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Only part of us is sane: only part of us loves pleasure and the longer day of happiness, 

wants to live to our nineties and die in peace, in a house that we built, that shall 

shelter those who come after us. The other half of us is nearly mad. It prefers the 

disagreeable to the agreeable, loves pain and its darker night despair, and wants to 

die in a catastrophe that will set back life to its beginnings and leave nothing of our 

house save its blackened foundations.  

Rebecca West, Black Lamb and Grey Falcon, Penguin 1994, p. 1102. 
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Abstract 

Sensation-seeking is a personality trait concerned with motivation for intense 

and unusual sensory experiences, that has been identified as risk factor for a 

variety of psychopathologies with high social cost; in particular gambling and 

substance addictions. It has previously proved difficult to tease out neural 

mechanisms underlying sensation-seeking in humans, due to a lack of cognitive-

behavioural paradigms probing sensation-seeking-like behaviour in the lab. 

The first aim of this thesis was to develop such a behavioural paradigm. Within, 

we present evidence from this novel task and a combination of 

psychopharmacological, functional imaging and computational approaches to 

argue that sensation-seeking behaviour in humans is driven by inter-individual 

differences in the activation of dopaminergic approach-withdrawal tendencies, 

when faced with the opportunity to experience intense and unusual sensory 

stimulation. In a parallel research stream, we investigate the relationship 

between self-reported sensation-seeking, D2-type dopamine receptor function 

and risky decision-making, motivated by the common implication of sensation-

seeking personality and D2ergic drugs in disorders involving excessive risk-

taking.  

Together, the findings presented here may aid investigation of various 

psychopathologies for which more extreme sensation-seeking scores constitute 

a vulnerability factor. In particular, a more precise understanding of sensation-

seeking behaviour might aid in the identification of at-risk individuals and the 

development of individualised therapies and prevention strategies. 
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The point of diving in a lake is not immediately to swim to the shore; 

it’s to be in the lake, to luxuriate in the sensation of water.  

        (Campion, 2009) 

 

Is there a hedonic drive to seek out ‘sensations’, above and beyond more 

traditionally conceived rewards? For example, what is it that motivates some 

people to devote large amounts of time, money, and effort in search of such – 

often fleeting – experiences as sky-diving, a rollercoaster ride, the thrill of fast 

driving or really spicy food?  

Sensation-seeking (SS) has been described as “a trait defined by the need for 

varied, novel, complex and intense sensations and experiences, and willingness to 

take physical and social risks for the sake of such experiences” (Zuckerman, 1974, 

1994). Tendency to engage in these kind of behaviours has been found not to be 

modality-specific, but rather to cluster across the senses, various kinds of social 

behaviour, and other classes of risky activity (Zuckerman, 1971). Indeed, it has 

been shown that degree of engagement in various SS activities (particularly licit 

and illicit recreational drug consumption, and risky driving or sexual behaviours) 

covaries in both adults and adolescents (Carmody et al., 1985; Caspi et al., 1997; 

Miles et al., 2001; King et al., 2012; Terry-McElrath et al., 2014). The study of this 

intriguing individual difference can be traced from mid-century homeostatic 

theories regarding optimal levels of sensory stimulation (Hebb, 1949) through to 
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the rise of personality psychology in the 1970s (Zuckerman, 1974, 1994). 

Recently, it has been greatly advanced via the use of cognitive neuroscience 

techniques in both humans and animal models. 

As well as describing an interesting dimension of behaviour in and of itself, SS 

trait has been shown to be significantly related to health outcomes across a 

variety of domains, and has been identified as a relevant individual difference for 

several psychopathologies (Roberti, 2004). Specifically, high trait SS is 

considered to be both a vulnerability factor and predictor of poorer prognosis in 

substance and gambling addictions (e.g. Crawford et al., 2003; Kosten et al., 1994; 

Fortune and Goodie, 2009). Conversely a putative role in stress-resiliency may 

explain preliminary findings of higher SS status being a protective factor against 

psychopathologies resulting from exposure to high-intensity stressors, e.g. post-

traumatic stress disorder (Smith et al., 1992; Solomon et al., 1995; Neria et al., 

2000). 

The brain basis of this personality trait therefore has high relevance for 

understanding both healthy human behaviour and several prevalent disease 

states. In this introduction, we first discuss insights into the neurobiology of SS 

behaviour derived from studies in both humans and animal models, particularly 

with respect to midbrain dopamine systems. Evidence for how these differences 

might relate to differential risk for addictive and gambling disorders is then 

considered, as well as the role high SS may play in more functionally adaptive 

behaviour such as exploration and stress resiliency.  



 

16 

1.1 Measuring sensation-seeking in humans  

1.1.1 Self-report measures of sensation-seeking in humans 

SS personality has to date been measured in humans via questionnaires. The 

most commonly used instrument is the Sensation-Seeking Scale form V (the SSS-

V), originally developed in the 1970s by Zuckerman and colleagues (Zuckerman, 

1974). The SSS-V has four subscales (Zuckerman, 1994):  

1. Thrill and adventure-seeking: desire to participate in physically risky 

activities that involve novel sensations and experiences. Sample item: “I 

think I would enjoy the sensation of skiing very fast down a high 

mountain slope”. 

2. Experience-seeking: search for new experiences. Sample item: “I like to 

try new foods that I have never tasted before”. 

3. Disinhibition: interest in socially and sexually disinhibited activities. 

Sample item: “I like to have new and exciting experiences, even if they 

are a little frightening, unconventional, or illegal”. 

4. Boredom susceptibility: intolerance of routines and repetitiveness. 

Sample item: “I often get very restless if I have to stay around home for 

any length of time”. 

These four subscales have been shown to exhibit high internal reliability across 

a large number of samples (Roberti et al., 2003), including from non English-

speaking cultures (Zuckerman, 1994). Recently, a slightly updated version of this 

measure was produced using factor analysis, which has increased contemporary 
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internal validity via exclusion of several more dated-sounding items (referring to 

‘queers’, ‘swingers’ etc; Gray and Wilson, 2007).  

Evidence from self-report measures supports the assertion that SS trait is a 

robust and valid individual difference in humans. SS scores have moderate to high 

heritability estimates (40-80%; Fulker et al., 1980; Koopmans et al., 1995; Stoel 

et al., 2006; Harden et al., 2012), and rank order differences in scores are highly 

stable over time (Terracciano et al., 2011). Moreover, SS scores from a variety of 

instruments have repeatedly been shown to predict propensity to engage in real-

life ‘sensation-seeking behaviours’ including licit and illicit substance use, 

participation in high impact sports, and risky driving or sexual behaviours 

(Zuckerman, 1994; Roberti, 2004; Perry et al., 2011; see section 1.3). This is 

apparent even when the measure used (unlike the SSS-V) deliberately omits any 

reference to such behaviours (Arnett, 1994; Roth and Hammelstein, 2011). Self-

reported SS scores have also been linked to a variety of markers of individual 

difference in brain function (particularly in the dopamine system, see section 

1.2.1). 

 

1.1.1 Relationship to other constructs: impulsivity and novelty-seeking 

SS has previously been described as a component of impulsive behaviour 

(Whiteside and Lynam, 2001). However, analysis of both cross-sectional and 

longitudinal samples has demonstrated that the two constructs are somewhat 

distinct, as self-report scores exhibit divergent developmental trajectories 
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(Steinberg et al., 2008; Harden and Tucker-Drob, 2011; Collado et al., 2014). In 

addition, there are only modest or non-significant correlations between SS and 

(other) impulsivity scores in adults (Whiteside et al., 2005; Ersche et al., 2010; 

Harden and Tucker-Drob, 2011). For example, on the factor-analysis derived 

UPPS measure of impulsivity (which indexes Urgency, Premeditation, 

Perseverance and Sensation seeking), SS subscale scores do not correlate well 

with other impulsivity subscores in either healthy volunteer or patient samples 

(Whiteside and Lynam, 2001; Whiteside et al., 2005; Smith et al., 2007). Thus trait 

SS possesses the potential to provide separate explanatory capacity from other 

forms of impulsivity, e.g. with regard to propensity to develop 

psychopathological symptoms. 

Novelty-seeking has been described as a key component of SS personality 

(Cloninger et al., 1993; Blanchard et al., 2009) – a fact often reflected in the 

structure of self-report SS measures (e.g. Arnett, 1994). Thus, scores on 

questionnaire measures of novelty-seeking and SS have been shown to be 

significantly correlated (Zuckerman and Cloninger, 1996), and, on self-report 

instruments at least, the degree of overlap between constructs may be significant. 

However, the two traits are somewhat conceptually distinct. In theory, high SS 

individuals may be motivated to continue to sample a particular high intensity 

sensory stimulus across repeated episodes of exposure, whereas in high novelty-

seeking individuals this tendency may habituate over time (for relevant examples 

from the animal literature see Lloyd et al., 2012; Olsen and Winder, 2012). This 

distinction may be relevant to different behavioural models of SS in the animal 

literature (see section 1.2), and is one reason why analogous behavioural 
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paradigms are needed in order to dissect out different aspects of sensation-

seeking personality in humans. 

 

1.2 Operational measures of sensation-seeking in animals 

In animal models, sensation-seeking trait has mainly been operationalized in 

terms of extent and vigour of interaction with novel objects or environments. For 

example, on one of the oldest measures, the hole-board test, the animal is placed 

in a novel environment, on a board with several viewing apertures or holes. The 

frequency of ‘head-dip’ responses below the surface of the board is then 

interpreted as an index of exploratory tendency or novelty-seeking (Boissier and 

Simon, 1962; Boissier et al., 1964). It should be noted that in the animal literature, 

the terms novelty and sensation-seeking are often used somewhat 

interchangeably, although as noted in the previous section there are at least 

subtle distinctions between the two behaviours.  

Three of the most commonly-used approaches to operationalising SS trait in 

animals (primarily in rodent models) are outlined below and in Figure 1.  
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Figure 1 Three commonly-used behavioural measures of ‘sensation-seeking’ in 

rodents.  

1) Locomotor response to novelty (LRN): general exploratory motor activity exhibited 

when an animal is placed in a novel environment for a set period of time.  

2) Novelty preference (NP): commonly-used choice measures of novelty preference 

include novel object preference (relative time spent exploring a novel object in 

preference to a familiar one), and novelty-induced place preference (relative preference 

for a novel over a previously familiarised environment).  

3) The operant sensation-seeking (OSS) paradigm: animals are presented with two 

operant levers: an ‘active’ lever, which results in the display of sensory stimuli (e.g. a 

light onset), and an ‘inactive’ lever, which has no consequences. The ratio of 

active:inactive lever presses measures the animal’s relative preference for the sensory 

stimulus. N=novel; F=familiarised. 
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1.2.1 Locomotor reactivity to novelty (LRN)  

Perhaps the most established animal model of SS is ‘locomotor reactivity to 

novelty’ (LRN), i.e. general exploratory motor activity exhibited when an animal 

is placed in a novel environment (Piazza et al., 1989; Dellu et al., 1996). This has 

been proposed as a model of SS as rodents classed as having ‘high reactivity to 

novelty’ (HR animals, usually classified as such on the basis of median split of 

group scores) show several similarities to human high sensation-seekers (for a 

review see Blanchard et al., 2009). Specifically, they demonstrate increased 

sensitivity to the activating and rewarding effects of psychostimulant drugs, 

which might relate to common factors involving the dopamine D2 system 

function (see section 1.2.2).  

However it is debatable how well this measure maps onto human trait SS, at least 

in terms of face validity. In particular, although part of the original definition of 

the phenotype, it is often not empirically demonstrated in studies utilising the 

LRN model that increased ‘locomotor reactivity’ is specific to novel contexts. Thus 

it is somewhat unclear in these studies the extent to which HR grouping may be 

driven by general locomotor activity levels. A further concern is that LRN can also 

be viewed to some extent as simply the inverse of rodent models of ‘anxiety’. The 

latter is commonly indexed as time spent exploring exposed (‘potentially 

threatening’) areas on the open field test or elevated plus maze (environments to 

which the animal is often naïve). Thus, it is not surprising that HR rats show lower 

‘anxiety-like’ behaviour on a variety of tests (Dellu et al., 1996; Kabbaj et al., 

2000). 
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1.2.2 Novelty preference (NP) 

SS trait has also been operationalized in rodents in terms of measures of novelty-

preference (NP). Most commonly this is indexed by novel object preference 

(relative time spent exploring a novel object in preference to a familiar one), and 

various forms of novelty-related environment preference (usually simple relative 

preference for a novel over a familiarised space; Bardo et al., 1996; Cain et al., 

2005; Belin et al., 2011; Belin and Deroche-Gamonet, 2012). It has been argued 

that choice-based measures of response to novelty may represent better models 

of SS than simple locomotor activity in an (unescapably) novel environment, on 

the basis that novelty is viewed in the rodent literature as activating 

contradictory approach-avoidance motivational systems (see section 1.2.3) 

(Bardo et al., 1996). Thus, active approach of the novel option may constitute a 

better rodent model of the higher risk or intensity-preference exhibited by 

human higher sensation-seekers than simple locomotor response to a novel 

environment (Deroche-Gamonet and Piazza, 2014).  

 

1.2.3 Operant sensation-seeking (OSS)  

A range of animals have been observed to work to receive purely sensory 

rewards – in the absence of association (or history of association) with any other 

primary reinforcer (Stewart, 1960; Kish, 1966; Blatter and Schultz, 2006; Olsen 

and Winder, 2009). In the ‘operant sensation-seeking’ (OSS) paradigm (Olsen and 

Winder, 2009), animals are presented with a choice between two operant levers: 
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one, termed the ‘active’ lever,  which results in the display of sensory stimuli 

(often a simple light onset, but sometimes  a more complex audiovisual stimulus), 

and one which has no consequences (the ‘inactive’ lever). The key dependent 

variable is the animal’s relative preference for the stimulus-producing lever (i.e. 

ratio of active:inactive lever presses; although sometimes the somewhat less 

valid measure of total active lever presses is reported).  

OSS behaviour has been shown, at least in some hands, to be fairly robust: 

persisting over extended sessions, in extinction (when the sensory reward is no 

longer presented) and on demanding schedules where a progressively increasing 

number of responses are required to gain a single presentation of the sensory 

stimulus (Olsen and Winder, 2009). Thus, despite evidence that response rate on 

the active lever is positively related to variation in (or novelty content of) the 

sensory stimulus (Olsen and Winder, 2012), it is unlikely that behaviour on this 

task can be explained purely by appetitive responses to ‘novelty’ alone. Although 

currently less extensively explored, this paradigm may have the most face 

validity with respect to the human trait of SS. 

 

The three behavioural measures discussed above have been inconsistently inter-

related. Specifically, LRN may be associated with total lever responses on OSS 

paradigm (i.e. general levels of responding), but not with specific responses for 

the active (sensory-associated) lever (Olsen and Winder, 2009; Gancarz et al., 

2012a, 2012b). While some studies have found that HR rats show greater 
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preference for a novel environment (Dellu et al., 1996; Marusich et al., 2011), 

others find no relationship between LRN and indices of novel object preference 

(e.g. Bardo et al., 1996; Cain et al., 2005). This suggests that these different 

behavioural operationalisations of SS trait may depend upon at least partially 

different neurobiological systems. Furthermore, this might be reflected in 

differential relationship of these indices to different aspects of drug-related 

behaviour (see section 1.3.1). 

 

1.2 Role of dopamine in individual differences in trait sensation-seeking 

1.2.1 Evidence from studies in humans 

Almost all data relating SS trait to neurotransmitter systems in humans concerns 

the dopamine system. Specifically, evidence from genetic and PET radioligand 

displacement studies suggests that individuals higher in SS personality may 

exhibit both higher endogenous dopamine (DA) levels and greater dopaminergic 

responses to cues of upcoming reward in striatal regions (Zuckerman, 1985; 

Riccardi et al., 2006; Derringer et al., 2010; Gjedde et al., 2010; O’Sullivan et al., 

2011).  

Higher sensation-seekers have been reported to show lower platelet levels and 

carry lower activity isoforms of monoamine oxidase (MAO), an enzyme 

responsible for the breakdown of DA (Zuckerman, 1985; Carrasco et al., 1999; 

Verdejo-García et al., 2013). They also exhibit relatively higher activity of dopa 
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decarboxylase (DDC, a rate-limiting enzyme for DA synthesis) in the striatum, 

both via variation in the DDC gene itself (Derringer et al., 2010) and the Taq1a 

polymorphism (Ratsma et al., 2001; Eisenberg et al., 2007; Laakso et al., 2005). 

Thus, it might be expected that higher SS individuals have greater overall DAergic 

tone, particularly in striatal regions.  

Individuals higher in SS trait also show increased physiological and subjective 

responses to dopaminergic stimulants such as amphetamine (Hutchison et al., 

1999; Kelly et al., 2006; Stoops et al., 2007). This also holds for drugs which may 

not directly target the DA system, such as oxycodone, diazepam and alcohol 

(Kelly et al., 2006; Fillmore et al., 2009; Zacny, 2010; Scott and Corbin, 2014). 

However, this may be the result of a final common pathway for these substances 

which results in increased DA levels in the ventral striatum (Pierce and 

Kumaresan, 2006). Further, self-reported SS score correlates positively with both 

amphetamine-induced DA release in the striatum (Leyton et al., 2002; Riccardi et 

al., 2006), and the magnitude of dopaminergic response to cues of forthcoming 

rewards (O’Sullivan et al., 2011). 

SS trait has also been linked to variation in function in the D2 class of dopamine 

receptors (D2, D3, and D4 receptors) (Eisenberg et al., 2007; Hamidovic et al., 

2009; Campbell et al., 2010). Gjedde and colleagues have recently argued on the 

basis of the above findings and PET evidence that higher sensation-seekers have 

lower D2/D3 receptor ‘availability’ due to higher endogenous DA levels than 

their high SS counterparts. Thus, they argue that the ‘gain’ (reactivity to the 

presence of dopamine) of the D2 system in the striatum might be inversely 
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related to SS score (Gjedde et al., 2010). Specifically, this hypothesis would 

predict greater amplification of the postsynaptic signalling cascade following DA 

binding in higher gain lower sensation-seekers, and a lower sensitivity post-

binding cascade (due to higher tonic levels of synaptic DA) in lower gain higher 

sensation-seekers.  

 

1.2.2 Evidence from animal models 

Data from the animal literature also supports the involvement of both a hyper-

responsive striatal DA system and variation in D2-type receptor function in 

individual differences in SS-like behaviour. Performance on all three animal 

models of SS described in section 1.2 are sensitive to manipulation of brain DA 

function.  

For example, rodents with higher than average locomotor reactivity to novelty 

(HR animals) have been shown to exhibit increased DA levels in the ventral 

striatum and a higher overall basal firing rate of midbrain DA neurones, in 

addition to decreased concentrations of D2 receptors overall in the striatum 

(Blanchard et al., 2009). Selectively bred HR animals also have lower nucleus 

accumbens D2 mRNA levels than selectively bred low responders, and show a 

greater frequency of spontaneous dopaminergic transient currents in this brain 

region (Flagel et al., 2010).  
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A different line of research has revealed that disruption of the dopamine 

transporter (DAT) Dat1 gene attenuates novelty-related behaviour in mice 

(Pogorelov et al., 2005). High novelty-preferring rats may have reduced DAT 

affinity for DA (Marusich et al., 2011), and therefore increased synaptic DA levels, 

due to decreased efficiency of synaptic DA clearance (Jones et al., 1998). In male 

minipigs, higher novel object exploration has been associated with greater 

dopaminergic response to amphetamine in the striatum, as measured using 

[11C]raclopride PET (Lind et al., 2005). Further, the D2 receptor antagonist 

haloperidol produces a dose-dependent attenuation of novelty-preference in free 

choice tests in rats (Bardo et al., 1989). D4 receptor knock-out mice exhibit 

reduced exploration of novel objects (Dulawa et al., 1999), and the association 

between individual differences in novelty-seeking and D4 receptor 

polymorphisms previously observed in humans (Munafò et al., 2008) has 

recently been replicated in non-human primates (Bailey et al., 2007). 

On the OSS paradigm, amphetamine injections to the ventral striatum increase 

relative responses on the active (sensory stimulus-associated) lever in a dose-

dependent manner, an effect reduced by pre-application of the D2/D3 receptor 

antagonist sulpiride (Shin et al., 2010). Mutant mice with disrupted function in 

particular dopamine D1 receptor-containing neurones fail to develop a 

preference for the active lever when it is associated with sensory reward, whilst 

ability to develop preference for a food reward remains intact (Olsen and Winder, 

2009). By contrast, mice receiving low systemic doses of the DA antagonist 

flupenthixol (a mixed D1 and D2-type receptor antagonist) show increased 

responding on the active lever, an effect the authors argue is consistent with 
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decreased sensory reward efficacy under these conditions (Olsen and Winder, 

2009).   

The evidence presented above suggests that there may be at least partially shared 

neural pathways regulating behaviour across these three paradigms. In support 

of this interpretation, a mouse model with targeted inactivation of excitatory 

glutamate receptors in DA receptor-expressing neurones showed reduced 

instrumental responses on the OSS paradigm, reduced locomotor activity when 

placed in a novel environment, and decreased interaction with a novel object 

compared to control animals (Parkitna et al., 2013). Importantly, there were no 

detectable behavioural deficits or abnormal learning abilities, suggesting these 

effects were not due to some generalised deficit. 

 

1.2.3 Do individual differences in dopaminergic approach-avoidance 

tendencies contribute to individual differences in trait sensation-

seeking? 

It has been proposed that the core basis for individual differences in trait SS is  

the differential activation of approach versus withdrawal mechanisms in 

response to novel and intense stimuli (Zuckerman, 1990; Lang et al., 2005) 

(Figure 2). A candidate neural mechanism for this difference is variation in 

efficacy of striatal DA transmission, a pathway thought to be involved in the 

vigour of approach-type behaviours (Salamone and Correa, 2002; Robbins and 

Everitt, 2007; Ikemoto, 2007; Hoffmann and Nicola, 2014).  
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Figure 2. Schematic of how differential activation of approach-avoidance 

tendencies in lower and higher sensation-seekers (SSs) may result in opposite 

behavioural reactions to the same intensity sensory stimulus.  

For example; a stimulus of an intensity that excites peak approach reactions in a lower 

sensation-seeker may be insufficient to elicit such a reaction in a higher sensation-

seeker; whereas a stimulus of an intensity that elicits peak approach behaviour in higher 

SSs may be aversive and evoke an avoidance response in lower SSs. 

Higher SS trait is associated with differences in striatal dopamine (DA) function (orange 

text). Behavioural measures of SS preference are also affected by drugs which affect 

synaptic dopamine levels (e.g. amphetamine) or that target D2-type (D2/D3/D4) 

dopamine receptors (e.g. sulpiride), which are prevalent in the striatum (blue text). D2Rs 

= D2-type dopamine receptors. 
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In favour of this hypothesis, there is some evidence to suggest that high 

sensation-seekers may show both increased appetitive responses and reduced 

defensive reactions to intense sensory stimuli (Lissek and Powers, 2003; De 

Pascalis et al., 2007; Freeman and Beer, 2010). For example, human high 

sensation-seekers have a greater response to intense auditory stimuli on EEG 

measures (Brocke et al., 1999) and prefer both positive and negative affective 

stimuli to neutral ones, regardless of valence (Zaleski, 1984). Conversely, low SS 

individuals exhibit greater affective startle potentiation, including during 

anticipation of aversive stimuli (Lissek and Powers, 2003; Lissek et al., 2005). In 

the animal literature, rats selectively bred over many generations for low vs high 

expression of avoidance behaviour on the shuttlebox paradigm (RHA and RLA 

strains) also express marked differences in sensation-seeking-like behaviours 

(such as novelty-preference and reactivity to drug rewards; Giorgi et al., 2007). 

As outlined in the previous section, evidence from a variety of sources implicates 

individual variation in striatal dopamine function (particularly at D2-type 

receptors) in differences in SS personality in both humans and animals. 

Inconsequential, non-novel, but ‘intense’ or otherwise physically salient sensory 

stimuli have been shown to evoke robust responses in midbrain DA neurons in a 

variety of animal models (Freeman and Bunney, 1987; Horvitz, 2000; Schultz, 

2010). Indeed it has been argued that dopaminergic transmission in the ventral 

striatum may govern the vigour of approach-type behaviours in response to 

salient stimuli (Robbins and Everitt, 2007; Ikemoto, 2007). Individual differences 

in the efficacy of dopaminergic neurotransmission in this pathway might 
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therefore contribute to interindividual variation in responsivity to these kinds of 

salient stimuli, constituting a quantitative trait of novelty or intensity preference.  

Using this conceptual framework, it can be proposed that inappropriately high 

activation of approach tendencies towards intense stimuli may result in adverse 

outcomes, particularly where the ‘intensity’ of such experiences is inextricably 

bound up with or indeed derived from a risk of physical danger or damage to 

health. Conversely, inappropriately high activation of avoidance tendencies may 

hamper the ability to engage with potentially advantageous novel environments 

or experiences, and result in over-expression of anxiety-like responses to such 

stimuli. In the next section we consider the relationship of individual differences 

in trait SS to health and psychopathology. 

 

1.3 Role of sensation-seeking trait in general health outcomes and 

psychopathology 

Links have been established in healthy individuals between high trait SS and 

increased engagement in various ‘health risk’ behaviours that may endanger the 

self or others (Roberti, 2004; Arnett, 1994; Zuckerman, 1994; Hoyle et al., 2000; 

Charnigo et al., 2013; Oshri et al., 2013). Specifically, SS scores exhibit medium 

effect sizes for predicting alcohol consumption and medium-to-high effect sizes 

for illicit substance use, across many studies (for reviews and meta-analyses see 

Roberti, 2004; Hittner and Swickert, 2006; Perry et al., 2011; Stautz and Cooper, 

2013), including in non-Western cultures (e.g. Huang et al., 2013).  
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Higher SS score is also associated with greater likelihood of regular smoking 

(Ersche et al., 2010; Doran et al., 2013), and increased rates of nonmedical use of 

prescription stimulants (Lookatch et al., 2012). Further, self-reported SS has been 

associated with increased frequency of risky driving or sexual practices (Arnett, 

1994; Jonah, 1997; Charnigo et al., 2013; Oshri et al., 2013), as well as increases 

in antisocial behaviour, shop-lifting, and truancy during adolescence (Harden et 

al., 2012). However, it should be noted high SS score is also associated with 

increased incidence of ‘pro-social’ risk-taking among professions such as fire 

fighters, police, and bomb disposal experts, (e.g. Gomà-i-Freixanet, 1995) (see 

section 1.3.3). Finally, high trait SS has been also been specifically identified as a 

vulnerability factor for a variety of psychopathologies that have been associated 

with changes in brain DA function, in particular substance and gambling 

addictions.  

 

1.3.1 High sensation-seeking and substance use disorders 

High SS scores have consistently been identified in people with diagnoses of 

substance use disorders (individuals with compulsive drug use, persisting in the 

face of recurrent adverse consequences, American Psychiatric Association, 

1994), across several classes of drug – including alcohol, psychostimulants, and 

opiates (Kosten et al., 1994; Franques et al., 2003; Whiteside et al., 2005; Ersche 

et al., 2010; Adams et al., 2012). In particular, convincing data from longitudinal 

studies has shown that high trait SS in adolescence predicts risk for substance 
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use disorders later in life, especially for alcohol and tobacco (Crawford et al., 

2003; Sargent et al., 2010). 

Although there has been some debate about the primacy of SS in risk for 

pathological substance use (Ersche et al., 2010) (e.g. heightened SS scores also 

occur in non-addicted recreational drug users, Ersche et al., 2013), it is likely that 

SS trait has at least moderate clinical relevance for drug-addicted populations. 

Among individuals with a diagnosis of substance use disorder, higher SS score is 

associated with earlier age of onset, increased polysubstance use, more severe 

functional impairment, poorer overall treatment outcome, and more greatly 

impaired decision-making (Kosten et al., 1994; Ball et al., 1994; Staiger et al., 

2007; Noël et al., 2011; Lackner et al., 2013; Patkar et al., 2004). Similarly, high 

SS trait may relate to increased risk for substance misuse problems comorbid in 

other psychopathological populations (Fornaro et al., 2013). For example, 

amongst individuals with a diagnosis of unipolar or bipolar depression, high 

sensation seekers are more likely to be poorly compliant to prescribed 

medications or become demanding for drugs with perceived mood-elevating 

properties (Ekselius et al., 2000; Liraud and Verdoux, 2001; Åkerblad et al., 

2008). 

Interestingly, attempts to tease out the role of trait SS in addiction using animal 

models have revealed different relationships to aspects of substance addiction 

psychopathology, depending on the particular model of SS employed. Specifically, 

recent studies in rodents report that heightened novelty preference is associated 

with increased motivation to work for stimulant drug infusions, increased 
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likelihood of progression to ‘compulsive’ drug use, and higher scores for 

‘addiction-like’ behaviour (operationalized DSM-IV criteria for substance 

addiction, over several different measures), but not initial acquisition of drug 

self-administration behaviour (Belin et al., 2011; Molander et al., 2011; Peña et 

al., 2014).  

Conversely, increased locomotor reactivity to a novel environment has been 

associated with increased initial sensitivity to drugs (both ease of initiation of 

self-administration and range of dose supporting self-administered, Piazza et al., 

1989; Blanchard et al., 2009) – but not with progression to an addiction-like state 

(Belin et al., 2008). Thus, LRN has been linked to initial propensity to try out 

drugs of abuse, but not predisposition to ‘addiction’ per se, and vice versa for 

choice measures of novelty-preference (Belin and Deroche-Gamonet, 2012). 

Interestingly, it has recently been reported that preference for an environment 

established via pairing with cocaine administration (cocaine-induced 

conditioned place preference), which is subsequently allowed to extinguish in the 

absence of drug, is selectively reinstated after a priming dose of cocaine in high 

novelty-preferring mice (Montagud-Romero et al., 2014) – possibly representing 

an increased risk of relapse in these animals.   

The operant sensation-seeking (OSS) model has thus far been less well studied 

with respect to addiction vulnerability. Manipulations that fairly selectively affect 

OSS behaviour also affect drug self-administration, whilst leaving intact 

measures of learning and performance on operant tasks where food is the 

rewarding outcome. These findings, some have argued, suggest a common neural 
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substrate of sensory and drug rewards (Olsen and Winder, 2009; Olsen et al., 

2010; Parkitna et al., 2013). In one recent study, mice with targeted inactivation 

of metabolic glutamate (mGluR5) receptors on D1 receptor-expressing neurons 

showed normal anxiety-like behaviour and learning abilities, but decreased SS-

like behaviour on OSS, LRN and NP indices. Unlike control animals, these low SS 

mice did not escalate alcohol intake after enforced absence, perhaps indicating 

decreased risk of relapse upon drug re-exposure (Parkitna et al., 2013).  

What underlies these findings? As described above, both human self-report and 

animal models of SS have been linked to variation in D2-type receptor function. 

In particular high trait SS has often been associated with low striatal D2 receptor 

‘availability’ – due to increased endogenous DA levels, lower receptor density, or 

some combination of both these factors. In healthy humans, both high trait SS and 

low striatal D2 receptor availability have been linked to greater ‘liking’ of 

stimulant drug effects (Kelly et al., 2006; Volkow et al., 1999). This may therefore 

explain the increased likelihood of initial drug use or experimentation in high 

sensation-seekers, as paralleled by increased ease of acquisition of drug self-

administration in by HR animals on the LRN model of SS.  

Low striatal D2 receptor availability has consistently also been found in both 

individuals with pathological or compulsive substance use (including in 

withdrawal; Volkow et al., 1993, 2002), and in animals who exhibit elevated 

cocaine self-administration (Caine et al., 2002; Nader et al., 2006), and thus has 

been proposed as a vulnerability marker for progression to addiction. In human 

studies it is usually unclear due to methodological limitations how much this may 
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be a cause and how much it may be an effect of drug use (Neale et al., 2006). 

Indeed, it is likely a combination of both (Simon et al., 2007; Caprioli et al., 2013; 

Jentsch et al., 2014).  

Regarding evidence implicating high SS trait in severity of psychopathology in 

people with substance use disorders, one possible explanation is that these 

findings are all a legacy of earlier onset of drug use (Nees et al., 2012), i.e. during 

a period of heightened sensitivity to direct effects of substances of abuse on brain 

chemistry (Suri et al., 2015). For example, it has been found that rates of adult 

alcohol dependence can be reduced by 10% for each year that drinking is delayed 

in adolescence (Grant et al., 2001). Intriguingly, a recent study in mice found that 

binge-like cocaine administration during adolescence induced a higher 

sensitivity to rewarding effects of both cocaine and MDMA (ecstasy) selectively 

in high novelty-seeking animals (Mateos-Garcia et al., 2015). This finding 

suggests the existence of some kind of interactive effect between the sensitive 

period of adolescence and trait novelty and/or sensation-seeking.  

However, there may also be a role for heightened trait SS in increased 

susceptibility to progression from initial experimentation to compulsive 

substance use. In support of this, the animal evidence discussed above suggests a 

role of high SS trait (modelled as novelty preference across several different 

behavioural paradigms) in progression from sporadic use to an addiction-like 

phenotype. Furthermore, as we have seen, evidence from NP and OSS models of 

SS also implicates a possible role of high trait SS in susceptibility to relapse – an 

integral feature of addiction psychopathology.  
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Thus it is likely that individual differences in SS play a significant role in disease 

progression (Jupp and Dalley, 2014), although further work needs to be 

conducted to extract out exactly which components are the best predictors of 

different aspects of disease progression. As drug addiction is a multi-stage and 

multi-faceted disease, associated with numerous distinct behavioural traits, it 

will be important for future research to identify which dimensions of sensation 

and/or novelty-seeking in humans are modelled in rodent paradigms that 

embody vulnerability markers for progression to and maintenance of the 

addicted state (Deroche-Gamonet and Piazza, 2014). This will be aided by 

development of similar operationalized paradigms for humans, which would be 

more directly comparable to animal findings than existing self-report measures. 

 

1.3.2 High sensation-seeking and pathological gambling 

High SS is often cited as a risk factor for pathological gambling (PG; e.g. Roberti, 

2004), however, there are surprisingly inconsistent findings regarding the role of 

heightened SS in pathologically disordered gambling behaviour (Hammelstein, 

2004). Laboratory studies have found medium to high effect sizes for SS scores 

on gambling and risky decision-making in healthy individuals, particularly when 

studied in more naturalistic settings such as mock or real casinos (Anderson and 

Brown, 1984; Roberti, 2004; Ashrafioun et al., 2012). High SS individuals may 

also be more likely to engage in gambling activities in the real world (McDaniel 

and Zuckerman, 2003). Several studies report significantly higher SS scores in 
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samples of pathological gamblers compared with controls (Blanco et al., 1996; 

Whiteside et al., 2005; Fortune and Goodie, 2009; Hodgins et al., 2012), however 

others have found either a non-specific relationship (Grall-Bronnec et al., 2011) 

or no difference in SS score between problem gamblers and healthy controls 

(Michalczuk et al., 2011; Clark et al., 2012; Lorains et al., 2014). This 

inconsistency may be due to heterogeneity within PG populations. Indeed there 

is some evidence that the role of heightened SS in PG may depend on the 

particular form of gambling engaged with (Coventry and Brown, 1993), with high 

SS trait evident only in a subset of individuals with PG behaviour (Carver and 

McCarty, 2013).  

While there are links between brain systems associated with trait SS, risky 

decision-making, and PG – again, with transmission via D2-type dopamine 

receptors being commonly implicated (Comings et al., 1996) – it is currently 

unclear exactly what the nature of this relationship is. For example, a recent study 

found that rats more prone to an ‘irrational’ choice bias when choosing between 

risky reward options had lower striatal D2/D3 receptor density (Cocker et al., 

2012). However, no evidence has so far been found for differences in striatal D2 

receptor density in samples of human pathological gamblers compared to 

controls (Clark et al., 2012; Boileau et al., 2013). Some authors have argued that 

the high comorbidity between substance use disorders and PG (Petry et al., 

2005), in addition to evidence for common genetic factors (Slutske et al., 2000), 

implies that the two disorders have overlapping aetiologies (Clark and Dagher, 

2014).  It is possible that the role of trait SS in PG may be less clear than that 

observed in substance addiction due to a lack of involvement of substances of 



 

39 

abuse that actively target brain systems that are associated with SS trait (Clark et 

al., 2013). 

The relationship between high trait SS and vulnerability to develop behavioural 

addictions may be more evident in disorders where prodopaminergic 

(predominantly D2 agonist) therapies have been linked to development of de 

novo compulsive behaviours. These are most commonly PG but also include 

compulsive shopping, hypersexual behaviour, and addiction to dopaminergic 

medication; collectively known as impulsive control disorders or ICDs (American 

Psychiatric Association, 1994). This has been observed clinically in a variety of 

disorders treated with DA agonists (e.g. prolactinoma and restless legs 

syndrome), but has been most well studied in individuals with Parkinson’s 

disease (PD), a disorder involving progressive loss of dopaminergic neurones 

(Weintraub et al., 2010; Claassen et al., 2011; Dang et al., 2011; Djamshidian et 

al., 2011; Martinkova et al., 2011).  

PD patients have previously been reported to show relatively low self-reported 

SS scores (Evans et al., 2006; Poletti and Bonuccelli, 2012). Some researchers 

have developed this finding into the notion of the ‘pre-Parkinsonian personality’: 

a prodromal period of altered brain DA function, prior to the onset of signature 

motor symptoms, where individuals exhibit lowered sensation-seeking 

personality (Evans et al., 2006). However, PD patients with ICDs may exhibit 

heightened impulsivity and novelty-seeking questionnaire scores, compared with 

non-ICD PD controls (Voon et al., 2007). Although to date almost all studies of this 

relationship have been cross-sectional in design, one intriguing longitudinal 
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study has shown evidence for decreased novelty-seeking in de novo PD, with 

increased novelty-seeking relative to healthy controls observed post 

commencement of pro-dopaminergic medication (Bódi et al., 2009). 

These findings may relate to increased reactivity of striatal DA observed in PD 

patients with ICDs. For example, greater radioligand displacement (interpreted 

as greater endogenous DA release) has been reported during gambling in PD 

patients with a diagnosis of PG (Steeves et al., 2009). Further, self-reported SS 

score has been found to be significantly positively correlated with striatal DA 

release to reward cues in PD patients with ICDs (O’Sullivan et al., 2011). Similar 

to high SS healthy individuals, there is evidence of reduced D2/D3 receptor tracer 

binding in the ventral striatum of PD patients with a diagnosis of PG compared to 

PD controls (Steeves et al., 2009 although see also O’Sullivan et al., 2011). This 

may be due to greater endogenous striatal DA levels in PD patients who go on to 

develop PG, as these individuals exhibit both reduced binding of DA transporter 

ligands in the ventral striatum (Cilia et al., 2010; Voon et al., 2014) and reduced 

concentration of midbrain dopamine autoreceptors (Ray et al., 2012).  

These studies have recently been interpreted as providing converging evidence 

that both heightened striatal DA tone and increased DAergic response to reward 

cues constitute the underlying vulnerability in PD patients who develop ICDs 

such as PG after undergoing dopamine agonist treatment (Clark and Dagher, 

2014). Strikingly, this is the same neurobiological signature that has been 

reported across several studies to be associated with high SS personality in the 

normal population.  
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1.3.3 Is high sensation-seeking always a bad thing? Stress resiliency and 

the role of environment 

Although so far we have presented evidence that high trait SS may be associated 

with increased levels of dysfunctional behaviour, there is also preliminary 

evidence that, under certain circumstances, high SS may be functionally useful.  

From a developmental perspective, a general increase in SS in all individuals with 

onset of puberty (Steinberg et al., 2008; Harden and Tucker-Drob, 2011) has been 

hypothesized to underpin an enhanced capacity to approach high-arousal, novel, 

or uncertain situations. This would promote general exploration and other 

‘independence-building’ behaviours, in addition to underlying increases in 

potentially dangerous behavioural choices (Crone and Dahl, 2012; Spielberg et 

al., 2014). Thus it has been suggested that one possible adaptive function for 

higher trait SS in both adolescence and adulthood is to serve as a ‘stress-buffer’, 

allowing individuals to explore challenging and unpredictable environments 

laden with unknown risks (Smith et al., 1992).  

In support of this hypothesis, higher SS status has been associated in humans 

with a general decrease in the tendency to view the world as ‘threatening’ 

(Zuckerman, 1994). There is a negative correlation between both participants’ 

estimated probabilities of negative outcomes and their ratings of various real-

world activities as being either risky or dangerous (Franken et al., 1992), and 

higher sensation-seekers show heightened thresholds for threat detection when 

viewing faces morphed between neutral and angry expressions (Mujica-Parodi et 



 

42 

al., 2014). Further, threatening images evoke potentiation of startle responses in 

low, but not high, SS individuals (Lissek and Powers, 2003), and high sensation 

seekers display relatively decreased fear-potentiated startle to predictable 

aversive stimuli (Lissek et al., 2005). Animals inbred for low locomotor response 

to novelty also display enhanced anxiety-like behaviour on various measures 

(Stead et al., 2006; although see section 1.2.1 for a discussion of why this is 

perhaps somewhat unsurprising).  

In support of a role of higher SS in coping with extreme stress in humans, several 

studies have reported that higher SS ex-prisoners of war report fewer symptoms 

of post-traumatic stress disorder (PTSD), and less severe psychiatric 

symptomatology in general, than low SS individuals (Solomon et al., 1995; Neria 

et al., 2000). SS scores were also significantly lower in those with compared to 

without PTSD in a sample of individuals with substance use disorders (Weiss et 

al., 2013) and, under some circumstances, high SS status has been associated with 

higher physiological pain tolerance (Bender et al., 2012). Evidence from the LRN 

model supports the idea that this may be due to increased stress resilience in high 

SS individuals. For example, inbred low response to novelty (bLR or ‘low SS’) 

adult rats who have undergone maternal separation stress when young show 

exaggerated stress responses in adulthood, while inbred high responders (bHR 

or ‘high SS’) animals are unaffected (Clinton et al., 2014). Exposure to chronic 

mild stress has been shown to result in increases in ‘anhedonic’ and anxiety-like 

behaviours in bLR animals, whereas stress-exposed bHR rats resemble non-

stressed control animals on these measures (Stedenfeld et al., 2011). 
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This increase in stress tolerance may relate to differences in midbrain dopamine 

and D2 receptor function in high SS individuals (Cabib and Puglisi-Allegra, 2012). 

Recent optogenetic studies have demonstrated a causal role for phasic firing of 

midbrain DA neurones in resilient vs susceptible phenotypes to repeated social 

defeat stress in mice (Chaudhury et al., 2013). Further, D2 receptor function has 

been implicated in successful resilience to chronic mild stress, in that changes in 

D2 receptor gene expression post stress-exposure have been shown to 

differentiate between stress-resilient and stress-reactive animals (Żurawek et al., 

2013; Faron-Górecka et al., 2014).  

In some cases, it is possible that higher SS status itself may represent an active 

adaptation to chronic stress exposure. Possession of the Taq1a A1 allele 

(associated with lower rates of DA catabolism) plus a history of high intensity 

stress exposure (sexual abuse or overly strict parental disciplinary style) has 

been found to result in significantly higher sensation and novelty-seeking scores 

in adulthood, including in a longitudinal study (Keltikangas-Järvinen et al., 2009; 

Groleau et al., 2012). Similarly, a recent longitudinal study found that an 

association between childhood sexual abuse and higher self-reported sensation-

seeking score was moderated by DRD4 (dopamine D4 receptor) genotype 

(Harden et al., 2015). 

It is important to bear in mind that the environment plays a significant role in 

determining the form that SS behaviours may take. Families at higher 

socioeconomic levels may be able provide socially acceptable outlets such as 

adventure sports, travel and other stimulatory extra-curricular activities, 
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whereas in many low socioeconomic environments the only readily available 

means of intense sensory experience may be higher risk, criminal or antisocial 

(Farley, 1981). Recently, it has been argued that the expression of problematic 

behaviours associated with high trait SS is likely to depend on a complex 

interplay between environmental constraints (e.g. availability of satisfying 

behaviours), and other cognitive factors, such as impulse control (Hammelstein, 

2004). Indeed, in animal models home-cage environmental enrichment 

decreases both rate of responding for unconditioned visual stimuli (OSS, Cain et 

al., 2006) and self-administration of amphetamine (Bardo et al., 2001; Green et 

al., 2002), an effect which may depend in part on changes to DAergic transmission 

(Zhu et al., 2005). 

Intriguingly, self-reported SS has been found to be somewhat positively related to 

IQ in samples of high school and college students (Zuckerman, 1994). Although 

the mechanism underlying this relationship is unclear, it is possible that a 

positive correlation between SS score and working memory performance during 

adolescence (Romer et al., 2011) may be due to a common relationship with 

striatal DA function (Cools et al., 2008). It has also been reported in one 

longitudinal study that high ‘stimulation-seeking’ at age three predicts 

significantly higher IQ and school achievement at age 11 (Raine et al., 2002). The 

authors argue that this is the result of young stimulation-seekers creating 

enriched environments for themselves, that in turn stimulate further cognitive 

development. 
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1.4 Interim summary 

Sensation-seeking is an intriguing trait, which appears to vary considerably 

across individuals in both humans and other animals. A growing body of 

evidence, reviewed above, has allowed us to start to understand some of the 

neurobiological differences underlying this variation. A combination of high 

dopaminergic tone and a hyper-reactive striatal DA system appear to be 

potentially important contributors to higher SS trait – as reflected in an increased 

tendency to exhibit approach reactions towards intense and novel stimuli that 

may elicit aversive reactions in others (Zuckerman, 1985, 1990; Blanchard et al., 

2009; Derringer et al., 2010; Gjedde et al., 2010; Shin et al., 2010; Marusich et al., 

2011).  

This neurobiological signature may constitute a vulnerability to the development 

of addictions when ‘revealed’ by the addition of drugs which increase striatal DA 

levels, both in the case of recreational substances (which tend to have a final 

common pathway in increasing ventral striatal DA levels) and prescription drugs 

that directly target D2-type receptors (abundant in striatal regions). In other 

circumstances, the relative under-activation of avoidance or withdrawal 

reactions towards intense stimuli may serve a protective role, e.g. in coping with 

situations of acute stress, which may have relevance for anxiety disorders such 

as PTSD (Solomon et al., 1995; Neria et al., 2000; Clinton et al., 2014). 

The exact contribution of trait SS to the aetiology of these disorders is often 

difficult to parse out in human studies, and will be aided by development of 
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analogous paradigms to the animal literature – a strategy which has previously 

proved fruitful with respect to increasing our understanding of other kinds of 

impulsive behaviour (Winstanley, 2011; Jupp and Dalley, 2014). 

The aim of this thesis was, firstly, to develop such a paradigm, and, secondly, use 

the novel task to directly test the neurobiological model described above, via a 

combination of behavioural, psychopharmacological, and functional imaging 

methods. In a parallel set of studies, we also investigated the effects of 

dopaminergic agents on risky decision-making, in order to gain further clarity on 

the relationship between self-reported sensation-seeking personality, D2ergic 

transmission, and risk-taking behaviour. 
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Chapter 2 An operational measure of sensation-seeking in 

humans 
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2.1 Introduction 

One influential theoretical account proposes that the core basis for individual 

differences in sensation-seeking is in the differential activation of approach-

withdrawal mechanisms in response to novel and intense stimuli (Zuckerman, 

1990, see main Introduction). 

However, a previous lack of behavioural paradigms analogous to those in the 

preclinical literature has meant that it has not been possible to test the approach-

avoidance hypothesis directly in humans. Development of such an approach has 

previously proved highly fruitful with respect to other facets of impulsivity 

(Winstanley, 2011; Jupp and Dalley, 2014). 

Here, we first tested a novel instrumental test of human sensation-seeking-like 

behaviour that involved the opportunity to self-administer mild (but non-

painful) electric stimulation (MES) during performance of an economic decision-

making task. This task was designed to be analogous to a recent operant 

sensation-seeking paradigm developed for rodents (Olsen and Winder, 2009). 

We predicted that: 1) Individuals high in trait sensation-seeking would assign a 

positive economic value to the opportunity to experience such an ‘intense and 

unusual’ sensory stimulus; 2) This preference would be reflected in an approach-

like speeded relative response time for these stimuli. 
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2.2 Methods 

2.2.1 Participants 

Forty-seven healthy participants (28 female), mean age 24.3 (SD 3.55), were 

recruited via internet advertisements (for further demographic information see 

Table 1). This sample size was chosen to allow us to detect a moderate-strength 

relationship between task performance and self-reported sensation-seeking 

trait, on the basis of previous findings that correlations between behavioural and 

questionnaire measures of other facets of impulsive behaviour are modest in 

strength (correlation coefficients up to 0.40; e.g. Helmers et al., 1995; Mitchell, 

1999). An a priori power calculation determined that a sample size of 44 would 

be necessary to detect a correlation coefficient of 0.40, at a conventional power 

of 80% and alpha of 0.05.  

Exclusion criteria consisted of any current or past neurological or psychiatric 

illness, or head injury. All participants provided written informed consent and 

the study was approved by the University College London ethics committee. Two 

participants failed to meet criteria for points learning during the initial 

(acquisition phase) of the task, and so their data were excluded, yielding a final N 

of 45. 

  



 

50 

N (female) 45 (28) 

Age (years) 24.3 (3.55) 

Years of education 16.1 (3.1) 

SSS-V-R total score 

(range) 

261 (46) 

(162-352) 

Alcohol (drinks per week) 3.7 (4.5) 

Tobacco (cigarettes per week) 4.1 (10.2) 

Other drug use (N):  

        None 30 

        Marijuana (ever) 8 

        Marijuana (regularly) 5 

        Stimulant use (ever) 2 

Gambling behaviour (N):  

        None 39 

        Several times per year 5 

        Several times per month 1 

        Weekly or more 0 

Table 1. Demographic information for participants. SS=sensation-seeking; SSS-V-

R=Sensation-Seeking Scale version V (Revised). Other demographic scores refer to 

behaviour over the last 12 months. Unless otherwise specified, figures represent mean 

(SD). 
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2.2.2 Sensation-Seeking Task 

Participants completed a novel ‘sensation-seeking task’ designed to probe the 

precise economic value (positive or negative) they assigned to the opportunity to 

receive an ‘intense’ sensory stimulus (mild electric stimulation or MES). In the 

first part of the task (acquisition phase) they simply learnt the points values 

associated with various different abstract visual stimuli (conditioned stimuli, or 

CSs). Eight different fractals were used as CSs, with two of them assigned to each 

of four possible points values (25, 50, 75, or 100 points). In every trial, fractals 

were presented as pairs, restricted to consist of either adjacent or equal points 

value stimuli, yielding ten different trial types (Figure 3).  
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Figure 3. Novel ‘sensation-seeking’ task. 

In the first part of the task (acquisition phase), participants were presented with a series 

of forced choice decisions between pairs of abstract fractal images. There were eight 

different fractal stimuli (conditioned stimuli, or CSs), with two different CSs assigned to 

each of four possible points values (25, 50, 75, or 100 points; with which choice option a 

particular fractal represented randomised for every participant). Choice pairs were 

restricted to consist of either adjacent or equal points value stimuli, yielding ten trial 

types. The acquisition phase of the task continued for a minimum of 80 trials until 

participants reached a criterion level of performance – namely 80% or above higher 

points value choices over the last ten trials where a higher points value choice was 

possible. After this learning stage was completed, participants progressed to the second 

part of the task (test phase).  

For the test phase, participants were instructed that all stimuli were associated with the 

same points value as before, but that some of the stimuli were now associated with the 

chance of receiving a mild electric stimulus (MES) to their non-dominant hand (the 

magnitude of the MES was individually calibrated to be “stimulating but not painful” 

prior to starting the task). Specifically, half of the stimuli became designated as CS+s 

(chance of MES), and the other half CS-s (no chance of MES), in such a way that trials fell 

into one of three types: those where the CS+ was the lower points option, those where 

the CS+ was the higher points option, and, crucially, those where the CS+ and CS- stimuli 

were of equal points value. In order to increase the salience of the tactile stimulus, receipt 

of the electrical stimulation was probabilistic in both occurrence and timing. The 

probability of receiving the MES given selection of a CS+ stimulus was 0.75, with the 

onset of the MES occurring randomly during a 2500ms inter-stimulus interval (ISI), 

throughout which participants were presented with a blank screen.  
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The acquisition phase continued for a minimum of 80 trials until participants 

reached a criterion of choosing on 80% of trials the fractal associated with the 

higher points value, over the last ten trials where a higher points value choice 

was possible. After this learning stage was completed, participants progressed to 

the second part of the task (test phase).  

In the test phase, half the choice stimuli became additionally associated with the 

chance of receiving non-painful, mild MES to the hand. These fractals will 

henceforth be referred to as CS+ (for full details see Figure 3). The other fractals 

were not associated with electrical stimulation and so are referred to as CS-. For 

each points value, one of the associated fractals became CS+ (chance of MES), 

while the other was CS- (no chance of MES). This yielded three types of trial: those 

where CS+ was the lower points option, those where CS+ was the higher points 

option, and, crucially, those where the CS+ and CS- stimuli were of equal points 

value.  

Participants thus continued to make choices between fractal pairs, with the only 

difference being that now half of the choice options were associated with the 

chance of receiving the MES – including, importantly, on trials where both fractals 

were of the same points value. The key experimental question was whether some 

participants’ choices would be biased towards selecting the CS+ stimuli, when it 

was of equal points value to, or even less than, the CS-. The degree of bias in 

participants’ choice towards or away from CS+ stimuli, with respect to the 

relative points value of the CS+ option, thus allowed precise calculation of the 

economic value (positive or negative) each participant assigned to the 
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opportunity to receive the additional intense sensory stimulus (see section 

2.2.5). 

Participants completed 100 test phase trials (ten per trial type), and were told 

they would be paid a cash bonus at the end which depended on the total number 

of points accrued. To increase the salience of the tactile stimulus, receipt of MES 

was probabilistic, in both occurrence and timing. The probability of receiving the 

MES given selection of a CS+ stimulus was 0.75, with the onset of MES occurring 

randomly during a 2500ms inter-stimulus interval (ISI).  

Prior to initiation of the task, participants rated their preference for each of the 

fractals to be used in the paradigm on a computerised VAS (ranging ‘like’ – 

‘dislike’). This measure was repeated for a second time following completion of 

the acquisition phase (i.e. after learning the points value associated with each CS), 

and for a third time at the end of the experiment (i.e. following introduction of 

the MESs).  

 

2.2.3 Apparatus 

Electrical stimulation was generated using a Digitimer DS7A constant current 

stimulator (Digitimer Ltd., Hertfordshire, UK), with output triggered remotely 

from a desktop computer using Matlab version R2011b (Mathworks, Inc., 

Sherborn, MA) via parallel port. Pulse duration was 2000μs, and the mean 

current amplitude was 2.9mA (SD 1.9, range 1.0-5.5mA). Stimulation was 
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delivered to participants via a pair of disposable Ag/AgCl EEG-EMG electrodes 

with 15x20mm self-adhesive pads (Spes Medica, Italy), attached approximately 

1cm apart on the thenar eminence of the non-dominant hand.  

 

2.2.4 Design 

Following consent and standardised task instructions (see Appendix 1), the 

amplitude of the electrical stimulation was calibrated individually for each 

participant via a standardised work-up procedure. Specifically, participants 

received a series of single stimulation pulses, starting at a very low amplitude 

(0.5mA; generally reported by participants as being only just detectable) and 

gradually increasing in current strength until the stimulation was rated as 6 out 

of 10 on a visual analogue scale (VAS) ranging from 0 (‘just detectable’) to 10 

(‘painful or unpleasant’) – a level at which participants endorsed a description of 

the sensation as being “stimulating but not painful”. This procedure was repeated 

twice for each participant to ensure consistency.  

After the task, participants completed the revised version of the Sensation-

Seeking Scale form V (the SSS-V-R; Zuckerman, 1994; Gray and Wilson, 2007). 

The SSS-V-R is scored on a 7 point Likert scale ranging from 1 (completely 

disagree) to 7 (completely agree) and comprises of 61 items (for sample items 

see section 1.1.1), thus scores may range from 61 to 427. A measure of hedonic 

tone, the Snaith-Hamilton Anhedonia Scale (Snaith et al., 1995); and the trait 

scale of the State-Trait Anxiety Inventory (Spielberger et al., 1970) were also 
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collected. The latter two self-report measures were included in order to test the 

possibility that individual differences in MES preference may be related to trait 

anxiety or current state (an)hedonia rather than being driven by sensation-

seeking personality per se. Demographic information regarding years of 

education, cigarette and alcohol consumption, recreational drug use, and 

frequency of engagement in gambling-related activities was also collected. 

 

2.2.5 Computational modelling analysis 

For test phase data, it was assumed that a choice between two CSs, A and B 

(where A is the CS+ stimuli and B is the CS-), could be represented as: 

 VA = RA + θ 

 VB = RB                                                                                                     (Equation 1) 

where  

 RX is the points value of stimulus X 

 θ is the additional value (in points) assigned to the opportunity to 

receive the MES (positive or negative) 

 VX represents the overall value of each option.  

 

This model was then fit across all test phase choice data from each participant via 

a sigmoidal choice (softmax) function: 
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P(choose A) = 1 / (1 + exp(-β*(VA-VB)))                                        (Equation 2) 

      

Values of the free parameters θ and β (the softmax temperature parameter, a 

measure of choice stochasticity) were fit to the data on a subject-by-subject basis 

using log likelihood maximisation.  

Unless otherwise specified, all reported statistical tests were two-tailed, with an 

alpha of 0.05. 

 

2.3 Results 

2.3.1 Individual differences in preference for additional intense sensory 

stimulation 

Overall, participants chose the MES-associated stimulus (CS+) on 20.4% (SD 

17.6) of the trials where these represented the lower points option, 68.9% (24.8) 

of the trials where they were the higher points option, and 45.2% (19.9) of trials 

where CS+ and CS- stimuli were equal in points value. There was a significant 

effect of trial type on proportionate choice of CS+ stimuli (F(2,88)=157.29, 

p<0.001). Post-hoc t-tests revealed that overall participants chose the CS+ option 

significantly less frequently on lower points trials than equal points trials, and 

significantly more often on higher points trials than equal points trials (t44=-

11.997, p<0.001; t44=-8.102, p<0.001, respectively). 
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Importantly, there was substantial variation in preference for the MES-associated 

option on trials where CS+ and CS- options were equal in points value. Mean 

proportionate choice of CS+ stimuli ranged from 7.5% to 92.5% (relative CS+ 

value of 0, Figure 4A). An estimate of significantly biased choice on these trials 

can be made by sampling the binomial distribution – for 40 trials and an alpha of 

0.05 this threshold is approximately 26/40 (0.65) for significantly high choice 

and 13/40 (0.35) for significantly low choice. Based on these thresholds, 8/45 (or 

18%) of participants chose a significantly high proportion of CS+ stimuli – in 

other words, significantly sought the MES – and 13/45 (29%) of participants 

significantly avoided the CS+ options.  

Consistently high choice of MES-associated stimuli was observed in a subset of 

participants – even on trial types where the CS+ was the lower points value 

option, i.e. involved sacrifice of economic value (relative CS+ value of -25, Figure 

4A). 

In order to test whether participants’ choice of the MES-associated stimuli varied 

significantly over the course of the task (i.e. whether preference changed with 

decreasing stimulus novelty), test phase trials were binned into four sections. A 

repeated-measures ANOVA with the within-subjects factor of time (four levels) 

found no evidence for a main effect of time-on-task on proportionate choice of 

CS+ stimuli across all subjects (p>0.1). Overall choice of CS+ stimuli was also 

unrelated to number of trials taken to reach criterion performance, or proportion 

of correct responses (higher points value choice on trials where this was 

possible) during the acquisition phase (p>0.1), suggesting that preference for 
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MES-associated stimuli was not associated with the learning of the points values 

during the first part of the task. MES preference was also not related to current 

amplitude (p>0.1). 
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Figure 4. Interindividual variation in task performance. 

A Individual psychometric functions for probability of choosing the CS+ (mild electric 

stimulation or MES-associated) option as a function of its relative points (monetary) 

value, generated for each participant from choice data across all trial types (black circles 

indicate actual proportionate choice for each trial type). The left/right translation of each 

function represents the influence of MES value (or θ) on choice, with the gradient of the 

function determined by the softmax temperature parameter β (a measure of the 

stochasticity of participants’ choice). A leftward shift in the function reflects a positive 

effect of opportunity for intense tactile stimulation on choice – i.e. greater choice of the 

MES-associated options than would be expected from points-based choice alone. 

B The value an individual assigned to the opportunity to receive the MES (θ) strongly 

predicted their difference in choice reaction times to CS+ vs CS- stimuli (median RTCS+ – 

median RTCS-; r =-0.690, p<0.001). The opportunity for extra sensory stimulation slowed 

choice of these options in participants for whom it was aversive (low proportionate 

choice of the CS+; bottom right quadrant), but speeded choice in participants for whom 

it was appetitive (high choice of the CS+; top left quadrant, orange shading). Black dashed 

lines indicate 95% confidence intervals.  
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Figure 4A shows individual psychometric curves for probability of choosing the 

MES-associated option (CS+) as a function of its relative points (monetary) value, 

generated by fitting the model to choice data across all trial types for each 

participant. The computational modelling parameter describing the value (in 

points) that participants assigned to opportunity to receive the MES (θ) provided 

a good account of task performance, in that calculated values of θ were strongly 

associated with proportionate choice of the MES-associated option (CS+) on 

trials where the two options were equal in points value (r=0.894, p<0.001). This 

relationship held even when these type of trials were excluded from the dataset 

used to derive θ (r=0.799, p<0.001).  

Bayesian model comparison was used to compare the overall likelihood of the 

simple model (SM) described above (where θ is unconstrained in value) to both 

a reduced model (RM) where participants chose purely according to the points 

values of the different stimuli (i.e. θ=0), and a stricter model (StrM), where the 

addition of the MES was only allowed to have a negative impact upon the value 

of the CS (i.e. θ≤0). Across all participants, the simple model including a MES 

value parameter provided a substantially better account of the data then the 

reduced model (points only choice), and a marginally better account than the 

stricter model where θ was constrained to be negative in value only (SM>RM: 

Bayes factor K = 27.9, strength of evidence “strong”; SM>StrM: K = 2.06, strength 

of evidence “anecdotal”; Jeffreys, 1961; Wetzels et al., 2011). 
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2.3.2 Relationship between economic value assigned to opportunity to 

receive intense sensory stimulation and reaction time for MES vs 

non MES-associated stimuli.  

Individual θ values were strongly negatively correlated with difference in choice 

reaction time (RT) for CS+ vs CS- stimuli (r=-0.690, p<0.001; Figure 4B). 

Specifically, participants who chose a greater proportion of MES-associated 

stimuli were faster to choose these stimuli (suggestive of conditioned approach). 

In contrast, participants who tended to avoid CS+ stimuli were slower to choose 

them (suggestive of conditioned suppression) (Pearce, 1997). This was not a time-

on-task effect (e.g. due to a tendency to decrease both mean reaction time and 

choice of the CS+ over the course of the task) as this relationship remained 

strongly significant when considering trials from only the latter half of the test 

phase (first half of trials r=-0.692, second half of trials r=-0.625, both p<0.001).   

 

2.3.3 Relationship between task performance and self-report measures.  

Total scores on the SSS-V-R demonstrated excellent internal reliability 

(Cronbach’s alpha=0.935). Individual θ values were significantly positively 

related to total self-reported sensation-seeking, such that participants who 

reported higher trait sensation-seeking assigned a greater value to opportunity 

to receive the mild electric stimulation (r=0.325, p=0.043; Figure 5A).  
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Theta value was unrelated to trait anxiety, self-reported hedonic tone, current 

amplitude, or years of education (all p>0.1). Non-parametric tests were used to 

relate task performance to self-reported alcohol and tobacco use, as these data 

were substantially positively skewed. Independent-samples median tests 

revealed that individuals who assigned a positive value to the opportunity to 

receive the MES (i.e. θ>0, N=17) smoked significantly more cigarettes per week 

(Fisher’s p=0.006) and showed a nonsignificant trend towards consuming more 

alcoholic drinks per week (p=0.098) than individuals who tended to avoid the 

MES (i.e. θ<0, N=28) (mean cigarettes per week 6.7±10.4 vs 2.5±9.9; mean drinks 

per week 4.2±3.9 vs 3.4±4.9). There was no significant difference in mean θ value 

between individuals who did vs didn’t (N=15 vs N=30, Table 1) report any 

recreational substance use other than alcohol or tobacco over the past 12 months 

(independent samples t-test, p>0.1). There was no difference in mean θ value 

between male and female participants (independent samples t-test, p>0.1). 
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Figure 5. Relationship between task performance and self-report measures. 

A Total self-reported sensation-seeking score was significantly positively related to the 

value participants assigned to opportunity to receive mild electric stimulation or MES 

(r=0.325, p<0.05).  

B There was a positive relationship between value assigned to receipt of the intense 

sensory stimulation (θ) and mean change in VAS ‘liking’ rating of MES-associated (CS+) 

stimuli following the introduction of the additional electrical stimulation (r=0.368, 

p<0.05). Dashed lines indicate 95% confidence intervals.  

 

MES value (θ) was also significantly positively related to mean change in VAS 

‘liking’ rating for CS+ stimuli following introduction of the mild electric stimuli 

(i.e. between rating sessions 2 and 3; r=0.368, p=0.013; Figure 5B). Participants 

who assigned positive MES values tended to increase their liking rating of MES-

associated stimuli, whilst participants with negative values tended to decrease 

their ratings. 
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Values of the model parameter indexing choice stochasticity (β; a measure of the 

extent to which participants’ choice was influenced by the difference in value 

between the two options) were unrelated to both self-reported SS trait and θ 

values (p>0.1) – suggesting that higher sensation-seeking or MES-seeking 

individuals were not any less value-driven in their choice behaviour than their 

lower sensation-seeking counterparts. 
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2.4 Discussion  

In this study, we examined how the opportunity to experience an intense sensory 

stimulus (mild electric stimulation, or MES) influenced behaviour during a simple 

economic decision-making task. Above chance choice of stimuli associated with 

intense tactile stimulation occurred reliably in some participants, even when this 

choice involved the sacrifice of monetary gain. This finding is consistent with the 

intense sensory stimulation being considered to be appetitive in these 

individuals. In support of this interpretation, participants who chose a greater 

proportion of MES-associated stimuli had higher self-reported sensation-seeking 

scores, increased their ‘liking’ ratings of these stimuli following the introduction 

of the MESs, and assigned a positive economic value to the opportunity to receive 

the additional sensory stimulation in a well-fitting computational model of task 

performance.  

Importantly, there was a highly significant relationship between preference for 

the intense sensory stimulus and choice reaction times – consistent with the 

notion that the MES had motivational significance to participants. In both 

samples, participants who chose a greater proportion of MES-associated stimuli 

showed a relative speeding of their responses when choosing these stimuli, with 

the opposite effect observed in people who tended to avoid them. In conjunction 

with previous observations that individuals generally show speeded response 

times for appetitive stimuli, but are slower to approach aversive stimuli (Crockett 

et al., 2009; Wright et al., 2012), this suggests that the opportunity for intense 
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sensory stimulation influenced participants’ choice via an approach–avoidance-

like mechanism.  

The results presented here are in line with broader background of evidence that 

indicates that whilst a particular stimulus may evoke an appetitive approach 

reaction in higher sensation-seekers, a stimulus of similar intensity may be 

aversive and elicit a withdrawal or avoidance-type reaction in lower sensation-

seeking individuals. For example, sensation-seeking score has been found to be 

negatively correlated with rise in salivary cortisol level during a risk-taking task 

(Freeman & Beer, 2010), and high sensation-seekers showed both decreased 

sensitivity to punishment and increased sensitivity to rewarding outcomes, 

compared with a low sensation-seeking group, during a test of risky decision-

making (Kruschwitz et al., 2012). Conversely, low sensation-seekers have been 

found to exhibit greater affective startle potentiation, particularly during 

anticipation of aversive stimuli (Lissek and Powers, 2003).  

Both fMRI and EEG measures have also demonstrated different timescales and 

patterns of regional brain activity to high-arousal emotional or novel stimuli 

when participants are divided into low and high SS groups on the basis of self-

report scores (Joseph et al., 2009; Zheng et al., 2011; Lawson et al., 2012), 

although the meaning of these differences is somewhat ambiguous. In 

consequence, these results provide the first direct evidence of approach-

avoidance processes at play during performance of sensation-seeking behaviour 

in humans. 
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A potential neurobiological mechanism underlying our findings is in individual 

differences in brain dopamine function. Trait sensation-seeking has been related 

to variation in dopaminergic neurotransmission in both humans and animals, 

particularly in striatal regions (Hamidovic et al., 2009; Olsen and Winder, 2009; 

Gjedde et al., 2010; Shin et al., 2010). Inconsequential but ‘intense’ or physically 

salient sensory stimuli have been shown to evoke robust responses in midbrain 

dopamine neurones in a variety of animal models (Freeman & Bunney, 1987; 

Horvitz, 2000; Schultz, 2010), and it has been argued that dopaminergic 

transmission in the ventral striatum may govern the vigour of approach-type 

behaviours in response to salient stimuli (Robbins and Everitt, 2007; Ikemoto, 

2007). Individual differences in the efficacy of dopaminergic neurotransmission 

in this pathway might therefore contribute to interindividual variation in 

responsivity to these kinds of salient stimuli, constituting a quantitative trait of 

novelty/intensity preference.   

However, to date, there has been no way to test this hypothesis directly in 

humans. A strong advantage of our novel paradigm is that, unlike self-report 

based measures, it allows for direct comparison to causal investigations of 

sensation-seeking–like behaviour in preclinical models. An important direction 

for future work will therefore be to investigate whether behaviour on our task is 

similarly under the influence of striatal dopamine function (Olsen and Winder, 

2009; Shin et al., 2010) (see Chapter 3; Chapter 4). 

This study has some limitations. Firstly, as sensation-seeking behaviours in the 

real world can take many different forms, it might appear surprising that use of a 
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single, tactile sensory stimulus (mild electric stimulation) is able to sufficiently 

capture sensation-seeking behaviour in all individuals. However, our findings are 

consistent with a previous study reporting distinct physiological response 

profiles to mild electric shock in low and high self-reported sensation-seekers 

(De Pascalis et al., 2007). We would not seek to claim that performance on our 

task captures all of sensation-seeking personality, as this is a complex 

multidimensional trait, but it may tap operational sensation-seeking-like 

behaviour in at least a subset of high sensation-seeking individuals – thereby 

allowing us to probe underlying neural mechanisms in the laboratory (e.g. with 

pharmacological manipulations). In analogous fashion, there is some evidence 

that apparently dissimilar animal operationalisations of ‘sensation-seeking’ 

behaviour may tap at least partially overlapping neural circuitry (e.g. Parkitna et 

al., 2013). 

Crucially, in both our studies choice of MES-associated stimuli was found to 

correlate selectively with total self-reported sensation-seeking scores, which 

probe multiple classes of sensation-seeking–type behaviours. Although this 

relationships was of only moderate strength, it should be noted that this finding 

is at the higher end of the range of those generally found between behavioural 

and questionnaire measures of impulsive behaviour (Helmers et al., 1995; 

Mitchell, 1999). We also found some evidence of greater recreational substance 

consumption amongst individuals who assigned a positive value towards 

opportunity to experience the MES, indicating that task performance may relate 

to real-life engagement in sensation-seeking behaviours. Our results are 

therefore consistent with a conceptualisation of SS in which a common drive for 
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intense or unusual sensory stimulation generalises across different sensory 

modalities, though this needs to be tested in future work. 

 

In summary, the novel behavioural paradigm introduced here appears to tap a 

dimension of willingness to self-administer intense sensory stimulation. For 

participants who choose to approach rather than avoid this kind of stimulation, 

we propose that it is appetitive, or intrinsically rewarding. These findings 

constitute the first direct evidence of sensation-seeking behaviour being driven 

by an approach-avoidance-like mechanism in humans, and may aid investigation 

not only of the neural mechanisms underlying this core personality trait, but also 

various psychopathologies for which more extreme sensation-seeking scores 

constitute a risk or vulnerability factor. 
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Chapter 3 Dopamine regulates approach-avoidance in human 

sensation-seeking behaviour 
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3.1 Introduction 

Investigations of animal models of sensation-seeking have implicated variation 

in striatal dopamine function – particularly at ‘D2 type’ (D2/D3/D4) dopamine 

receptors – as playing a pivotal role in mediating individual preferences for novel 

or sensory stimulation-inducing choice options (Bardo et al., 1996; Blanchard et 

al., 2009; Shin et al., 2010). As the efficacy of striatal dopaminergic transmission 

is considered to be involved in the vigour of approach behaviours in response to 

salient stimuli (Ikemoto, 2007; Robbins and Everitt, 2007), one theoretical 

account proposes that the core basis for individual differences in sensation-

seeking is in the differential activation of dopaminergic approach-withdrawal 

mechanisms in response to novel and intense stimuli (Zuckerman, 1990).  

Consistent with this view, genetic and PET evidence has implicated differences in 

function at D2-type receptors mediating individual differences in human 

sensation-seeking (e.g. Hamidovic et al., 2009; Gjedde et al., 2010). Previously, 

however, a lack of behavioural paradigms analogous to those in the preclinical 

literature has meant that it has not been possible to test the approach-avoidance 

hypothesis directly in humans. 

Here, we used a double-blind, placebo-controlled, within-subjects design to 

investigate the effects of the D2 dopamine receptor antagonist haloperidol on 

performance of a novel operational measure of sensation-seeking in humans (see 

Chapter 2). We predicted that ‘behavioural sensation-seeking’ would be 
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disrupted by antagonism at D2 receptors, depending on baseline sensation-

seeking performance (Norbury et al., 2013). 

 

3.2 Methods 

3.2.1 Participants  

Participants were 30 healthy males, mean age 22.3 (SD 2.74; Table 2). Potential 

effects of haloperidol in female volunteers who might be pregnant precluded use 

of the drug in women in this study. Sample size (N=30) was based on the strength 

of the MES value/RT effect relationship we observed in Chapter 2. It was 

calculated that a sample of 29 participants should allow us to replicate (and 

detect any effects of haloperidol on) a true effect size of r=0.50, at a power of 80% 

and an alpha of 0.05. Exclusion criteria consisted of any current major illness, 

current or historic incident of psychiatric illness, and/or history of head injury. 

All subjects gave informed written consent and the study was approved by the 

University College London ethics committee. 

One participant was unable to attend for a final test session and so their data were 

excluded from the analysis. A further participant failed to reach criterion level 

performance in the acquisition stage of the task on both test sessions, and so his 

data were also excluded, yielding a final N of 28. 
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N (female) 28 (0) 

Age (years) 22.3 (2.74) 

Raven’s 12-APM score 9.1 (2.5) 

UPPS SS score 

(range) 

23.2 (5.8) 

(18-47) 

Alcohol (drinks per week) 5.9 (8.7) 

Tobacco (cigarettes per week) 8.4 (18.3) 

Other drug use (N): 

None 

Marijuana (ever) 

Marijuana (regularly) 

Stimulant use (ever) 

 

18 

5 

1 

4 

Gambling behaviour (N): 

None 

Several times per year 

Several times per month 

Weekly or more 

 

17 

3 

7 

1 

Table 2. Demographic information for participants. 

SS=sensation-seeking; Raven’s 12-APM=Raven’s Advanced Progressive Matrices non-

verbal IQ test (12-item version); UPPS SS=UPPS impulsivity scale sensation-seeking 

subscale score. Other demographic scores refer to behaviour over the last 12 months. 

Unless otherwise specified, figures represent mean (SD). 
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3.2.2 Design  

The study was carried out according to a within-subjects, double-blind, placebo-

controlled design. On the first session, participants gave informed consent and 

completed the sensation-seeking task, in order to reduce the impact of any 

practice effects on performance across the subsequent two sessions (under 

placebo or drug). They then completed the UPPS impulsivity questionnaire 

(Whiteside and Lynam, 2001) which has subscales of sensation-seeking and 

three other factor analysis-derived impulsivity facets. This measure was chosen 

in order to evaluate the selectivity of the relationship between task performance 

and sensation-seeking, as compared to other kinds of impulsivity.  

The sensation-seeking subscale of the UPPS is predominantly derived from items 

of the SSS-V, and therefore scores on the two measures intercorrelate highly 

(ibid). It includes SSS-V items referencing specific physical activities, such as “I 

would enjoy the sensation of skiing very fast down a high mountain 

slope/waterskiing/parachute jumping”, as well as more general statements, such 

as “I generally seek new and exciting experiences and sensations”. There are 12 

sensation-seeking items, scored on a 4 point Likert scale (ranging agree strongly 

to disagree strongly), thus possible scores on this subscale range from 12-48. A 

standardised non-verbal measure of mental ability was also administered 

(Raven’s 12-item Advanced Progressive Matrices; Pearson Education, 2010).  

On the second and third sessions, participants arrived in the morning and were 

administered either 2.5mg haloperidol or a placebo (drug and placebo were 
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indistinguishable). A dose of 2.5mg haloperidol was chosen, in order to be greater 

than that given in a previous study where inconsistent drug effects were 

observed (2mg; Frank and O’Reilly, 2006), but less than that used in other 

behavioural studies where significant negative effects of haloperidol on mood or 

affect were detected (3mg; Zack and Poulos, 2007; Liem-Moolenaar et al., 2010). 

Testing commenced 2.5 hours after ingestion of the tablet, in order to allow drug 

plasma levels to reach maximum concentration (Midha et al., 1989; Nordström et 

al., 1992).   

Following this uptake period, participants completed VAS measures of mood, 

affect, potential physical side effects and knowledge of the drug/placebo 

manipulation, and performed the sensation-seeking task described in Chapter 2. 

The Addiction Research Centre Inventory of psychoactive drug effects (ARCI; 

(Martin et al., 1971) was also administered, as this previously has been shown to 

be sensitive to haloperidol (Ramaekers et al., 1999). Participants further 

completed one of two equivalent forms of the letter-digit substitution test (LDST; 

van der Elst et al., 2006) – a simple pencil-and-paper test of general psychomotor 

and cognitive performance. Arterial heart rate and blood pressure were 

monitored pre and post-drug administration.  

The sensation-seeking task was as described in Chapter 2 (section 2.2.2). For 

this study, participants completed an additional set of VAS ratings at the end of 

the task to test learning of CS+/CS- (MES-associated vs non MES-associated) 

contingencies. For each CS, participants rated how strongly they believed 

choosing that stimulus had been associated or not with the chance of receiving 
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electrical stimulation (‘no chance of shock’ – ‘chance of shock’). The individualised 

work-up procedure was repeated on every session, to ensure that subjective 

intensity (as opposed to actual current amplitude) was matched across sessions. 

Drug/placebo order was counterbalanced across subjects, with a minimum of a 

one-week washout period between the two test sessions (the mean time between 

visits was 18 days). 

 

3.2.3 Analysis 

Computational modelling analysis of the sensation-seeking task was as described 

in Chapter 2 (section 2.2.5). A repeated-measures ANOVA with the within-

subjects factor of drug (haloperidol vs placebo), and the between-subjects factor 

of drug order (first vs second test session) was used to analyse key dependent 

variables from test session data. Specifically, these were participant-determined 

current amplitude, modelling parameters describing MES value (θ) and choice 

stochasticity (β), mean choice reaction time, and individual reaction time effect 

(median RTCS+ – median RTCS-). All reported simple effects analyses are via 

pairwise comparison, with the Bonferroni adjustment for multiple comparisons.  

Measures of general and subjective drug effects (VAS, ARCI, LDST scores and 

cardiovascular measures) were compared between test sessions via paired-

sample t-tests.  All reported statistical tests were two-tailed, with an alpha of 

0.05. 
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3.3 Results 

3.3.1 Replication of previous findings 

The main findings from our previous study of behaviour on the novel sensation-

seeking task (see Chapter 2; section 2.3) were replicated in the baseline session 

data from this study. Specifically, the model parameter representing value 

assigned to opportunity to receive the MES (θ) was significantly negatively 

correlated with difference in choice reaction time for CS+ vs CS- stimuli (median 

RTCS+ – median RTCS-; r=-0.593, p=0.001; Figure 6A) and significantly positively 

correlated with self-reported sensation-seeking personality (UPPS sensation-

seeking subscale score; r=0.376, p=0.048; Figure 6B; UPPS subscale scores 

demonstrated excellent internal reliability in this sample, Cronbach’s 

alpha=0.925). 
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Figure 6. Baseline session data.  

A Relationship between value assigned to opportunity to experience the mild electric 

shock or MES (θ) and individual difference in choice reaction time for MES-associated 

(CS+) vs non MES-associated (CS-) stimuli (r=-0.593, p=0.001). 

B Relationship between value assigned to opportunity to experience the MES (θ) and 

self-reported sensation-seeking (SS) personality (UPPS SS subscale score; r=0.376, 

p=0.048). Dotted lines represent 95% confidence intervals.  

 

 

3.3.2 Baseline-dependent effects of haloperidol on behavioural 

sensation-seeking  

When considering data from the two test (drug/placebo) sessions, overall, 

participants again chose the shock-associated stimulus (CS+) significantly more 

often on higher points than equal points trials, and on equal compared with lower 

points trials, on both placebo and drug sessions (main effect of trial type; 

F(2,54)=138.54, ƞp2=0.837, p<0.001; difference between types all p<0.001; mean 



 

80 

(± SD) choice on placebo was 0.806 ± 0.19, 0.398 ± 0.17, 0.126 ± 0.13 respectively 

for these trial types; while on haloperidol 0.744 ± 0.19, 0.399 ± 0.15, 0.158 ± 

0.15). 

There were no significant overall effects of haloperidol treatment on current 

amplitude, points value assigned to the MES (θ), choice stochasticity (β), mean 

reaction time or relative reaction time for MES vs non MES-associated stimuli (all 

p>0.1). Drug order (active preparation on first vs second test session) was not a 

significant between-subjects factor for any of the dependent variables (p>0.1), 

and there was no overall drug*drug order interaction (p>0.1). Therefore drug 

order was discarded from the model for subsequent analyses, in order to 

maximise sensitivity. 

The strong relationship between the points value participants assigned to receipt 

of the MES and relative choice reaction time for MES-associated vs non MES-

associated stimuli observed in our previous study (Chapter 2; section 2.3) was 

replicated in the second sample under placebo conditions (r=-0.602, p=0.001), 

but, intriguingly, not under haloperidol (r=-0.199, p>0.1; Figure 7).  
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Figure 7. Effects of haloperidol on the value assigned to intense sensory 

stimulation (I). The value assigned to intense sensory stimulation (mild electric 

stimulation or MES) was significantly related to relative choice reaction time for MES vs 

non MES-associated stimuli on placebo (r=-0.602, p=0.001), but not under haloperidol 

(p>0.1; significant decrease in regression coefficient, p<0.05). Dashed lines indicate 95% 

confidence intervals. 

 

 

A post-hoc analysis revealed that there was indeed a significant attenuation of 

this relationship under haloperidol (Fisher r-to-Z transformed Pearson-Filon test 

for decrease in correlation coefficient; Z=-1.735, p=0.041, one-tailed; 

Raghunathan et al., 1996). Thus, haloperidol treatment appeared to abolish the 

approach-avoidance effect, with respect to relative preference for the intense 

sensory stimulus. Similarly, although self-reported sensation-seeking score was 

significantly, and selectively, positively correlated with MES value (θ) on placebo 
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(r=0.391, p=0.040; all other UPPS impulsivity subscale scores unrelated to MES 

preference, p>0.1), this was not the case under haloperidol (r=-0.127, p>0.1; 

Steiger’s Z for significant difference in correlation coefficient between drug 

conditions=2.25, p=0.024; Steiger, 1980).  

Based on the above finding, in conjunction with our previous observation that the 

effects of a D2ergic drug may depend on baseline sensation-seeking (Norbury et 

al., 2013), a further analysis was conducted in order to check for baseline-

dependent drug effects that may have been masked in the group-level analysis. 

In order to discover what was driving the attenuation of the RT effect under drug, 

participants were grouped according to whether they showed conditioned 

approach (speeded reaction time to CS+ vs CS- stimuli, i.e. individual RT effect <0, 

N=8) or conditioned suppression (slowed RT to CS+ vs CS- stimuli, i.e. individual 

RT effect >0, N=20) of their responses towards the intense sensory stimulation 

under placebo conditions.  

When this ‘approach’ or ‘avoid’ grouping was added to the model as a between-

subjects factor, there was a significant interaction between drug treatment and 

group on value assigned to the MES (significant drug*group interaction on θ 

value; F(1,26)=10.64, ƞp2=0.290, p=0.003; interaction with β p>0.1). Simple 

effects analysis revealed a significant decrease in MES value in the approach 

group on haloperidol vs placebo (F(1,26)=7.97, ƞp2 =0.235, p=0.009). By contrast, 

there was no effect of drug on MES value in the avoidance group (p>0.1; Figure 

8). Thus, haloperidol appeared to selectively attenuate MES value in individuals 



 

83 

who exhibited approach behaviour towards the intense sensory stimulus under 

nondrug conditions. 

 

 

Figure 8. Effects of haloperidol on the value assigned to intense sensory 

stimulation (II). If subjects were divided into those who approached (showed speeded 

relative reaction times towards, N=8) and those who avoided (showed slowed relative 

reaction times towards, N=20) the opportunity for the intense sensory stimulation under 

placebo, there was found to be a significant interaction between sensation-seeking group 

and effect of drug (p<0.01). Haloperidol decreased the economic value assigned to the 

MES only in those participants who exhibited approach reactions towards MES-

associated stimuli under normal conditions (‘high sensation-seekers’ or HSS; cf ‘low 

sensation-seekers’ or LSS). Error bars represent SEM. **p=0.01, ns p>0.10, drug vs 

placebo. 
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Approach and avoid groups did not differ in age, weight, estimated IQ or self-

determined current intensity (independent samples t-tests, all p>0.1), but did 

differ in UPPS sensation-seeking score (t26=2.261, p=0.032, significantly higher 

mean score in the ‘approach’ group; 40.9±8.1 vs 32.9±8.5). Similarly to in our 

previous study (Chapter 2; section 2.3), independent-samples median tests 

revealed that individuals in the approach group smoked significantly more 

cigarettes per week than the avoid group (Fisher’s p=0.022), and showed a non-

significant trend towards greater weekly alcohol consumption (p=0.096; mean 

cigarettes per week 20±25 vs 3.9±13; mean drinks per week 12±13 vs 3.5±3.9). 

 The effect of haloperidol on θ value (difference in value between drug and 

placebo sessions) was unrelated to age, weight, estimated IQ, drug effect on 

overall mood or alertness visual analogue scale VAS ratings, drug effect on the 

‘sedation’ or ‘dysphoria’ scales of the Addiction Research Centre Inventory 

(ARCI), or drug effect on general psychomotor function (LDST score; all p>0.1).  

There was also no significant relationship between effect of drug on θ value and 

number of alcoholic drinks consumed or cigarettes smoked in an average week 

(Spearman’s ρ<0.25, p>0.1). Subjects who had/hadn’t (N=10 vs N=18, Table 2) 

engaged in any recreational drug use other than alcohol or tobacco over the last 

12 months did not differ in the effect of haloperidol on θ value (independent 

samples t-test, p>0.1).  
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3.3.3 Subjective and general psychomotor drug effects 

The above findings could not be explained by generic effects of drug treatment. 

Overall, there were no significant effects of haloperidol on VAS ratings of mood, 

affect, or potential physical side effects (16 scales, all p>0.1; for details see Table 

3). There was also no effect of haloperidol on any ARCI subscale score (MBG 

‘euphoria’, PCAG ‘sedation’, LSD ‘dysphoric and psychotomimetic effects’, BG and 

A ‘stimulant-like effects’ scales all p>0.1), or cardiovascular measures (blood 

pressure and heart rate, p>0.1). There was no effect of drug treatment upon 

participant ratings of whether they believed they were on the drug or placebo 

session (p>0.1). Finally, there was no effect of haloperidol on general 

psychomotor function as indexed by LDST performance (p>0.1). 
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 Placebo Haloperidol p 

VAS ratings 

'Alert','Drowsy' 

'Calm','Excited' 

'Strong','Feeble' 

'Clear-headed','Fuzzy' 

'Well-coordinated','Clumsy' 

'Tired','Energetic' 

'Tense','Relaxed' 

'Good mood','Bad mood' 

'Withdrawn','Sociable' 

'No headache','Headache' 

'No stomach ache','Stomach ache' 

'No nausea','Nauseous' 

'No dizziness','Dizzy' 

'Normal vision','Blurred vision' 

'No muscle pain','Muscle pain' 

'No muscle twitches','Muscle twitches' 

'I think I'm on the drug','I think I'm on 
placebo' 

 

-162 (168) 

-179 (168) 

-122 (165) 

-197 (162) 

-182 (159) 

70 (143) 

186 (134) 

-221 (130) 

97 (167) 

-313 (140) 

-353 (104) 

-358 (93) 

-306 (187) 

-301 (184) 

-322 (147) 

-337 (134) 

135 (238) 

 

-127 (203) 

-151 (165) 

-139 (162) 

-146 (210) 

-132 (204) 

47 (206) 

154 (149) 

-181 (134) 

90 (148) 

-272 (157) 

-328 (127) 

-351 (82) 

-256 (202) 

-297 (181) 

-320 (151) 

-359 (76) 

91 (236) 

 

0.451 

0.333 

0.668 

0.228 

0.225 

0.628 

0.311 

0.243 

0.848 

0.252 

0.333 

0.525 

0.338 

0.925 

0.950 

0.235 

0.571 

ARCI 

MBG 

PCAG 

LSD 

BG 

A 

 

4.4 (3.5) 

0.1 (3.2) 

-1.3 (1.7) 

-0.1 (2.3) 

2.5 (1.8) 

 

4.6 (4.1) 

0.3 (3.0) 

-0.8 (2.0) 

-0.3 (2.2) 

2.4 (1.9) 

 

0.839 

0.897 

0.343 

0.696 

0.776 

LDST 43.4 (8.0) 43.9 (7.1) 0.605 

Cardiovascular measures 

HR 

BP (systolic) 

BP (diastolic) 

 

65.9 (11.9) 

120 (14.2) 

68.0 (12.9) 

 

69.2 (7.6) 

120 (15.0) 

65.7 (11.0) 

 

0.961 

0.352 

0.139 
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Table 3. Details of subjective and general measures of drug effects, on haloperidol 

vs placebo. VAS = visual analogue scale (rating on a linear scale ranging from -400 (first 

descriptor) to +400 (second descriptor), scales are based on Herbert et al., 1976 and 

potential side-effects of haloperidol); ARCI = Addiction Research Centre Inventory: MBG 

(morphinebenzedrine group, a measure of euphoria), PCAG (pentobarbital-

chlorpromazine-alcohol group, a measure of sedation), LSD (lysergic acid dyethylamide 

scale, a measure of dysphoric and psychotomimetic changes), BG (benzedrine group, a 

stimulant-sensitive scale), A (amphetamine, an empirically-derived scale sensitive to the 

effects of d-amphetamine); LDST = Letter Digit Substitution Test (number of symbols 

transcribed in 60s); HR= heart rate; BP=blood pressure. Values represent mean (SD). P 

values reported are from paired samples t-tests, drug vs placebo session. 

 

 

3.3.4 Effects of drug on learning 

Finally, we examined the hypothesis that the observed effects of haloperidol 

could be due to differences in learning between drug and placebo sessions. We 

found no effect of haloperidol on number of trials required to reach criterion 

performance in the first phase of the task (p>0.1). Participants’ mean ‘shock 

knowledge’ ratings for CS+ and CS- stimuli (ratings on a VAS ranging from ‘chance 

of shock’ (+300) to ‘no chance of shock’ (-300)) were entered into a repeated-

measures model with the within-subjects factors of drug (haloperidol vs placebo) 

and CS type (CS+ vs CS-), revealing a significant main effect of CS type 

(F(1,27)=74.56, ƞp2=0.734, p<0.001; mean (± SEM) rating of CS+ stimuli 146 ± 

18.2, mean rating of CS- stimuli -150 ± 19.1), but no effect of drug treatment 

(p>0.1) or drug*CS type interaction (p>0.1) on explicit knowledge of MES 
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associations. When approach’ vs ‘avoid’ group was added to the model as a 

between-subjects factor, there was no difference between groups in the effect of 

drug on shock knowledge ratings (drug*group, p>0.1), or the effect of drug 

depending on CS type (drug*CS type*group, p=0.09). 

 

3.3.5 Paradigm reliability 

In order to estimate the test-retest reliability of our paradigm, an intra-class 

correlation coefficient (ICC) was calculated for values of θ derived from baseline 

and placebo session data for each participant (as per Shrout and Fleiss, 1979; 

McGraw and Wong, 1996). This estimate can be considered as a lower bound on 

the consistency index of the paradigm, as there are salient differences between 

measurements in potential placebo (non-active product administration) and 

order (placebo taken on the second vs third session) effects.  

Using a two-way mixed model testing for consistency across the two sessions, the 

ICC for the average of the two measures (baseline and placebo sessions) was 

found to be 0.435. An ICC>0.4 is generally considered to represent fair-to-good 

reliability (nearly half of measurement variance attributable to consensus score 

variation; Landis and Koch, 1977; Shrout, 1998). A second analysis investigated 

the concordance of θ values across drug and placebo test sessions within 

individuals who exhibited an ‘avoidance’ reaction-time effect to MES (mild 

electrical stimulus)-associated stimuli on the placebo session, i.e. those who did 

not show a significant effect of drug on θ value (see section 3.3.2). This revealed 
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an average ICC across sessions of 0.542, providing further evidence of the 

reliability of our novel approach to measuring sensation-seeking across test 

sessions.  
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3.4 Discussion 

In this study, we examined how performance on our novel behavioural index of 

sensation-seeking was affected by administration of the D2 dopamine receptor 

antagonist haloperidol. On both baseline and placebo sessions we replicated our 

previous finding of a significant positive relationship between task performance 

(summary statistic representing value of the mild electric stimulation, θ) and self-

reported sensation-seeking. On both drug-free sessions, there was also a strong 

relationship between preference for the intense sensory stimulus and relative 

choice reaction times – suggesting that the opportunity for intense sensory 

stimulation influenced participants’ choice via an approach–avoidance-like 

mechanism (Crockett et al., 2009; Wright et al., 2012).  Critically, this effect was 

not evident under the influence of a D2 receptor antagonist. This was due to a 

selective decrease in the economic value assigned to receipt of the intense 

sensory stimulus in participants who exhibited speeded relative reaction times 

towards (or displayed approach reactions to) the MES under placebo conditions 

(behavioural ‘high sensation-seekers’). 

The results presented here are in line with broader background of evidence from 

both humans and animals that relates trait sensation-seeking to variation in 

dopaminergic neurotransmission, particularly in striatal regions (Hamidovic et 

al., 2009; Olsen and Winder, 2009; Shin et al., 2010; Gjedde et al., 2010; Norbury 

et al., 2013). A combination of evidence from genetic and PET radioligand 

displacement studies suggests that individuals higher in sensation-seeking 

personality may have both higher endogenous dopamine levels and greater 
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dopaminergic responses to cues of upcoming reward in the striatum (Riccardi et 

al., 2006; Gjedde et al., 2010; O’Sullivan et al., 2011). According to one influential 

model of the role of dopamine in striatal function (Frank, 2005), in the normal 

state this may contribute to increased inhibition of ‘NoGo’ (action inhibition) 

pathway neurons via increased stimulation of inhibitory post-synaptic D2 

receptors. This in turn would result in greater overall thalamic disinhibition or 

‘Go’ bias (favouring action expression) in high sensation-seekers – particularly in 

the presence of reward cues.  

Haloperidol is a ‘silent’ D2 receptor antagonist (blocks endogenous dopamine 

signalling via D2 receptors; Cosi et al., 2006), and D2 antagonists have previously 

been shown to preferentially affect striatal function (Kuroki et al., 1999; Honey 

et al., 2003). Therefore, it is possible that under haloperidol the responses of 

higher sensation-seekers may be ‘normalised’ (increase in resemblance to lower 

sensation-seekers) by allowing increased ‘NoGo’ pathway output. This would 

explain our finding of a selective decrease in appetitive reactions to the intense 

sensory stimulation in the higher sensation-seeking (‘approach’ group) 

individuals.  

Our finding of a significant effect of haloperidol on choice, in the absence of any 

influence on learning, is consistent with recent work suggesting that that D2 

antagonists may have strong effects on choice of rewarding-predicting stimuli 

whilst leaving learning intact (Eisenegger et al., 2014). However, it is important 

to note that the putative mechanism suggested above assumes a predominantly 

post-synaptic effect of haloperidol (see Frank and O’Reilly, 2006). Despite our 
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attempt to ensure significant post-synaptic receptor binding by use of a greater 

dose than the previously cited study (where mixed pre- and post-synaptic 

D2ergic effects were thought to be observed), we can provide no direct evidence 

of this.  Further, inferences regarding the brain regions involved in our findings 

are speculative and would need to be tested in further work, for example 

involving functional imaging.  

This study has some limitations. As our main result is based on a significant 

decrease in value in one (previously higher mean value) subgroup, an alternative 

explanation of our findings is that this simply represents a regression to the mean 

effect. However, against this interpretation, we found evidence of fair-to-good 

reliability of θ values generated from the same participants across multiple 

sessions of our novel paradigm. Furthermore, the sub-grouping is based on 

individual difference in relative choice RTs rather than θ values per se (although 

the two are significantly correlated). We also used our estimate of RT effect from 

the second or third testing session (placebo session) to group participants – a 

strategy which has previously been argued to help guard against regression to 

the mean effects (Barnett et al., 2005). Taken together, we would contend that 

these factors argue against a purely trivial effect of haloperidol on MES value in 

the approach or ‘high sensation-seeking’ individuals. 

Additionally, although haloperidol is considered to be a selective D2 receptor 

antagonist (it binds over 15 times more strongly to D2 than D1 receptors in rat 

and human cloned cells; (Arnt and Skarsfeldt, 1998), it has also been shown to 

have modest affinity for the α-1 adrenoreceptor and the serotonin 2A receptor in 
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post-mortem human brains (Richelson and Souder, 2000). Therefore we cannot 

be completely certain about the mechanism underlying our drug effects. 

However, as haloperidol has previously been reported to induce high levels of 

brain D2 receptor occupancy at relatively low oral doses (60–70% at 3 mg and 

53%–74% at 2mg; Nordström et al., 1992, Kapur et al., 1997), we are confident 

that dose used in our study (2.5mg) was sufficient to antagonize central D2 

receptors in our participants.  

A further potential limitation is the possibility that the behavioural effects we 

observed are due to some general effect of haloperidol treatment, e.g. increased 

negative affect in some participants. However against this interpretation the 

effect of drug on MES value was unrelated to differences in mood, affect, sedation 

or dysphoria ratings, or our measure of general psychomotor function, between 

drug and placebo sessions.  

 

In summary, here we have used a novel paradigm to demonstrate for the first 

time directly in humans that appetitive responses towards ‘intense and unusual’ 

sensory stimulation involve the dopamine D2 receptor system. These findings 

may aid investigation of various psychopathologies for which more extreme 

sensation-seeking scores constitute a vulnerability factor.  
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Chapter 4 The opportunity to experience intense sensory 

stimulation activates neural ‘reward’ circuitry in 

behaviourally-defined high sensation-seekers 
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4.1 Introduction 

Previous studies have identified significant differences in regional brain activity 

between high and low self-reported sensation-seeking individuals during passive 

viewing of ‘high arousal’ and emotional stimuli (Joseph et al., 2009; Straube et al., 

2010), reward anticipation (Abler et al., 2006), and risky choice (Freeman and 

Beer, 2010; Kruschwitz et al., 2012) – with differences in activity in the 

orbitofrontal cortex (OFC), ventral striatum (vS), and insula being commonly 

implicated. 

These studies have been limited to investigating cognitive-behavioural processes 

related to sensation-seeking trait, due to a lack of paradigms interrogating 

sensation-seeking-like behaviour itself in the laboratory. In this study, we used 

our novel behavioural task of sensation-seeking, in conjunction with functional 

magnetic resonance imaging (fMRI), to probe individual differences in regional 

brain activity during performance of sensation-seeking behaviour. 

This approach allowed us to address directly for the first time in human 

volunteers whether the opportunity to experience intense sensory stimulation 

activates brain regions that have come to be considered part of ‘reward’ circuitry 

(Haber and Knutson, 2009) in individuals for whom such stimulation appears to 

be appetitive. Specifically, we tested the hypothesis that choosing options 

associated with intense sensory stimulation (sensory reward) and higher 

economic value (monetary reward) would activate common neural circuitry, 
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selectively in individuals who sought out the intense sensory stimulus (in this 

case, mild electric stimulation, MES). 

Based on studies cited above, in conjunction with previous work indicating a role 

for the vS and OFC/ventromedial prefrontal cortex (vmPFC) in representing the 

expected value of choice options (e.g. Knutson et al., 2001; Abler et al., 2006; Levy 

and Glimcher, 2012), we hypothesized that these regions may encode common 

responses to MES-associated stimuli and economic reward in behavioural high 

sensation-seekers.  

Conversely, we hypothesized that behavioural low sensation-seekers may 

experience (anticipation of) the MES as more aversive and/or salient. Thus, we 

predicted that a brain region that has consistently been implicated in responding 

to aversive stimuli, the insula, would exhibit increased activity when choosing 

MES-associated options in these individuals (Büchel et al., 1998; Nitschke et al., 

2006; Menon and Uddin, 2010). 
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4.2 Methods 

4.2.1 Participants 

Twenty-seven right-handed healthy participants (18 female), mean age 22.6 (SD 

2.9), were recruited from a pool of volunteers who had completed the sensation-

seeking task at an initial prescreening session (N=94, 60 female, mean age 22.8 ± 

3.2), in order to ensure sufficient variation in task performance at the imaging 

stage. (For further demographic information see Table 4.) Exclusion criteria 

consisted of any current or past neurological or psychiatric illness, or head injury. 

All participants provided written informed consent and the study was approved 

by the University College London ethics committee. Data from one participant 

had to be discarded due to technical difficulties on the scan day, yielding a final N 

of 26. 
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N (female) 26 (17) 

Age (years) 22.6 (2.9) 

Raven’s 12-APM score 9 (1.9) 

SSS-V-R total score 

        (range) 

286 (35) 

(215–337) 

Alcohol (drinks per week) 4.5 (5.8) 

Tobacco (cigarettes per week) 3.4 (13.6) 

Other drug use (N):  

        None 21 

        Marijuana (ever) 2 

        Marijuana (regularly) 0 

        Stimulant use (ever) 3 

Gambling behaviour (N):  

        None 24 

        Several times per year 1 

        Several times per month 1 

        Weekly or more 0 

Table 4. Demographic information for imaging study participants. SS=sensation-

seeking; Raven’s 12-APM=Raven’s Advanced Progressive Matrices non-verbal IQ test 

(12-item version); SSS-V-R=Sensation-Seeking Scale version V (Revised). Other 

demographic scores refer to behaviour over the last 12 months. Unless otherwise 

specified, figures represent mean (SD) for each group. 
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4.2.2 Design 

During the prescreening session, participants completed a baseline measure of 

the sensation-seeking task (as described in Chapter 2) and were screened for 

functional imaging counterindications. Volunteers then completed a range of self-

report measures: the revised form of the Sensation-Seeking-Scale version V (SSS-

V-R; Zuckerman, 1994; Gray and Wilson, 2007), the trait scale from the State-

Trait Anxiety Inventory (STAI; Spielberger et al., 1970), and the sensitivity to 

sensory stimuli subscale of the Adult Sensory Questionnaire (ASQ; Kinnealey et 

al., 1994). Information about cigarette and alcohol consumption, recreational 

drug use, and frequency of engagement in gambling-related activities was also 

collected. Where appropriate (alcohol or recreational drug use >0), participants 

then completed the Alcohol Use Disorder Identification and Drug Abuse 

Screening Tests (Skinner, 1982; Saunders et al., 1993). Finally, a standardised 

measure of non-verbal IQ was administered (Raven’s 12-item Advanced 

Progressive Matrices; Pearson Education, 2010). 

Participants were then selected based on performance on the sensation-seeking 

task, in an attempt to achieve a balanced sample of high and low behavioural 

sensation-seekers for the imaging stage of the study. Additional exclusion criteria 

at this stage consisted of unsuitability for functional imaging (non-removable 

metal or claustrophobia), STAI trait score indicative of a current anxiety disorder, 

DAST score indicative of a past or present substance use disorder, or self-

reported recreational drug use within the last month. 
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4.2.3 Sensation-seeking task 

On the scan day, participants completed a slightly modified version of the 

sensation-seeking task, designed to minimise the amount of learning occurring 

during the scanning stage.  

During a period of pre-scan training, participants first learnt the points values 

associated with each fractal image (CS). This was achieved using a more stringent 

version of the ‘acquisition phase’ of the sensation-seeking task (Figure 3, 

Chapter 2), whereby each CS was pitted against each other in a tournament 

design (each of eight CSs was pitted against each other four times, yielding 112 

trials in total). Participants were also exposed to the CS-MES contingencies prior 

to entering the scanner. Specifically, they completed 10 of each ‘equal points’ trial 

type (inset, Figure 3), where one of each choice pair was associated with a chance 

of receiving the MES (P=0.75, the CS+), and the other was associated with no 

chance of receiving the MES (P=0, the CS-) (40 trials in total). 

Participants further completed visual analogue scale (VAS) ‘liking’ ratings of each 

CS at three stages: prior to starting the task, after learning the CS-points value 

associations, and after exposure to the CS-MES contingencies (on a scale ranging 

‘like’ to ‘dislike’). As in Chapter 2, they also completed ‘shock knowledge’ ratings 

of each CS at the end of the pre-scan block, on a VAS ranging ‘chance of shock’ to 

‘no chance of shock’. Finally, they additionally rated how they felt about the MES 

itself, on a VAS ranging ‘like’ to ‘dislike’. 
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Participants then proceeded to the in-scanner phase. Firstly, all individuals 

repeated the shock amplitude work-up procedure (see Chapter 2, section 2.2.4), 

in order to attempt to match subjective intensity of the mild electric stimulation 

across contexts and apparatus setups (see below). Once inside the scanner, 

participants completed three blocks of 100 test phase trials (all trial types, Figure 

3). In order to increase the frequency of crucial ‘equal points’ trials inside the 

scanner, for each 100 trial block, they completed 13 of each type of equal points 

trial (52 trials total), and 8 of each type of unequal points trial (48 trials total). 

 

4.2.4 Apparatus 

Apparatus for the prescreen and pre-scanner testing was exactly as described in 

Chapter 2 (section 2.2.3). 

For the functional imaging stage, participants wore disposable, radiotranslucent, 

pre-gelled electrodes (Ag/AgCl laminated, carbon composition contact; Biopac 

Systems Inc., CA) on the thenar eminence of their left hand. Electrodes were 

attached to a Digitimer DS7A constant current stimulator (as before) via a 

radiotranslucent carbon fibre clip lead (Biopac). Stimulator output was 

controlled via optic fibre projection from a stimulus PC in the scanner control 

room. Visual stimuli were displayed via back projection on to a head-set mirror 

worn by participants inside the scanner. Visual stimulus presentation and MES 

delivery were controlled via Cogent2000 v1.30, run in Matlab. 
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4.2.5 Behavioural analysis 

For the prescreening session, behavioural data were analysed using the model 

described in Chapter 2 (Equation 1). 

For the analysis of behaviour inside the scanner, a trial-by-trial model of task 

behaviour was also implemented, in order to regress model terms against trial-

by-trial fluctuations in blood oxygenation level- dependent (BOLD) signal (see 

Pessiglione et al., 2006; Daw, 2011). Choice data from the pre-scan ‘test’ phase 

(first exposure to CS-MES pairings) were included in the model, in order to fully 

account for experience of CS-MES contingencies at the start of the first scanner 

trial. (Data from the pre-scan ‘acquisition’ (points learning) phase were not 

included, therefore it was assumed that points values of CSs were fully learnt by 

this stage.)  

For the modelled data (pre-scan test phase and all in-scanner trials), it was 

assumed that the value of each CS (VCS) on each trial (t) could be represented as: 

 VCS,t = RCS + SACS,t * θ                                                                           (Equation 3) 

Where RCS represents points value of each CS, θ again represents the additional 

value (positive or negative) participants assign to opportunity to receive the MES, 

and SACS represents modelled internal probability of receiving a shock, given 

choice of that CS (shock associative value of each CS) on each trial. 
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Following the outcome of trial t, the shock associative value of each CS (SACS) was 

updated according to the actual trial outcome (shock vs no shock received) and a 

simple Rescorla-Wagner learning rule: 

 SACS,t+1 = SACS,t + α(S – SACS,t)                                                              (Equation 4) 

Simply, after the outcome of each trial t, the shock associative value of the chosen 

CS is updated to new value, which is equal to the sum of the previous SA value for 

that CS (SACS,t), plus a prediction error term multiplied by a learning rate (α). The 

prediction error term represents the difference between the expected sensory 

outcome (previous probability estimate for receipt of the MES, given choice of 

that CS, i.e. SACS,t) and the actual sensory outcome (S; with a value of 1 for shock 

or 0 for no shock received). 

This model was then fit across choice data from each participant via a sigmoidal 

link (softmax) function: 

P(choose CS+) = 1 / (1 + exp(-β*(VCS+ – VCS-)))                           (Equation 2) 

Values of the free parameters (θ, α, and the softmax parameter β), were then 

estimated for each participant using maximum likelihood estimation (MLE). To 

decrease the likelihood of outliers, we implemented an additional stage of 

maximum a posteriori (MAP) likelihood estimation on parameter estimates 

(Daw, 2011). MAP represents a hierarchical Bayesian approach to parameter 

estimation, such that the group of parameter estimates derived at the first stage 

(MLE step) are subsequently used to estimate the true population distribution of 
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parameter values (in this case, assumed to be Gaussian). This distribution then 

becomes the prior likely distribution of parameters, for use in a second round of 

inference using maximum a posteriori.  

Computational modelling of choice data was implemented in Matlab r2015a 

(Mathworks, Inc., Sherborn, MA), and used a sequential quadratic programming 

solver to infer the optimal parameters for each individual (Matlab function 

fmincon). Other statistical analyses were carried out in SPSS Statistics 19.0 (IBM 

Corp., Armonk, NY). Associations of model parameters with non-normally 

distributed self-report data were tested using non-parametric statistical tests. All 

reported statistical tests relating to behavioural performance and self-report 

variables were two-tailed, with an alpha of 0.05. 

 

4.2.6 MRI data acquisition and analysis 

4.2.6.1 Acquisition parameters 

Functional imaging data were collected using a 3T Magnetom TIM Trio scanner 

(Siemens Healthcare, Erlangen, Germany) equipped with a 32-channel head coil. 

To correct for inhomogeneities in the static magnetic field, field maps were first 

acquired using a double-echo FLASH (gradient echo) sequence (short TE=10ms, 

long TE=12.46ms, 64 x 2mm slices, 3x3mm2 resolution). Three functional 

scanning sessions, consisting of six dummy volumes and 188 functional volumes 

were then acquired using a T2* weighted gradient echo-planar imaging (EPI) 
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sequence optimised for OFC signal (voxel size =3x3x3mm3, volume repetition 

time =3.36s, echo time =30ms, matrix size =64x74, tilt=-30⁰, Z-shim =1.4, slices 

per volume =48, whole brain coverage; Weiskopf et al., 2006). A T1-weighted 

MDEFT structural scan was also acquired at the end of the session (see 

Deichmann et al., 2004). 

 

4.2.6.2 Preprocessing 

MRI data were analysed using SPM8 (Wellcome Trust Centre for Neuroimaging, 

London, UK), run in Matlab. The first six (dummy) volumes of each functional 

session were discarded to allow for T1 equilibration. Due to inhomogeneity in 

signal intensity associated with use of a 32-channel head coil and an OFC signal-

optimising acquisition sequence, functional images were first bias-corrected for 

overall signal intensity. Specifically, intensity profiles were flattened across 

images with the bias correction procedure used by the Segmentation toolbox in 

SPM. Functional images were next realigned to the first functional volume of each 

session and unwarped using a field map created by the SPM FieldMap toolbox for 

phase correction. Where resulting movement plots indicated scan-to-scan 

translations greater than half a voxel (1.5mm), or rotations greater than 1⁰, 

corresponding functional scans were manually checked for presence of any 

corrupting movement artefacts (no such artefacts were detected in our dataset). 

Subsequently, all functional images underwent correction for slice-timing 

acquisition (as per Sladky et al., 2011), using the Slice timing toolbox. 
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The MDEFT anatomical scan was coregistered to the mean unwarped functional 

image. All images were then reoriented manually to ensure that that the anterior 

commissure lay at coordinates [0,0,0]. Functional images were spatially 

normalized to the Montreal Neurological Institute (MNI) EPI template using 7th 

degree B-spline interpolation, then smoothed using a 4mm3 full-width at half 

maximum (FWHM) Gaussian kernel. After estimating first-level models, the 

resulting contrast images were smoothed again using a 7mm FWHM kernel, so 

that the final images were smoothed to around 8mm. 

 

4.2.6.3 Statistical analysis 

For each participant, general linear models (GLMs) were used to model BOLD 

signal during performance of the sensation-seeking task, in an event-related 

manner. The first level models included the following regressors (and associated 

durations), convolved with the SPM synthetic hemodynamic response function:  

(1) Categorical analysis. This analysis was carried out in order to examine 

differences in brain activity when choosing MES-associated and non MES-

associated stimuli, in MES-seekers vs MES-avoiders. Each trial was modelled as a 

compound event during the decision period, time-locked to cue onset (duration 

1.5s), with points value of the chosen CS, and whether a CS+ or CS- was chosen 

on each trial (+1 or -1, respectively) as parametric modulators. Additional 

regressors representing shock receipt (stick function with duration 0s at actual 
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time of shock delivery) and omission trials (if any, duration 1.5s from time of trial 

onset) were also added to the model.   

(2) “Model-based” trial-by-trial analysis. This analysis was carried out in order to 

test the hypothesis that the trial-by-trial variation in the modelled internal 

probability or shock-associative value of CSs (SACS) would be coded in the same 

way as variation in economic value, selectively in behavioural high sensation-

seekers. As in the ‘model-free’ analysis, each trial was modelled as a compound 

event during the decision period, time-locked trial to cue onset (duration 1.5s), 

with the points value of the chosen CS, and modelled shock associative value of 

the chosen CS as parametric modulators. Additional regressors representing 

shock receipt and omission trials were also added to the model as for the first 

analysis. 

(3) “Model-based” sensory prediction error analysis. This third analysis was 

carried out in order to test the hypothesis is that sensory prediction errors (SPEs) 

should be oppositely signed in MES-seeking vs MES-avoiding individuals. 

Specifically, we wanted to test the idea that MES receipt (S=1) represents a better 

than expected outcome for high behavioural sensation-seekers, but worse than 

expected outcome for low sensation-seekers. Trials were therefore modelled with 

onsets at start of the ISI period (duration 2.5s), with parametric modulators of 

the points value just received, whether a CS+ or CS- was chosen, and the SPE for 

that trial, calculated according to Equation 4 (i.e. SPEt = S – SACS,t-1; where S is 1 

when a shock was delivered and 0 otherwise, and SACS,t-1 is the shock associative 

value of the chosen CS at the time of choice). Additional regressors representing 
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shock receipt and omission trials were also added to the model as for the first 

analysis. 

All analyses were corrected for serially correlated errors by fitting a first-order 

autoregressive process (AR(1)), and a high-pass filter (1/128s) was used to 

attenuate linear scanner drift in low frequency components. Six movement 

parameters generated during preprocessing (image realignment) were also 

included in each model as regressors of no interest.  

First-level contrasts were created through linear combinations of the resulting 

beta images. These contrast images were analyzed at the group level with one-

sample t-tests, with individual θ values added as a covariate (for the ‘model-free’ 

analysis, θ was calculated according to Equation 1; for ‘trial-by-trial’ and SPE 

analyses, θ was calculated according to Equation 3).  A cluster-forming threshold 

of p<0.001 (uncorrected) was applied to statistical tests at the group level, 

followed by cluster-level family-wise error (FWE) correction at p<0.05. Small-

volume correction (SVC) was used in a priori regions of interest (ROIs).  

ROIs were chosen on the basis of previous functional imaging studies examining 

differences in neural processing between high and low self-reported sensation-

seekers during decision-making and emotional processing tasks (Abler et al., 

2006; Joseph et al., 2009; Freeman and Beer, 2010; Straube et al., 2010; 

Kruschwitz et al., 2012; see Introduction). The vmPFC ROI was defined using the 

MNI coordinates [x, y, z] and extent estimate generated from a metaanalysis of 

neural valuation processes  (right: [4.27, 35.18, 11.82], left: [-7.29, 38, -10.57], 
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spheres with 12mm radii; Levy and Glimcher, 2012). The vS ROI was also defined 

using estimates from the functional imaging literature (‘nucleus accumbens’: [±9, 

9, -8] plus ‘ventral caudate’: [±10, 15, 0], spheres with 6mm radii; as per Di 

Martino et al., 2008; Engelmann et al., 2015). The insula ROI was defined 

anatomically using the automated anatomical labelling (aal) atlas (Tzourio-

Mazoyer et al., 2002) in the WFU PickAtlas toolbox (Wake Forest University 

School of Medicine, North Carolina, USA). 

 

4.3 Results 

4.3.1 Behavioural prescreen data 

4.3.1.1 Replication of previous findings 

Data from this sample (N=94) provided a further replication of the two key 

behavioural findings from previous studies. Specifically, there was a significant 

positive relationship between self-reported sensation-seeking personality (SSS-

V-R total score) and the value assigned to opportunity to receive the MES (θ), 

with higher value in individuals with higher trait sensation-seeking (r=0.230, 

p=0.027; Cronbach’s alpha for internal reliability of SSS-V-R total score was 

0.873). There was also a significant negative relationship between θ value and 

relative reaction time for MES-associated vs non MES-associated stimuli (median 

RTCS+ – median RTCS-), with individuals who assigned a higher value responding 
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faster for MES-associated stimuli, and individuals who assigned a lower value 

responding slower for MES-associated stimuli (r=-0.397, p<0.001).  

We also replicated our finding from the first study (see Chapter 2, section 2.3.3) 

of a positive relationship between mean change in ‘liking’ rating of CS+s following 

introduction of the MES stimuli (r=0.222, p=0.032). Specifically, individuals who 

assigned a positive value to opportunity to receive the MES tended to increase 

their liking ratings of MES-associated CSs following introduction of the shocks, 

whereas individuals who assigned a negative value tended to decrease their 

liking ratings of these CSs following this stage. Finally, data from our new 

additional measure of how participants felt about the MES stimulation itself 

supported the idea that the MES was seemingly appetitive for some individuals, 

as there was a significant positive relationship between θ value and MES liking 

rating (r=0.264, p=0.010). 

 

4.3.1.2 Relationship to other self-report measures 

Estimated theta value was not found to correlate with age, estimated IQ, trait 

anxiety, or self-determined current amplitude of the MES (all p>0.1). There was 

a significant negative relationship between θ value and ASQ ‘sensory sensitivity’ 

ratings (r=-0.239, p=0.024): such that participants who assigned a higher value 

to opportunity to receive the MES tended to report lower levels of ‘sensory 

sensitivity’ (sensitivity to sounds/smells/lights/textures etc. which do not 

appear to bother other people). 
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There was no association between θ value and scores on the alcohol or drug 

abuse screening disorders tests (p>0.1). A non-significant positive trend was 

found towards an association between θ and self-reported number of alcoholic 

drinks consumed per week (Spearman’s ρ=0.174, p=0.093). No association was 

found between θ value and self-reported tobacco consumption (p>0.1; although 

there was a low frequency of smoking overall in this sample). 

 

4.3.2 Scan day behaviour 

4.3.2.1 Pre-scan behaviour 

Data from the prescan acquisition (points learning) phase (N=26) were entered 

into a repeated-measures ANOVA to test whether points value of the CSs (four 

levels; 25, 50, 75, and 100) was reflected in their overall proportionate choice. 

There was a significant main effect of points value on proportionate choice of CSs 

(F(3,75)=92.946, ηp2=0.788, p<0.001), indicating participants were indeed aware 

of the points value of each CS. Simple effects analysis by pairwise comparison 

revealed a significant difference in choice between each respective points level 

(all p<0.001; Figure 9A). If behavioural sensation-seeking group (θ>0, N=8 vs 

θ<0, N=18) was included as a between-subjects factor in the model, there was no 

significant interaction between factors of sensation-seeking group and points 

value (p>0.1), suggesting that there was no difference in learning of CS-points 

associations (as expressed in terms of choice behaviour) between groups. 
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Learning of CS-MES association was next probed using a repeated measures 

model of ‘shock knowledge’ VAS ratings of each CS (ratings on a VAS ranging from 

‘no chance of shock’ [-300] to ‘chance of shock’ [+300]). There was a significant 

difference in mean VAS ratings for CS+ (MES-associated) compared with CS- (non 

MES-associated) stimuli (significant main effect of CS type: F(1,25)=24.202, 

ηp2=0.492, p<0.001; Figure 9B). Again there was no interaction between the 

factors of CS type and behavioural sensation-seeking group (p>0.1), suggesting 

that there was no difference in explicit knowledge about CS-MES associations 

between individuals who sought out vs individuals who tended to avoid MES-

associated stimuli. 

As with the prescreen session, we also examined whether there were 

associations between behavioural sensation-seeking and ‘liking’ ratings of both 

the CS and MES itself in the prescan data. Again, there was a significant positive 

association between change in VAS liking rating of MES-associated CSs following 

introduction of the mild electric shocks (a measure of implicit MES liking) and the 

value assigned to opportunity to receive the MES calculated from behavioural 

data (i.e. θ): with individuals who assigned a higher value tending to increase 

their liking rating, and individuals who assigned a lower value tending to 

decrease liking ratings (r=0.489, p=0.011; Figure 9C). There was no significant 

relationship between theta value and explicit MES ‘liking’ rating in this sample 

(r=0.245, p>0.1; although considering the strength of the significant relationship 

observed in the larger group, this may be underpowered). 
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Figure 9. Summary of pre-scan training trials. 

A Proportionate choice of conditioned stimuli (CSs) according to their points value, 

averaged across all acquisition phase (points learning) trials. 

B Mean ‘shock knowledge’ ratings (ratings on a visual analogue scale (VAS) ranging from 

‘no chance of shock’ at -300 to ‘chance of shock’ at +300) for CS+ (MES-associated) and 

CS- (non MES-associated) stimuli.  

C Relationship between mean change in VAS ‘liking’ rating of CS+s following introduction 

of the mild electric stimuli (prior to entering the scanner), and MES value (θ) calculated 

from all scanner trials.  

Error bars represent SEM, dotted lines represent 95% confidence intervals, N=26. 

**p<0.001 
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4.3.2.2 In-scanner behaviour 

When considering data from inside the scanner, there was a significant positive 

relationship between θ value (calculated according to Equation 1) and self-

reported sensation-seeking (r=0.391, p=0.048; Figure 10A), with higher self-

reported sensation-seekers assigning greater economic value to opportunity to 

experience the MES (Cronbach’s alpha for internal reliability of total sensation-

seeking score in this subsample was 0.874). There was also a significant negative 

relationship between relative reaction time for MES-associated (CS+) vs non 

MES-associated (CS-) stimuli and θ value (r=-0.543, p=0.004; Figure 10B); with 

individuals who assigned a high value showing a relative speeding of responses 

for CS+ stimuli, and individuals who assigned a lower value showing a relative 

slowing of responses for CS+ stimuli. 

In order to test for possible effects of increasing task length at the functional 

imaging stage (3*100 trial blocks, as compared with 1*100 trial block in previous 

behavioural testing), θ estimates derived from behaviour from each block 

separately for each participant were entered into a repeated-measures model 

with the within-subjects factor of block. There was no overall effect of block 

number on θ values (p>0.1), suggesting no overall tendency across participants 

to e.g. decrease choice of MES-associated stimuli over the course of the task . If 

behavioural sensation-seeking group (θ > or < 0, across all trials) was added to 

the model as a between-subjects factor, this finding did not differ between high 

and low sensation-seekers (block*SS group interaction, p>0.1; Figure 10C). 
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Figure 10. Summary of in-scanner behaviour. 

A Relationship between value assigned to opportunity to experience the mild electric 

stimulus (MES) and self-reported sensation-seeking score (SSS-V-R total score; r=0.391, 

p=0.048). 

B Relationship between MES value (i.e. θ) and relative choice reaction time for MES-

associated (CS+) vs non MES-associated (CS-) stimuli (reaction time effect calculated as 

median RTCS+ – median RTCS-; r=-0.543, p=0.004). 

C Change in θ values across blocks inside the scanner, illustrated separately for high 

behavioural sensation-seeking (HSS, overall θ>0, N=8) and low behavioural sensation-

seeking (LSS, overall θ<0, N=18) individuals. Dotted lines represent 95% confidence 

intervals. Error bars represent SEM. 
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There was a tendency for the value participants assigned to the opportunity to 

experience the MES to decrease between prescreening and scanning sessions (at 

recruitment: θ>0, N=19, θ<0, N=7; from scan day data: θ>0, N=8, θ<0, N=18). 

Formally, if θ estimates were contrasted between prescreen and scan-day 

sessions, there was a significant decrease in mean θ value across all subjects for 

trials completed inside the scanner (main effect of session: F(1,25)=12.164, 

ηp2=0.327, p=0.002; mean θ on prescreen = 3.9 ± 14, mean θ from scan trials = -

8.4 ± 19). In accordance with this, across-session reliability of theta estimates (as 

measured by intra-class correlation coefficient, or ICC; Shrout and Fleiss, 1979; 

McGraw and Wong, 1996) was found to be good for relative (rank) agreement, 

(two-way mixed model, average measures ICC=0.618), but slightly lower for 

absolute agreement (ICC=0.531).  

This might reflect an effect of the unusual sensory environment of the scanner. In 

particular, for participants for whom this was their first ever MRI scan might have 

decreased motivation for other ‘intense and unusual’ sensory stimulation in the 

unusual, dark, and loud environment of the scanner, as this experience may be 

sufficiently intense and unusual in and of itself. This explanation is in line with 

previous observations of differences in sensory processing between lab and MR 

environments (e.g. Ellerbrock and May, 2014). 
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4.3.3 Functional imaging data 

4.3.3.1 Categorical analysis 

Points (economic) value of chosen stimuli 

To identify brain regions sensitive to the economic (points) value of stimuli, we 

first examined the results of parametric contrast encoding points value of the 

chosen stimulus during the decision period. The positive contrast revealed no 

significant clusters at the whole brain level. However, examination of activity in 

the OFC/vmPFC ROI, revealed a significant cluster in the left medial OFC (mOFC) 

(Table 5). There was a trend-level significant cluster in the right mOFC (peak 

voxel [9, 44, -8], pSVC=0.065). The vS ROI revealed no significant clusters. 

The negative contrast (increasingly BOLD activity with decreasing points value of 

the chosen stimulus) revealed significant clusters at the whole brain level 

bilaterally in the medial frontal and inferior frontal gyri (MFG; IFG), bilaterally in 

the inferior parietal lobule (IPL), and left insula (with trend level significance in 

the right insula, peak voxel [33, 17, 4], pFWE=0.090) (Table 5). 
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    MNI coordinates   

p k t Z x y z Corr Region 

Points value (positive) 

0.046 4 3.62 3.20 -6 41 -8 SVC Left mOFC 

Points value (negative) 

0.002 213 5.35 4.30 -45 20 34 WB Left MFG 

  4.83 4.00 -45 5 31 WB Left IFG 

  3.96 3.44 -33 11 25 WB Left IFG 

0.001 219 5.07 4.14 36 56 7 WB Right MFG 

  4.21 3.61 45 32 28 WB Right MFG 

  4.18 3.58 45 41 13 WB Right IFG 

0.045 97 4.96 4.08 -33 -52 43 WB Left IPL 

0.024 117 4.82 3.99 36 -52 46 WB Right IPL 

  4.64 3.88 24 -61 34 WB Right precuneus 

  4.17 3.58 15 -61 43 WB Right precuneus 

0.027 113 4.74 3.94 -30 23 7 WB Left insula 

0.003 87 4.74 3.94 -30 23 7 SVC Left insula 

  4.66 3.90 -27 23 -2 SVC Left insula 

0.014 42 4.72 3.93 33 17 4 SVC Right insula 

  4.50 3.79 30 23 -2 SVC Right insula 

Table 5. Whole brain and ROI analyses for the points value contrast (Model 1). k = 

cluster size, Corr=significance correction: WB = whole brain FWE cluster-level corrected 

(with an initial cluster-forming threshold of p<0.001), SVC=small-volume corrected 

(FWE cluster-level corrected within ROI). 
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Choice of MES-associated vs non MES-associated stimuli 

We next examined whether regional BOLD signal was sensitive to choice of CS+ 

(MES-associated) vs CS- (non MES-associated) stimuli across the whole group, 

during the decision period (an orthogonal contrast to the economic or points 

value of chosen CSs). There was significantly greater activity when choosing CS+ 

as opposed to CS- stimuli in the right superior frontal gyrus (SFG), in the IPL 

bilaterally, in the insula bilaterally, in the right thalamus, and in the right IFG 

(Table 6). Across all subjects, there was no significant increase in activity to CS+ 

vs CS- stimuli in the vS or vmPFC ROIs. 
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    MNI coordinates   

p k t Z x y z Corr Region 

0.000 798 7.48 5.32 57 -28 31 WB Right IPL 

  7.18 5.20 63 -34 34 WB Right IPL 

  6.66 4.97 42 -19 16 WB Right insula 

0.001 227 7.13 5.17 -51 -31 28 WB Left IPL 

  6.58 4.93 -63 -25 25 WB Left supramarginal gyrus 

  4.09 3.53 -54 -46 34 WB Left supramarginal gyrus 

0.000 551 6.06 4.67 9 8 70 WB Right SFG 

  5.36 4.30 9 23 43 WB Right MFG 

  4.62 3.87 6 29 52 WB Right SFG 

0.000 299 6.00 4.64 -27 26 1 WB Left insula 

  5.97 4.63 -30 20 10 WB Left insula 

  5.18 4.20 -48 -1 7 WB Left insula 

0.000 436 5.98 4.64 30 26 4 WB Right insula 

  5.82 4.55 33 23 -5 WB Right insula 

  5.55 4.41 27 20 -14 WB Right insula 

0.045 91 5.86 4.57 42 5 40 WB Right IFG 

  4.00 3.47 51 5 52 WB Right MFG 

0.016 122 5.00 4.10 12 -13 4 WB Right thalamus 

  4.09 3.53 9 -22 -5 WB Right thalamus 

  3.71 3.27 12 2 10 WB Right thalamus 

Table 6.  Whole brain analysis for choice of MES-associated (CS+) vs non MES-

associated (CS-) stimuli. k = cluster size, Corr=significance correction: WB = whole 

brain FWE cluster-level corrected (with an initial cluster-forming threshold of p<0.001). 
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In order to investigate the effects of individual differences in preference for MES-

associated stimuli (as indexed by θ) on brain activity when choosing between 

MES-associated and non-MES associated stimuli, we next examined the effects of 

the continuous θ value covariate on the CS+ vs CS- contrast. When examining the 

positive contrast at the whole brain level, we found that there was a significant 

positive relationship (i.e. greater activity when choosing CS+ stimuli in 

individuals with greater θ value) in the left parahippocampal gyrus (PHG), left 

precuneus, and the left cerebellum (Table 7).  

Analysis of activity in our predefined vmPFC and vS ROIs revealed that θ value 

was a significant positive covariate of BOLD signal in both regions. Specifically, 

there was significantly greater activity when choosing CS+ as compared to CS- 

stimuli in individuals with greater θ value (higher behavioural sensation-

seekers) in the central-left mOFC and the head of the caudate bilaterally (Table 

7, Figure 11). Individuals who assigned a negative value to opportunity to 

receive the MES showed decreases in BOLD signal in these regions when 

choosing MES-associated vs non MES-associated stimuli; whereas individuals 

who assigned a positive value to opportunity to receive the MES showed the 

opposite. Thus, we found evidence for increasing activity in value-associated 

regions during choice of MES-associated stimuli, with increasing behaviourally-

derived value of opportunity to receive the MES. 
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    MNI coordinates   

p k t Z x y z Corr Region 

Theta covariate (positive) 

0.000 9300 11.7 6.68 -33 -40 -11 WB Left PHG 

  9.35 6.01 -27 -37 -20 WB Left fusiform gyrus 

  8.88 5.86 -54 -1 -20 WB Left mid temporal gyrus 

0.000 685 6.66 4.97 -33 -82 37 WB Left precuneus 

  6.44 4.86 -21 -79 43 WB Left precuneus 

  5.86 4.57 -42 -73 34 WB Left precuneus 

0.021 114 4.80 3.98 -33 -79 -32 WB Left cerebellum 

  3.82 3.34 -51 -61 -32 WB Left cerebellum 

  3.59 3.18 -48 -52 -41 WB Left cerebellum 

0.000 340 7.55 5.35 -12 47 -8 SVC Left mOFC 

  7.04 5.14 -12 38 -11 SVC Left mOFC 

  6.62 4.95 0 35 -11 SVC Right mOFC 

0.006 21 5.62 4.44 6 20 -2 SVC Right caudate 

0.005 26 5.45 4.36 -9 20 -5 SVC Left caudate 

  4.43 3.75 -3 11 -5 SVC Left caudate 

Theta covariate (negative) 

0.012 130 5.74 4.51 33 23 -5 WB Right insula 

  3.97 3.45 36 26 10 WB Right IFG 

0.050 88 4.84 4.00 -27 23 -2 WB Left insula 

  4.67 3.90 -30 20 10 WB Left insula 

Table 7. Whole brain and ROI analyses for effects of theta value on brain activity 

when choosing MES-associated (CS+) vs non MES-associated (CS-) stimuli. k = 

cluster size, Corr=significance correction: WB = whole brain FWE cluster-level corrected 

(with an initial cluster-forming threshold ofp<0.001), SVC=small-volume corrected 

(FWE cluster-level corrected within ROI). 
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Figure 11. Significant positive effects of theta value (valued assigned to 

opportunity to receive the MES) on BOLD signal when choosing MES-associated 

(CS+) as opposed to non MES-associated (CS-) stimuli in (A) the central-left medial 

OFC and (B) the head of the caudate, bilaterally. Images are thresholded at p<0.001, 

uncorrected, and overlain on the average normalized anatomical image; colour bars 

represents t values. Scatter plots represent beta estimates extracted from the CS+/CS- 

contrast images at peak voxel coordinates, plotted against individual θ values. Data in 

(B) are illustrated for the left caudate. 

 

Positive correlations between parameter estimates extracted at from the CS+ vs 

CS- contrast at peak voxel coordinates in the mOFC and vS and individual θ values 

remained strongly significant after exclusion of a potential outlier (θ=46.6, 

Figure 11; r=0.769, r=0.698, respectively, both p<0.001). 
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Theta value was also found to be a significant negative covariate of BOLD signal 

when choosing CS+ as opposed CS- stimuli in the insula bilaterally (Table 7, 

Figure 12). Individuals who assigned a negative value to opportunity to receive 

the MES showed increases in BOLD signal bilaterally in the insula when choosing 

MES-associated vs non MES-associated stimuli; whereas individuals who 

assigned a positive value to opportunity to receive the MES did not. There was 

also a non-significant trend towards negative modulation of BOLD signal by θ 

value on this contrast in the right MFG (peak voxel [6, 26, 43], pFWE=0.080). 

 

 

Figure 12. Significant negative effect of theta value (valued assigned to 

opportunity to receive the MES) on BOLD signal when choosing MES-associated 

(CS+) as opposed to non MES-associated (CS-) stimuli, bilaterally in the insula. 

Image thresholded at p<0.001, uncorrected, and overlain on the average normalized 

anatomical image; colour bars represents t values. Scatter plot represents beta estimates 

extracted from CS+/CS- contrast images at peak voxel coordinates, plotted against 

individual θ values. Data are illustrated for the right insula. 
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Conjunction analysis: common coding of economic and MES reward in high SSs? 

Finally, we used a conjunction analysis to test the hypothesis that brain regions 

positively encoding the economic value of chosen stimuli would show positive 

activation when choosing MES-associated stimuli, selectively in individuals who 

assigned a positive to value to the opportunity to experience the MES 

(behavioural high sensation-seekers).  

Specifically, we used an inclusive mask generated by the positive contrast of the 

points value parametric modulator (see above) to test for differences in activity 

on the orthogonal CS+ vs CS- contrast with individual differences in θ value. 

Activity in the points value-sensitive mOFC cluster was greater when choosing 

CS+ stimuli in individuals who assigned greater value to opportunity to receive 

the MES (i.e. θ was a significant positive covariate of activity in this region; peak 

voxel [-6, 44, -8], Z=4.88, pSVC=0.002) (Figure 13). 

Further, activity in this points value-sensitive region was positively signed when 

choosing CS+ stimuli in high behavioural SSs (θ>0), but negatively signed in low 

behavioural SSs (θ<0; significant difference between groups in parameter 

estimates from the CS+ vs CS- contrast extracted from the peak voxel, t22=-2.916, 

p=0.008, independent samples t-test with p and df adjusted for violation of 

Levene’s test for equality of variance) (Figure 13). This suggests that 

opportunity to experience the intense sensory stimulus was encoded in the same 

region as opportunity to gain points (monetary reward) during the decision 

period, only in high behavioural sensation-seekers. 
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Figure 13. Conjunction analysis revealed that a region in the mOFC cluster 

identified as showing increasing activity with increasing points value of chosen 

CSs, also showed positive modulation by individual θ value when choosing MES-

associated (as opposed to non MES-associated) stimuli (A). Image thresholded at 

p<0.001, uncorrected, and overlain on the average normalized anatomical image; colour 

bar represents t values. Scatter plot and bar chart show individual parameter estimates 

from the CS+ vs CS- contrast, extracted at the peak mOFC voxel identified from the 

positive points value contrast, plotted against θ values. Hss=behavioural high sensation-

seekers (θ>0), Lss=behavioural low sensation-seekers (θ<0). Error bars represent SEM. 

**p=0.008. For comparison, the left vmPFC/OFC region identified from a meta-analysis 

of functional imaging studies probing common representation of different reward types 

(Levy and Glimcher, 2012) is plotted on the average normalized anatomical image for 

our study participants (B). 
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Conversely, when masking this contrast with areas that showed increased 

activity with decreasing points value of the chosen CS, θ value was a significant 

negative covariate of activity bilaterally in the insula (right peak voxel [-7, 23, -2], 

Z=4.00, pSVC=0.006; left peak voxel [33, 23, -5], Z=4.51, pSVC=0.010). Individuals 

with low θ values (low behavioural sensation-seekers) showed positive activity 

in a brain region negatively associated with economic value when choosing MES-

associated stimuli, but individuals with high θ values (high behavioural 

sensation-seekers) did not (significant difference between groups in parameter 

estimates from CS+ vs CS- contrast when extracted from the peak insula voxel 

identified from the negative points value contrast; t24=2.609, p=0.015, 

independent samples t-tests) (Figure 14). 
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Figure 14. Conjunction analysis revealed that insula clusters identified as showing 

increasing activity with decreasing points value of chosen CS also showed negative 

modulation according to θ value when choosing MES associated (as opposed to non 

MES-associated) stimuli. Image thresholded at p<0.001, uncorrected, and overlain on 

the average normalized anatomical image; colour bar represents t values. Scatter plot 

and bar chart show individual parameter estimates from the CS+ vs CS- contrast, 

extracted at the peak insula voxel identified from the negative points value contrast, 

plotted against θ values. Hss=behavioural high sensation-seekers (θ>0), 

Lss=behavioural low sensation-seekers (θ<0).  Error bars represent SEM. *p=0.015 

 

 

4.3.3.2 “Model-based” trial-by-trial analysis 

Points (economic) value of chosen stimuli 

Analysis of brain regions where BOLD signal was sensitive to the points value of 

chosen stimuli during the decision period again revealed a significant left mOFC 

cluster for the positive contrast under SVC (Table 8). Similarly, the negative 

contrast again revealed significant clusters in the IPL, IFG, and MFG at the whole 

brain level, and bilaterally in the insula under SVC (Table 8). 
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    MNI coordinates   

p k t Z x y z Corr Region 

Points value (positive) 

0.024 15 3.85 3.36 -6 41 -8 SVC Left mOFC 

Points value (negative) 

0.000 304 5.70 4.49 36 56 7 WB Right MFG 

  4.03 3.49 45 35 31 WB Right MFG 

  3.98 3.45 51 14 34 WB Right MFG 

0.008 162 5.43 4.34 -36 -49 43 WB Left IPL 

  4.18 3.59 -39 -37 40 WB Left IPL 

  4.08 3.52 -42 -40 49 WB Left IPL 

0.000 273 5.32 4.28 -45 5 28 WB Left IFG 

  5.03 4.12 -42 20 31 WB Left MFG 

  4.24 3.63 -33 2 34 WB Left IFG 

0.005 72 4.76 3.95 -33 20 7 SVC Left insula 

  4.70 3.92 -27 23 -2 SVC Left MFG 

0.042 20 4.44 3.76 30 23 -2 SVC Right insula 

  4.30 3.67 33 17 4 SVC Right insula 

Table 8. Whole brain and ROI analyses for the points value contrast (Model 2). k = 

cluster size, Corr=significance correction: WB = whole brain FWE cluster-level corrected 

(with an initial cluster-forming threshold of p<0.001), SVC=small-volume corrected 

(FWE cluster-level corrected within ROI). 

 

 

Shock associative value of chosen stimuli 

We next examined whether BOLD signal was significantly related to our modelled 

internal probability estimate of receiving the MES, when choosing a CS (i.e. trial-
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by-trial variation in SACS values). Analysis of the positive contrast for SACS value 

of the chosen CS on each trial across the whole group revealed a significant 

cluster in the left insula (peak voxel [-27, 29, 1], k=26, Z=3.56, pSVC=0.020), and a 

trend-level significant cluster in the right insula (peak voxel [36, 14, -11], k=11, 

Z=3.37, pSVC=0.064). This suggests that, across all subjects, modelled internal 

probability of receiving the MES was being tracked in the insula during the choice 

period. The negative contrast revealed no significant voxels. 

There was no evidence for a (linear) effect of θ value on the positive contrast at 

our significance threshold. In order to explore any group level differences 

undetected by this analysis (e.g. due to non-linear effects of θ value on BOLD 

signal), individual contrasts were entered into a 2-sample t-test at the second 

level, with participants divided into high behavioural sensation-seekers (θ>0) 

and low behavioural sensation-seekers (θ<0). This grouping was then used to 

explore differences between high and low behavioural sensation-seekers in 

coding of shock associative value (SACS), by contrasting activity between the two 

groups in brain regions previously found to be sensitive to SACS value on each 

trial. 

This analysis revealed significantly greater parameter estimates for the SACS 

contrast in low, compared to high, behavioural sensation-seekers in the left 

insula (peak voxel [-33, 23, -5], k=23, Z=3.81, pSVC=0.028) (Figure 15).  Thus, 

there appeared to be significant positive coding of shock associative value in the 

left insula for low sensation-seekers, but not high sensation-seekers. There were 
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no significant clusters where activity was found to greater for high, compared to 

low, sensation-seekers. 

 

 

Figure 15. An insula region positively coding the shock associative value of chosen 

CSs showed significant activation in low, but not high behavioural sensation-

seekers, during the decision period. Image thresholded at p<0.001, uncorrected, and 

overlain on the average normalized anatomical image; colour bar represents t values. 

Bar chart represents parameter estimates extracted from contrast images at peak voxel 

coordinates; Hss=behavioural high sensation-seekers (θ>0), Lss=behavioural low 

sensation-seekers (θ<0).  Error bars represent SEM. **p<0.001 

 

 

Conjunction analysis 

We next examined whether brain regions significantly associated with the 

economic (points) value of chosen stimuli also showed significant activation to 
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the modelled shock associative value of chosen stimuli (an orthogonal contrast), 

during the decision period. 

When masked by regions significantly negatively encoding the points value of 

chosen CSs (i.e. exhibiting increasing activation with decreasing points value), 

there was again greater activity in low sensation-seekers than high sensation-

seekers on the shock associative value contrast in the left insula (peak voxel [-30, 

23, -5], k=21, Z=3.79, pSVC=0.036). There was positive coding of modelled 

probability of receiving an MES in regions tracking negative economic value in 

low, but not high, sensation-seekers (significant difference between groups in 

parameter estimates from the SACS contrast when extracted from the peak voxel 

identified from the negative points value contrast, t20=2.754, p=0.012, 

independent samples t-test, p and df adjusted for violation of Levene’s test for 

equality of variances) (Figure 16).   

Low sensation-seekers thus appear to be tracking the probability of receiving the 

intense sensory stimulation in the same way as receiving low economic value 

(fewer points), whereas higher sensation-seekers do not. This is despite the fact 

that we found no evidence for a difference in learning about MES-predicting vs 

non MES-predicting stimuli prior to entering the scanner in high vs low sensation-

seekers (see section 4.3.2.1). 
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Figure 16. Conjunction analysis revealed that an insula region identified as 

showing increasing activation with decreasing economic value of chosen stimuli 

showed positive coding of the shock associative value of chosen CSs in low, but not 

high, behavioural sensation-seekers, during the decision period. Image thresholded 

at p<0.001, uncorrected, and overlain on the average normalized anatomical image; 

colour bar represents t values. Bar chart represents parameter estimates extracted from 

shock associated value contrast images, extracted at peak insula voxel coordinates from 

the negative points value contrast. Hss=behavioural high sensation-seekers (θ>0), 

Lss=behavioural low sensation-seekers (θ<0).  Error bars represent SEM. *p=0.012 

 

 

Analysis of activity on the SACS contrast in the peak voxel identified from the 

positive points value contrast (i.e. the peak voxel across all subjects exhibiting 

increasing activation with increasing points value, located in the left mOFC), 

revealed there was only a non-significant trend towards greater parameter 

estimates in high, as opposed to low, sensation-seekers (independent samples t-

test, p=0.052) (Figure 17).  
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Figure 17. BOLD signal extracted from the peak voxel identified from the positive 

points value contrast (i.e. significantly positively encoding the economic value of 

chosen CSs, located in the mOFC, A) was marginally greater in high (Hss), 

compared with low sensation-seekers (Lss) on the shock associative value 

contrast (B). ^p=0.052 

 

 

4.3.3.3 “Model-based” sensory prediction error analysis 

Finally, we examined whether there were differences in the encoding of sensory 

prediction error (SPE) signals between high and low behavioural sensation-

seekers, during the period where participants did/did not receive the MES. 

First, we investigated whether BOLD signal in any brain region was significantly 

associated with the trial-by-trial prediction error signals generated using our 

model. Across the whole group, we found no significant clusters either at the 

whole brain level, or in our pre-specified ROIs, for the positive SPE contrast. 

However, there was a significant negative encoding of SPEs in clusters in the 
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IPL/superior temporal gyrus (STG) and superior frontal gyrus (SFG) (Table 9). 

This suggests that, overall, our participants negatively coded imperfectly 

predicted receipt of the MES (equivalent to coding S=-1 vs S=0, instead of S=1 vs 

S=0, in Equation 4). This is unsurprising, given that the majority of our 

participants assigned a negative value to opportunity to receive the MES inside 

the scanner. 

 

    MNI coordinates   

p k t Z x y z Corr Region 

0.002 202 6.34 4.81 48 -64 40 WB Right IPL 

  4.42 3.74 57 -61 25 WB Right STG 

0.013 135 4.67 3.90 24 32 52 WB Right SFG 

  4.37 3.71 15 35 55 WB Right SFG 

  4.34 3.69 33 17 58 WB Right SFG 

Table 9. Negative contrast for sensory prediction errors across the whole brain. k 

= cluster size, Corr=significance correction: WB = whole brain FWE cluster-level 

corrected (with an initial cluster-forming threshold of p<0.001). 

 

We next tested our hypothesis that SPEs might be positively signed in 

behavioural high sensation-seekers (where receipt of the MES represents a 

better than predicted outcome), but negatively signed in behavioural low 

sensation-seekers (where receipt of the MES represents a worse than predicted 

outcome).  
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Using sensitivity to SPE signals across the whole group (Table 9) as a mask, we 

found there to be greater BOLD signal in response to SPEs in high, vs low, 

sensation-seekers in a cluster in the left posterior cingulate cortex (PCC), 

although this cluster did not survive correction for multiple comparison at the 

whole brain level. As the PCC did not constitute an a priori region of interest for 

this study (although previously shown to encode reward prediction errors; 

McCoy et al., 2003; Rutledge et al., 2010), we applied an exploratory a posteriori 

correction to this contrast, correcting for the search volume of the whole group 

mask (subthreshold PCC, plus IPL and SFG clusters as recorded in Table 9). 

Under this exploratory correction, SPEs appear to be coded positively for high 

sensation-seekers, but negatively coded for low sensation-seekers, in the PCC  

(peak voxel [-9, -55, 28], k=11, Z=4.14, pSVC=0.045) (Figure 18). 
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Figure 18. Results of an exploratory analysis suggest that sensory prediction error 

signals may be positively signed for high sensation-seekers, but negatively signed 

by low sensation-seekers, in the PCC. Image thresholded at p<0.001, uncorrected, and 

overlain on the average normalized anatomical image; colour bar represents t values. 

Bar chart represents parameter estimates extracted from sensory prediction error 

contrast images, extracted at peak voxel coordinates from the Hss>Lss contrast, when 

masked by voxels sensitive to sensory prediction error signals across the whole group.  

Hss=behavioural high sensation-seekers (θ>0), Lss=behavioural low sensation-seekers 

(θ<0). Error bars represent SEM. **p<0.001 
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4.4 Discussion 

In a large novel sample, performance on our sensation-seeking paradigm probing 

individual differences in preference for mild electric stimulation (MES) was 

found to be significantly (and selectively) related to self-reported sensation-

seeking, relative reaction time for MES-associated stimuli, change in ‘liking’ 

rating of MES-associated stimuli, ‘liking’ rating of the MES itself, and self-reported 

sensitivity to sensory stimulation. This evidence provides a further replication of 

our previous key behavioural findings, and supports the construct validity of this 

paradigm as a probe of sensation-seeking-like behaviour in the lab. 

In this study, we used three different models of BOLD signal data to derive three 

novel empirical findings about the neural activity underlying individual 

differences in performance on this measure. 

Firstly, we found that there were significant positive associations between the 

value individuals assign to the opportunity to receive mild electric stimulation, 

and activity in brain regions associated with value processing (the medial OFC 

and ventral caudate), during choice of MES-associated as opposed to non MES-

associated stimuli. Critically, we used conjunction analysis to show that there was 

selective activation of a brain region encoding positive economic value when 

choosing MES-associated stimuli in high behavioural sensation-seekers. 

Conversely, there was selective activation of brain regions encoding negative 

economic value when choosing MES-associated stimuli in low behavioural 

sensation-seekers. This suggests that individuals weighed the opportunity to 
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experience the MES in the same way as the economic value of chosen stimuli, and, 

crucially, that this opportunity was encoded in the same regions as economic 

reward in high behavioural sensation-seekers. 

Secondly, we found that there was a significant difference between low and high 

sensation-seeking individuals in the way that participants’ BOLD signal tracked 

the modelled internal probability of receiving an MES, given selection of a 

particular stimulus (shock associative value of that stimulus). During the decision 

period, low sensation-seeking individuals showed significantly greater activity 

associated with the shock-associative value of chosen stimuli in the left insula 

compared with high sensation-seekers. Importantly, we found no evidence for 

difference in explicit learning of the MES-CS associations between high and low 

sensation-seekers prior to entering the scanner, suggesting that this difference is 

not due to decreased knowledge of experimental contingencies. 

Thirdly, we found tentative evidence from neural activity during the trial period 

where individuals may or may not actually receive the mild electric stimulation 

that sensory prediction errors (difference between modelled internal probability 

of receiving the MES on that trial, and actual trial outcome) were positively coded 

in high sensation-seekers, but negatively coded in low sensation-seekers, in the 

posterior cingulate cortex. This finding would be consistent with the idea that a 

positive prediction error (actual MES receipt) represented a better than expected 

outcome in high sensation-seekers, but a worse than expected outcome in low 

sensation-seekers. 
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A large number of functional imaging studies have related variation in BOLD 

signal in the OFC/vmPFC and ventral striatum (including head of the caudate 

nucleus) to the expected value of choice options (Knutson et al., 2001; Abler et 

al., 2006; Levy and Glimcher, 2012). Thus our finding of increased signal in these 

regions when choosing MES-associated options, as a linear function of the 

additional value participants assigned to opportunity to receive the MES 

(positive or negative), is consistent with the proposal that participants used a 

common valuation currency for the points and sensory value of different choice 

options.  

Critically, we found evidence for common value coding of points and intense 

sensory stimulation (MES) value in behavioural high sensation-seekers in a ROI 

derived from a meta-analysis of previous functional imaging studies probing 

common representation across different types of rewards (Levy and Glimcher, 

2012; Figure 13). Interestingly, previous studies have also reported greater 

BOLD signal in medial orbitofrontal and prefrontal regions during anticipation of 

or whilst viewing ‘high-arousal’ emotional stimuli in higher self-reported 

sensation-seekers (Joseph et al., 2009; Bermpohl et al., 2008).  

Our finding that the shock associative value of chosen stimuli was tracked during 

the decision period in the left insula (particularly in low sensation-seeking 

individuals) is consistent with previous report suggesting that insula has a role 

in tracking ‘salient’ events (e.g. showing greater activation during anticipation of 

events of uncertain outcome, and particularly but by no means exclusively during 
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unpleasant or aversive events; Preuschoff et al., 2008; Menon and Uddin, 2010; 

Rutledge et al., 2010). 

However, this observation, as well as our finding of increased activity in the 

insula bilaterally in lower sensation-seekers when choosing MES-associated as 

opposed to non MES-associated stimuli, may appear to contradict previous 

investigations which reported increased insula activation in higher sensation-

seekers during viewing of high arousal emotional stimuli (Joseph et al., 2009; 

Straube et al., 2010). Significantly, the latter study found a positive correlation 

between insula activation and self-reported sensation-seeking during viewing of 

"scary’ clips (i.e. greater activation in higher sensation-seekers), but a negative 

correlation during viewing of ‘neutral’ film clips (i.e. less activation in higher 

sensation-seekers).  Thus our findings of decreased insula activity in anticipation 

of MES delivery in behavioural higher sensation-seekers may reflect an effect of 

habituation to (and thus decreased salience of) the MES. Note that high sensation-

seekers, by definition, will experience a greater number of these stimuli over the 

course of the task. 

Intriguingly, bilateral anterior insula activity has previously been found to 

predict whether or not a subsequent sensory stimulus (noxious heat) is 

perceived as painful: with greater prestimulus activity predicting greater 

likelihood that the stimulus will be rated as painful (Ploner et al., 2010).  Further 

studies have reported that this effect depends on information about the 

contextual salience of the upcoming sensory stimulus (Wiech et al., 2010). Thus 

increased anticipatory insula activity in low sensation-seeking individuals when 
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choosing MES-associated stimuli might relate to decreased ‘liking’ ratings of the 

sensation of the MES by low sensation-seekers (see section x), despite all 

participants endorsing a description of the stimulus as “non-painful”. 

Finally, although only preliminary in nature, our findings from the sensory 

prediction error analysis are consistent with previous observations of reward 

prediction signals in the posterior cingulate cortex in both non-human primate 

electrophysiological and human fMRI data (McCoy et al., 2003; Bruijn et al., 2009; 

Rutledge et al., 2010). Recently, Rutledge and colleagues have proposed that one 

reason that fewer studies have historically reported reward prediction error 

signals in the PCC is that the haemodynamic response function (HRF) in this 

region is dissimilar to the canonical HRF used in standard regression analyses 

(Rutledge et al., 2010). This may provide an additional explanation as to why our 

finding of differently signed parameter estimates for SPEs in the PCC failed to 

reach significance under whole brain correction. 

A major limitation of the current study is the unfortunate decrease in preference 

for the MES (behavioural sensation-seeking) between lab-based prescreening 

and in-scanner performance: resulting in a loss of data points from our functional 

imaging sample with (particularly intermediate) positive theta values (for a 

discussion see section 4.3.2.2). We have therefore tried, where possible, to use 

a continuous covariate approach in our analyses, although we accept that even 

using this approach trends in the positive portion of the theta spectrum are 

under-evidenced and may be driven by outliers. Thus, inferences about the 

direction of effects in high behavioural sensation-seekers must be treated with 
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caution, and would particularly benefit from future replication. It is also possible 

that a lack of power explains why we did not find a significant conjunction 

between regions encoding positive economic value and shock associative value 

in high sensation-seekers (although we did find the converse).  

Further, by definition, there are systematic differences in total CS+ choice, and 

associated outcome frequencies, between high and low behavioural sensation-

seeking individuals. This may lead to issues of increased noise where choice is 

relatively less frequent, or conversely the presence of habituation effects only in 

individuals exhibiting more frequent choice. However, we have attempted to 

ensure via our task design and number of trials that there will be sampling of all 

response types across all individuals.  

Despite these limitations, we propose that the data summarised above contribute 

significantly to the extant literature on the neural correlates of sensation-seeking 

behaviour. Using a novel fMRI paradigm, we have demonstrated for the first time 

that intense sensory stimulation may activate brain areas encoding economic 

reward selectively in high sensation-seekers. Furthermore, high sensation-

seekers show decreased activity in a brain region implicated in ‘salience’ 

detection (the insula) during anticipation of intense sensory stimulation, which 

may be related to their increased approach of these stimuli. In addition, high 

sensation-seekers may show positively signed responses to imperfectly 

predicted delivery of intense sensory stimulation (whereas low sensation-

seekers show negatively signed responses), in the posterior cingulate cortex. 

Significantly, differences in anticipatory reward processing in both the insula and 
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the posterior cingulate cortex have been identified as being related to the 

phenomenon of craving in drug addiction, for which high self-reported sensation-

seeking has been identified as a risk factor (Naqvi et al., 2007; Verdejo-Garcia et 

al., 2012; Garavan et al., 2000; Sinha et al., 2007).  

  



 

145 

Chapter 5 Dopamine, risky decision-making, and self-reported 

sensation-seeking  

  



 

146 

5.1 Introduction 

Several strands of evidence implicate the dopamine D2-type receptor system in 

risky decision-making (choices involving a degree of uncertainty about outcome). 

In the animal literature, direct manipulations of D2 function by both agonist and 

antagonist agents have been shown to influence ‘risky’ decision-making across a 

variety of paradigms (e.g. uncertainty in outcome magnitude vs possibility of 

aversive outcome; St Onge and Floresco 2009; Zeeb et al. 2009; St. Onge et al. 

2010; Simon et al. 2011; Mitchell et al. 2014) – including the ability to induce 

shifts in preference between uncertain and certain outcome options of the same 

expected value (risk-seeking vs risk-aversion; Cocker et al. 2012).  

In humans, treatment with D2 agonist drugs across a variety of clinical conditions 

is related to increased incidence of de novo impulse control disorders, including 

pathological gambling (Claassen et al., 2011; Dang et al., 2011; Djamshidian et al., 

2011). Variation in function of D2 receptor genes has also been related to risk for 

disordered gambling (Comings et al., 1996) and changes in striatal D2-type 

receptor ‘availability’ as estimated using 11C-raclopride PET have been associated 

with performance on the Iowa Gambling Task (Linnet et al., 2011). 

However, previous studies directly testing the effects of D2ergic drugs on risky 

decision-making paradigms in humans have predominantly revealed non-

significant or only very minor effects on choice behaviour (Zack and Poulos 2007; 

Hamidovic et al. 2008; Riba et al. 2008; Tremblay et al. 2011; Porchet et al. 2013). 

Although choosing the correct dose of D2ergic agents in human studies presents 
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some difficulties (e.g. sufficient dose to be centrally active whilst avoiding 

potentially unblinding side effects, consideration of pre- vs post-synaptic site of 

action), this is perhaps in part also due to lack of detection of individual 

differences in drug effects that may be masked in a group level analysis.  

Sensation-seeking (SS) personality has been previously been linked to variation 

in D2 system function (Hamidovic et al., 2009; Gjedde et al., 2010; Campbell et al., 

2010; Nyman et al., 2009). Furthermore, high trait SS has been associated with 

increased risk-taking across a variety of measures. In the broadest sense, links 

have been established in the general population between high SS scores and 

increased engagement in ‘health risk’ behaviours (behaviours that may endanger 

the self and/or others; (Arnett, 1994; Zuckerman, 1994; Hoyle et al., 2000; 

Roberti, 2004; Zuckerman, 1994).  

Laboratory studies in healthy volunteers have also found medium to high effect 

sizes for self-reported SS on gambling behaviour (Anderson and Brown, 1984; 

Roberti, 2004; Ashrafioun et al., 2012), and several studies have reported 

elevated SS in samples of pathological gamblers compared with controls (Blanco 

et al. 1996; Whiteside et al. 2005; Fortune and Goodie 2009; Hodgins et al. 2012). 

Although some have found no differences in scores (Michalczuk et al. 2011; Clark 

et al. 2012), this may be  because the relationship depends on the particular form 

of problematic gambling engaged with (Coventry and Brown, 1993; Carver and 

McCarty, 2013).  
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In this chapter, we present the results of two complementary studies which 

investigated the effects of a D2 receptor antagonist and agonist, respectively, on 

the same probabilistic choice task as a function of baseline SS trait. We provide 

evidence that a D2 agonist may exert greater effects on risky decision-making in 

lower SS individuals, whereas, conversely, a D2 receptor antagonist may exert 

greater effects on choice in higher SS individuals. These findings are then 

discussed in terms of hypothesised differences in D2 system function between 

low and high sensation-seekers. 
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5.2 Study 1 

In this study, we sought to extend previously inconclusive results on the 

pharmacological manipulation of risk-taking behaviour by D2 agonists 

(Hamidovic et al., 2008; Riba et al., 2008) using cabergoline – a drug which has 

both greater affinity and greater relative specificity for D2-like receptors than 

agents used in former studies (Kvernmo et al., 2006). Importantly, we also took 

into account the possibility of variation in drug effects with self-reported SS.  

Based on functional imaging evidence from individuals undergoing chronic 

dopamine agonist treatment indicating that these medications may increase 

appetitive responses towards expected rewards (Abler et al., 2009), we predicted 

that cabergoline would increase the impact of information about the probability 

of upcoming rewards on choice, and possibly also diminish the effect of expected 

negative consequences, when choosing under conditions of risk or uncertainty. 

Although previous studies have reported greater responses to DAergic stimulant 

drugs in high SS volunteers, it has also been suggested that lower sensation-

seekers might have a relatively higher gain striatal DA system (Gjedde et al., 

2010; see also Discussion), which would predict a greater response to specific 

agonists in lower SS subjects.  To anticipate, in the investigation reported here 

cabergoline significantly influenced choice sensitivity to information about 

probability and potential loss, and, critically, the magnitude of these effects was 

strongly dependent on baseline differences in self-reported SS. 
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5.2.1 Materials and methods 

5.2.1.1 Participants 

Participants were 20 healthy males, mean age 26.7 (SD 5.67). Exclusion criteria 

consisted of any current major illness, current or historic incident of psychiatric 

illness, and/or recreational drug use on more than one occasion during the past 

6 months. All subjects gave informed written consent and the study was 

approved by the University College London ethics committee. Data from one 

subject were corrupted and therefore excluded from the analysis, yielding a final 

N of 19. 

 

5.2.1.2 Design 

The study was carried out according to a within-subjects double-blind placebo-

controlled design.  On the first session, participants were screened for drug 

contraindications, gave informed consent, and were familiarised with the risky 

decision-making paradigm. Subjects also completed BIS-11 and UPPS self-report 

measures of impulsivity and SS (Patton et al., 1995; Whiteside and Lynam, 2001), 

a measure of working memory capacity (forward digit span according to the 

Wechsler Adult Intelligence Scale-III; The Psychological Corporation, 1997), and 

a standardised non-verbal measure of mental ability (Raven’s 12-item Advanced 

Progressive Matrices; Pearson Education, 2010). On the second and third (test) 

sessions, participants arrived in the morning and were administered a tablet 
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containing 20mg domperidone (an antiemetic), followed 20 minutes later by 

either 1.5mg cabergoline or a placebo (drug and placebo tablets were 

indistinguishable). This dose was chosen to be greater than that given in a 

previous study where inconsistent effects on behaviour were observed (1.25mg; 

Frank and O’Reilly, 2006), with the addition of domperidone masking in order to 

mitigate against potential physical side-effects. 

Testing commenced two hours after ingestion of the second tablet, in order to 

allow drug plasma levels to reach maximum concentration (Andreotti et al., 

1995).  On each test session participants completed visual analogue scale (VAS) 

measures of mood, affect, physical side effects and knowledge of the 

drug/placebo manipulation. Drug/placebo order was counterbalanced across 

subjects, with a minimum two weeks washout period between the two test 

sessions. 

 

5.2.1.3 Risky decision-making paradigm 

Risky decision-making was probed using the probabilistic choice task described 

previously by Rogers and colleagues (Rogers et al., 2003; Murphy et al., 2008). 

Briefly, on each trial subjects are required to choose between two simultaneously 

presented gambles. Each gamble is represented visually by a histogram, the 

height of which indicates the relative probability of winning a given number of 

points. The magnitude of possible gains is indicated in green above each 

histogram, with the magnitude of possible losses indicated underneath in red.  
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On each trial, one gamble always consists of a 50:50 chance of winning or losing 

10 points (the ‘control’ gamble, expected value zero). The alternative 

(‘experimental’) gamble varies in: 

a) probability of winning (0.6 or 0.4) 

b) magnitude of possible gains (30 or 70 points) and  

c) magnitude of possible losses (30 or 70 points).  

These gamble properties are completely crossed, yielding eight trial types. Visual 

feedback (win/lose) is given after each choice is made, and the revised running 

total of points is presented before the next trial.  

Subjects completed four blocks of 20 trials, and were instructed that the highest 

total score they managed to achieve would be converted into pence and paid at 

the end of the task as a cash bonus. Deliberation (response) times were also 

recorded.  

 

5.2.1.4 Choice data analysis 

Data were analysed as proportion of choices of the ‘experimental’ gamble, as a 

function of probability of winning, size of possible gains, and size of possible 

losses. Specifically, proportionate choice data were entered into a repeated-

measures ANOVA with within-subjects factors of drug, probability of winning, 
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size of expected gains, and size of expected losses. Treatment order (active 

preparation on the first vs second test session) was included as a between-

subjects factor in the model. A similar analysis was carried out for the response 

time data. Choices were also assessed in terms of expected value and ‘riskiness’ 

of chosen gambles, with the latter defined as the standard deviation of the 

possible outcomes of each chosen gamble. All reported simple effects analyses 

are via pairwise comparisons using the Bonferroni adjustment for multiple 

comparisons. All reported statistical tests were two-tailed, with an alpha of 0.05. 

 

5.2.2 Results 

5.2.2.1 Proportionate choice data 

No significant main effect of drug order, or interaction between factors of drug 

and drug order, was found (both p>0.09). Drug order was therefore discarded 

from the model for subsequent analyses, in order to maximize power. In general, 

participants chose the ‘experimental’ gamble significantly more often when its 

probability of winning was high compared to when it was low (F(1,18)=40.305, 

ηp2=0.691, p<0.001). This pattern of decision-making was significantly 

exaggerated under cabergoline relative to placebo (drug*probability of winning; 

F(1,18)=6.733, ηp2=0.272, p=0.018).  

Subjects also chose the ‘experimental’ gamble significantly more often when 

expected gains were large than when expected gains were small (F(1,18)=50.522, 
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ηp2=0.736, p<0.001). However, there was no strong evidence that this pattern of 

choice was different under cabergoline (drug*size of possible gains, 

F(1,18)=3.615, p=0.074). 

Finally, volunteers chose the ‘experimental’ gamble significantly less often when 

its expected losses were large than when its expected losses were small 

(F(1,18)=56.486, ηp2=0.758, p=0.001). This pattern of decision-making was 

significantly attenuated under cabergoline (drug*size of possible losses; 

F(1,18)=6.773, ηp2=0.273, p=0.018). For a summary of these effects see Figure 

19. 

 

 

Figure 19. Proportionate choice of the ‘experimental’ gamble according to gamble 

properties, under placebo and cabergoline. There was no effect of cabergoline on 

overall proportion of choices of the ‘experimental’ gamble (p=0.480), and no significant 

higher-order interactions involving the factor of drug (all p>0.2). **p<0.001, *p<0.05. 



 

155 

 

5.2.2.2 Interaction with individual differences 

UPPS ‘sensation-seeking’ (SS) subscore was found to interact significantly with 

both effects of drug on choice behaviour (drug*pwin*SS score: F(1,17)=6.331, 

ηp2=0.271, p=0.022; drug*losses*SS score: F(1,17)=11.501, ηp2=0.404, p=0.003; 

by comparison interactions with age, estimated IQ, working memory capacity 

and total self-reported impulsivity were all p>0.3).   

Indeed, drug interactions with the factors probability of winning (pwin) and size 

of expected losses appear to be driven mainly by subjects with lower SS scores 

(Figure 20A).  Simple effects analysis revealed that, when defining ‘low’ and 

‘high’ SS groups by a median split of SS scores, low sensation-seekers (LSSs) 

chose more 'experimental' gambles when pwin was high (F(1,17)=5.996, 

p=0.025) and fewer when pwin was low (F(1,17)=7.808, p=0.012), on drug 

relative to placebo. By contrast, the HSS group did not differ in their choice of low 

or high pwin options between drug and placebo conditions (p>0.2). 

LSSs also showed non-significant trends towards choosing fewer gambles when 

potential losses were small (F(1,17)=4.262, p=0.0546), and more gambles when 

potential losses were large (F(1,17)=3.052, p=0.090; Figure 20A), on cabergoline 

compared with placebo. Neither of these effects approached significance in the 

high sensation-seeking (HSS) group (p>0.2). HSS and LSS groups did not differ 

significantly in terms of any other self-reported impulsivity subscale scores, age, 

digit span, or estimated IQ (all p>0.3). 
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Figure 20. Effects of cabergoline on choice behaviour (II) 

A Effects of cabergoline on subjects’ choice behaviour, divided into ‘high’ and ‘low’ 

sensation-seeking (SS) groups via a median split of UPPS SS subscale scores. For low SS 

subjects only, modulation of choice behaviour was significantly exaggerated in 

accordance with information about the probability of winning, and tended to be 

attenuated in accordance with information about the size of expected losses, on 

cabergoline relative to placebo (nb SS score was a significant continuous covariate of 

both effects of drug on choice).  *p<0.05, ^^p=0.0546, ^p<0.10. 

B Relationships between magnitude of drug effect indices (difference in magnitude of 

effect of a change in probability of winning or magnitude of expected loss on 

proportionate choice of the experimental gamble between drug and placebo conditions) 

and UPPS SS score (r=-0.521, p=0.022; r=0.611, p=0.005). In both cases, individuals with 

lower SS scores showed larger effects of cabergoline on their choice behaviour.   
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In order to quantify these effects at the individual level, two indices of magnitude 

of drug effect on choice were calculated for each subject (difference in magnitude 

of the effect of a change in probability of winning, or magnitude of possible loss, 

on proportionate choice of the experimental gamble between drug and placebo 

conditions). SS score was found to be a significant predictor of both these indices 

(r2adj = 0.229, p=0.022; r2adj = 0.336, p=0.005; linear regression analysis), but not 

estimated IQ, digit span, or other self-reported impulsivity score (all p>0.1). In 

both cases, participants with lower SS scores were more influenced in their 

behaviour by cabergoline (Figure 2B). The two indices themselves were not 

significantly correlated (p>0.1). 

 

5.2.2.3 Deliberation times 

There were no significant effects of probability of winning, size of possible gains 

or size of possible losses on participants' deliberation times (all F<1), and no 

significant effect of cabergoline on response timing (p>0.1). There were no 

significant interaction effects of drug, gamble properties and SS score on 

deliberation times (all p>0.1). 
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5.2.2.4 Expected value and risk  

Expected value of gambles was significantly linearly related to proportionate 

choice under both placebo and cabergoline (r2adj = 0.890, p<0.001; r2adj = 0.737, 

p=0.004; regression coefficients not significantly different, p=0.924). Gamble 

riskiness (SD) was not significantly related to proportionate choice under either 

drug condition (p>0.1). There was no significant effect of drug on mean expected 

value or mean riskiness of chosen gambles (both p>0.1). There were also no 

significant interactions of drug and SS score on these measures (p>0.1). 

 

5.2.2.5 Individual differences at baseline 

When considering data from the placebo session alone, there were no significant 

interactions between SS score and the effects of gamble properties (pwin, size of 

expected gains and losses) on choice (all p>0.1). There were also no significant 

relationships between any single choice parameters (i.e. mean chosen gamble 

riskiness, mean chosen gamble expected value and total points won) and SS score 

(all p>0.1). There was, however, a significant negative correlation between SS 

score and mean deliberation time on placebo (r =-.479, p=0.038; Figure 21A), 

that was not evident under cabergoline (p>0.1). A repeated measures ANOVA of 

mean deliberation time with the between-subjects factor of SS group revealed 

that low SS subjects showed a trend towards significantly slower responding, on 

the placebo session only (drug*SS group interaction, F(1,17)=4.404, p=0.0511; 

Figure 21B).  
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Figure 21. Baseline differences in deliberation time according to self-reported 

sensation-seeking. 

A Mean choice reaction time on placebo is negatively correlated with UPPS sensation-

seeking (SS) score (r=-.479, p=0.038). 

B Low SS (LSS) subjects show slower choice RTs than high SS (HSS) subjects on placebo 

sessions only. **p<0.001, *p=0.023. 

 

5.2.2.6 Subjective effects of drug treatment 

At an uncorrected threshold, participants were significantly more calm (p=0.033) 

and drowsy (p=0.017), and also reported slightly more headache (p=0.02), on 

cabergoline relative to placebo. However, change on any of these measures was 

not significantly related to either of the drug effect indices, or self-reported SS 

score (all p>0.1) – suggesting this did not contribute to either main effects, or 

individual differences in effect of, cabergoline. No significant effects of drug were 

found on any other potential physical side effects (p>0.1), mood or affect scales 
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(p>0.1; 26 measures in total) and knowledge of the drug/placebo manipulation 

was not found to differ significantly between test sessions (t1,18=1.681, p>0.1). 

 

5.3 Study 2 

In the previous study, we found greater effects of a D2 agonist in lower SS 

participants (section 5.2). Based on this finding and hypothesised D2 system 

function in low and high-SS individuals (as outlined in Gjedde et al. 2010, see 

section 5.4), we next sought to examine whether a D2 antagonist might 

selectively attenuate risky choice in (clinically relevant) higher SS individuals. 

 

5.3.1 Methods 

5.3.1.1 Participants  

Participants were 30 healthy males, mean age 22.3 (SD 2.74), as described for 

Chapter 3. Although the original power calculation for this study was carried out 

based on predicted effect size for a different task (see Chapter 3), supplementary 

analysis based on the results of Study 1 suggested this would also represent a 

sufficient sample size for this study. Specifically, we previously found moderately 

strong (r=0.521–0.611) relationships between self-reported SS and magnitude of 

effects of a D2ergic drug on risky decision-making (see section 5.2). A power 

calculation determined that a sample of 29 participants would reliably allow us 
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to detect a true effect size of r=0.50 or higher in this study, with an alpha of 0.05 

(two-tailed) and conventional power of 80%. One participant was unable to 

attend for a final test session and so their data were excluded from the analysis, 

yielding a final N of 29. 

 

5.3.1.2 Design 

The study was carried out according to a within-subjects double-blind placebo-

controlled design, as described in Chapter 3. 

 

5.3.1.3 Risky decision-making paradigm  

The risky decision-making paradigm was exactly as described for study 1 (see 

section 5.2.1.3). 

 

5.3.1.4 Analysis 

Choice and response time data from the risky decision-making task were 

analysed in the same way as described for Study 1 (see section 5.2.1.4). Non-

normally distributed demographic information was compared between low and 
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high SS participants via the non-parametric independent-samples median test. 

All reported statistical tests were two-tailed, with an alpha of 0.05. 

 

5.3.2  Results 

5.3.2.1 Proportionate choice data 

Overall, participants were significantly influenced in their choice of the 

‘experimental’ gamble by all three gamble parameters. They chose the 

experimental gamble significantly more often when the probability of winning 

was high than when the probability of winning was low (mean proportion of 

trials (± SEM) 0.730 ± 0.030 vs 0.248 ± 0.043; F(1,27)=109.275, ƞp2=0.802, 

p<0.001), when the magnitude of the expected gains was large compared to when 

it was small (0.606 ± 0.034 vs 0.372 ± 0.029; F(1,27)=81.552, ƞp2=0.751, 

p<0.001), and when the magnitude of the expected losses was small compared to 

when it was large (0.627 ± 0.030 vs 0.351 ± 0.033; F(1,27)=131.754, ƞp2=0.830, 

p<0.001). 

There was no significant main effect of drug treatment (p>0.1), or interaction 

between the factors of drug treatment and treatment order (drug*drug order; 

p>0.1), on proportionate choice of the experimental gamble. There were no 

significant interactions of drug treatment with gamble parameters of probability 

of winning, size of expected gains, or size off expected losses (all p>0.1) – nor 
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interactions of any of these factors with treatment order (all p>0.1). Drug order 

was non-significant overall as a between-subjects factor (p>0.1). 

There were no significant effects of drug treatment on mean chosen gamble EV 

or mean chosen gamble riskiness (SD); all p>0.1 (or drug*drug order interactions, 

p>0.1).  

 

5.3.2.2 Individual differences in drug effects on choice 

The planned check for any drug effects dependent on individual differences in 

trait SS was next carried out. As previously no effects of treatment order were 

found on any choice measures, drug order was discarded from subsequent 

analyses of these data in order to maximize sensitivity. 

When UPPS sensation-seeking score was included as a covariate in the model of 

proportionate choice data, there was a significant interaction between drug 

treatment and SS score on choice of the experimental gamble (drug*SS score: 

F(1,27)=4.850, ƞp2=0.152, p=0.036), and trend towards a three-way interaction 

with probability of winning on the experimental gamble (drug*pwin*SS score 

p=0.096; all other interactions p>0.1).  

Simple effects analysis revealed that higher SS individuals chose a lower 

proportion of (riskier) experimental gambles overall on haloperidol compared 
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with placebo (F(1,27)=4.783, ƞp2=0.151, p=0.038; low SS subjects p>0.1; Figure 

22).  

 

Figure 22. Effects of haloperidol and self-reported sensation-seeking on overall 

choice of the experimental gamble 

A Only high sensation-seeking (HSS) individuals showed a reduction in choice of the 

(overall riskier) ‘experimental’ gambles on haloperidol (HP) compared with placebo (SD 

experimental gamble ≥29, SD control gamble=10; difference between drug and placebo 

for low sensation-seekers, LSSs, p>0.1). *p<0.05 

B Relationship between self-reported sensation-seeking (SS) score and change in overall 

preference for experimental gambles on drug vs placebo (r=-0.390, p=0.036): higher SS 

individuals showed a shift in preference towards the less risky control gamble under 

haloperidol. Dotted lines represent 95% confidence intervals. 

 

Exploratory investigation of simple effects for the three-way interaction 

indicated that this may have been driven by a decrease in choice of low 

probability of winning gambles selectively in high SS participants on drug vs 
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placebo (F(1,27)=8.460, ƞp2=0.242, p=0.007; all other conditions p>0.1; Figure 

23A).  

 

 

Figure 23. Effects of haloperidol and self-reported sensation-seeking on choice of 

low probability of winning experimental gambles. 

A High sensation-seeking (HSS) individuals only chose significantly fewer low 

probability of winning gambles on haloperidol (HP) compared with placebo (p=0.007, 

all other conditions p>0.1; nb drug*SS group*probability of winning, p=0.096). Error 

bars represent within-subjects SEM. **p<0.01, drug vs placebo. 

B Relationship between self-reported SS score and the degree of change of choice of low 

probability of winning (low pwin) gambles on drug vs placebo (r= -0.471, p=0.010): 

individuals higher in trait SS showed the biggest decreases in choice of low probability 

of winning gambles. Dotted lines represent 95% confidence intervals. 
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Indeed, there was a significant relationship between change in choice of low 

probability of winning gambles between drug and placebo sessions and UPPS 

sensation-seeking score (greater decrease in choice observed in higher-scoring 

SS individuals, r=-0.471, p=0.010; Figure 23B). No relationship was found 

between effect of drug on choice of low probability of winning gambles and drug 

effects on VAS mood/alertness ratings, drug effects on ARCI subscale scores most 

likely to show significant effects of haloperidol treatment (PCAG ‘sedation’ or LSD 

‘dysphoria’ subscales), or drug effect on general psychomotor (letter digit 

substitution task) performance (p>0.1). In support of the possibility that a change 

in choice of low probability gambles was driving the overall decrease in choice of 

experimental gambles in the high SS group, the two effects were found to be 

strongly positively correlated (r=0.796, p<0.001).  

The findings from the main analysis were somewhat reflected in overall task 

performance measures: when self-reported SS score was entered as a covariate 

to the model of the summary statistic data, there was found to be a non-significant 

trend towards a drug*SS group interaction on the mean expected value of chosen 

gambles (p=0.081). Exploratory simple effects analysis revealed that high SS 

individuals chose gambles with a significantly higher mean expected value on 

haloperidol compared with placebo (F(1,27)=4.664, ƞp2=0.147, p=0.040), but that 

low SS individuals showed no change in the expected value of chosen gambles 

under drug treatment (p>0.1). There was no interaction of drug with SS score on 

the mean riskiness (SD) of chosen gambles (p>0.1). 
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5.3.2.3 Deliberation times 

Overall participants were faster to choose between gambles when the probability 

of winning was high compared to when it was low (F(1,27)=6.584, ƞp2=0.196, 

p=0.016; mean RT (±SEM) 1316 ± 76.9ms vs 1427 ± 91.9ms), and when potential 

gains were large compared to when they were small (F(1,27)=19.351, ƞp2=0.417, 

p<0.001; 1324 ± 84.9ms vs 1419 ± 89.2ms). There was no effect on deliberation 

time of magnitude of expected losses (p>0.1). 

There were no overall significant effects of haloperidol on mean deliberation time 

(p>0.1), and no significant interactions between factors of drug and probability 

of winning, size of expected gains, or size of expected losses on response timing 

(all p>0.1). Drug order was also not significant overall as a between-subjects 

factor in the response time model (p>0.1).  

However, there was a significant drug*drug order interaction on mean 

deliberation time (F(1,27)=9.019, ƞp2=0.250, p=0.006). Simple effects analysis 

showed that participants responded faster on haloperidol compared with 

placebo only when the drug was taken on the second test session 

(F(1,27)=10.995, ƞp2=0.289, p=0.003; 1325 ± 117ms vs 1570 ± 122ms; for those 

who took the drug first there was no difference in mean RT between sessions, 

p=0.339). This suggests that receiving the active treatment on the first session 

may have blocked a general effect to decrease deliberation times between the 

first and second test sessions (as observed in participants who took the drug on 

the second test session). 
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If SS score was added to the main response time model, there was no evidence 

for an interaction of SS status with any gamble properties on response timing (all 

p>0.1).  Drug*SS score and drug*drug order*SS score interactions on response 

timing were also non-significant (p>0.1). It is therefore unlikely that SS 

score*drug effect interactions observed on choice measures were due to timing 

differences, e.g. high sensation-seekers being more rushed under haloperidol. 

 

5.3.2.4 Individual differences at baseline 

When considering data from the placebo session only, there was no interaction 

of SS score with experimental gamble properties of probability of winning, size 

of expected gains or size of expected losses (all p>0.1). There was no significant 

effect of SS status on the mean expected value or riskiness (SD) of chosen gambles 

on placebo (p>0.1). There was no effect of self-reported SS on mean deliberation 

time on either drug or placebo (p>0.1). 

High sensation-seekers scored significantly higher than lower sensation-seekers 

on both self-reported number of alcoholic drinks consumed per week and the 

Alcohol Use Disorders Identification Test (p=0.025, p=0.008, independent-

samples median tests on median split groups; cigarettes per week, age, weight 

and estimated IQ all p>0.1).  

However, we found no evidence that differences in history of substance exposure 

underlies the differential effects of haloperidol treatment between SS groups 
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observed in our dataset. There were no significant relationships between weekly 

alcohol or cigarette consumption or AUDIT score and magnitude of drug effects 

(all p>0.05). High SS subjects who had/hadn’t (N=8 vs N=7) ever engaged in 

recreational drug use (other than alcohol or tobacco) over the past year also did 

not differ in magnitude of any drug effects (all p>0.1). 

 

5.3.2.5 Subjective and general psychomotor drug effects 

There were no significant effects of haloperidol on VAS ratings of mood, affect, or 

potential physical side effects (16 scales, all p>0.1). There was also no effect of 

haloperidol on any subscale of the Addiction Research Centre Inventory (MBG 

‘euphoria’, PCAG ‘sedation’, LSD ‘dysphoric and psychotomimetic effects’, BG and 

A ‘stimulant-like effects’ scales all p>0.1), or cardiovascular measures (blood 

pressure and heart rate, p>0.1). There was no effect of drug treatment upon 

participant ratings of whether they believed they were on the drug or placebo 

session (p>0.1). Finally, there was no effect of haloperidol on general 

psychomotor function as indexed by letter digit substitution task performance 

(p>0.1). 

 

5.3.2.6 Comparison to study 1 sample 

Characteristics of samples from study 1 and study 2 on all measures available 

from both groups are recorded in Table 10. Participants from our second sample 
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were significantly younger, and scored significantly more highly on Raven’s 12-

APM (a test of nonverbal reasoning) than study 1 participants. The study 2 group 

also had a significantly lower mean sensation-seeking score, due to a wider range 

of scores in this sample (see Discussion).  

 

 Study 1 

(cabergoline) 

Study 2 

(haloperidol) 

N 19 29 

Age 28.3 (5.7) 22.4 (2.7)** 

Raven’s 12-APM 

score 

7.1 (2.8) 8.9 (2.6)* 

UPPS total score 110 (11.5) 108 (17.7) 

UPPS urgency 27.2 (6.1) 27.6 (5.1) 

UPPS lack of 

premeditation 

22.4 (4.5) 23.5 (5.9) 

UPPS lack of 

perseveration 

19.1 (3.7) 21.8 (4.7)* 

UPPS sensation-

seeking 

41.2 (3.6) 35 (9.1)* 

                 range 33 – 45 20 – 45 

Table 10. Demographic information for participants from study 1 and study 2. 

Unless otherwise specified, figures represent mean (SD). *p<0.05, **p<0.001 study 1 vs 

study 2.  
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5.4 Discussion 

In our first study, we found significant effects of a single dose of the D2/D3 

agonist cabergoline on decision-making under conditions of uncertainty or risk, 

which crucially depended on baseline differences in self-reported SS trait. 

Overall, the effect of cabergoline was to exaggerate modulation of choice 

behaviour in accordance with explicit signals about the probability of winning, 

and simultaneously to attenuate modulation of choice in accordance with 

information about the size of possible losses. Importantly, the magnitude of the 

drug effect was significantly moderated by baseline UPPS sensation-seeking 

score.  In both cases, individuals who reported lower levels of trait SS showed a 

much stronger influence of cabergoline on their choice behaviour.  

In our second study, we examined the effects of the D2 antagonist haloperidol on 

the same task. Although there were no overall effects of drug treatment on 

decision-making, we again found evidence of a significant interaction between 

self-reported sensation-seeking (UPPS SS score) and the D2ergic drug on risky 

choice. Specifically, we now found that higher sensation-seekers exhibited 

decreased overall choice of the riskier experimental gambles (SD 10 vs SD≥29) 

on haloperidol vs placebo. This effect appeared to be mainly driven by a decrease 

in choice of low probability of winning experimental gambles on haloperidol 

compared with placebo, selectively in high SS participants. This finding can be 

contrasted directly with results from our first study, where a decrease in choice 

of low probability of experimental gambles under cabergoline was selectively 

observed in low sensation-seekers. 
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Previous findings regarding the effects of D2 agonists and antagonists on risk-

taking behaviour in human volunteers are mixed: for example recording a lack of 

effect on main dependent variables (Zack and Poulos, 2007; Riba et al., 2008; 

Porchet et al., 2013), or disruption of complex trial-to-trial effects (Tremblay et 

al., 2011), which may differ between healthy participants and patient samples. It 

is possible that this complexity is at least in part due to individual differences in 

drug effects.  It is fairly well established that D2ergic drugs often have baseline-

dependent effects. For example, effects of D2 receptor agonists have been found 

to depend on self-reported impulsivity in humans (Cools et al., 2007) and 

behavioural impulsivity in rodents (Moreno et al., 2013). Like impulsivity, 

individual differences SS personality have been linked to variation in the efficacy 

of D2ergic neurotransmission (Ratsma et al., 2001; Hamidovic et al., 2009; Gjedde 

et al., 2010), therefore it is reasonable to expect that differences in self-reported 

SS might predict differences in effects of D2ergic drugs. 

Our finding of a greater effect of cabergoline in lower sensation-seekers (LSSs) 

might seem somewhat surprising given previous reports that higher sensation-

seekers (HSSs) exhibit increased physiological and subjective responses to 

dopaminergic stimulants such as amphetamine (Kelly et al., 2006; Stoops et al., 

2007), and that SS score correlates positively with amphetamine-induced DA 

release in the striatum (Riccardi et al., 2006).  However, Gjedde and colleagues 

have recently argued on the basis of PET evidence that LSSs have both lower 

D2/D3 receptor density and lower endogenous DA levels than their HSS 

counterparts, such that the ‘gain’ of the DA system (reactivity to dopamine) in the 
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striatum is inversely related to SS score (Gjedde et al., 2010). Thus the less 

sensation-seeking individuals would be expected to have greater DA gain. 

In support of this hypothesis, there is some evidence that LSSs may have lower 

endogenous DA levels than HSSs. LSSs exhibit higher platelet levels of 

monoamine oxidase (a DA catabolist, Zuckerman, 1985; Carrasco et al., 1999), 

and LSS status has been associated with relatively lower activity dopa 

decarboxylase (DDC; a rate-limiting enzyme for DA synthesis) in the striatum; via 

both variation in the DDC gene itself (Derringer et al., 2010) and the Taq1a 

polymorphism (Ratsma et al., 2001; Laakso et al., 2005; Eisenberg et al., 2007). 

Thus LSS participants may have high DA gain. Direct D2 agonists, as used in our 

cabergoline study, would therefore be expected to exert greater effects in these 

individuals. Similarly, higher levels of endogenous dopamine in higher SS 

participants, leading to greater occupancy of D2 receptors by dopamine under 

normal conditions, could result in a greater effect of blocking the downstream 

signalling cascade usually evoked by binding of endogenous ligand by a ‘silent’ 

type D2 antagonist (Cosi et al., 2006) in higher sensation-seekers.  

The studies presented here have some clear limitations. Firstly, both 

psychopharmacological agents we have used are not absolutely specific in their 

D2 receptor affinity. Cabergoline also has limited agonist activity at 5-HT2A,5-

HT2B and D1 receptors (Kvernmo et al., 2006). Although haloperidol is considered 

to be a relatively selective D2-type receptor antagonist (Arnt and Skarsfeldt, 

1998), it also has been shown to have modest affinity for the α-1 adrenoreceptor 
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and the serotonin 2A receptor (Richelson and Souder, 2000). Therefore it is not 

possible to be completely certain about the mechanism underlying the 

behavioural effects outlined above.  

A further complication in D2-type receptor pharmacology is the existence of both 

pre and post-synaptic D2 receptors, which can potentially have opposing effects 

on dopaminergic transmission (Usiello et al., 2000). Whereas presynaptic D2 

autoreceptors negatively regulate phasic DA responses, postsynaptic D2Rs 

regulate tonic DA signalling implicated in the representation of risk 

(Grace, 1991; Schmitz et al., 2003; Fiorillo et al., 2003; Schultz, 2010). This leads 

to difficulties in interpreting drug effects, particularly at low doses where only 

higher-affinity inhibitory autoreceptors might be stimulated.  

In our first study, we attempted to ensure stimulation of post-synaptic D2Rs by 

using the high-affinity D2/D3 agonist cabergoline (Kvernmo et al., 2006), at a 

higher dose than a previous study where inconsistent drug effects were observed 

(Frank and O’Reilly, 2006). Domperidone masking was used to minimise 

potentially unblinding side-effects such as nausea, and overall subjects were 

unaware of the drug/placebo manipulation.  We also found no evidence of 

increased negative affect on the drug, which previously has been taken as an 

indicator of predominantly pre-synaptic drug action (Hamidovic et al., 2008). 

Haloperidol has previously been reported to induce high levels of brain D2 

receptor occupancy at relatively low doses (53%–74% at 2mg and 60–70% at 

3 mg, orally; Nordström et al., 1992; Kapur et al., 1997), therefore we are fairly 

confident that the dose used in our study (2.5mg) was sufficient to occupy post-
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synaptic receptor binding sites. However, in the absence of other indicators, we 

are unable to draw any strong inferences about pre vs post-synaptic drug actions 

in either study. 

It is also possible that differential history of substance exposure between high 

and low SS individuals resulted in the SS-dependent drug effects in our studies, 

as recreational drugs have been shown to affect striatal D2 receptor distribution 

in animal models (e.g. Caprioli et al., 2013). This factor is to a certain extent 

confounded in our trait of interest, due to this kind of behaviour being specifically 

probed in SS questionnaire items. However, increased engagement in such 

activities is a core part of the conceptualisation of SS personality, and evidence of 

an association between SS and e.g. recreational drug use gives us some 

confidence that our between-subjects grouping was related to real-life 

behaviours of interest.  

In our second study, overall levels and frequencies of substance use were low, 

and we found no evidence that differences in history of substance exposure 

underlay the observed differential effects of haloperidol treatment between SS 

groups (unfortunately this data was not available for the first set of participants). 

There was no significant relationship between total relevant demographic 

behaviour or alcohol use disorder (AUDIT) scores and magnitude of drug effect 

indices, and high SS volunteers who had/hadn’t ever engaged in recreational 

drug use didn’t differ in magnitude of any drug effects (although it is likely that 

this last comparison is underpowered).  
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Finally, there are some differences in participant characteristics that may limit 

the validity of comparing results from the two different pharmacological agents 

between samples (see Table 10). At N=20, results from the cabergoline study 

may not be optimally powered, and would benefit from future replication. 

Conversely, it should be noted that effect sizes were generally weaker for the 

second study (haloperidol). There was also a significantly lower mean SS score in 

our second study sample. However, it appears that this is due to additional 

participants at the lower end of the SS score range in this group (possible scores 

on the UPPS SS subscale range from 12-48), and the score ranges overlap fully 

between groups at the higher SS end. As the largest effects of study 1 were found 

in lower sensation-seekers, and the largest effects in study were found in higher 

sensation-seekers, this may not be problematic. 

 

Despite its clear clinical relevance, pharmacological manipulation of decision-

making under risk is currently relatively underexplored in both humans and 

animals (Winstanley, 2011). In these studies, we provide for the first time to our 

knowledge evidence for pharmacological manipulation of risk-taking behaviour, 

depending on baseline differences in SS trait. These findings emphasise the 

importance of considering individual differences such as SS when investigating 

risky decision-making, and may have relevance for the development of 

pharmacotherapies for disorders involving excessive risk-taking, such as 

pathological gambling. 
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General Discussion 
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A major aim of the work presented in this thesis was to devise a behavioural test 

of human sensation-seeking, designed to be directly comparable to those used in 

animal studies (Chapter 2). In the paradigm we developed, human participants 

chose whether or not to self-administer an ‘intense and unusual’ sensory 

stimulus (mild electrical stimulation or MES) during performance of an economic 

decision-making task (Figure 3). Across several samples of volunteers, we found 

that some individuals choose an above-chance proportion of stimuli associated 

with receipt of this intense tactile stimulus – even when this involved the sacrifice 

of economic gain. Importantly, the extent of this preference correlated positively 

with self-reported sensation-seeking personality, but not with scores on 

measures of other impulsive tendencies, anxiety, or hedonic state (Figure 5, 

Figure 6, Figure 10; Chapters 2, 3, and 4). 

In support of the hypothesis that the intense sensory stimulus we utilised was 

appetitive for some individuals, participants who chose higher proportions of 

MES-associated options increased their ‘liking’ ratings of these stimuli following 

establishment of this contingency (Figure 5, Figure 9; Chapters 2 and 4). In our 

largest sample (N=94), we also recorded how participants rated their feelings 

about the electric stimulus itself, and found that increased choice of MES-

associated stimuli was associated with higher ‘liking’ ratings of the sensation of 

MES receipt (Chapter 4).  

Performance on our sensation-seeking task was also related to real-life 

behaviours of interest. Specifically, individuals who assigned a higher economic 

value to opportunity to receive the MES reported increased frequency of tobacco 
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smoking, and showed non-significant trends towards greater weekly alcohol 

consumption (Chapters 2, 3, and 4). Interestingly, we did not find that 

sensation-seeking task performance was significantly related to scores on 

substance use disorder screening questionnaires (for alcohol or illicit drugs; 

Chapter 4). This finding is consistent with the hypothesis proposed by some 

researchers that sensation-seeking trait is mainly related to initial 

experimentation and non-problematic substance use, rather than tendency to 

progress to compulsive drug use (e.g. Ersche et al., 2013; Chapter 1). However, 

it should be noted that scores greater than zero on these measures were rare in 

our healthy volunteers (indeed response data were substantially positively 

skewed). Therefore it is unlikely that we captured sufficient variance in scores in 

these measures to undertake a fair test of this relationship. 

Thus data from several independent samples appear to support the assertion that 

our novel paradigm probes behaviour relevant to the personality construct of 

sensation-seeking. Significantly, in none of the samples was preference for the 

MES related to absolute stimulation intensity (all participants rated the MES as 

being the same subjective intensity), or explicit knowledge of stimulus-MES 

associations. Additionally, individual estimates of MES value exhibit reasonable 

to good test-retest reliability (Chapters 3 and 4), with no evidence for overall 

changes in MES preference over the course of the task (Chapter 2; even when 

extended to 300 test trials; Figure 10, Chapter 4). This absence of any obvious 

habituation supports the idea that performance on this measure probes 

preference for stimulus intensity, as opposed to novelty (for a discussion of the 
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relationship between the constructs of sensation and novelty-seeking see 

Chapter 1).  

There was evidence of a significant decrease in MES value between laboratory 

and magnetic resonance imaging (MRI) scanner environments (Chapter 4). This 

perhaps represented the impact of the unusual sensory experience of being in the 

MRI scanner (for many of our participants, this was their first experience of 

undergoing an MRI scan). If this was indeed a contributory factor, recruitment of 

more MR-experienced participants for future studies might help ameliorate this 

effect. Difficulties in recruitment of high behavioural sensation-seekers who met 

local MR safety requirements with respect to tattoos, piercings, and past injury, 

as well as a minimum 3-weeks abstention from illicit substance consumption 

precluded the application of this criterion in the current study. 

An important finding replicated across all studies using our novel paradigm was 

the observation of a strongly significant relationship between MES preference 

and relative reaction-times for MES-associated compared with non MES-

associated stimuli. In all groups, we found a speeding of choice reaction-times for 

MES-associated stimuli in individuals who assigned a positive value to 

opportunity to experience the MES (‘behavioural high sensation-seekers’), but 

slowed reaction times in individuals who for whom the MES had a negative value 

(‘behavioural low sensation-seekers’; Figure 4, Figure 6, Figure 10; Chapters 2, 

3, and 4). In line with previous observations of speeded relative reaction times 

for preferred choice options (e.g. Crockett et al., 2009; Wright et al., 2012), we 
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have interpreted this finding as indicating the involvement of low-level 

approach-avoidance mechanisms in sensation-seeking behaviour. 

Several previous investigators have suggested that a key constituent of individual 

differences in sensation-seeking trait is the differential activation of approach vs 

avoidance processes in the face of the opportunity for intense or unusual sensory 

experience (Zuckerman, 1990; Lang et al., 2005). The work presented here may 

represent the first direct experimental evidence of approach-avoidance 

mechanisms at play during sensation-seeking-like behaviour in humans. 

As outlined in Chapter 1, findings from diverse rodent models, as well as genetic 

and PET evidence from humans, has implicated individual differences in efficacy 

in transmission via D2-type (D2/D3/D4) dopamine (DA) receptors in sensation 

seeking trait, particularly in the midbrain (e.g. Bardo et al., 1996; Blanchard et al., 

2009; Shin et al., 2010; Hamidovic et al., 2009; Gjedde et al., 2010). As striatal 

D2ergic function has been shown to be involved in the vigour of behavioural 

approach reactions (Salamone and Correa, 2002; Robbins and Everitt, 2007; 

Hoffmann and Nicola, 2014), inter-individual differences in this brain circuitry 

represents a candidate mechanism for the differential expression of approach 

(versus withdrawal) responses when faced with the opportunity to experience 

intense sensory stimuli (Chapter 1). 

Here, we were able to make use of our novel paradigm to directly test the effects 

of a D2ergic agent on the expression of approach/avoidance reactions towards 

intense sensory stimulation within the same individuals (Chapter 4). Using this 
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approach, we were able to show that a relatively selective D2-type receptor 

antagonist (haloperidol) abolished the relationship between relative choice 

reaction-time for MES vs non MES-associated stimuli and the value participants 

assigned to opportunity to experience the MES (Figure 7). Specifically, 

haloperidol significantly decreased the (positive) economic value assigned to 

opportunity to experience the MES in individuals who exhibited approach-like 

speeded reaction times towards MES-associated stimuli under normal 

conditions, whilst leaving unchanged the (negative) MES value in individuals who 

showed slowed (avoidance-like) reaction-times (Figure 8). This finding supports 

the hypothesis that approach reactions towards intense sensory experiences in 

high sensation-seekers may indeed be at least partially mediated via the D2 

receptor system. 

How do our findings fit in with previous neurochemical theories of sensation-

seeking in humans? Previously it has been argued on the basis of PET and other 

evidence that (1) higher sensation-seekers have higher tonic striatal DA levels, 

and (2) that the ‘gain’ (reactivity to the presence of DA) of the striatal D2 system 

is inversely related to trait sensation-seeking (Gjedde et al., 2010). Specifically, 

this hypothesis predicts greater amplification of the postsynaptic signalling 

cascade following DA binding to D2-type receptors in higher gain lower 

sensation-seekers, and a lower sensitivity reaction to DA binding (perhaps as a 

result of generally higher synaptic DA levels) in lower gain higher sensation-

seekers.  



 

183 

Data from the psychopharmacological studies presented in this thesis are 

consistent with this account. The D2/D3 receptor agonist cabergoline had 

greatest effects on risky decision-making in lower sensation-seekers (Figure 20, 

Chapter 5), implying a greater sensitivity to direct D2 receptor agonism in these 

individuals.  Conversely, we found greater effects of a silent D2-type receptor 

antagonist haloperidol in higher sensation-seekers (Figure 8, Figure 22, Figure 

23; Chapter 3, Chapter 5). As application of haloperidol blocks post-synaptic 

signalling by endogenous ligand (but does not otherwise affect post-synaptic 

receptor function; Cosi et al., 2006), this suggests that higher sensation-seeking 

individuals (defined on the basis of both behavioural and self-report measures) 

were more sensitive to disruption of signalling by endogenous DA. 

Although D2ergic agents have been shown to predominantly affect function in 

the striatum (Kuroki et al., 1999; Honey et al., 2003), this psychopharmacological 

evidence alone does not allow us to draw any inferences about the particular 

brain regions involved in individual differences in performance on our sensation-

seeking measure. Therefore, in order to investigate in more detail how intense 

sensory stimulation might be processed as ‘rewarding’ in high sensation-seekers, 

we investigated individual differences in regional blood oxygenation level-

dependent (BOLD) signal (a correlate of local excitatory neuronal activity, e.g. Lee 

et al., 2010) during sensation-seeking task performance using functional MRI 

(Chapter 4). 

There was a significant positive relationship between the value participants 

assigned to opportunity to experience the MES and BOLD signal associated with 
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choice of MES-associated stimuli in both the ventral head of the caudate nucleus 

and the medial orbitofrontal cortex (mOFC; Figure 11). Crucially, there was a 

significant overlap between the encoding of positive economic value and MES-

association in the mOFC, in high – but not low – behavioural sensation-seekers 

(Figure 13). Significantly, the cluster identified from this analysis was located 

within a region previously identified from a meta-analysis of functional imaging 

studies of brain regions jointly encoding the values of different kinds of rewards 

(Levy and Glimcher, 2012) (Figure 13). This suggests that only high sensation-

seekers may encode opportunity to experience the sensory ‘reward’ of the MES 

in the same way as other rewards such as economic gain. 

These functional imaging findings can also be interpreted according to the 

approach-avoidance framework outline above. Although somewhat speculative, 

the positive relationship observed between ventral striatal BOLD associated with 

choice of MES-associated options and individual estimates of MES value might 

reflect increased (dopaminergic) striatal activity. This is hypothesised to drive 

increased approach reactions towards the intense sensory stimulus in 

individuals who assigned a higher value to opportunity to receive the MES (i.e., 

higher sensation-seekers).  

Conversely, we observed significant activation of the insula when choosing MES-

associated stimuli in low, but not high, behavioural sensation-seeking individuals 

(Figure 12). Similarly, we found evidence for trial-by-trial variation in insula 

BOLD signal according to modelled internal probability of receiving the MES on 

that trial in only in low behavioural sensation-seekers (Figure 15). Notably, there 
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was no indication that MES-seekers and MES-avoiders (high and low behavioural 

sensation-seekers, respectively) differed in their knowledge of the choice stimuli-

MES associations prior to entering the scanner. In conjunction with previous 

findings that the insula has a role in both the anticipation of aversive outcomes 

and avoidance of response options associated with loss or punishment (Nitschke 

et al., 2006; Samanez-Larkin et al., 2008; Palminteri et al., 2012), this suggests 

that the anticipation of receipt of intense sensory stimulation may have activated 

brain circuitry involved in avoidance responses in low – but not high – 

behavioural sensation-seekers. This interpretation would be consistent with the 

theory of sensation-seeking outlined in Chapter 1. Namely, that as well as 

displaying increased vigour of approach reactions towards intense and unusual 

sensory stimulation, higher sensation-seekers exhibit dampened – or even 

absent – activation of defensive withdrawal or avoidance systems to such stimuli 

(e.g. Lissek and Powers, 2003; Lissek et al., 2005). 

In summary, data from the studies presented here provide considerable 

empirical support for the neurobiological model of human sensation-seeking 

outlined in Chapter 1. The development of a behavioural measure which appears 

to possess a certain degree construct validity as an index of the stable individual 

differences in preference for intense and unusual sensory experiences captured 

by questionnaire measures has allowed us to generate novel findings that may be 

directly comparable to the existing animal literature.  

Convergent evidence from both sources supports the working hypothesis that 

higher sensation-seeking is driven by increased activation of approach 
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mechanisms when faced with the opportunity to self-administer ‘intense and 

unusual’ sensory stimulation.  This increased approach tendency appears to be 

mediated, at least in part, by striatal dopamine function, particularly at D2-type 

receptors. High sensation-seekers additionally appear to lack the strong 

activation of brain circuitry associated with processing of highly salient and/or 

aversive stimuli observed in low sensation-seeking peers during anticipation of 

a similar subjective intensity sensory stimulus. Thus, the opportunity to 

experience such sensory stimulation may be encoded in the same way as other 

potential rewards in high sensation-seeking individuals. Conversely, intense 

sensory experiences that are explicitly endorsed as being “non-painful” appear to 

be processed in the same way as other aversive stimuli, and evoke avoidance 

responses in low sensation-seekers. 

 

It is clear that the results presented here would benefit substantially from further 

exploration of the neural mechanisms involved. Additionally, it should be noted 

that findings drawn from analysis of relatively small sub-groups of behaviourally-

defined high sensation-seeking individuals in some studies would particularly 

benefit from future replication. 

One obvious extension study would be to carry out a complementary 

psychopharmacological study to our investigation of the effects of a D2-type 

receptor antagonist on the sensation-seeking task used here. Specifically, a 

crucial test would be whether MES-seeking could be augmented in some 
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individuals by application of a pro-dopaminergic agent, such as L-DOPA (a 

dopamine precursor), a direct dopamine receptor agonist, or a low dose of a 

psychomotor stimulant such as amphetamine. Although previous work has 

investigated the relationship between self-reported sensation-seeking and D2-

type receptor ‘availability’, as measured using PET, it would be interesting to 

investigate the relationship between this measure and our behavioural index of 

sensation-seeking. In particular, it would be informative to determine possible 

relationships between MES preference and striatal dopamine release in response 

to amphetamine challenge (as measured by radio-ligand displacement) in striatal 

regions (cf Leyton et al., 2002; Riccardi et al., 2006).  

It would also be interesting to further examine to what extent performance on 

our novel sensation-seeking paradigm relates to real-life propensity to engage in 

‘sensation-seeking’ behaviours, in order to assess its ecological validity. For 

example, do individuals whom one might consider to be prototypical ‘high 

sensation-seekers’, such as regular recreational drug users or participants in high 

impact sports, exhibit increased preference for MES on our task? Indeed, it is 

possible that performance on our measure might relate to only certain sub-types 

of real-world sensation-seekers, limiting the generalizability of the findings 

presented here. 

An important extension to our results from healthy volunteers would be to 

investigate behavioural sensation-seeking in relevant clinical populations. In 

particular, it would be very interesting to investigate whether individuals with 

diagnoses of substance use or pathological gambling disorders exhibit 
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heightened sensation-seeking on the task introduced here. Using an approach 

pioneered by Ersche and colleagues (Ersche et al., 2010, 2013), it could then be 

established whether differential task performance was specific to pathological 

populations (via comparison to non-addicted gamblers or drug users) or exhibits 

an endophenotype-like distribution (via comparison to non-affected siblings of 

patient samples). If behavioural task performance did reflect previous significant 

findings from these groups using self-report measures, the neural mechanisms 

underlying such group differences could then further be investigated, for 

example using functional imaging.  

Further, as evidence from both humans and animals suggests that heightened 

sensation-seeking trait may be related to increased susceptibility to relapse in 

substance use disorders (Chapter 1), it might be investigated whether 

behavioural sensation-seeking is a more sensitive prospective marker of risk of 

relapse than self-report scores (which might be more subject to conformity 

biases, particularly when illicit substance use is specifically probed in 

questionnaire items).  

Conversely, longitudinal studies are required to provide further support for the 

hypothesis that individuals higher in trait sensation-seeking may exhibit 

increased resilience to exposure to high-intensity stressors. It would be 

particularly informative to examine how neural processing of intense sensory 

stimulation may change pre vs post extended exposure to high stress-

environments in individuals for whom, unfortunately, such exposure is highly 

likely (e.g. military and emergency service workers). Specifically, it would be 
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important to examine whether any changes in processing of such stimuli might 

depend on baseline (pre-exposure) response. 

A final way to extend the results presented here would be to explore the 

possibility of   back-translating our findings to animal models of sensation-

seeking behaviour, in order to more finely explore the mechanisms involved. For 

example, mechanisms underlying our psychopharmacological results could be 

further investigated using the rodent model most closely analogous to our human 

task, the operant sensation-seeking (OSS) paradigm of Olsen and Winder (Olsen 

and Winder, 2009).   

It has previously been shown on this paradigm that subcutaneous injection of the 

D2 antagonist flupenthixol increased responding for the sensory stimulus-

associated response option (‘active’ lever; ibid) in rodents in a dose-dependent 

manner, an effect the authors interpreted as being due to reduced ‘efficiency’ of 

the sensory reward at low drug doses. As discussed above, we found that 

systemic administration of a moderate dose of the D2 antagonist haloperidol 

selectively decreased the value of additional intense sensory stimulation in 

higher sensation-seeking humans. As previous studies have shown different, 

even opposing, effects of D2ergic drugs on impulsive behaviour depending on 

both dose and the brain region to which the psychopharmacological agent is 

applied (e.g. Besson et al., 2010; Moreno et al., 2013), it would be useful to further 

explore changes in response on the OSS paradigm to both pro- and anti- D2ergic 

agents, depending on dose and location of application. Additionally, as we have 

presented evidence here that experimentally-induced changes in sensation-
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seeking-like behaviour (e.g. via manipulation of brain dopamine function) may 

critically depend on baseline individual differences, it may potentially prove 

useful for future studies of relevant phenomena using animals models to take this 

into account in their analyses. 

Further, to our knowledge, previous work using the OSS paradigm has not 

explored differential response latencies towards interaction with the active 

(audiovisual stimulus-producing) vs inactive levers. As this measure could be 

considered to be analogous to relative choice reaction time for MES-associated vs 

non MES-associated choice options on our human task, it would be interesting to 

explore if stable differences in this measure occur in rodents, and similarly to our 

human work, if these differences may be under D2ergic control. Such studies 

could be crucial in further determining the low-level approach-avoidance 

mechanisms we have proposed are a crucial determinant of individual 

differences in sensation-seeking tendencies. 

 

The psychopathologies mentioned in this discussion are heterogeneous and 

almost certainly multi-causal. Better phenotyping of individuals with a diagnosis 

of these disorders, aided by a better understanding of neurobiological 

mechanisms underlying this heterogeneity, may support the development of 

more effective therapies tailored to specific individuals. For example, in the case 

of misuse of prescription drugs, it has been shown that the perceived 
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harmfulness of such drugs lowers the likelihood of misuse in low – but not high – 

sensation-seeking individuals (Arria et al., 2008). 

Such considerations are also highly relevant for targeted prevention therapies. 

Recently, clinical trials in adolescents at high risk for development of alcohol use 

disorders have reported that targeting different psycho-educational and 

cognitive behavioural strategies towards different ‘high risk’ personality types 

can be successful (Conrod et al., 2008, 2013). Interestingly, these interventions 

were found to be most effective in reducing risk in high sensation-seeking 

individuals (Conrod et al., 2008). Conversely, if there might be clinical utility in 

pre-emptively targeting interventions aimed at increasing stress resilience in 

lower sensation-seeking individuals, this knowledge could be very valuable for 

populations at increased risk of trauma-related psychopathology (Solomon et al., 

1995; Neria et al., 2000; Clinton et al., 2014). 

It is clear that we are still at a very early stage of translating knowledge about 

underlying neurobiology into the clinical arena. Nevertheless, the body of work 

presented here, shows the potential power of using emerging neuroscience 

techniques to probe the mechanisms underlying sensation seeking. Further 

understanding of sensation-seeking trait may shed light on the aetiology of the 

various psychopathologies discussed above, but perhaps, most crucially, might 

also aid in developing individualised therapies and prevention strategies for 

these disorders. 
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Appendix 1: Sensation-seeking task instructions 

Instructions 

In the first part of the experiment, you will see a pair of abstract pictures. Each 
picture is associated with winning a certain number of points. 

 

 

 

 

 

 

On each trial, you must choose between the images by pressing the left or right 
arrow keys (to select the left or right image). The points you have won will then 
be displayed on the screen. 

Your task is to try to learn for every pair which is the best image to choose, in 
order to win as many points as possible. 

At the end of the experiment, you will get a cash bonus that depends on how 
many points you managed to collect. 

In the second part of the experiment, you carry on doing exactly the same task – 
but some of the images are now associated with the chance of receiving an 
electric vibration on your hand. You will be told when you are about to enter this 
stage of the experiment. 

Each picture has the same points value all the way through the experiment 
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