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Abstract

We used 197 Drosophila melanogaster Genetic Reference Panel (DGRP) lines to perform a genome-
wide association analysis for virgin female lifespan, using ~2M common single nucleotide 
polymorphisms (SNPs). We found considerable genetic variation in lifespan in the DGRP, with a 
broad-sense heritability of 0.413. There was little power to detect signals at a genome-wide level in 
single-SNP and gene-based analyses. Polygenic score analysis revealed that a small proportion of 
the variation in lifespan (~4.7%) was explicable in terms of additive effects of common SNPs (≥2% 
minor allele frequency). However, several of the top associated genes are involved in the processes 
previously shown to impact ageing (eg, carbohydrate-related metabolism, regulation of cell death, 
proteolysis). Other top-ranked genes are of unknown function and provide promising candidates 
for experimental examination. Genes in the target of rapamycin pathway (TOR; Chrb, slif, mipp2, 
dredd, RpS9, dm) contributed to the significant enrichment of this pathway among the top-ranked 
100 genes (p = 4.79 × 10−06). Gene Ontology analysis suggested that genes involved in carbohydrate 
metabolism are important for lifespan; including the InterPro term DUF227, which has been 
previously associated with lifespan determination. This analysis suggests that our understanding 
of the genetic basis of natural variation in lifespan from induced mutations is incomplete.
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Our understanding of the genetic factors affecting longevity has come 
primarily from experimental work with model organisms. Single-
gene mutations in several biological pathways in a range of model 
organisms can significantly increase lifespan. Among others, pertur-
bations in the nutrient-sensing pathways, the target of rapamycin 

(TOR; 1–2)  and the insulin/insulin-like growth factor (IIS) signal-
ing pathways, can ameliorate the ageing process in worms, flies, and 
mice (3–5). In model organisms, mutations include both knock-outs 
and strong over-expression, which can give rise to large effects on 
lifespan. However, mutations with these large effects are unlikely 
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to be segregating in natural populations (including human popula-
tions). It is well established that there is a genetic component for 
survival into old age in humans. Estimates of heritability from twin-
registry and population-based studies range from ~20% to ~30% 
(6–8), and can increase with age (7). However, the paucity of gene 
variants found by genome-wide association studies (GWAS) of lifes-
pan in humans suggests that effects of individual genetic variants are 
small. Thus far, the most robustly replicated finding is the impor-
tance of the APOE gene (6,9–11), where the ε4 isoform is repeat-
edly associated with increased mortality in carriers (12). Therefore, 
APOE is considered to be a “frailty gene,” rather than a “longevity 
gene” (6,12). GWAS have also implicated several other genes associ-
ated with longevity, although none reach genome-wide significance 
(reviewed in 6). In addition to GWAS, association analyses of human 
orthologs of candidate longevity genes found in model organisms 
have been performed (13–15). These studies have identified genes in 
the IIS signaling pathway as being associated with human longevity. 
Indeed, the human forkhead box O3 transcription factor (FOXO3) 
in this pathway is often described as the second gene most com-
monly associated with longevity (15–17), although these findings 
have not been replicated in several other studies (9,10,18,19).

Thus, studying natural variation in longevity in animal models 
could bridge the gap between mutations with a large effect, found in 
model organisms, and natural variants in humans. A substantial dif-
ference between studies in humans and those in animal models is the 
controlled environment in which the latter are living. This reduces 
the impact of environmental factors, allowing a larger proportion 
of differences in the phenotypic variation to be attributed to genetic 
variation.

Genome-wide association studies of ageing in model organisms 
have rarely been performed. The Drosophila melanogaster Genetic 
Reference Panel (DGRP) of ~200 inbred, sequenced lines is a com-
munity resource for analysis of population genomics and genome-
wide association mapping of quantitative traits (20,21). Here, we 
performed a GWAS of virgin female lifespan using 197 DGRP lines 
(for a list of the lines used and their mean lifespan see Supplementary 
Table 1). Our aim was to measure the influence of naturally occur-
ring genetic variants on lifespan to discover genes and mechanisms 
associated with natural variation in lifespan. We utilized an unbi-
ased, multilayered approach building on a single-single nucleotide 
polymorphism (SNP) GWAS as a primary unit, and tested whether 
individual genes, including regulatory regions, are associated 
with lifespan. We also explored whether enrichment of particular 
domains and/or biological pathways contribute to an increased or 
reduced mean lifespan. In addition, we investigated how much of the 
phenotypic variance in lifespan is explicable in terms of the additive 
effects of common genetic variants.

Materials and Methods

Lines Used
The Drosophila Genetic Reference Panel, Freeze 2.0 (20,21), com-
prises 205 D. melanogaster lines derived by 20 generations of full-
sib mating from inseminated wild-type caught females from Raleigh, 
North Carolina. Whole-genome sequencing data, along with geno-
type calls, are available for all 205 lines (http://dgrp2.gnets.ncsu.
edu). Lifespan data were obtained for virgin females for 197 DGRP 
lines, with a sample size of N  =  25 females per line (five females 
in each of five replicate vials). A  subset of the lifespan data has 
been published previously (22). The Wolbachia infection status and 

karyotype for major inversions for each line were downloaded from 
the DGRP website.

Quality Control
The original number of DGRP SNPs, after removing nonpolymor-
phic and SNPs with ≥ 3 alleles, was 3,963,420. We further filtered 
these data. All SNPs from the different chromosomes (ie, 2L/2R, 
3L/3R, 4, and X) were combined before performing these filters. 
We set the SNP call rate cut-off at 0.9 (Supplementary Figure  1), 
that is, 90% of the lines were required to have a genotype call for a 
particular SNP to be included for further analysis. The minor allele 
frequency (MAF) cut-off was set at 0.02 (Supplementary Figure 2), 
that is, SNPs that had MAF <2% were excluded from further analy-
sis. Finally, at least 80% of the SNPs were present in all individu-
als (Supplementary Figures 3 and 4), thus no individual lines were 
removed. A total of 2,193,745 SNPs remained for 197 DGRP lines 
after applying these filters (summary statistics are presented in 
Supplementary Table 1).

Single-SNP Association (GWAS) Analysis
In order to identify SNPs associated with lifespan in the DGRP 
inbred lines, linear regression under an additive model was used, 
with a covariate included for the presence of Wolbachia pipientis 
and the first four principal components [using Eigenstrat software 
(23)]. For the calculations, we used PLINK v. 1.07 (24). All single 
SNP association results are available upon request.

Gene-Based Association Analysis
We assigned the 2,193,745 SNPs to genes (including intronic 
regions) (Ensembl; http://www.ensembl.org/biomart/martview; 
BDGP5; as defined by the “Gene start (bp)” and “Gene end (bp)” in 
biomart). In some cases, SNPs were assigned to multiple genes, that 
is, when genes overlapped. We used a previously described, set-based 
method (25), whereby p values from all SNPs within a gene from the 
single-SNP association, corrected for Wolbachia status and the first 
four principal components, were combined using Fisher’s T-statistic:

T pe i
i

N

=−
=
∑2

1

log

where N is the number of SNPs (tests) and pi (i = 1 ,…, N) is the cor-
responding p value. For each gene, this was termed original statistic. 
Only genes with at least two SNPs were used in the calculations 
of the gene-based analysis. To calculate empirical gene-wide signifi-
cance for each gene, we performed 10,000 genome-wide permuta-
tions (with replacement) for each set of SNPs within a gene. For 
each gene in each permutation, we calculated a permutated Fisher’s 
T-statistic and compared it with the original statistic. The empiri-
cal p value obtained for each gene was the proportion of permuted 
Fisher’s T-statistic that was found equal or larger to the original 
statistic. For the top 40 genes we performed 1,000,000 permuta-
tions, in order to get a more accurate estimate of the empirical gene-
significance. All gene-based results are available upon request. We 
also performed similar gene-based analysis for SNPs within ± 5 kb 
(kilobases) of each gene.

Polygenic Score Analysis
Testing the polygenic score association (as described in the 
International Schizophrenia Consortium (ISC) study, 26)  with 
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lifespan is based on the notion that a phenotype, under the polygenic 
model, is affected/influenced by the combined effect from numerous 
variants, each with a small effect. Such variants would not gener-
ally be significant in a single-SNP analysis. Nevertheless, such truly 
associated variants would be clustered in the lower percentile of the 
distribution of the association of SNPs. Hence, polygenic scores, 
created by using weighted allele dosage of SNPs passing a certain 
permissive p value threshold, could explain a relatively large propor-
tion of the phenotypic variance. An independent set of lines with 
recorded lifespan was not available in order to calculate polygenic 
scores on the DGRP sample (discovery set) and test in a test sample 
set (target set), as done in the ISC. Instead, we performed a cross-val-
idation analysis using permutations (with replacement). The DGRP 
sample set was randomly split in two sets (discovery and target sam-
ple sets) with roughly equal number of lines (99 vs 98). As in the ISC 
study, we pruned (maximum linkage-disequilibrium: r2 = 0.25) the 
SNPs present in each of the discovery sample sets (99 lines) within a 
sliding window of 250 kb and kept the highest associated SNP (using 
clump function in PLINK v. 1.07). We utilized 14 separate p value 
thresholds (pt ≤ 1.0, pt ≤ 0.9, pt ≤ 0.8, pt ≤ 0.7, pt ≤ 0.6, pt ≤ 0.5, pt ≤ 
0.2, pt ≤ 0.1, pt ≤ 0.05, pt ≤ 0.01, pt ≤ 0.005, pt ≤ 0.001, pt ≤ 0.0005, 
pt ≤ 0.0001) for selection of SNPs in the discovery sample set for the 
calculation of the polygenic scores. The polygenic scores were calcu-
lated by using the score function in PLINK, based on the number of 
alleles from the discovery set that passed a certain p value threshold 
and weighted by the ß-coefficients from the linear regression in the 
discovery set (including Wolbachia status and the first four principal 
components as covariates). The final variance explained in terms of 
R2 was calculated by means of linear regression of lifespan on poly-
genic scores. This procedure was repeated 100 times and means and 
standard deviations for each of the sets were calculated.

Gene Ontology and InterPro
Based on the ranking of the gene-based association analysis, we per-
formed a Gene Ontology (GO, http://geneontology.org) and InterPro 
(http://www.ebi.ac.uk/interpro/ (27);) over-representation/enrich-
ment analysis. Conversion from FlyBase gene identifiers to GO and 
InterPro was achieved by using FlyBase version FB2014_04. The 
ranked gene list (14,146 genes for SNPs within genes and 15,145 
for SNPs within and ±5 kb around genes), based on the gene-based 
p values, were tested for GO term over-representation by using the 
software Catmap (28). Catmap uses a Wilcoxon rank-sum test to 
assign significance of GO and/or InterPro categories among ranked 
list of genes.

Results

Phenotypic Variation in Lifespan in the DGRP
The overall mean lifespan for the 197 lines used was 55.28  days 
(Figure  1). A  list of the lines used, along with lifespan data and 
Wolbachia status, can be found in Supplementary Table 1. We found 
considerable genetic variation in lifespan, with a broad-sense herit-
ability of H2 = 0.413 (Figure 1, Supplementary Tables 1 and 2).

There is considerable lifespan variability between the fly lines 
(Figure 1). The maximal mean lifespan in the DGRP (80.29 days) 
is similar to the maximal mean lifespan achieved in mutants (long-
lived isogenic fly line 1L18; mean lifespan 82.1 (29) and median 
lifespan 82.5 days for fly strain wDah; dilp2-3,5 (30)). In addition, 
the lifespan variability within the fly lines is not that different from 
a survival analysis of large number of Drosophila controls (31). The 

mean lifespan variability of Drosophila strains wDah and w1118 is 
~10.37 (data not shown), similar to the variability within the DGRP 
fly lines (μσ = 10.6; Supplementary Figure 5).

Analysis of Single-SNP Association with Lifespan
Several large polymorphic inversions segregate in the DGRP, and 
about 50% of the lines are infected with the endosymbiotic bac-
terium Wolbachia pipientis (21). Since both inversion karyo-
types and Wolbachia infection can cause cryptic relatedness and 
bias GWAS, we performed a principal component analysis of the 
DGRP genotypes. We found that In(3R)Mo and In(2L)t are asso-
ciated with genetic variation and relatedness within the 197 lines 
(Supplementary Figure 6). We therefore adjusted the phenotypic data 
to account for the first four principal components and Wolbachia 
status, although we did not observe a significant effect of Wolbachia 
status on lifespan, and performed a single-variant GWAS for lifes-
pan using the 2,193,745 SNPs with MAF ≥ 0.02. None of the SNPs 
tested reached the Bonferroni threshold for genome-wide signifi-
cance (p = 2.28 × 10−08; Figure 2 and Supplementary Figure 7). The 
top 50 SNPs and nearby genes are listed in Supplementary Table 3.

In order to assess whether there was sufficient power to detect a 
relatively large effect on lifespan, we performed power calculations 
(Supplementary Figure  8). The power to detect a relatively large 
effect (10  days difference in lifespan between homozygous geno-
types) at α = 2.28 × 10−08 ranged from 15% to 68%, corresponding 
to MAF of 0.1–0.2 (Supplementary Figure 8). The power increased 
to >91% power for MAF ≥ 0.3. 

Thus, there is enough power to detect common SNPs with large 
effects on lifespan, indicating that there are no common alleles with 
large effects segregating in the DGRP. There was also adequate power 
to detect at least some lower frequency SNPs with large effects, so 
perhaps these do not segregate in the population either. We therefore 
infer that the individual variants contributing to the heritability are 
likely to have effects that are too small to be reliably detected in a 
population of 197 inbred lines.
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Figure 1.  Distribution of lifespan (197 lines). The black vertical line represents 
the mean lifespan (55.28 days).
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Several of the genes tagged by top SNPs have been shown pre-
viously to affect lifespan (brummer, Rpd3, Thor, hairy, sima, and 
RFeSP). Lifespan extension by dietary restriction (DR) is mediated 
by an increased activity of Thor (32), although this may depend on 
the type of DR, as flies null for Thor respond normally to DR (33). 
brummer controls organismal fat storage in Drosophila and flies 
lacking brummer under DR live ~56% longer than controls (34). 
Females heterozygous for a Rpd3 hypomorphic allele have a lifespan 
extension of 52% and experimental data suggest that Rpd3 is likely 
to be within a pathway related to DR (35).

Both hairy and sima are involved in cellular responses to hypoxia 
(36,37), although the relationship between tolerance to hypoxia and 
lifespan is not entirely clear. That is, flies selected for hypoxia toler-
ance do not have altered lifespan (36), direct knockdown of genes 
leading to increased hypoxia resistance in worms also do not affect 
lifespan (38), although hypoxia significantly induces reactive oxygen 
species (ROS) within mice adipocytes and tissue hypoxia increases 
with age (39). Thus, it is unclear if hypoxia tolerance will result in 
fewer ROS and potentially increased lifespan. Nevertheless, dele-
tions of the C. elegans ortholog of sima, the hypoxia-inducible 

factor HIF-1, modify longevity in a temperature-dependent manner 
(40). Additionally, the worm ortholog of Drosophila RFeSP, isp-1, 
extends lifespan (41).

Gene-Based Analysis
As noted above, power calculations suggest that single-SNP associa-
tion analysis is underpowered for SNPs with MAF < 0.3. Gene-based 
GWAS on the other hand can increase the power to detect the com-
bined effects of multiple variants within a gene (25,42). We there-
fore assessed the significance of the combined Fisher’s T-statistic 
for all common SNPs (MAF ≥ 2%; see Materials and Methods for 
definition of gene positions) in each annotated Drosophila gene. Of 
the 15,683 genes in the fly genome, 14,146 had at least two SNPs 
(MAF≥2%). None of the gene-based association tests exceeded 
the Bonferroni-corrected significance threshold (p  =  3.53 × 10−06, 
Figure 3 and Supplementary Figure 9).

The top 30 genes are listed in Supplementary Table 4. In order 
to allow for SNPs in regulatory regions, we also performed a gene-
based analysis with gene positions extended by 5 kb from the 5′ 
and 3′ ends. None of the 15,145 such tests of gene regions with 
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Figure 3.  Manhattan plot for gene-based GWAS. Each point represents a gene. The height of the gene represents the strength of association with lifespan, 
expressed as −log10(p value). The red horizontal line represents genome-wide Bonferroni significance threshold (p = 3.53 × 10−06).

Figure  2.  Manhattan plot for single-SNP GWAS. Each point represents a SNP. The height of the SNP represents the strength of association with lifespan, 
expressed as −log10(p value). The red horizontal line represents the genome-wide Bonferroni significance threshold (p = 2.28 × 10−08).
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at least two SNPs were significant at a stringent Bonferroni thresh-
old (p = 3.30 × 10−06 Supplementary Figures 10, 11; Supplementary 
Table 5).

Several of the top-ranking genes from the gene-based associa-
tions are plausible candidate genes affecting lifespan determination. 
CG11523 is predicted to have a GSK3ß interaction domain (GSKIP; 
InterPro term: IPR023231). The human ortholog (GSKIP) protein 
interacts in vitro and in vivo with GSK3ß and inhibits the GSK3ß 
activity (43). Mouse GSK3ß is a critical regulator of mTORC1, 
autophagy, and ageing (44). In addition, GSK3ß controls the activity 
of S6 kinase 1, a crucial component of the TOR pathway, in human 
cell lines (45). CG6030 is ranked 10th in our gene-based analysis. 
CG6030 encodes the ATP synthase subunit delta, part of the com-
plex V of the mitochondrial electron transport chain, which is the 
main energy-generating complex (46). Its role in ageing/lifespan 
is currently unknown, although the inhibition of a different subu-
nit from the same complex (subunit ß) has been shown to extend 
lifespan in worms (47). Neprilysin 1 (Nep1) was the top-ranked 
gene-based association when genes were extended to include 5 kb 
from the 5′ and 3′ ends. Thus, it is possible that several SNPs within 
the regulatory regions of Nep1 could contribute to determination 
of female lifespan in these lines. Nep1 is integral for female fertil-
ity (48) and likely to be essential for female reproductive fitness. 
Fertility has been previously shown to be associated with ageing, 
that is, the “trade-off” theory of ageing, although the relationship 
is unclear and the effect of fertility can be separated from lifespan 

(49). Furthermore, Nep1 is the major ß-amyloid degrading enzyme 
in mice and humans, and is associated with progressive Nep1 protein 
level decline with age in mice (50,51).

Many of the top genes from the gene-based analyses are com-
putationally predicted and have no defined biological processes or 
molecular functions. The proportion of predicted genes was 36.7% 
(11 genes) and 53% (16 genes) among the top 30 genes from the 
strict and extended (genes ± 5 kb) gene-based analyses, respectively.

IIS/TOR Pathway Enrichment
Mutations in several genes in the IIS and TOR pathways affect lifes-
pan (1,3), and there is a considerable literature on their effects and 
interactions. We previously used this knowledge to build a compre-
hensive, manually curated signaling network model of the TOR and 
IIS pathways (2,52). We assessed whether the top-ranked genes in 
our gene-based analyses were significantly enriched for genes in the 
IIS and TOR pathways (Figure 4; Supplementary Table 6).

Chrb, slif, Mipp2, dm, and dredd are in the TOR pathway, and 
ranked 33rd, 36th, 38th, 71st, and 93rd, respectively, in the extended 
gene-based analysis. Diminutive is downstream of the TOR path-
way (2,52) and heterozygous mutants have an increased lifespan 
(53). Similarly, Mipp2 is a crucial component of the TORC1 com-
plex (http://flybase.org (54)), part of the TOR pathway and slif is 
an amino acid transporter that activates TOR signaling in the fat 
body (55). Further, charybde is upstream of the TSC1 complex and 
inhibits growth, possibly via down-regulating S6K activity (56). 

Figure  4.  Overview of the insulin/insulin-like growth factor signaling (IIS) and target of rapamycin pathway (TOR) pathways. Rectangles represent genes; 
diamonds: molecules; triangles: environmental factors; trapezoids: other than IIS or TOR pathways; octagons: transcription factors; arrow lines represent 
activation; red t-shaped lines represent inhibition; brown boxes starting with c_ represent complexes; yellow boxes represent putative genes part of the 
IIS (CG11523) or TOR (RpS9) pathways; genes circled in red represent genes found in the top-ranked genes in the gene-based analysis; black horizontal line 
represents a symbolic separation between the TOR and IIS pathways.
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chrb could also have a protective effect under starvation conditions, 
as chrb mutants are short-lived than controls under DR, and over-
expression of scyl and chrb extends lifespan twofold under DR (56).

The probability of observing five or more genes of 15,145 tested 
among the top 100 genes is p = 4.79 × 10−06 (using a hypergeometric 
test); therefore, there is a statistically significant enrichment of TOR-
related genes within the top-ranked genes. There was no statistically 
significant enrichment of IIS-related genes within the top 100 genes 
(data not shown).

Mipp2 is 4,915bp away from Nep1, the top-ranked gene in the 
extended gene-based analysis. Therefore the signal from the variants 
in this intergenic region could affect Mipp2, Nep1, or both genes 
(Supplementary Figure 12). If we exclude Mipp2 from the top 100 
ranked genes, the probability of observing four or more TOR path-
way genes is still significant (p  =  1.1 × 10−04). Further, ribosomal 
protein 9 (RpS9), which ranked ninth in the extended gene-based 
analysis, very likely acts downstream of S6k, along with RpS6 (57–
59). Thus, potentially more genes in the top-ranked genes are part 
of the TOR pathway.

Three genes in the TOR pathway, chrb, dredd, and dm, are 
ranked 20th, 77th, and 84th, respectively, in the gene-based analyses 
of variants within genes. The probability of observing three or more 
genes in the top 100 genes is p = 2.42 × 10−03. In addition, Organic 
cation transporter 2 (Orct2) acts immediately downstream of S6k 
and is required for the control of growth and proliferation (60). In 
our gene-based analysis Orct, another organic cation transporter, 
was ranked 42nd. Both Orct and Orct2 are 73% identical and 84% 
similar at the amino acid level (Supplementary Figure  13; similar 
aminoacid residues based on the BLOSUM62 matrix). It is possible 
that Orct could also act downstream of S6k. RpS9 ranked 44th in the 
strict gene-based analysis, and, as noted above, is likely to be down-
stream of S6k. Thus, a relatively large number of TOR-related genes 
are found to be significantly enriched in our gene-based analyses.

Gene Ontology and InterPro Analysis
We performed GO term and InterPro domain enrichment analyses, 
based on the ranks of the genes from the strict and extended gene-
based tests. We did not find significantly enriched/over-represented 
GO categories (Supplementary Tables 7, 8). These results do not 
contradict our previous analysis showing enrichment of genes in the 
TOR pathway. The GO enrichment analysis (using Catmap (28)) 
tests if genes belonging to a GO category have a higher mean rank 
compared to the rest of the gene list. Although several genes in the 
TOR pathway are indeed at the top of the list, there are many others 
at the bottom of the gene list, thus rendering the overall mean rank 
of the TOR pathway not statistically significant.

Our InterPro analysis for the extended gene-based tests reveals 
that several domains are significantly enriched (using a Bonferroni 
threshold of p = 1.66 × 10−05, correcting for all 3011 InterPro terms 
tested) and potentially associated with lifespan (data not shown). 
These included DUF227, CHK kinase-like and ALMS motif. The 
majority of these domains are of unknown function. DUF227 was 
significantly enriched in daf-2 C. elegans mutants (microarray tran-
scriptional profiling (61)). Genes containing DUF227 domain may 
act downstream of the Insulin receptor daf-2, at least in worms. 
Furthermore, this InterPro term was significantly enriched in flies 
treated with the xenobiotic phenobarbital (62), suggesting that genes 
with such a structural domain might play an important role in xeno-
biotic detoxification and metabolism and have been implicated in 
insecticide resistance (63).

Polygenic Score Analysis
We performed a polygenic score analysis (26) to assess the extent to 
which the additive effect of common genetic variants predict lifespan. 
Although the broad-sense heritability of line means is H2 = 0.413, 
we were only able to achieve a maximum mean R2 = 0.047 ± 0.0047 
(±σ; for SNPs with p ≤ 0.005; Figure  5). Thus, only 4.7% of the 
phenotypic variation in lifespan is explained by the additive effect 
of common variants.

Estimates of R2 using polygenic score analysis can be inflated 
if the sample size is small (64). We performed 100 permutations 
using the same procedure for calculating the polygenic scores and 
R2, but randomly permuting the lifespan phenotypes, to estimate R2 
when there is no association between the phenotype and genotype. 
The results from these random permutations suggest that lifespan 
variation could be explained by no more than 1.99% (pt ≤ 0.0005; 
R2 = 0.019 ± 0.0019), when the phenotype is not associated with the 
genetic variants (Supplementary Figure 14; Supplementary Table 9). 
Furthermore, for all p value thresholds the mean variation explained 
was in all cases significantly higher than random permutations of 
lifespan (p ≤ 4 × 10−09 for all p value thresholds; Supplementary 
Table 9). Therefore, the R2 estimates from the polygenic score analy-
sis are unlikely to be due to chance. We can conclude that a relatively 
small proportion (~5%) of variation in lifespan in the DGRP is likely 
to be due to the additive effect of common genetic variants. The 
phenotypic variance of lifespan explained by common variants in 
the polygenic score analysis is similar to that obtained for starva-
tion resistance (median R2  =  0.074) and startle response (median 
R2 = 0.08) with genotypic data for the same fly lines (65).

Discussion

We performed a GWAS of virgin female lifespan using the DGRP 
(20,21). The primary single-SNP GWAS did not reveal any vari-
ants that passed the genome-wide Bonferroni significance threshold. 
Power calculations suggest that 350–400 lines would be needed to 
detect single variants with a small to modest effects (<10 days) with 
> 80% power for MAF < 0.3. This suggests that common alleles 
(MAF ≥ 2%) with relatively large effects on lifespan are not segre-
gating in the DGRP. Several of the top SNPs are within genes that 
have been previously shown to impact longevity. The remaining 
genes tagged by the top SNPs are largely uncharacterized and are 
novel candidates, likely affecting lifespan determination and ageing.

Gene-Based Association Analysis
We showed that TOR-related genes are significantly enriched among 
the top-ranked genes in our gene-based analysis, corroborating that 
genes shown to be important in lifespan determination and/or age-
ing are found among the top-ranked genes in our analysis. Thus, the 
other top-ranked genes are likely to be promising longevity candi-
dates as well. The finding that alleles within TOR-related genes are 
enriched and found associated with lifespan within these fly lines 
does not necessary mean that TOR-related genes have the highest 
effect on lifespan. Since gene mutants within the TOR pathway have 
been known for some time to have a significant impact on longev-
ity and we have a better understanding of their effect and relation-
ship, we are more likely to detect their effect. This scenario does not 
negate the significance/importance and potential role of these genes 
in lifespan determination in the DGRP. Furthermore, a large propor-
tion of the genes ranked at the top of the gene-based analysis are cur-
rently without a known function. It is nearly impossible to determine 
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the biological function of these genes or assess their significance with 
respect to longevity without detailed lab-based experiments. Similar 
observations, that is, large number of uncharacterized genes, were 
also made in two separate genome screens (P-element insertions (66) 
and sequencing of flies divergent for late-age fertility and lifespan 
(67)). Given the highly ranked genes and genes ±5 kb with previ-
ously known association with lifespan and ageing, as well as the 
enrichment in TOR-related genes, the highly ranked uncharacterized 
genes present good candidates for further investigation with respect 
to lifespan.

We also draw conclusions based on the gene-based analysis of 
SNPs within genes and genes ± 5 kb almost interchangeably. Without 
additional transcriptome-based data and additional analysis (eg, 
eQTLs) we are unable to determine if SNPs in gene regulatory 
regions (eg, promoter regions) are likely or not to affect transcrip-
tion of these genes and subsequently affect lifespan. Additional tran-
scriptome-based data or experimental assays could shed light on the 
effect of such regulatory elements on the expression of such genes 
and their effect on lifespan.

Gene Ontology and InterPro Analysis
Around half of the top 20 GO categories in the gene-based analysis 
are related to carbohydrate metabolism. This certainly implies that 
genes up or downstream of nutrient-sensing pathways, such as IIS 
or TOR, are likely to play a crucial role in lifespan determination in 
the DGRP. Apart from several statistically enriched InterPro terms, 
the rest of the top InterPro/GO terms and associated genes have thus 

far not been shown to be involved in lifespan determination. These 
could potentially be involved in biological mechanisms of ageing 
that are novel and could shed some light on biological pathways pre-
viously not implied in ageing. In addition, a large proportion of the 
top genes in our gene-based analysis are currently without a clearly 
defined function, hence we cannot utilize these in any meaningful 
way. Clearly, the GO and InterPro terms rely on previously defined 
biological and molecular function of such genes, thus these genes 
will be missed in any high-level analysis.

Genetic Contribution to Lifespan
We also explored how much of the phenotypic variance of lifespan, 
is potentially explicable in terms of common genetic variants. We 
showed that common genetic variants significantly contribute to 
lifespan determination, as compared to a randomly permuted lifes-
pan data, whereby the relationship between the genotypes and phe-
notype is interrupted. Nevertheless, the additive effects of common 
genetic variants only explain ~5% of the phenotypic variance, in 
agreement with similar analyses of other phenotypes in the DGRP 
(65). The low phenotypic variance explained could be due to an 
increased variability in the lifespan determination of each individual 
line and of course all pairwise and higher order epistatic interaction, 
which are not interrogated using the additive, infinitesimal model.

Rare genetic variants are also likely to play a significant role in 
lifespan determination within these fly lines. These variants were 
excluded from analysis in this study, due to the minimal power to 
detect an association with such variants.

Figure 5.  Polygenic score and lifespan. Each box represents the interquartile range (IQR) with the median as a black horizontal line; the whiskers represent values 
1.5*IQR; outliers are represented as separate points. The continuous black horizontal line connects the means within each p value threshold. 
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Conclusions

We utilized a multifaceted, hypothesis-free, and unbiased genome-
wide approach in order to identify genes and pathways are associated 
with variation in lifespan. The analysis was based on whole-genome 
sequencing data, part of the valuable community resource: DGRP. 
Even though our results suggest that there is little power to detect 
single-SNP associations with small effects on lifespan, a gene-based 
analysis revealed additional information about genes and pathways 
that are likely to have an impact on lifespan, including several genes 
in the TOR pathway that have been previously shown to have an 
impact on lifespan. Experiments are now needed to validate or refute 
the observed associations.

Supplementary Material
Supplementary material can be found at: http://biomedgerontology.
oxfordjournals.org/
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