
Protein Function Annotation Using Protein Domain Family 
Resources 

Sayoni Das and Christine A Orengo 

Address 
Institute of Structural and Molecular Biology, UCL, Gower Street, WC1E 6BT, UK 

Corresponding author: Orengo, Christine A (c.orengo@ucl.ac.uk) 

Abstract 
As a result of the genome sequencing and structural genomics initiatives, we have a wealth of 
protein sequence and structural data. However, only about 1% of these proteins have experimental 
functional annotations. As a result, computational approaches that can predict protein functions are 
essential in bridging this widening annotation gap. This article reviews the current approaches of 
protein function prediction using structure and sequence based classification of protein domain 
family resources with a special focus on functional families in the CATH-Gene3D resource. 
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1. Introduction 

Knowledge of the functions of all proteins is key to understanding the nature of the protein 
universe and in essence, biology. The availability of complete genome sequences and 
development of high throughput tools for function annotation has been a significant step towards 
this. The Genomes Online Database [1], which is a centralized resource of genome-sequencing 
projects worldwide, lists > 64000 sequencing projects as of June 2015, and these are expected to 
hugely increase the numbers of known sequences in UniProtKB [2]. In contrast, ~1% of the 
proteins in the current UniProt database (June 2015) are experimentally characterised and it is 
evident that the current rate of experimental annotations and manual curation process will never be 
sufficient for complete annotation of the proteins captured in public databases [3]. Therefore, many 
computational approaches, using both sequence and structural data, have been developed to 
bridge this widening function annotation gap. 

  

The conventional method used for inferring functional annotations for uncharacterised 
proteins is a sequence or structure homology search of a query protein against a database of 
characterised proteins e.g. by BLAST [4] or CATHEDRAL [5] followed by pair-wise annotation 



transfer, based on the principle that evolutionarily-related proteins having high sequence or 
structural similarity have similar, if not identical functions [6]. However, functional inference using 
such simple similarity metrics [7] can often lead to erroneous functional assignments when 
sequences diverge (sequence identity < 60%) [6], due to the complex protein function-evolution 
relationship [8], and in the case of multi-domain [9] and moonlighting proteins [10] or due to any 
mis-annotations existing in the databases [11].  

To address the challenging task of assignment of reliable functions to proteins of unknown 
function, many recent annotation approaches involve use of protein family resources. Protein 
family resources cluster protein sequences into families and subfamilies based on their sequence, 
structure or function similarity (in the case of annotated protein sequences).  

2. Protein Family Resources 

Classification or clustering of the known parts of the protein universe into homologous 
groups, has become a popular approach for providing valuable insights into our understanding of 
the protein function repertoire and how it evolves. In recent years, it has been observed that 
homologous proteins can often evolve different functions as a result of different sets of residues in 
their active site [12], addition of secondary structure embellishments to the core protein structure 
which alters the geometry of the active site of the protein or an interface on the protein [13] or due 
to domain-shuffling in multi-domain proteins [14] which can alter the context of the domain and 
again result in changes to functional sites. The identification of protein families and 
characterization of their functional sites is of utmost importance in understanding how function is 
modulated during evolution by sequence and structural changes in diverse families [15]. Moreover, 
understanding the evolution of function in proteins also provides invaluable information that can be 
useful in protein engineering for designing protein scaffolds with novel functions [16]. 

Because of the significant divergence of function between relatives in many of the universal 
and highly populated protein families, one of the major challenges of using these resources for 
functional annotation is the sub-classification of relatives in these families into coherent functional 
groups.  As well as increasing the accuracy of functional inheritance between relatives, such 
functional grouping would also facilitate multiple sequence alignment of the relatives to find 
conserved residue positions which can provide valuable insights about the key functional sites and 
mechanisms of the protein. 

2.1 Whole Protein Families 

There are a number of high-quality protein family resources like PANTHER [17], TIGRFAMs   
[18] and HAMAP [19] among others, which provide manually-curated functional clusters of protein 



sequences. However, they are limited by low sequence coverage (Table 1). Using automated 
approaches, PhyloFacts [20], a phylogenomic encyclopedia of protein families across the Tree of 
Life,  classifies its families into subfamilies using the SCI-PHY algorithm [21] which uses only 
sequence information. The SCI-PHY (Subfamily Classification in Phylogenomics) algorithm 
exploits Bayesian and information-theoretic measures to construct a hierarchical phylogenetic tree 
and define an optimal cut of the tree into subfamilies [22]. Secator [23] is another phylogenomic 
subfamily identification method which uses a sequence dissimilarity measure in order to cut a 
phylogenetic tree. These methods invariably require an accurate multiple sequence alignment of 
the protein family as a starting point in their pipeline which is likely to be erroneous for very large 
and very diverse families. ProtoNet [24] provides an automatic classification of similar proteins 
which are further sub-classified into clusters using an information-theoretic protocol [25] based on 
available annotations. Other subfamily identification methods are available which define clusters 
using pairwise similarity e.g. CluSTr [26], COGs [27], OrthoMCL [28] and eggNOG [29]. CluSTr, 
similar to ProtoNet, clusters protein sequences into a hierarchical tree of clusters while OrthoMCL 
and eggNOG increases the functional accuracy of clustering by restricting to orthologs.  

Use of whole protein family resources for function annotation 

Protein family resources may be exploited for annotating uncharacterized sequences by 
mapping query sequences to the best matched family and inheriting the annotations from the 
characterised sequences. Manually-curated Gene Ontology (GO) [30] term associations are 
readily available from certain family resources such as TIGRFAM (TIGRFAM2GO) and HAMAP 
(HAMAP2GO). BAR+ [31], an automated annotation method based on the annotation transfer from 
protein families, produces clusters such that the pairwise sequence identity between relatives in a 
cluster is 40% with at least 90% of sequences in the pairwise alignment overlapping. A BLAST 
search of query sequences against the BAR+ clusters is performed and statistically validated GO 
annotations are then inferred for the sequences based significant sequence identity and coverage 
of the match.  

 Resource Whole Protein/
Domain

Classification 
type

Sequence 
Coverage

Refs.

PANTHER Whole protein Curated 1,424,953 genes 
(v9.0)

[17]

TIGRFAMs Whole protein Curated >58,000  proteins 
(v15)

[18]



Table 1: Resources providing classifications of protein families 

2.2 Protein domain families 

Proteins are generally composed of one or more distinct, compact units of protein structure 
called domains that form the functional building blocks of proteins. Multi-domain proteins 
complicate the protein sequence-structure-function relationship further as they expand the 
functional repertoire [14]. Consequently, when an uncharacterised protein does not match any 
annotated protein along their entire length and cannot be assigned to any characterised ‘whole 
protein’ families, function can perhaps be better understood by analysing the domain components 
and finding homologs to each domain. 

There are many protein domain resources which provide classifications of protein domains 
based on either sequence (e.g Pfam [31]) or structure (e.g. CATH [35], SCOP [33] and ECOD 
[37]). PhyloFacts [20] also provides domain families in its resources which are sub-classified using 
SCI-PHY, as for the  whole protein families. 
  

Pfam [31] is a comprehensive database of protein families which currently provides ~ 80% 

HAMAP Whole protein Curated ~ 1 0 , 8 7 4 , 3 5 
proteins  
(as of Sept. 2014)

[19]

PhyloFacts Whole protein and 
Domain

Automated > 7 , 3 0 0 , 0 0 0 
proteins  
(v3.0)

[20]

CluSTr Whole protein Automated 15,767,981 proteins 
(2014) 

[26]

COGs Whole protein Semi-automated Sequences from 
711 genomes 

[27]

OrthoMCL Whole protein Automated 1,398,546 proteins 
from 150 genomes 
(release 5)

[28]

eggNOG Whole protein Automated 4,396,591 proteins 
(v3.0)

[29]

Pfam Domain Curated ~ 1 8 , 8 0 0 , 0 0 0 
(v27.0)

[32]

S C O P a n d 
SUPERFAMILY

Domain Curated 4 1 , 9 1 6 , 8 2 4 
sequences f rom 
3 2 4 5 d i s t i n c t 
organisms (v1.75)

[33,34
]

CATH-Gene3D Domain Automated 2 1 , 6 6 2 , 1 5 5 
sequences from 
6 1 3 1 g e n o m e s 
( C A T H v 4 . 1 , 
Gene3D v14)

[35,36
]



coverage of the UniprotKB sequence space. The Funshift [38] database, which provides analysis 
of function shifts of sequences within a Pfam family, further classifies them into subfamilies using 
the SCI-PHY algorithm [21]. Meta-protein domain resources like InterPro [39] and the Conserved 
Domain Database (CDD) [40] combine multiple protein domain family databases, providing higher 
sequence coverage compared to individual resources.  

The structure classification databases, CATH [35] and SCOP [33], classify evolutionary 
related protein domains into superfamilies. SCOP [33] subclassifies its superfamilies into families 
by expert curation. However, these families have been found to more closely resemble taxonomic 
groups rather than functional groups. The Gene3D [36] and SUPERFAMILY [34] resources predict 
domain sequences belonging to the CATH and SCOP structural superfamilies, respectively. This is 
done using HMM based strategies and for sequences in UniProt these domain annotations are 
also made available via the InterPro website [39]. 

Some of the highly-populated CATH-Gene3D superfamilies can be extremely functionally 
diverse [41]. Some of the divergence between relatives can be attributed to structural 
embellishments to the core domain structure and changes in the domain composition of the parent 
proteins (Figure 1a,1b). To address this diversity superfamilies in CATH are sub-classified into 
functionally coherent groups of relatives or functional families (FunFams). The starting point of the 
functional sub-classification in CATH-Gene3D is a hierarchical agglomerative clustering algorithm, 
GeMMA [42]. GeMMA (Genome Modelling and Model Annotation) clusters close homologues 
(sequences with at least 90% sequence identity) into starting clusters using CD-HIT [43]. Multiple 
sequence alignments for each starting cluster are built using MAFFT [44]. GeMMA then performs 
an iterative all-against-all profile-profile comparison of a set of clusters using COMPASS [45] 
followed by merging of the most similar clusters and realignment of sequences in the merged 
cluster by MAFFT. This iterative process continues until one cluster remains per CATH superfamily. 
The merging order is then used to build a tree of clusters (GeMMA tree) from the leaf nodes to the 
root rode.  

The GeMMA tree for a particular superfamily is then used to classify the superfamily into 
functional families (Figure 1c) by partitioning it in different ways: (i) coarse functional families can 
be obtained using an unsupervised method which cuts the hierarchical tree at a generic threshold 
into families, (ii) a more sophisticated approach DFX (Domain Family Exploration) [46], which 
utilizes available functional annotation data from Gene Ontology (GO)  to ensure functional 
coherence in the resulting families and (iii) FunFHMMer [47], which utilizes evolutionary signals 
(specificity-determining positions or SDPs and conserved positions) in cluster multiple-sequence 
alignments (MSAs) to ensure functional coherence in the resulting families. It has been recently 
shown that functional classification using FunFHMMer provides more functionally coherent families 
than those generated by DFX and that the functional families correspond well with the manually-
curated classification in the Structure-Function Linkage Database (SFLD) [48]. As the FunFams 
are predicted to be functionally coherent, functionally important residues (e.g. catalytic residues, 
ligand-binding residues) in the FunFams are expected to be highly conserved across the family 



(see Figure 2). A residue-enrichment analysis (see Figure 2a) of the FunFams demonstrated that 
conserved residues detected in the FunFams are significantly enriched in known catalytic residues 
(p-value < 3.64E-51) [49]. Conserved residues were identified by running the program Scorecons  
[50] on the multiple sequence alignment of FunFam relatives. 

 

Figure 1: The relationship between the number of functional families in a superfamiliy and the (a) 
structural diversity of the domains in the superfamily (a structural cluster is a group of relatives 
whose structures can be pair-wise superimposed with an RMSD < 9Å) (b) number of different 
multi-domain architectures (MDAs) in which domain relatives are found. (c) Schematic 
representation of functional sub-classification of domain sequence and structural relatives of a 
CATH superfamily  into functional families (FunFams). Diverse sequence patterns reveal 
differences in the highly conserved residues in the different FunFams, reflecting differences in the 
functional properties of the FunFams.  



 

Figure 2: (a) Protocol for the residue enrichment analysis of FunFam alignments. The Scorecons  
[50] method was used to detect highly conserved residues in the FunFam and these highly 
conserved residues were found to be significantly enriched in known catalytic residues (p-value < 
3.64E-51). (b) Differences in the catalytic residues between two FunFams in the Thiamine 
diphosphate-dependant enzyme superfamily, having different EC numbers. The catalytic residues 
for domains belonging to Functional Families 1 and 2 are shown in red and blue respectively in the 
domain structure representations and sequence logos. In the sequence logos, larger residue 
characters indicate greater conservation of the residue across the FunFam. 



2.3 Use of domain-based family resources for function annotation 

The domain-centric approach can be exploited in functional annotation of the whole protein 
by identifying domains within a sequence, associating functions to these domains from the 
resource (eg Pfam, CATH) and integrating these functions in order to describe the function of the 
whole protein. Manually-curated GO associations for protein domain families are available for 
ProDom (ProDom2GO), Pfam (Pfam2GO) and InterPro (InterPro2GO) [51]. Various automated 
methods have been developed in recent years to exploit the functional signal encoded in domains 
to annotate uncharacterised proteins.  

Schug and co-workers [52] developed a rule-based association of GO terms to ProDom    
[53] and CDD [40] domains for which thresholds were also determined. Query sequences were 
annotated by performing a BLAST search against ProDom or CDD followed by annotation transfer 
from matched domains that met the thresholds of domain-function associations. The GOtrees 
method [54] used decision trees to predict GO terms for query sequences based on domain 
composition in proteins (from Pfam) and other sequence features. Forslund and Sonnhammer   
[55] extended the Pfam2GO approach and developed two protocols: a rule-based (MultiPfam2GO) 
model that assigns a GO term to a domain if all proteins containing the domain are annotated with 
that GO term and a naïve Bayesian model, which associates GO terms to domains 
probabilistically. The SCOP2GO [56] method associates MFO terms to SCOP structural domains 
and annotates query sequences by scanning them against PSSM libraries that are built for SCOP 
domains having same fold and function (i.e. same GO terms). dcGO [57] or 'domain-centric GO' 
predictor infers GO terms for individual SCOP domains or supradomains (two or more domains 
which are known to function together) based on whole protein annotations from UniProtKB-GOA 
and domain architecture information extracted from SUPERFAMILY.   

DFX [58] classifies the protein domain superfamilies in the CATH-Gene3D resource into 
domain functional families or FunFams using GO-based cluster evaluation of the hierarchical 
clustering algorithm, GeMMA (described earlier in section 2.2). Each FunFam is associated with 
GO terms probabilistically based on GO annotations of parent proteins of its domain sequences, 
which are then used to annotate query sequences based on their CATH domain composition. 
FunFHMMer [47] is an improved method for functional classification of CATH-Gene3D 
superfamilies which evaluates functional coherence of clusters using the evolutionary signals in 
cluster alignments and outperforms DFX and other domain-based classification protocols in 
predicting protein function. It can also be used to predict functionally important sites in query 
sequences as known functional sites have been found to be highly conserved in the FunFams 
generated by FunFHMMer (see Figure 2b).  

Domain-based Prediction Method Underlying Protein Domain Resource Refs.



Table 2: Protein function annotation methods which are based on protein domain families. 

3. Function Annotation using FunFHMMer exploiting the CATH-Gene3D resource 

CATH v4.0-Gene3D v12 identifies 110,439 FunFams for 2735 superfamilies. For the most 
populated FunFams,  accounting for ~75% of CATH-Gene3D sequences, functionally important 
residues can also be predicted.  All FunFam annotation data are made available through the CATH 
webpages (http://www.cathdb.info) (Figure 3). For each FunFam, the domain sequences are 
aligned using MAFFT [44], a profile hidden Markov model (HMM) is built using HMMER3 [61] and 
a model-specific threshold is determined. Each FunFam is then associated with a set of GO terms 
associated with the parent proteins of its annotated sequences.  

Query sequences are scanned against the HMM models of the CATH FunFams and 
resolved into a single set of CATH domain architecture using DomainFinder3 [62]. Regions of the 
query sequences are assigned to a FunFam if they achieve the model-specific threshold and the 
GO terms associated with the FunFam are inherited by the query sequence along with a 
confidence score calculated by  the frequency of each GO term among the annotated sequences 
of the particular FunFam. Finally, a non-redundant set of GO terms from all of the domain regions, 
each GO term retaining its highest confidence score, make up the GO annotations for the query 
sequence (Figure 4a). 

GO predictions from ProDom and CDD ProDom and CDD [52]

GOtrees Pfam [54]

MultiPfam2GO and probabilistic Naïve 
Bayesian model  

Pfam [55]

SCOP2GO SCOP [59]

dcGO SCOP and SUPERFAMILY [57]

DFX CATH and Gene3D [58]

FunFHMMer CATH and Gene3D [60,49]

http://www.cathdb.info/


 

 
 
 
 
 
  

       

Figure 3: CATH webpages showing information on the Thiamine diphosphate (TPP)-dependant 
enzyme superfamily (CATH 3.40.50.970) and the Pyruvate decaboxylase FunFam within the TPP 
superfamily. The above webpages can be accessed from http://www.cathdb.info/superfamily/
3.40.50.970. 

http://www.cathdb.info/superfamily/3.40.50.970


3.1 Function annotation of uncharacterised sequences by CATH FunFams 

The predictive power of the CATH FunFams have recently been evaluated using a rollback 
UniprotKB test set of 95 well-annotated proteins which had < 50% sequence identity to any 
experimentally annotated protein having GO molecular function ontology (MFO) terms  [60]. 
FunFHMMer was found to perform much better than BLAST in this test set, where function 
annotation transfer from close homologs is limited (see Figure 4b for Precision-Recall graph as in 
CAFA [63]). Furthermore, the functional purity of the FunFams generated by FunFHMMer was also 
validated by CAFA 2, 2013-2014, a major bioinformatics initiative conducted by the Automated 
Function Prediction Special Interest Group (AFP-SIG), which aims to provide large-scale 
assessment of computational function prediction algorithms using a time challenge. In CAFA 2, a 
set of ~100,000 proteins lacking experimental annotations were provided to the automated function 
prediction community for submitting their predictions. After the submission deadline, the 
experimental annotations were allowed to accumulate over a period of 6 months and the prediction 
methods were evaluated on experimental annotations that had accumulated over the 6 month 
period. The preliminary results of CAFA 2 showed that FunFHMMer performed competitively, 
coming in the top 10 function prediction methods out of 110 methods in predicting Gene Ontology 
terms. CAFA 2 results can be accessed from: https://github.com/idoerg/CAFA2-results. 

 

Figure 4:  (a) Protocol for function prediction using the CATH FunFams. The multi-domain 
architecture (MDA) of the query protein sequence (shown as a grey box) is first identified. Two 
domains are identified in the query sequence (shown as blue and red boxes), which are then 
mapped to their closest CATH FunFam match. The GO annotations of the closest FunFam are 
then transferred to each of the domain regions, which together make up the GO annotations for the 
query sequence. (b) Precision-Recall graph  showing the performance of FunFHMMer (in red) 
compared to BLAST (in blue) 

https://github.com/idoerg/cafa2-results


3.2 Function Annotation of Moonlighting Proteins 
A major challenge faced by computational approaches for protein function prediction 

protocols is the functional diversity of moonlighting proteins. Proteins which are capable of carrying 
out at least two diverse functions have been described as ‘moonlighting’. For example, many 
glycolytic enzymes have been found to have a wide range of additional functions - from 
transcriptional repressors and chaperones to having virulence roles in many pathogens [64]. So 
far, the alternative function(s) of moonlighting proteins have been mostly discovered by serendipity 
and very little is known about the molecular mechanisms of proteins. They are known to switch 
their functions as a consequence of different cellular localization, cell type, oligomeric state, or 
cellular concentration of molecules. For example, Phosphoglucose isomerase functions as a 
glycolytic enzyme in the cytoplasm but as a nerve growth factor and cytokine outside the cell [10]. 

A number of existing computational tools have been analysed to determine whether current 
approaches for protein function prediction can disclose moonlighting functions of proteins  [65,66]. 
Out of these, remote homology search by PSI-BLAST and profile-based search with Pfam were 
shown to have good performance for identifying moonlighting proteins [65]. PSI-BLAST results 
combined with information from protein-protein interaction (PPIs) databases were shown to give 
the best performance [66]. Recently, two methods by Kihara and co-workers, PFP [67] and ESG 
[68], have been shown to outperform PSI-BLAST [69], and are available as webservers. PFP 
(Protein Function Prediction) method uses a wide range of PSI-BLAST hits to query sequences to 
predict GO terms with several confidence measures utilizing data mining techniques.  ESG 
(Extended Similarity Group) method performs iterative PSI-BLAST searches and predicts the 
function of a query sequence by combining information from even remote homologues to provide 
function annotations for a query protein with high reliability. 

We investigated the performance of FunFHMMer in suggesting multi-functionality of 
proteins. We used a dataset of 144 proteins from the database of moonlighting proteins, 
MultitaskProtDB [70] to see whether the function annotations from CATH functional families can be 
used to suggest the multi-functionality of these proteins. All analyses were performed on the 
SwissProt database and GOA database dated November 2013 (considering only non-IEA GO 
terms). The performance of FunFHMMer on the moonlighting protein dataset was benchmarked 
against PSI-BLAST, BLAST and Pfam families, since PSI-BLAST and Pfam were shown in 
previous studies to perform well in predicting the moonlighting functions of proteins. PSI-BLAST 
was performed with the default setting of three iterations. Then all hits with an E-value score < 0.01 
that have annotations, were used for transferring annotations to the query sequence. The GO term 
predictions were labelled according to the annotation frequency of a particular GO term amongst 
the PSI-BLAST hits and propagated up the tree. For the Pfam and FunFHMMer predictions, the 
moonlighting predictions were removed from the seed sequences of the respective Pfam families 
or CATH FunFams and their corresponding HMMs were then generated. The moonlighting proteins 
were then scanned against the HMMs and the GO terms of their FunFam top hits (E-value <0.01) 
were transferred to the query in a probabilistic manner calculated as the annotation frequency in a 



matched family and propagated up the GO tree. 

 

Figure 5: Comparison of the performance of FunFHMMer with PSI-BLAST, BLAST and Pfam-A in 
prediction of moonlighting proteins. 

Performance of function predictions made by FunFHMMer compared with PSI-BLAST 
(number of iterations =3), BLAST and Pfam is illustrated in Figure 5 for Molecular Function 
Ontology (MFO) using a Precision-Recall curve as in CAFA [63]. The figure clearly indicates that 
both FunFHMMer and Pfam perform competitively and better than both BLAST and PSI-BLAST in 
predicting GO terms for the 144 moonlighting proteins in the dataset. Previous studies [65,66] have 
reported that methods aiming to detect diverse sequences (i.e. PSI-BLAST, PFP,ESG, or scans of 
Pfam families) can help in capturing the functional diversity of moonlighting proteins and aid in 
predicting secondary or alternative functions of these proteins, as these alternative functions are 
sometimes present in remote homologues. However, the FunFHMMer protocol is designed to 
predict functions based on functionally coherent FunFams, which are expected to distinguish 
between relatives which have any alternative functions when these are associated with different 
sequence motifs.  

For example, the Chaperonin 60 apical domain (CATH 3.50.7.10) sequences for Homo 
sapiens and Enterobacter aerogenes which have two different moonlighting functions [71] are split 
into two different FunFams (3979 and 3904 respectively) in CATH v4.0 FunFams for the apical 



domain superfamily. Moreover, an analysis of the conserved residues of the FunFams showed that 
FunFHMMer had identified the moonlighting motif which was reported in the literature (see Figure 
6). As a result, we propose that there can be two approaches to identify moonlighting or alternative 
functions of a protein - (i) Inference from known functions of remote homologs, which suffers from 
the disadvantage that it would be very difficult for a biologist to identify a correct alternative 
function out of the numerous predicted ones. (ii) Using a finer classification of close homologs (e.g. 
CATH FunFams) to identify moonlighting motifs, which can aid in identifying moonlighting function 
of proteins. This approach is not as comprehensive as the former approach but would be easier for 
biologists to interpret the results. 

Figure 6: The known moonlighting motif (in green) in Human HSP60 sequence is highly conserved 

in its best match family in CATH-Gene3D (FunFam 3904) in the Chaperonin 60 apical domain 
superfamily but it is absent in a closely related family (FunFam 3979) containing bacterial 
sequences which have a different moonlighting activity.  

3.3  FunFHMMer web server 

The FunFHMMer web server is available at http://www.cathdb.info/search/by_funfhmmer 
[60]. The FunFHMMer web server can be queried using a protein sequence in the FASTA format or 
by entering UniProt/GenBank sequence identifiers as input in the text area on the webpage. A fully 
documented application programming interface (API) is also provided in the webserver to allow 
interfacing the FunFHMMer search from within any software application. The output of the web 
server provides the MDA of the query sequence along with CATH domain superfamily and FunFam 
assignments for each domain identified within the query sequence. The EC and GO annotations 
for each of the predicted FunFams are displayed in tables (see Figure 7).  

http://www.cathdb.info/search/by_funfhmmer


 

Figure 7: Functional annotations for query sequences provided by the FunFHMMer web server. 



3.4 Visualization of Functional Family relationships 

For each functionally diverse CATH superfamily (ie having two or more FunFams) the 
CATH website displays a cytoscape visualisation of the superfamily functional network (Figure 8), 
where functional families are represented by nodes and the edge distances correspond to the 
sequence similarity between the functional families. These can be very useful for understanding 
how function has been modulated by sequence or structure changes between functional families 
(FunFams) in a superfamily (see Figure 3). These networks help in providing a comprehensive 
summary of sequence, structure and function relationships in a functionally diverse superfamily 
which can aid in the identification of potentially novel targets for experimental characterization or 
structure determination eg by the structural genomics initiatives.    

 

Figure 8: Visualization of sequence-structure-function relationships in a CATH superfamily 
(3.40.50.620) using Cytoscape v3.1 [72]. Each node corresponds to a FunFam which are coloured 
according to their enzyme classifications in the EC database. FunFams are linked if the similarity 
of their HMMs calculated by Profile Comparer (PRC) [73] are within a threshold PRC score of 50. 
For those FunFams having a structural representative, this is shown as an image in the figure.  

4. Discussion / Challenges 



Protein function is context-based and can be studied from different aspects: ranging from 
biochemical activity to the role of the protein in pathways, cells, tissues and organisms. A function 
annotation method using family resources is often limited by the scope of the family resources and 
their ability to provide functional information only for certain aspects. Moreover, bias in protein 
function annotations [74] or mis-annotations affects our understanding of protein function space 
[11]. As a result, sometimes correct and highly specific predictions may be misinterpreted as 
incorrect or erroneous if they have only been experimentally annotated in a generic manner. For 
example, annotated only as 'protein binding' rather than a more specific annotation term like 'tumor 
necrosis factor binding'.  

 Whilst the recent independent assessment (CAFA [63]) of methods for function prediction 
have been extremely valuable for determining which approaches work well, they have also shown 
how much more work needs to be done in providing reliable, accurate predictions [72]. 
Interestingly, in both CAFA1 and CAFA2 assessments, methods relying purely on whole protein or 
domain homology were amongst the top performing methods, sometimes outperforming machine 
learning methods that combined multiple additional information e.g. gene expression, cellular 
localisation. This suggests that there is considerable signal in the sequence reflecting the protein’s 
molecular function and the context in which it operates. In this review, we have outlined several 
approaches for exploiting whole protein and domain homology to infer protein functions and shown 
the benefits of sub-classifying domain families into functional families to increase the accuracy of 
function prediction.  
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