participants and n= 6 sampling times allo-

cated to ensure a reasonable precision of parameter

estimates for the basic model using the optimization

algorithm PFIM [15]. Under H1, six unobserved causal

variants decreased Cl, explaining 1, 2, 3, 5, 7 and 12% of

its interindividual variability, respectively (see Appendix

3, Supplemental digital content 3, http://links.lww.com/
FPC/A812).
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The second scenario corresponds to the combination of this

phase II study (N= 300, n= 6) with residual concentrations

collected from several participants (N= 700, n= 1).

The last scenario considers four unobserved causal var-

iants affecting two different model parameters under H1.

The first and the third causal variants decrease Cl,
whereas the second and the fourth decrease Vc.
Moreover, the first causal variant is correlated with the

second one and the third causal variant with the fourth

(r2≥ 0.5). Each causal variant explains 15% of the inter-

individual variability of its associated parameter (see

Appendix 3, Supplemental digital content 3, http://links.
lww.com/FPC/A812). The study design is the same as in

scenario 1 (i.e. N= 300, n= 6).

Evaluation
The DMET Chip mainly contains genes coding for

proteins involved in distribution or elimination processes.

Thus, in our model we explored SNP effect on Cl, Q and

Vc, which describe these processes. Vp is not considered

because it has no interindividual variability.

We specified an overall FWER of 20%, more liberal than

usual, because this allows better power comparisons for

lower-effect SNPs [9].

To be realistic, the causal variants are not observed (i.e.

not among the tested SNPs); therefore, a true positive

(TP) was defined as any significant SNP with an r2 of

0.05 or more with a causal variant. For both TP and false

positive (FP) evaluation, sets of SNPs, with each pair in

the set having an r2 of 0.8 or more, were considered as

one signal. Scenarios in which the six causal variants

affect Cl, any signal for Q or Vc is a FP, whereas in sce-

nario 3 in which two causal variants affect Cl and two

causal variants affect Vc, any signal on Q is a FP.

Counts of TP per data set were compared across methods

using the Friedman test [16] and pairwise Wilcoxon

signed-rank tests using a Holm correction [17] for mul-

tiple testing.

Furthermore, to explore the impact of the study design

on the performances of the different methods, we cal-

culated the median (range) shrinkage over the 200 data

sets (see Appendix 3, Supplemental digital content 3,

http://links.lww.com/FPC/A812). This metric quantifies

how much empirical Bayes estimates of individuals with

little information (i.e. few sampling times) are moved

towards the fixed effect (i.e. typical value). A spurious

covariate association can result from a large shrinkage –

for example, greater than 0.5 [18].

Moreover, we assessed how our modification of the

SAEM algorithm impacts the accuracy and precision of its

estimates under H0 by calculating relative estimation

errors, relative and relative root mean square errors for

each model parameter (see Appendix 3, Supplemental

digital content 3, http://links.lww.com/FPC/A812).

We used the SAEM algorithm implementation in the

SAEMIX R package [19]. Initial conditions were set to

the simulated values, as our purpose was not to challenge

the estimation algorithm itself. In the expectation phase,

the number of iterations was set to 300 for the stochastic

phase and to 100 for the cooling phase. The number of

Monte Carlo Markov chains for simulation of the indi-

vidual parameters in the E-step was set to 5. The mar-

ginal log likelihood to be used for the LRT in the

stepwise procedure was calculated using a first-order

linearization of the model around the posterior mode of

the random effects.

For the penalized regression, we used the HLasso soft-

ware (C program written by Dr Clive Hoggart, London,

UK) [13] to run both the Lasso and HLasso models,

keeping the highest mode of 10 iterations, where the order

in which the SNPs were updated was permuted to account

for the potential multimodality of the posterior density.

All analyses were run on the UCL Legion High

Performance Computing Facility on cores with 2GB

RAM. Central processing unit times are given as median

(range) on the 200 data sets.

Results
As shown in Fig. 1, we simulated profiles with large

interindividual variability. In this figure, we have high-

lighted one homozygote individual per causal variant.

One could be surprised that the PK profiles are not

superposed according to the percentage of inter-

individual variability explained. This arises both because

variance explained is a function of both effect size

and population allele frequency, and because a subject

PK profile results from the effect of multiple genetic

variants.

Table 1 contains the FWER estimates of each method

for scenario 1 and scenario 2. Scenarios 1 and 3 share the

same study design (N= 300/n= 6) and only differ in the

presence of causal variants. All FWER estimates are

within the interval 0.145–0.255, which is a 95% predic-

tion interval under H0.

Figure 2 highlights the trade-off of the three methods on

each scenario in terms of TP and FP (see Table 3 in

supplementary material for details, Supplemental digital

content 4, http://links.lww.com/FPC/A813). In scenario 1,

the TP rate was 30.5% for the stepwise approach, which

was significantly higher than the integrated approach

with Lasso (28.3%, P = 0.003) or HLasso (27.9%,

P= 0.002), but the FP count for the stepwise approach

was also significantly higher (P= 0.002 and 0.001,

respectively). In scenario 2, the increase in the sample

size despite most of the participants having only one

concentration led to a TP rate of 60% with no significant

difference across methods, but still a significantly higher

FP count for the stepwise approach compared with the

integrated approach with Lasso (P≤ 0.001 from pairwise
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Wilcoxon signed-rank test) or HLasso (P≤ 0.001) was

observed. In scenario 3, the stepwise procedure had a TP

rate of 66% versus 73 and 74% for the integrated

approach with Lasso and HLasso (P≤ 0.001 and 0.001,

respectively); there were no significant differences in

FP count.

Figure 3 displays the power estimates of all methods to

detect each of the four causal variants in scenario 2, as

well as the mean and range of shrinkage estimates for Vc,
Cl and Q. All methods were about 50% less powerful for
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causal variants and scenario 3: N=300/n=6 with four causal variants. On each plot for each causal variant x, one homozygote individual has been
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Table 1 Family wise error rate (FWER in %) estimates and their
confidence intervals for the three methods on scenario 1 and/or 3
(N=300/n=6) and scenario 2 (N= 300/n= 6 and N=700/n= 1);
FWER expected value of 20% with prediction interval on 200 data
sets of 14.5–25.5%

Method Scenario 1 and/or 3 Scenario 2

Stepwise procedure 19.0 [14.2–25.0] 22.5 [17.3–28.7]
Lasso 20.0 [15.0–26.1] 21.0 [15.9–27.2]
HyperLasso 22.5 [17.3–28.7] 21.5 [16.4–27.7]

Fig. 2
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causal variants underlying Vc compared with Cl, the drop

being greater for the stepwise approach. When con-

sidering the shrinkage on Vc and Cl, we observed that it

was notably larger on Vc, about 40%, than on Cl, less
than 5%. These results suggest that the shrinkage

lowers the power of the methods to detect a genetic

effect on a model parameter, the stepwise procedure

being more sensitive to its influence than the integrated

approaches.

Table 2 contains the mean and range runtime estimates

of all methods on all scenarios under both hypotheses.

The stepwise procedure runs up to 20 times faster than

the integrated approach under H0, but the gap is reduced

in the presence of causal variants and even reverses on

large sample size. A reduction of the runtime gain is also

observed if more than one parameter is affected by a

causal variant.

All methods performed similarly in terms of accuracy and

precision of estimation, with mean (range) relative bias of

0.01 and (− 0.05 to 0.05) for the fixed effects and − 0.001

(− 0.110 to 0.140) for the variances, and relative root

mean square errors 0.10 (0.01–0.23) for the fixed

effects and 0.21 (0.05–0.56) for the variances (see

Supplementary Figure 4, Supplemental digital content 5,

http://links.lww.com/FPC/A814).

Discussion
In this work, we propose an integrated approach to

simultaneously test for SNP effect on PK model para-

meters, and estimate effect sizes, as opposed to a step-

wise procedure, which test for SNP effect a posteriori of

the NLMEM estimation step.

Because we used Lasso-type penalization for the selec-

tion process, the integrated approach tends to be more

conservative than the stepwise procedure. Indeed, as

seen in scenario 1, the integrated approach detects sig-

nificantly less FP for a small reduction in power.

However, the integrated approach appears more powerful

when genetic variants affect multiple PK parameters.

Indeed, by accounting for the effect of SNPs on Cl during
the estimation process instead of regressing each SNP on

the empirical Bayes estimates, the integrated approach

was less sensitive to the shrinkage on Vc in scenario 3. Of

note, we see little difference using Lasso or HLasso

probably because of the SNP set not being on the

genome-wide scale. Our approach could be extended to

genome-wide genotyping data, especially using HLasso.

However, in scenario 2 (1200 SNPs and 1000 partici-

pants) on call to HLasso requires ∼ 17 s, whereas with

650k SNPs and 1000 participants, Hoffman et al. [20]
reported an average HLasso runtime of 52 min.

Moreover, this additional runtime would be multiplied
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polymorphism.

Table 2 Median [range] computing times in hours for the three methods on each scenario under H0 and H1

Scenario 1 Scenario 2 Scenario 3

Method H0 H1 H0 H1 H1

Stepwise procedure 0.05 [0.05–0.24] 0.24 [0.06–1.09] 0.16 [0.11–0.93] 2.31 [0.31–8.53] 0.84 [0.06–2.56]
Lasso 1.04 [0.81–1.48] 1.14 [0.83–1.61] 1.79 [1.40–2.48] 1.90 [1.47–3.73] 1.51 [1.23–9.05]
HyperLasso 1.08 [0.81–1.57] 1.19 [0.84–1.60] 1.91 [1.44–3.14] 1.94 [1.58–4.19] 1.62 [0.79–1.83]
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by the number of iterations of the modified-SAEM

algorithm.

Therefore, we expect runtimes to increase dramatically.

Phase II study designs are highly variable and the sample

size can vary from tens to hundreds [21,22]. Here,

N= 300 was the largest value we considered and never-

theless found a lack of power to detect multiple realistic

and clinically relevant genetic effects on PK. With our

approach or using the stepwise procedure, the power to

detect at least three causal variants (in scenario 1 and 2) is

less than 20%. However, NLMEM can handle few and

unbalanced data and thereby can analyse combinations of

different clinical studies to increase the power to detect

covariate effects [23]; indeed we show, here, that com-

bining a large phase II study with single subject mea-

surements permits a large increase in power for both

methods equally. Being capable of the simultaneous

analysis of multiple studies with different designs, the

approach we propose can make the most out of projects

such as tranSMART [24], combining clinical and geno-

mic data collected on open-access and open-source

platforms.

One main feature of the integrated approach was that the

FWER depends on the penalty term only. For the

stepwise procedure, in contrast, it depends on the

thresholds at the screening step and the model inclusion

step, which have to be chosen based on an asymptotic

distribution (as performed here) or using permutations

[25]. Moreover, the stepwise procedure can have many

variations; the screening step can be performed using an

analysis of variance or a linear regression, whereas the

model inclusion step can be performed using criteria such

as the AIC or the BIC, a LRT (as performed here) or a

Wald test. The use of an integrated approach comes

nevertheless at a non-negligible cost in terms of runtime.

However, the runtime difference with using a stepwise

procedure diminishes with increasing sample size.

In conclusion, the integrated approach we propose seems

well suited to the analysis of large SNP sets with PK

collected across multiple clinical studies. We only con-

sidered a hypothetical two-compartment PK model in

this simulation study. However, we expect our approach

to be effective on more complex drug response models,

as the SAEM algorithm has been successfully used on

HIV viral dynamics [26] and in the hidden Markov model

of daily seizures data [27]. Our results suggest imple-

mentation of the integrated approach as an option in the

next version of SAEMIX in future studies.

At present, it does not handle nonsolvable ordinary dif-

ferential equation system, missing SNPs and interocca-

sion variability, as those features are not yet covered by

the saemix R package. In parallel of these developments,

we would like to consider alternatives such as Bayesian

variable selection methods. Indeed, the flexibility of

Bayesian modelling enables fitting complex

physiological-based models to heterogenous data [28] but

their application in pharmacogenetics, representing an

additional layer of complexity, remains to be further

explored.
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