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Abstract
Although non-specific at the onset of eye opening, networks in rodent visual cortex attain a

non-random structure after eye opening, with a specific bias for connections between neu-

rons of similar preferred orientations. As orientation selectivity is already present at eye

opening, it remains unclear how this specificity in network wiring contributes to feature se-

lectivity. Using large-scale inhibition-dominated spiking networks as a model, we show that

feature-specific connectivity leads to a linear amplification of feedforward tuning, consistent

with recent electrophysiological single-neuron recordings in rodent neocortex. Our results

show that optimal amplification is achieved at an intermediate regime of specific connectivi-

ty. In this configuration a moderate increase of pairwise correlations is observed, consistent

with recent experimental findings. Furthermore, we observed that feature-specific connec-

tivity leads to the emergence of orientation-selective reverberating activity, and entails pat-

tern completion in network responses. Our theoretical analysis provides a mechanistic

understanding of subnetworks’ responses to visual stimuli, and casts light on the regime of

operation of sensory cortices in the presence of specific connectivity.

Introduction
Cortical neurons in early sensory areas are driven by inputs from a combination of feedforward
and recurrent sources that eventually determine the selectivity of neuronal responses. In pri-
mary visual cortex (V1) of mammals, for instance, initiated by the seminal observations of ori-
entation selective (OS) neurons by Hubel and Wiesel [1, 2], the contribution of feedforward
and recurrent mechanisms has been thoroughly investigated [3–5]. Theoretical arguments
were developed that the cortical recurrent network could be responsible for the emergence of
orientation selectivity [6–8]. The results of inactivation experiments, on the other hand, have
demonstrated that the thalamic input to cortical neurons are selective for orientation, even in
absence of cortical interactions [9, 10].

The contribution of cortical recurrent networks to orientation selectivity has recently been
reconsidered, in light of new experimental findings in rodents [11–13]. Given the salt-and-
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pepper arrangement of neuronal selectivities and absence of feature maps in rodent visual cor-
tex [12], new questions have been raised with regard to specificity of recurrent connections
[14]. Can orientation selectivity emerge in networks with random connectivity? Is feature-spe-
cific (FS) connectivity of the recurrent connections needed at all to obtain orientation selectivi-
ty in neuronal responses? It has in fact been reported that local cortical networks in rodent
visual cortex of animals with visual experience have a non-random structure, with a higher
probability of a synaptic connection between neurons of similar as compared to dissimilar pre-
ferred orientations [15–17]. Although orientation selective responses do exist, connectivity is
random at eye opening, and FS connectivity only develops later [18, 19]. We hypothesized that
the appearance of FS connectivity, for example induced by a Hebbian learning rule [18, 20],
may therefore be responsible for the further enhancement and amplification of OS.

Consistent with this idea, it has recently been suggested by a number of studies that intra-
cortical excitation can induce a linear amplification of the thalamic input [21–23]. The recur-
rent input has been reported to have the same feature specificity as the feedforward thalamic
input, but with a larger (almost two-fold) amplitude. In addition, a moderate degree of pairwise
correlations has also been demonstrated in mouse primary visual cortex [24]. It has been ar-
gued that this is a signature of functional organization of the circuitry, in absence of a smooth
orientation map. Furthermore, a link between spontaneous and evoked activity has recently
been documented in rodent visual cortex [25]. The spatial organization of stimulus-driven and
spontaneous ensembles are very similar in mouse, reminiscent of previous reports in cat visual
cortex [26, 27].

In order to gain some mechanistic understanding of these different, maybe separate effects,
we used a large-scale modelling approach. We studied to which degree adding FS connections
to an otherwise randomly wired recurrent network can account for these observations (namely,
linear amplification of the thalamic input, emergence of pairwise correlations, and link between
spontaneous and evoked activity). We found that FS connectivity between excitatory neurons
does indeed lead to an amplification of the specific stimulus component, as a result of identical-
ly tuned input from within the network, and fully consistent with recent experiments [21–23].
This amplification is further accompanied by moderate to large pairwise correlations in the
network [24, 28, 29], depending on the operating regime determined by the strength of FS con-
nectivity. The operating regime also affects the link between spontaneous and evoked activity
in the network.

Our large-scale network model elucidates the mechanisms underlying the phenomena
emerging as a result of FS connectivity, and casts lights on the operating regime of cortical net-
works with specific connectivity. Moreover, it predicts rather unexpected functional properties
of visual cortex networks as a result of FS connectivity. First, we observed that reverberating ac-
tivity emerged within the subnetwork of active neurons preferring a similar orientation. Sec-
ond, the network with FS connectivity was capable of pattern completion upon partial
activation of feedforward input fibers. Our computational study of these emergent properties
sheds light on their underlying network mechanisms.

Materials and Methods
Neuronal network. Our model consists of a recurrent network of N = 5 000 leaky integrate-
and-fire (LIF) neurons, of which f = 80% are excitatory and 20% are inhibitory [30]. The sub-
threshold dynamics of the membrane potential, Vi(t), of neuron i is described by the leaky-inte-
grator equation

t _V iðtÞ þ ViðtÞ ¼ RIiðtÞ:
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The current, Ii(t), represents the total input to the neuron, the integration of which is governed
by the leak resistance, R, and the membrane time constant, τ = 20 ms. When the voltage
reaches the threshold at Vth = 20 mV, a spike is generated and transmitted to all postsynaptic
neurons, and the membrane potential is reset to the resting potential at V0 = 0 mV. It remains
at this level for short absolute refractory period, tref = 2 ms, during which all synaptic currents
are shunted.

Network connectivity. Each neuron receives input from �exc = 20% of the excitatory popu-
lation and �inh = 50% of the inhibitory population, sampled randomly. Inhibitory synapses are
arranged to be g = 8 times more effective than the excitatory ones [31, 32], thus our networks
are highly inhibition-dominated. This feature is motivated by dense connectivity of inhibitory
neurons observed in different cortices [16, 33, 34], and functional reports for dominance of in-
hibition in the cortex [35, 36]. Postsynaptic currents are modeled as δ-functions, where the
total current is delivered instantaneously to the postsynaptic neuron after each spike. Synaptic
coupling is measured by the amplitude of the resulting postsynaptic potential (PSP), J = RI.
The strength of connections made by excitatory neurons in the local network is Jexc = 0.2 mV;
as a result, Jinh = −gJexc = −1.6 mV. Both excitatory and inhibitory PSPs decay exponentially
with the membrane time constant τ, once activated.

In addition to input from local networks, neurons receive a background input from non-
local recurrent sources. Each neuron receives an input from 5 000 non-local excitatory neurons
with spontaneous firing rates of 1 spike/s, modeled as a stationary Poisson process. Synapses
from non-local inputs have the same strength as local excitatory synapses, i.e. Jexc = 0.2 mV.
Synaptic transmission delays are fixed at 1.5 ms throughout.

We implement feature specific (FS) connectivity in the network by changing the weights of
already existing connections between neurons accordingly. The weight of a connection be-
tween the jth presynaptic neuron and the ith postsynaptic neuron, wij, is modulated by a factor
that depends on the cosine of the angular difference between the respective input preferred ori-
entations of the two neurons

Dwij ¼ wij ½1þ mFS cos ð2ðy�i � y�j ÞÞ�:

The parameter μFS describes the degree of FS modulation of the connectivity (FS Mod), with
μFS = 0 corresponding to no modulation (no FS connectivity) and μFS = 1 corresponding to the
case with the strongest possible modulation (zero weight for orthogonal POs).

Network stimulation. When the visual stimulus, i.e. an oriented elongated bar, is presented,
feedforward input from the lateral geniculate nucleus (LGN) drives cortical neurons. The feed-
forward (thalamic) input to each neuron comprises an input from Nlgn = 50 LGN cells, each
with a baseline firing rate of rlgn = 20 spikes/s, using a synapse of strength Jlgn = 1 mV. This
amounts to a baseline firing rate sb = Nlgn × rlgn = 1 kHz of the input to each neuron. The total
input depends on the orientation of the stimulus, θ, and the preferred orientation (PO) of the
neuron, θ�, according to a cosine function

sðy; y�Þ ¼ sb ½1þ m cos ð2ðy� y�ÞÞ�:

The parameter μ is the modulation of the input tuning, which is set to μexc = 20% for excitatory
neurons and μexc = 0% for inhibitory neurons in our simulations. Similar to the non-local re-
current input, the feedforward input is represented by a stationary Poisson process with rate s.

To measure the output tuning curves in numerical simulations, we stimulate the networks
for 12 different stimulus orientations between 0° and 180°. For each stimulus orientation, the
activity of the network is simulated and recorded for 5 trials, each lasting 1.5 s. The onset tran-
sient (150 ms) is removed from the analysis.

Orientation Selectivity in Feature-Specific Cortical Networks
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Orientation selectivity. To quantify orientation selectivity (as in e.g. Fig 1), we compute the
Preferred Orientation and the Orientation Selectivity Index, OSI, of each neuron from its out-
put tuning curve, r(θ), obtained in numerical simulations. We first compute the circular mean
[37] of the firing rate measured at each orientation,

R ¼
P

y rðyÞ exp ð2iyÞP
y rðyÞ

:

The output preferred orientation is then extracted as the angle of the resultant, arg(R), and the
length of it, jRj, yields a global measure of orientation selectivity, OSI [38].

To each output tuning curve, r(θ), we fit a von Mises function:

rvMðyÞ ¼ aþ b exp ½k cos ð2ðy� �ÞÞ � 1�;

using a nonlinear least squares method.
From the best fitting function, the tuning width is extracted as

TW ¼ 1

2
arccos 1þ 1

k
log

1þ exp ð�2kÞ
2

� �� �
:

For each output tuning curve, r(θ), we also compute the baseline (zeroth Fourier, F0) and
the modulation (second Fourier, F2) component. The baseline is obtained from the mean of
the tuning curve over all orientations, and the modulation is obtained from the second Fourier
component of the tuning curve.

Pairwise correlations. Pairwise correlations (in Fig 2F and S4 Fig) are computed from sin-
gle-neuron spike counts in small bins. For a pair of neurons with spike count vectors ni and nj
(computed from 15 s total simulation time), the correlation is obtained as the correlation coef-
ficient of the respective spike counts

CCij ¼ rni;nj
¼ covðni; njÞ

sni
snj

¼
E½ðni � mni

Þðnj � mnj
Þ�

sni
snj

where μ and σ denote vector of the means and standard deviations of the spike counts.
Pairwise correlations are also computed, in the same fashion, for longer bins (the dashed

line in Fig 2F and panels D–F in S4 Fig). This is computed from spike counts of neurons for
200 trials of 500 ms duration each. All neurons with firing rates higher than 1 spikes/s are con-
sidered in this analysis. The correlation coefficient computed here is similar to computing
noise correlations as the product of z-scores between a pair summed across all trials (see
e.g. [24]).

Linear gains. The spectrum of eigenvalues of the weight matrix shown in S3 Fig is normal-
ized according to the linearized input-output gain, z, for individual neurons: Each synaptic
weight is replaced by an effective weight Jeff = zJ. This gain is obtained by linearizing the mean
response rate of a LIF neuron [39]

r ¼ f ðm; sÞ ¼ tref þ t
ffiffiffi
p

p Z ~V th

~V 0

eu
2ð1þ erf ðuÞÞ du

" #�1

;

where μ and σ are mean and standard deviation of the current fluctuation input to the neuron,

respectively, ~V th ¼ ðVth � mÞ=s and ~V 0 ¼ ðV0 � mÞ=s, and erf is the error function.
The linearization is performed about the baseline state, s = sb. Under this condition, and as-

suming homogeneous firing rates in the network (mean-field ansatz) and neglecting
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Fig 1. Orientation selectivity in networks with random or specific patterns of connectivity. (A) Random networks: connectivity between neurons is
independent of the preferred orientation (PO; color coded) of the lumped feedforward input to each neuron. Triangles: excitatory neurons, circles: inhibitory
neurons. (B) Networks with specific excitatory to excitatory (EE) connections: the weight of synapses between excitatory neurons is increased or decreased,
if the two neurons have similar or dissimilar (close to orthogonal) input POs, respectively. (C) Tuning curve of a sample excitatory neuron with and without FS
connectivity. For each orientation, the mean (circles) ± one standard deviation (shading) of the firing rate over 5 trials (1.5 s each) are plotted. The tuning
width (TW) is extracted from a fit (see Materials and Methods) to the tuning curve (solid: random network, dashed: network with specific connectivity). The
orientation selectivity index [38], OSI = 1−Circular Variance, is computed from the actual data points. (D) Same as (C) for a sample inhibitory neuron. (E)
Mean (solid line) ± one standard deviation (shading) of excitatory output tuning curves, computed from the entire population, both for random and for specific
networks. The green curve is the input tuning curve, normalized in amplitude to have the same mean as the average output tuning curve in the specific

Orientation Selectivity in Feature-Specific Cortical Networks

PLOS ONE | DOI:10.1371/journal.pone.0127547 June 17, 2015 5 / 20



correlations, mean and variance of the input can be written as [40]

mb ¼ t ½Jlgnsb þ JexcrbNð�excf � �inhgð1� f ÞÞ�;
s2
b ¼ t ½J2lgnsb þ J2excrbNð�excf þ �inhg

2ð1� f ÞÞ�:

Here, rb is the mean neuronal firing rate when all neurons are driven by the same baseline
input sb without any modulation rb = f(μb,σb). We compute this rate numerically by solving the
respective self-consistency equations [40].

To obtain the linear gain we consider a small perturbation the input, δs, and compute the re-
sulting output perturbation, δr,

dr ¼ f ðmðsb þ dsÞ; sðsb þ dsÞÞ � f ðmðsbÞ; sðsbÞÞ:

network. The OSI and TW are computed from the fit (solid: random network, dashed: specific network). (F) Same as (E) for the inhibitory population. (G)
Distribution of the modulation component (second Fourier component, F2) of output tuning curves, for random (solid line) and for specific (dashed line)
networks, respectively. (H) Distribution of the OSI for the population of excitatory (red) and inhibitory (blue) neurons, in random (solid line) and in specific
(dashed line) networks, respectively. (I) Mean (solid line) ± standard deviation (shading) of recurrent inputs in the network with random connectivity, obtained
from sample excitatory (red) and inhibitory (blue) neurons (50 each). (J) Same as (I) for a network with FS connectivity.

doi:10.1371/journal.pone.0127547.g001

Fig 2. Tuning amplification in networks with different degrees of specific connectivity. (A–C) Raster plot of activity for networks with different specific
connectivity in response to a stimulus with θ = 90°. Excitatory (red dots) and inhibitory (blue dots) neurons are sorted according to their input preferred
orientation, respectively. The panels below each raster plot show the population firing rate of the corresponding networks, computed from the total spike
counts in bins of size 10 ms. The panels on the right indicate the time-averaged firing rate of each neuron, extracted from 15 s of activity (“network tuning
curve”). Shading: firing rate of all neurons, solid line: moving average using a window of width of 20 neurons. (D) Network tuning curves (color coded) for 20
different networks with specific connectivity (μFS) between 0% and 100%. (E) Modulation (second Fourier, F2) components of average tuning curves in (D)
for excitatory (red) and inhibitory (blue) neurons. The vertical dashed line indicates the critical value for the specific connectivity μFS at which the network
becomes dynamically unstable. The dashed curve is a prediction for the amplification of output modulation derived frommean-field theory (see Materials and
Methods). (F) Average pairwise correlations for networks with different degrees of specific connectivity. Pearson correlation coefficients (CC) of spike counts
for bins of size 20 ms are computed for all pairs of randomly sampled neurons (100 excitatory and 100 inhibitory neurons). The average CC is plotted
separately for excitatory-excitatory (EE, red), inhibitory-inhibitory (II, blue), and excitatory-inhibitory (EI, purple) correlations. Correlation coefficients for larger
or smaller bin sizes show the same overall trend (S4 Fig). Average EE noise correlations for a very large bin size (500 s) are shown by the dashed line here
(see Materials and Methods, for details).

doi:10.1371/journal.pone.0127547.g002
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The linear gain is then given by Jlgn z = δr/δs. In S3 Fig, zs was obtained from choosing δs of the
same size as the input modulation, δs = sm = μsb.

Stability criterion for networks with specific connectivity. We aim to determine when the
eigenvalues responsible for the modulation component in the input (here, the eigenvalues with
the most positive real parts, see S3B Fig) become unstable. The modulation eigenvalue, λm, is a
result of feature specific recurrent synaptic connectivity in the network. If neurons are sorted
according to their preferred orientations, the weight matrix,W, can be approximated as a cir-
culant matrix (for the network with all-to-all connectivity,W is a circulant; here, for our ran-
dom networks, we approximate the matrix as a circulant matrix corrupted with noise). In the
mean-field approximation, therefore, the operation ofW on an input vector, s

r ¼ Ws

can be written in terms of a convolution

r ¼ w � s;

where w is the first row ofW. The convolution corresponds to a product in the Fourier domain

r̂ ¼ ŵ ŝ:

We are interested here in the second Fourier component, which is an eigenmode of the net-
work, and therefore write

rm ¼ wmsm ¼ lmsm:

The modulation of the output is now a product of two modulations: a modulation in the cosine
input is multiplied by the modulation component of the cosine connectivity.

We can therefore compute λm as the modulation component of the cosine tuning of each
row of the weight matrix. The parameter μFS determines the degree of modulation, and given
the parameters of network, the resultant value can be computed as

lm ¼ 1

2
mFSfN�exczJexc;

if only the excitatory connections are specific (S3B Fig). A dynamic instability sets in for the
critical m�

FS for which Re(λm) = 1, and we obtain

m�
FS ¼

2

fN�exczJexc
:

This is the vertical dashed line indicated in Fig 2E.
The output activity of the network in response to input stimuli is obtained by considering

the full N-dimensional dynamics of neuronal firing rates. Assuming linear operation of the net-
work, the linear rate equation in the stationary state leads to the following stimulus-response
relation

r ¼ ð1�WÞ�1s:

The network operator A = (1 −W)−1 is obtained by applying an analytic function to the weight
matrixW, and hence the corresponding modulation eigenvalue of A, l0

m, can be obtained by
applying the same analytic function

l0m ¼ ð1� lmÞ�1
:

This is the factor with which the network amplifies any modulation in its input, as long as its
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operation is linear. Output modulation is therefore amplified by the network with FS connec-
tivity, relative to its baseline value, r0m, in absence of FS connectivity, according to

rm
r0m

¼ 1

1� 1

2
mFS fN�exczJexc

:

The dashed curve in Fig 2E is derived from this relation. To some extent, it explains the non-
linear dependency of the amplification gain on the connectivity parameter.

Results

Intracortical amplification of feedforward tuning
Using large-scale simulations of inhibition-dominated cortical networks, we studied the dy-
namic consequences of adding specificity to recurrent connections. Concretely, we considered
enhanced connectivity between neurons with similar preferred orientations (Fig 1A, 1B). We
found that such specific recurrent synaptic interactions between excitatory neurons indeed
generally amplify the tuned output responses (Fig 1C–1H). This is beyond the orientation se-
lectivity that can already arise in random networks in absence of specific interactions [31, 41,
42] (S1 Fig). Such an enhancement of orientation selectivity has in fact been reported develop-
mentally after eye opening in experimental studies [18, 43]

Consistent with recent experimental findings [21–23], the excitatory recurrent input to ex-
citatory neurons from within the network has a similar tuning as the feedforward input, only
with a larger amplitude (Fig 1J and S2 Fig). Such tuned recurrent inputs are conspicuously
lacking in random networks (Fig 1I). Also, recurrent excitatory input to inhibitory neurons,
and recurrent inhibitory input to both excitatory and inhibitory neurons are on average un-
tuned (Fig 1J), as we have not implemented specific connectivity in those connections. In both
random and specific cases (Fig 1I and 1J, respectively), however, the untuned components of
feedforward and recurrent contributions cancel each other, and only the tuned component can
trigger output spikes.

Regimes of intracortical amplification
We next asked how the properties of orientation selectivity depend on FS connectivity. It
might be expected that orientation selectivity is enhanced as FS connections are enhanced. We
therefore systematically increased the strength of FS connectivity in our networks, while keep-
ing all the other parameters including the structure of connectivity the same (Fig 2).

Sample spiking activity, population responses and network tuning curves for three networks
(from random to highly specific) are shown in Fig 2A–2C, respectively. Network tuning curves
extracted from all simulated networks covering a range of FS connectivity are shown in Fig 2D.
The tuning of output tuning curves is quantified by their respective modulation (second Fou-
rier, F2) components. This is shown in Fig 2E, separately for excitatory and inhibitory neurons,
respectively.

Surprisingly, our results show a non-monotonic dependence of tuning amplification on FS
connectivity, where intermediate levels of specificity lead to the strongest amplification (Fig 2D
and 2E). Further mathematical analysis revealed that the reason for this non-monotonic de-
pendence is the emerging instability of the eigenmode associated with modulation (see Materi-
als and Methods and S3 Fig; hereafter, we refer to this kind of instability as “spectral
instability”). Indeed, at the edge of spectral stability (Fig 2E) the network displays the highest
amplification; beyond that point, increasing specificity cannot enhance the output responses
anymore.

Orientation Selectivity in Feature-Specific Cortical Networks
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Note that neurons are never reaching their maximal firing rate, which is 500 spikes/s given
the refractory period of 2 ms for the neuron model used here. In fact, we never observed run-
away firing rates in our networks. Therefore, a saturation nonlinearity is not the reason for the
apparent stability of the system. Instead, nonlinear recurrent interactions in the network are re-
sponsible for this stabilization.

An explanation of this network operation can be provided as follows. When the modulation
components of output tuning curves are comparable to their baseline components on average,
very limited rectification occurs in the network, and the input-output transformation of tuning
curves is mainly linear (see [32] for details). When the modulation component becomes too
large, a rectifying nonlinearity sets in for very low firing rates. As a result of this nonlinearity,
our cosine input tuning curves are not transformed to cosine output tuning curves, because the
linearity of network operation is violated. Now the orthogonality of baseline and modulation
components, which holds in the linear regime of operation [31], is not effective any more. As a
consequence, the modulation component cannot be amplified by the network beyond any
bound: for very large output modulations, the negative part of the cosine tuning curve is recti-
fied and hence it obtains a non-zero mean value. This now leads to a projection over the com-
mon-mode of the network, which is in turn suppressed in inhibition-dominated networks [31];
this means that the output rectified modulation becomes suppressed by the strong negative
feedback which was only acting on the uniform mode (the baseline component of the input)
before (for a similar observation, see [32]). This in effect yields a suppressive mechanism which
controls the amplification of modulation for very large values and hence nonlinearly stabilizes
the network. This is also the reason for the discrepancy of the linear prediction and the actual
amplification close to the critical value of FS connectivity, already before entering the region
with spectral instability.

In the regimes where the nonlinear mechanisms are not dominant, our theoretical analysis
fully explains how feedforward and recurrent parameters interact in generating the output se-
lectivity. According to this analysis, the output modulation in the absence of recurrent specific-
ity (r0m) is amplified by feature-specific connections by a factor of 1

1�1
2mFS fN�exczJexc

(see Methods).

Here μFS is the strength of feature-specific connectivity (ranging from 0 for random connectivi-
ty to 1 for the maximally specific network), N is the total number of neurons in the network
and f is the fraction of excitatory neurons, Jexc is the absolute weight of excitatory connections
and z is the linearized gain of leaky integrate-and-fire neurons about the baseline operating
point of the network.

Already from here, several questions about the amplification of orientation selectivity in our
networks can be answered: first, what is important for this amplification is the product of re-
current excitation (fN�exc) and its feature-specificity (μFS). That is, the same degree of feature-
specific connectivity in a more weakly (strongly) connected network leads to a smaller (larger)
amplification. Furthermore, the total amplification obviously depends on how tuned the feed-
forward input is, as the recurrent specificity is only multiplying the output tuning existing in
the non-specific case, which is in turn directly affected by the tuning of the feedforward input
(see [31, 41, 42]).

It can also be asked how this amplification scales with network size, especially for infinitely
large networks. To answer this, we can evaluate the critical value of feature-specificity at which
the network becomes spectrally unstable: m�

FS ¼ 2
fN�exczJexc

. Let us first assume that the linear gain,

z, is 1, which would be the case for perfect integrate-and-fire neurons [32]. For infinitely large
networks, N!1, if the weights are not rescaled and the connection probability is the same,
m�
FS would be zero, that is the network becomes unstable with very small feature-specificity.

Orientation Selectivity in Feature-Specific Cortical Networks
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To avoid that, rescaling the connection probability or synaptic weights becomes necessary.
Another solution is to balance the specific excitatory connectivity with specific inhibitory con-
nections. However, there is no biological evidence so far for orientation-specific connectivity of
inhibitory neurons, as they are reported to densely connect to their local neighborhood [16],
which, in rodents, comprises neurons with heterogeneous preferred orientations. Another so-
lution, which is consistent with unselective inhibitory connections, is that inhibitory neurons
are not balancing the specific input to the neurons, but affecting the linear gains, z. This way, it
is possible that a stronger inhibitory feedback, presumably as a result of synaptic plasticity of
inhibitory-excitatory connections, decreases z, which in turn increases the m�

FS and stabilizes
the network in response to modulated inputs. For networks of leaky integrate-and-fire neurons,
in particular, z can be computed [44]; it is therefore possible to compute the exact dependence
of the m�

FS given any combination of parameters for the network.

Pairwise correlations in the network
Amplification of orientation selectivity in FS networks is accompanied by an increase in pair-
wise correlations. Unlike the amplification itself, however, this increase has a monotonic de-
pendence on FS connectivity, and correlations increase in the network as FS connectivity
becomes stronger (Fig 2F and S4 Fig).

Notably, the largest correlations arise in the spectrally unstable regime (Fig 2F). For spec-
trally stable networks, average correlations are rather weak, consistent with an asynchronous-
irregular (AI) state of network activity [40]. Population responses deviate more from AI-type
network activity, however, in the spectrally unstable regime, and they approach a highly syn-
chronous state, characterized by very large temporal fluctuations of the population activity (Fig
2C). Emergence of large correlations indeed starts when networks approach the edge of spectral
stability, as has been demonstrated and analyzed before [45].

The regime of recurrent amplification can therefore be summarized in terms of three re-
gimes of (a) low, (b) medium and (c) high FS connectivity: (a) shows very little tuning amplifi-
cation and close-to-zero pairwise correlations; (b) exhibits maximum amplification and a mild
degree of correlations (noise correlation close to 0.1); (c) entails a decreasing amplification,
while at the same time pairwise correlations still increase.

Spontaneous and evoked patterns of activity
We then asked the question of how spontaneous patterns of activity are influenced by FS con-
nectivity (Fig 3). Inspecting the raster plots of activity in the three regimes of low, medium and
high FS connectivity (Fig 3A–3C) reveals that the most structured pattern of spontaneous ac-
tivity is observed in the regime of high FS connectivity. Temporal patterns of spontaneous pop-
ulation activity show structured activity, reminiscent of the patterns evoked by an oriented
stimulus.

To quantify the similarity between spontaneous and evoked activity patterns, we computed
a similarity index (SI) in bins of width 20 ms (Fig 3A–3C, lower panels). The most similar re-
sponses are again observed in the spectrally unstable regime (Fig 3C). This spontaneous activa-
tion of evoked responses in absence of a specific stimulus exhibits slow transitions between
different preferred orientations (i.e. different points on the line attractor of the network; see
[46] for similar observations).

To obtain further insights on the patterns of spontaneous activity in each regime, we plotted
the distribution of similarity index and the preferred orientation of population activity for all
three networks (Fig 3D, 3E). Although the most similar spontaneous activity is obtained for the
spectrally unstable network, the network with medium FS also shows some enhancement of SI
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as compared to the random network (Fig 3D). However, in contrast to the spectrally stable net-
works with uniform distributions of preferred orientations, the spectrally unstable network
does not represent all orientations uniformly in its spontaneous activity. Some orientation-se-
lective responses are over-represented, which is a result of the specific realization of the ran-
dom connectivity matrix, reflected by the eigenvalue spectrum of the weight matrix (see
S3B Fig).

A bias for certain preferred orientations in spontaneous activity can be quantified by the se-
lectivity index of the distribution of preferred orientations, shown in Fig 3E. A flat distribution
with no bias whatsoever would return 0, whereas a distribution of spontaneous activity concen-
trated in a single preferred orientation would return 1. All networks in the spectrally stable re-
gime have a uniform distribution of preferred orientations, while transition to instability
renders the spontaneous activity of networks more biased towards specific evoked states as FS
connectivity increases (Fig 3F, gray line). Thus, the increase in the SI of population activity for
these networks (Fig 3F, black line) comes at the price of not visiting all states with the same fre-
quency. In the intermediate regime, however, the SI of spontaneous activity is increasing, while
the bias remains at low levels.

Fig 3. Spontaneous activity patterns. (A–C) Raster plot of spontaneous activity for networks with different degrees of specific connectivity. The similarity
between spontaneous activity and patterns of activity evoked by oriented stimuli is quantified by a similarity index (SI). It is taken as the magnitude of the

complex number Rsp ¼
P

j
rsp
j
expð2iy�j ÞP
j
rsp
j

, where rspj is the average firing rate of excitatory neuron j in bins of size 20 ms, and y�j is the input preferred orientation of the

neuron. Other conventions are as in Fig 2. (D) Distribution of SI of spontaneous activity extracted from a simulation of duration 30 s for three networks shown
in (A–C). (E) The angle of Rsp indicates the preferred orientation of the population activity in each time window. The distribution of this “spontaneous” tuning of
population activity is plotted here for the three networks shown in (A–C). (F) The average SI of spontaneous activity, computed from distributions as in (D), is
plotted for 11 networks ranging from completely random to highly feature-specific (black dots). To quantify the bias in the preferred orientation of the
population activity in each network, the selectivity of the distributions of preferred orientations as in (E) are computed (Avg. bias, gray). It is computed as 1
−Circular Variance of the distribution in (E).

doi:10.1371/journal.pone.0127547.g003

Orientation Selectivity in Feature-Specific Cortical Networks

PLOS ONE | DOI:10.1371/journal.pone.0127547 June 17, 2015 11 / 20



Emergence of reverberating activity and pattern completion
We focused so far on how FS connectivity can lead to different regimes of tuning amplification,
activity correlation, and spontaneous activation of specific activity patterns. However, addi-
tional functional properties can result from FS connectivity. In particular, we observed the
emergence of reverberating activity, and pattern completion (Fig 4).

First, we observed that upon turning off an oriented stimulus networks with FS connectivity
can show persistent activation for a brief period of time (50–100 ms; Fig 4B). As a result of fea-
ture-specific connectivity, some reverberation of activity emerges between neurons with pre-
ferred orientations close to the orientation of the stimulus. Such network-based short-term
memory is lacking in the random network, and the evoked response quickly vanishes as soon
as the oriented stimulus is turned off (Fig 4A).

Second, the network with FS connectivity was capable of pattern completion. Specifically, if
only a fraction of excitatory neurons was stimulated with an oriented stimulus, the network
with specific connectivity was capable of activating the non-stimulated neurons, with a similar
pattern compared to that obtained by direct stimulation (Fig 4D, 4F). In a random network,
there are no such spontaneous patterns to begin with (Fig 4C, 4E).

Discussion
Using numerical simulation and computational analysis of large-scale spiking networks, our
study demonstrated how the refinement of connectivity during development contributes to the
processing of orientation selectivity in cortical networks. It provided a mechanistic link be-
tween FS connectivity and processing of orientation selectivity in a biologically realistic net-
work model, fully consistent with recent experimental findings in the rodent visual cortex [21,
22]. Our mean field and spectral radius analysis could in fact provide a computational account
of orientation selectivity in realistic model cortical networks operating in different regimes of
FS connectivity.

An important feature of our networks was the dominance of inhibition in recurrent connec-
tivity. This yields a selective suppression of the common-mode, which leads to an enhancement
of output selectivity and contrast invariance of output tuning curves [31]. Inhibition also deter-
mines the effective linear neuronal gains in the networks, as the operating point about which
the system is linearized is determined by the fixed point of the network (resulted from balance
of excitation and inhibition) in response to the homogeneous input [44]. The inhibition-domi-
nance of connectivity, in turn, leads to the balanced state in terms of network dynamics, where
the net excitatory input to a single neuron is more than its threshold and only a comparable
negative feedback from the network keeps the membrane potential below threshold and allows
the neuron to operate in a fluctuation-driven regime of activity (as it is shown in Fig 1 and S1
and S2 Figs).

In contrast to previous modeling studies which suggested the marginal regime of recurrent
connectivity is best for orientation selectivity [6], our modeling study suggested that there is an
optimal value for feature-specific connectivity of the excitatory population. Beyond that, FS is
detrimental to tuning amplification. Our model thus casts light on the operating regimes of
intracortical amplification in the presence of specific connectivity. We found that there is a lin-
ear regime of amplification, where the results of a mean-field analysis of the network dynamics
in the asynchronous-irregular, AI, state holds [40, 47], and where the network shows the high-
est amplification of the feedforward tuning. Beyond that optimal value of FS connectivity, the
output selectivity decreases again, as a result of nonlinear interactions within the network. No-
tably, the same nonlinear mechanisms protect the network from global instability (involving
runaway excitation). Thus, the optimal regime of tuning amplification is at the edge of
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Fig 4. Reverberating activity and pattern completion in networks with specific connectivity. (A) Raster plot of a random network with non-specific
stimulation (“spontaneous activity), and in response to a stimulus of orientation 90° (evoked activity) applied from 500 ms to 1000 ms (cyan bar). The bottom
panel shows population firing rates computed in bins of size 25 ms. Excitatory neurons are red, inhibitory neurons are blue. (B) Same as (A), for a network
with specific connectivity (specificity 50%). (C, D) Same as (A, B), but only a fraction of excitatory neurons is stimulated. The excitatory population is split into
two halves, and only the first half (neurons below the solid line) sees the oriented stimulus; the remaining neurons receive only background input. (E, F)
Network tuning curves (similar to Fig 2) extracted from the spiking activity of stimulated and non-stimulated excitatory neurons during the evoked state, for
random and specific networks, respectively. In the random network, the non-stimulated fraction shows non-selective activity. In the network with FS
connectivity, however, both stimulated and non-stimulated population show orientation selective responses.

doi:10.1371/journal.pone.0127547.g004
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instability of the AI state, just before the eigenmode corresponding to the modulation compo-
nent would become linearly unstable (cf. [47]). In contrast to the conclusion of [47], therefore,
our results suggest the stable AI state as a more suitable regime for sensory processing.

In this optimal regime, we observed a moderate increase of correlations (Fig 2F and S4 Fig),
despite the network being spectrally stable. A comparable level of noise correlations has in fact
been reported recently in mouse visual cortex [24]. This result is also consistent with larger
pairwise correlations reported recently in supra- and infra-granular layers of monkey primary
visual cortex [28, 29], assuming that FS connectivity is emerging in those layers as a result of
Hebbian learning. We therefore hypothesize that the emergence of pairwise correlations might
be considered as a signature of FS connectivity to the degree to which it implies reaching the
edge of spectral stability [45]. In light of this hypothesis, it will be interesting to see whether the
close-to-zero correlations in the input layers of monkey V1 [28, 29] reflect the lack of FS con-
nectivity in those layers. Also, as FS connectivity is not present at eye opening in mice [18], we
predict that only very low pairwise correlations should be observed at this stage, with moderate
correlations appearing only later during development, coinciding with the emergence of FS
connectivity [16–19].

Note that, although correlations are observed in the activity of our networks, they were not
necessary, and not detrimental, for the emergence of tuning amplification in the linear regime.
In fact, the mean-field theory employed here was developed under the assumption that neu-
rons receive uncorrelated spike trains (see Methods and Materials). This theory was neverthe-
less generating an excellent approximation of the mean amplification of the network, and the
transition to spectral instability (Fig 2E). The success of our model, therefore, shows that mech-
anisms underlying the amplification of feedforward tuning in the linear regime do not include
correlations across neurons; tuning amplification and correlations both emerge as a result of
network dynamics, but they do not seem to be linked together causally.

As opposed to the low or moderate degree of correlations in the regimes of stable dynamics,
relatively large pairwise correlations were observed in the spectrally unstable regime (Fig 2F).
That is, in presence of FS connectivity, the amplification gain of the network decreases, and
pairwise correlations simultaneously increase. The former effect decreases the signal-to-noise
ratio, and the latter effect compromises the decoding of sensory information [48]. In contrast,
the regime with low FS connectivity shows only very small pairwise correlations. This enhances
the stimulus encoding, but limits the network in amplifying the sensory signal. The intermedi-
ate regime appears to provide a useful trade-off between information content of the population
code and signal-to-noise ratio.

A similar trade-off can be reported for the patterns of spontaneous activity (Fig 3F). Net-
works with very large FS showed the most selective spontaneous patterns, resembling the
evoked responses of the network best. This was, however, compromised by a non-uniform re-
presentation of orientation patterns in the spontaneous activity (see [44] for a similar observa-
tion). The intermediate regime, in contrast, showed only a moderate enhancement of
selectivity of spontaneous patterns, but without introducing a bias toward a specific preferred
state (Fig 3F). Another advantage of the intermediate regime is the fast switching between dif-
ferent states, in contrast to the very slow time scale of transitions between network states in the
spectrally unstable regime (see also [46]).

Note that it would be possible to further enhance the similarity of the spontaneous and
evoked patterns in the intermediate regime by including NMDA synapses with slower kinetics
into the model, similar to a previous modeling study [49]. Implementing this mechanism in a
biologically more detailed model would ensure that the neuronal ensembles which activate to-
gether during spontaneous activity become even more pronounced and remain more active.
Whereas such ensembles would be random groups of neurons which are more connected
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together by chance in a random network, the spontaneously active subnetworks would become
feature-specific in networks with FS connectivity. Now, a pronounced functional map of orien-
tation selectivity determines co-active ensembles in spontaneous activity and makes them simi-
lar to the evoked ones.

A biologically more realistic version of our model should also account for two further fea-
tures. First, we neglected heterogeneity in synaptic connections, as the number and strength of
synapses were the same for all networks, and only the strength of synapses was modified based
on FS of pre- and post-synaptic neurons. A more biologically realistic network with heteroge-
neous connectivity (including heterogeneity in the number and strength of synapses, heteroge-
neity in FS connectivity, and heterogeneity in the balance of excitation and inhibition) leads to
more realistic responses. However, our main findings here also hold under such conditions,
and do not change qualitatively (results not shown). Second, we only studied networks in
which only the excitatory population underwent a change in synaptic connectivity. It is possi-
ble, however, that during development, excitatory to inhibitory or inhibitory to excitatory con-
nections also change. Potentiation of inhibition as a result of such a plasticity may well ensure
the stability of the modulation eigenmode, preventing the network from entering the spectrally
unstable regime. As a result of potentiation of inhibitory connections the firing rate of excitato-
ry neurons can also decrease. This might lead to moderate firing rates which seem to be more
compatible with experimental results in rodents. It remains, therefore, an interesting topic for
further studies how concomitant changes in the weights of excitatory and inhibitory connec-
tions affect network dynamics and neuronal tuning curves.

In our networks here with FS excitatory connections, we also found two further emergent
properties. First, we observed pattern completion in our networks: when only half of the excit-
atory population was stimulated, networks with FS connectivity responded as if the whole stim-
ulus pattern was present. We also observed an emergence of reverberating activity as a result of
specific connectivity, where orientation selective population activity persisted for a few tens of
millisecond after removal of the visual stimulus. Such a persistent activity has indeed been re-
ported in cats [50], with time constants very similar to those reported here. It is therefore inter-
esting to see whether a similar effect exists in mouse visual cortex. As feature-specific
connectivity is absent at eye opening, the prediction is again that reverberating activity only
emerges later during development, as soon as a significant degree of FS connectivity is estab-
lished [18]. It is also tempting to speculate about the biological function of this reverberating
activity. It might be crucial for creating association in time, and instrumental to solve the prob-
lem of temporal feature-binding. Using analytical and computational tools, we therefore pro-
vide a very-much needed framework to understand the role of FS connectivity in visual
processing in particular, and sensory processing in general.

Supporting Information
S1 Fig. Orientation selectivity in inhibition-dominated networks with random connectivi-
ty. (A) Spikes elicited by a sample excitatory neuron in response to stimuli of different orienta-
tions, offered to the network in 5 independent trials. (B) Tuning curve of the neuron shown in
(A). For each orientation, the trial average (circles) ± one standard deviation (shading) of the
firing rate (during 1.5 s of stimulation) are plotted. The tuning width, TW, is extracted from a
fit to the tuning curve (solid line; see Materials and Methods). The orientation selectivity index
[38], OSI = 1−Circular Variance, is computed from the actual data points. (C) Same as in (B),
for a sample inhibitory neuron. (D) Data from 800 excitatory (red) and 200 inhibitory (blue)
sample tuning curves, each aligned to the preferred orientation (PO) of its input. The respective
tuning curve of the input (same for all neurons) is plotted in green. It is normalized such that it
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has the same mean value as the output tuning curve. (E) Mean (black line) ± standard deviation
(gray shading) of output tuning curves, computed from the entire neuron population. The
green curve is again the normalized input tuning curve, and the dashed lines indicate the aver-
age firing rate for excitatory (red) and inhibitory (blue) populations. OSI and TW are comput-
ed from the fit (dotted black line). (F) Distribution of the zeroth (F0, baseline) and the second
(F2, modulation) Fourier components of output tuning curves in the network. (G, H) Distribu-
tion of OSI and TW for the population of excitatory (red) and inhibitory (blue) neurons, re-
spectively. The TW distribution is only plotted for neurons with less than 10% error of fit (see
Materials and Methods). The distribution of this error is shown in the inset in (H). (I) Distribu-
tion of the difference between input and output preferred orientations, ΔPO = Output PO
−Input PO, for excitatory (red) and inhibitory (blue) populations. (J) Excitatory (red) and in-
hibitory (blue) recurrent input to a sample neuron with input preferred orientation, θ� = 0° in
response to a stimulus of orientation θ = 0°. A sample trace is shown for 200 ms of stimulation,
with the distribution for the whole recording time (5 trials of 1.5 s duration) indicated on the
right. (K) Temporal mean (circles) and standard deviation (bars) of the input for sample excit-
atory (red) and inhibitory (blue) neurons with different POs (indicated on the x-axis). (L)
Input tuning curves for the sample neuron shown in (A). Mean and standard deviation (over
time) of excitatory (red) and inhibitory (blue) recurrent inputs to the neuron are shown for dif-
ferent stimulus orientations. The feedforward input is shown for comparison (green). (M)
Input tuning curves for 50 excitatory (red) and 50 inhibitory (blue) sample neurons with differ-
ent input POs. Feedforward input is again shown in green.
(TIFF)

S2 Fig. Orientation selectivity in networks with specific connectivity. (A–H) Same as (B–I)
in S1 Fig, respectively, for a network with 50% FS connectivity (μFS = 0.5, see Materials and
Methods for details) within the excitatory population. In (A) and (B), tuning curves of the
same excitatory and inhibitory neurons in the random network (Fig 1B and 1C) are superim-
posed for comparison (dashed lines). In (D), average tuning curves are plotted separately for
excitatory (red) and inhibitory (blue) neurons. (I–L) Same as (J–M) in S1 Fig, respectively, for
a network with FS connectivity within the excitatory population. (M) Mean (solid line) ± one
standard deviation (shading) of recurrent input in the network with random connectivity, ob-
tained from 50 excitatory (red) and 50 inhibitory (blue) neurons. (N) Same as (M) for the net-
work with FS EE connectivity (μFS = 0.5). (O) Tuning of feedforward input compared to the
tuning of recurrent excitatory input to excitatory neurons.
(TIFF)

S3 Fig. Amplification of input modulation in networks with specific connectivity. (A) Ei-
genvalue spectrum of the normalized weight matrix for a network with random connectivity.
The weight matrix is obtained by linearizing the network dynamics and computing neuronal
gains (see Materials and Methods for further explanation). The large negative eigenvalue, cor-
responding to the non-selective mode, is not shown for graphical reasons. It is a result of the in-
hibition dominance in our networks, and it is responsible for selective attenuation of the
common mode. The eigenvalues with second and the third largest magnitude, λ1 and λ2, are
marked by circles in (B) and (C). The black cross denotes the prediction based on our theory
(see Materials and Methods for details). Lower panel: Eigenvectors corresponding to the three
largest eigenvalues of the network are plotted versus the input preferred orientation of the cor-
responding neurons, separately for excitatory and inhibitory neurons (x-axis). The first eigen-
vector has uniform components and corresponds to the large negative eigenvalue λ0 (not
shown in the spectrum). Only the real part of all components of the eigenvectors are plotted.
(B) Same as (A), for a network with FS connectivity of E to E synapses. The best fitting cosine
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function to the second and the third eigenvectors (versus input PO) are shown by solid lines.
The difference in the phase of the two cosines (Δϕ) is indicated in each case.
(TIFF)

S4 Fig. Pairwise correlations in networks with different degrees of specific connectivity. (A)
Distribution of pairwise correlations in the network with random connectivity. Pearson corre-
lation coefficient, CC, of spike counts for different bin sizes (5, 10, 20 and 50 ms, respectively)
are computed for randomly sampled neurons (100 excitatory and 100 inhibitory). CC is plotted
separately for excitatory-excitatory (EE, red), inhibitory-inhibitory (II, blue), and excitatory-in-
hibitory (EI, purple) correlations. The mean CC is given for each distribution. (B) Same as (A)
for networks with an intermediate degree of specific connectivity (50%; μFS = 0.5). At this de-
gree of specific connectivity, the modulation eigenmodes are still stable. (C) Same as (A) for
networks with a very high degree of FS connectivity (100%; μFS = 1). The modulation eigen-
modes are unstable for this network. Note that the distributions show qualitatively the same be-
havior for different bin sizes. (D–F) Distribution of pairwise correlations for all three networks
for a very large bin size. It is computed from 200 trials of 500 ms spiking activity, and all neu-
rons with an average firing rate more than 1 spikes/s are included in this analysis.
(TIFF)
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