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Abstract

Traditionally, both researchers and practitioners rely on standard Erlang queueing models

to analyze call center operations. Going beyond such simple models has strong implications,

as is evidenced by theoretical advances in the recent literature. However, there is very little

empirical research to support that body of theoretical work. In this paper, we carry out a

large-scale data-based investigation of service times in a call center with many heterogeneous

agents and multiple call types. We observe that, for a given call type: (a) the service-time

distribution depends strongly on the individual agent, (b) that it changes with time, and

(c) that average service times are correlated across successive days or weeks. We develop

stochastic models that account for these facts. We compare our models to simpler ones,

commonly used in practice, and find that our proposed models have a better goodness-of-fit,

both in-sample and out-of-sample. We also perform simulation experiments to show that

the choice of model can have a significant impact on the estimates of common measures of

quality of service in the call center.

Keywords: Applied probability; call centers; service times; agent heterogeneity;

correlation.

1. Introduction

The effective management of call centers is a challenging task mainly because managers are

consistently facing considerable uncertainty; see Gans et al. (2003) and Aksin et al. (2007)

for background on call centers. Among important sources of uncertainty are call arrival rates
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which are typically both time-varying and stochastic, service times which are random and

whose distribution may depend on the call type and the agent who handles it, and agents who

may not show up or may not follow their planned schedules; see Bhulai and Koole (2003),

Avramidis et al. (2004), Avramidis and L’Ecuyer (2005), Aldor-Noiman et al. (2009), Gans

et al. (2010), Ibrahim et al. (2012), Oreshkin et al. (2015), and references therein.

In this paper, we focus on the effective modelling of service times in call centers. In

particular, we carry out a large-scale, in-depth, empirical investigation of service times in

call centers. We analyze data gathered at the call center of Hydro-Québec (HQ), which is

a government-owned public utility overseeing the generation, transmission, and distribution

of electricity for the province of Quebec, in Canada. This real call center setting is complex,

consisting of many heterogeneous agents and multiple distinct call types. Our data show

that service times differ greatly across such agents, vary in time, and exhibit strong serial and

cross correlations. We propose new service-time models which account for those features, and

which are a good fit to real-life data, both in-sample and out-of-sample. We are interested

in out-of-sample predictions because it is important to verify that our models are reliable

tools to predict the future mean service times of agents, which have a considerable impact

on future system performance.

Proposing new and more realistic service-time models, as we do in this paper, is important

for the effective simulation of call centers. Simulation is an important tool that can be used

to evaluate performance measures such as service levels and average waiting times, and

to construct work schedules for agents and call routing rules by stochastic optimization

algorithms (Avramidis et al., 2010; Chan et al., 2014). We use simulation to show that the

choice of service-time model can have a significant impact on the performance measures in

call centers, and formulate valuable insights on the practical usefulness of those findings.

1.1. Background, Positioning in the Literature, and Contributions

Traditionally, both researchers and practitioners relied on standard Erlang queueing mod-

els to analyze call center operations. In Erlang queueing models, agent service times are

modelled as independent and identically distributed exponential random variables with a

constant mean. Going beyond this standard modelling assumption has important opera-

tional consequences, as is evidenced by multiple advances in the recent literature.

Agent heterogeneity. There is a stream of papers which studies queueing models with hetero-

geneous servers, with applications to call center management. One central question which

arises in this context is how to route incoming calls to heterogeneous agents so as to min-

imize a given performance measure, such as the mean waiting time. Given the complexity

of this problem, most papers resort to finding optimal routing policies in large-scale systems
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under heavy-traffic conditions; e.g., see Armony (2005), Gurvich and Whitt (2009), Armony

and Ward (2010), Armony and Mandelbaum (2010), and references therein. Mehrotra et al.

(2012) resort to a numerical study to characterize overall performance in terms of customer

waiting time and overall resolution rate. In general, these papers show that control decisions

can actually benefit from agent heterogeneity, e.g., routing incoming calls to the fastest idle

agents reduces customer waiting.

There is very little empirical research supporting that body of theoretical work. To the

best of our knowledge, the only exception is Gans et al. (2010) who analyzed call-center data

and identified both short-term and long-term factors associated with agent heterogeneity in

practice. They also described results from a small simulation study illustrating the oper-

ational consequences of ignoring such heterogeneity. (We revisit their example and extend

some of their conclusions in §6.) Gans et al. indicated that an interesting extension of their

paper is to incorporate random effects in service-time models so as to “capture within-agent

dependence among the calls handled by the same agent, and enable understanding of a whole

agent population” (p. 118). We consider such random-effects models in this paper. In gen-

eral, random effects represent additional, unobservable and uncontrollable, variability which

causes systematic deviations from the average performance of the agent, and due to which

successive service times may be dependent. Dependencies between service times are often

observed in data, and are therefore important to model, as we do in this paper.

Dependencies among the service times. Service times in practice are often dependent. For

one example, an agent may be overworked in given periods (e.g., in weeks where congestion is

higher than usual) and this could affect his/ her performance in all services that s/he performs

during such periods, typically resulting in that agent either slowing down or speeding-up; see

Delasay et al. (2015), Dong et al. (2015), Feldman et al. (2015), and references therein. In

this case, agents (servers) may be viewed as strategic decision makers that influence their own

service rates. As a result of such strategic behavior, successive service times are dependent.

For a second example, in a technical call center, there may be a product defect due to which

there are multiple related calls, whose durations are all longer than average. In this example

too, service times (call durations) are dependent.

There is a well-developed theory studying the performance impact of dependence among

service times in single-server queues; e.g., see Chapter 9 of Whitt (2002) for a detailed treat-

ment. However, Pang and Whitt (2012) are among the first to consider the multi-server case,

which is more reasonable from a practical perspective. They considered a weakly dependent

stationary sequence of service times and demonstrated that, in the heavy-traffic limit, the

impact of those dependencies is determined by the bivariate cumulative distribution func-

tion of service times. In their numerical study, they considered an EARMA sequence of

3



service times, which is stationary with exponential marginal distributions and the correla-

tion structure of an autoregressive-moving average process. Pang and Whitt demonstrated,

via theoretical analysis and computer simulation, how dependencies between service times

can significantly alter large system performance. In particular, they showed that those corre-

lations strongly impact the distribution of the number of customers in queue which, in turn,

affects staffing decisions. Pang and Whitt concluded their paper by calling for “empirical

studies to estimate the strength of dependence among service times in applications” (p. 278).

We conduct such a study in this paper.

Time Dependence. There are relatively few papers which consider queueing models with

time-varying service rates, since this feature substantially complicates the analysis. Some

exceptions include Mandelbaum et al. (1999), Liu and Whitt (2011), and references therein.

These papers demonstrate the operational impact of including time-varying service rates;

their results apply generally and do not assume a specific form for time dependence in the

service rate. Aldor-Noiman et al. (2009) used predictions of future arrival counts and mean

service times to estimate future loads in call centers. Aldor-Noiman et al. allowed for mean

service times to be time-dependent, and showed how errors in predicting future loads can

impact staffing decisions. Their paper assumed homogeneous agents and a single call type.

Our service-time models account for time dependence as well, albeit in a much more complex

setting, with multiple call types and many heterogeneous agents.

Lognormal Distribution. In their seminal paper, Brown et al. (2005) performed a detailed

statistical analysis of call center data and showed that service times are not exponentially

distributed, as was traditionally assumed, and that the lognormal distribution is a remarkably

good fit for the service-time distribution instead. Deslauriers (2003) had also observed the

same thing. Motivated by this, Shen and Brown (2006) proposed a new method for inference

about non-parametric regression curves when the errors are lognormally distributed, and

illustrated their method with both a simulation study and the analysis of real-life call center

data. Mandelbaum and Zeltyn (2010) advocated a process-view of service times which are

modeled as the evolution of a finite-state continuous-time absorbing Markov process (phase-

type distribution). Here, even though we use additional information when modelling service

times, such as the time when the call is answered, we continue to assume the lognormality

of the individual service times.

In this paper, we supplement the body of theoretical research above with supporting

empirical work. As such, we take a step towards filling that gap in the literature. In

addition to proposing new service-time models that are a good fit to data, we quantify the

performance impact of our alternative service-time models through a simulation study.
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1.2. Organization

Here is how the rest of this paper is organized. In §2, we describe and do a preliminary

analysis of the data set that motivated this research. In §3, we describe our candidate

models. In §4, we compare the in-sample goodness of fit of our models. In §5, we compare

the out-of-sample predictive accuracy of our models for a large pool of agents. In §6, we

present the results of simulation experiments which quantify the performance impact of our

different models. In §7, we make concluding remarks. In the online supplement, we describe

additional models which we considered, and present additional details and numerical results.

2. Preliminary Data Analysis

The present data were gathered at the call center of HQ. The call center is virtual with over

15 locations across Quebec. They were collected over the span of one year, ranging from

January 3, 2011 to December 31, 2011. The call center is open on weekdays and closed on

weekends (Saturday and Sunday). The data consist of daily averages of service times for

alternative agents and different call types. Even though it is desirable to study call-by-call

data, many call centers still routinely collect aggregate summary data instead; see Pinedo

et al. (1999) and Oreshkin et al. (2014), for example. Therefore, it is important to develop

service-time models whose parameters can be estimated with such aggregated data, as we do

here. In addition to daily averages of service times, the data contain information about the

daily number of calls handled by each agent, per call type. Call types are distinguished by

both the nature of the service request and the language, either French or English, in which

the call is handled.

A service time often consists of a first part handled by an interactive voice response (IVR)

system, and a second part where the call is handled by an agent. Since we are interested

in modelling service times from the viewpoint of agents, we do not consider the IVR part

because agents are not involved for that part. The time spent by customers in the IVR is

studied by Salcedo-Sanz et al. (2010) and Colladon et al. (2013), for example. From the

viewpoint of an agent (our viewpoint), an individual service time is the sum of: (i) the time

spent actually talking to the customer (call time), and (ii) the post-call time spent by the

agent to wrap up issues related to the call, during which s/he remains unavailable.

2.1. Overview

In our data set, there are 148 call types handled by a group of 1,655 agents. Alternative

agents have different skills and they handle different call types depending on those skills.

In total, there are 16,328 distinct agent/call type combinations, where each combination
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Figure 1: Average number of agents per weekday and
corresponding 95% confidence bands.
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Figure 2: Average number of answered calls and cor-
responding 95% confidence bands.

corresponds to an agent handling a particular call type. Many call types have very few

corresponding calls, and are not interesting for us to study. We remove from our data set

all call types that have less than 10 calls in total, across all agents, and are left with 86 call

types handled by a total of 1,562 agents.

To sketch a temporal distribution of the workforce, we plot in Figure 1 the average

number of agents answering calls per weekday, with 95% confidence bands that correspond

to the 2.5% and 97.5% empirical quantiles, based on agents who have handled at least 10

calls in the data. We see that that the number of agents is highly variable on Mondays,

and that Fridays have the least number of agents, on average. In Figure 2, we plot the total

average call volume per weekday, including all call types. Consistent with Figure 1, Figure

2 shows that call volumes on Mondays exhibit the highest variance, and that call volumes

on Fridays are lowest on average.

Agents typically handle more than one call type on any given day; also, a single call type

is typically handled by more than one agent. For example, roughly 400 agents handle from

1 to 3 distinct call types, and about 25 call types are handled by roughly 65 agents each.

The median of the total number of call types handled per agent (over the one year period)

is 13, and the median of the number of agents handling a given call type is 33.

2.2. Statistics on Service Times

We report several important empirical observations from our data. Our stochastic models

for service times are developed to incorporate such features.
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Figure 3: Each point corresponds to a (mean, variance) pair for a given call type.

Variation across call types. Figure 3 gives a scatter plot of the empirical means versus vari-

ances of service times for different call types in our data. Each point in the plot corresponds

to a given (mean, variance) pair, corresponding to a given call type. Figure 3 shows that there

are significant differences in means and variances across different call types. As expected,

Figure 3 shows that call types with longer durations generally exhibit higher variances. We

take this variation between call types into account in §3.

Agent heterogeneity. Service time distributions for the same call type vary considerably

depending on the agent. In Figures 4 and 5, we illustrate this agent heterogeneity. We plot

average service times for two call types: A, which is handled by 991 agents, and B, which is

handled by 997 agents, as a function of the total number of calls answered (over the one-year

period covered by our data) by each agent.

The horizontal line in each figure indicates the overall average service time across all

agents, for each call type. Figures 4 and 5 show that there is significant variability in service

times across all agents. Figures 4 and 5 also show that there are clearly clusters of agents

who seem to perform in a roughly similar manner (having either shorter or longer than

average service times). In general, agents who have handled many calls during the year are

much faster on average than those who have handled few calls. The latter are either agents

who have handled very few calls in general, or ones who have mostly handled calls of other

types. In general, it appears that agents who have handled more calls tend to exhibit less

variance in their service times. In other words, the larger dispersion is mainly exhibited by

less experienced agents (those answering fewer calls). In Figures 6 and 7, we plot estimates of

the variances of service times for all agents handling Type A and Type B calls, respectively,
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Figure 4: Average service times for different agents
handling type A calls as a function of the total number
of calls answered per year. The horizontal line is the
overall average across all agents.
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Figure 5: Average service times for different agents
handling type B calls as a function of the total number
of calls answered per year. The horizontal line is the
overall average across all agents.

as a function of the total number of calls of that type answered by the agent. Figures 6 and

7 confirm that there are clear differences in variance of service times across agents.

In Figure 8, we plot the average service times for four agents handling calls of type B, as

a function of time (index of day). Additionally, we include horizontal lines corresponding to

the overall average service times for those agents. Figure 8 illustrates that different agents

exhibit different behavior. Indeed, the top two agents are evidently slower than the bottom

two agents, and their service times also have higher variances.

Time dependence. In addition to variability across different agents, our data show that the

average service time for a given agent and a given call type varies significantly over time.

In Figure 9, we plot the average daily service times for an agent handling four different

call types, as a function of time. These daily averages clearly vary with time. Figure 9

illustrates a phenomenon which could be important from an operational perspective: The

agent seems to be slowing down as he/she handles more call types. Indeed, this is apparent

starting day 208 when the agent begins handling calls of type 4. Thereafter, Figure 9 shows

that the average service times for call types 1 and 2 increase. Based on such observations,

we experimented with including the number of call types handled by an agent as a covariate

in our service-time models. We did not include such models in this paper because they lead

to less accurate out-of-sample predictions of future expected service times on average over

all agents in our data; see the online supplement for more details. Figure 8 also illustrates

that average service times fluctuate across successive days.
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Figure 6: Estimated variances of service times for
agents handling type A calls as a function of the total
number of calls answered per year.
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Figure 7: Estimated variances of service times for
agents handling type B calls as a function of the total
number of calls answered per year.
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Figure 8: Average service times for 4 agents handling
type B calls versus the index of day.
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Figure 9: Average daily service times for an agent
whose skill set increases on day 208.
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Figure 10: Evolution of the average service time of agent a1 for type A calls, and best linear fit.

In Figure 10, we illustrate time dependence by plotting the evolution, over time, of the

daily average service times for an agent a1 handling type A calls. In Figure 10, we also

include the best linear fit for the data. This plotted line clearly shows an upward trend

in the average service times for this agent. In our data, we observed both upwards and

downward trends, depending on the agent. One explanation for downward trends is that

agents are learning with time; see Gans et al. (2010) for further empirical support. There

may be many other explanations for such trends. For example, with upward trends, it may

be that agents are getting bored and less motivated to answer calls quickly.

2.3. Cohort C of 200 Agents

The total number of calls answered per agent varies widely across agents in our data.

The maximum is 14,715 calls handled by one agent over the one year period, but hundreds of

agents have answered very few calls. For these agents, it is difficult to fit service-time models

and do reliable predictions. Moreover, with insufficient data it is hard to reach meaningful

results. For the remainder of this paper, we restrict our attention to agents who answered

a relatively large number of calls; specifically the 200 agents who answered the most calls

during the year. These 200 agents answered a total of 1,175,178 calls, which corresponds to

roughly half of the total number of calls incoming to the center during the year. For each

one of these 200 agents, we removed (agent, call type) pairs where the agent handles the call

type for less than a total of 10 days in our data set. We do this to avoid considering (agent,

call type) pairs with too few observations.

There is a total of 550 different (agent, call type) pairs which remain in our cohort. In

Tables 3–5 of the supplement, we present detailed out-of-sample prediction results for each
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agent in our cohort. The results are also summarized in §5. In Tables 1-3, we also report

the total number of out-of-sample predictions that we made for each agent, across all call

types that the agent handles. We provide additional detail in the supplement.

Hereafter, we refer to our cohort of agents as cohort C. It is important to note that these

are not the 200 rightmost agents in Figures 4-7. In total, these 200 agents handle 30 different

call types, and the number of skills per agent ranges from 1 to 8. The average number of

skills per agent, in this subset of the data, is 3.9.

3. Models for Service Times

In this section, we propose alternative models for the process of service times. We begin by

describing two benchmark models which mimic standard practice.

3.1. Benchmark Models: Model B1 and Model B2

The preliminary analysis of §2 suggests that service times depend strongly on both the

agent and the call type considered; see Figures 4-10. Let Si,j denote the service time of a

call of type j handled by agent i, where j = 1, 2, ..., J and i = 1, 2, ..., I.

In our first benchmark model, Model B1, we assume that Si,j are i.i.d. lognormal random

variables with expected value mj and variance vj, for every i and j, where mj and vj depend

solely on the call type j. In our second benchmark model, Model B2, we assume that the

expected value mi,j and the variance vi,j depend on both the call type j and the agent i.

Since our data only consist of aggregated daily averages of service times, instead of

detailed call-by-call data, it is not immediately clear how to compute point estimates for

those expected values and variances. To do so, we adopt here the method of moments as in

Deslauriers (2003). Alternatively, for a review of estimation methods (for the mean) with

more detailed data, see Shen and Brown (2006).

Method of Moments. We provide additional details for this method by focusing on estimation

for Model B2. For Model B1, we do the same but do not distinguish between alternative

agents handling the same call type. Let n
(k)
i,j be the number of calls of type j handled by

agent i on day k, where k = 1, 2, ..., Ki,j, and Ki,j is the total number of days where agent i

handles calls of type j. Let m̂
(k)
i,j be the average service time for a call of type j handled by

agent i on day k, based on a sample of n
(k)
i,j answered calls. Our data set contains day-by-day

values for both n
(k)
i,j and m̂

(k)
i,j . We define m̂i,j and v̂i,j as follows:

m̂i,j =

∑Ki,j

k=1 n
(k)
i,j m̂

(k)
i,j∑Ki,j

k=1 n
(k)
i,j

, (3.1)
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and

v̂i,j =
1

Ki,j − 1

Ki,j∑
k=1

n
(k)
i,j (m̂

(k)
i,j − m̂i,j)

2 . (3.2)

These m̂ij and v̂i,j are unbiased estimators of mi,j and vi,j for each agent i and call type j;

see Deslauriers (2003) for additional details.

3.2. Model A1: Fixed-Effects Model

The preliminary analysis of §2 suggests that the average service time for a given agent

and call type is not constant over time; see Figure 10. Let M
(k)
i,j be a random variable

representing the average service time for a call of type j handled by agent i on day k. This is

what we observe in our data. In Model A1, we assume that M
(k)
i,j follows a Gaussian process

which is a linear additive fixed-effects model incorporating an intercept and a linear trend.

That is, we assume for each pair (i, j) that:

M
(k)
i,j = αi,j · k + βi,j + ε

(k)
i,j . (3.3)

The coefficients αi,j and βi,j are real-valued constants that need to be estimated from data,

and ε
(k)
i,j are i.i.d. normal random variables with mean 0 and variance σ2

εi,j
/n

(k)
i,j , where n

(k)
i,j

is the number of calls of type j answered on day k by agent i. That is, the number of calls

answered in a given day is used as a weight in our regression model. We estimate the model

in (3.3) using weighted least squares. Of course, modeling the mean service time as a linear

function of time can only make sense as a rough approximation over a limited time interval.

For example, a time-decreasing mean is typically due to a learning effect, but this effect

eventually saturates and the slope of the decrease should become closer to 0 as time goes

on. In fact, we will find that this model with a linear trend is outperformed by our next

two models, which do not include such a linear trend. In addition to a linear time trend, we

also considered quadratic and logarithmic trends. However, since models with such trends

performed consistently worse, we only present results for a linear trend in this paper.

We found that the normality assumption of the mean service times is reasonable in our

data. That is to be expected since our data consist of daily averages where each average is

typically calculated based on tens of service times per day. For example, in Figures 11 and

12, we present normal Q-Q plots for the residuals of Model A1 for two agents, a1 and a2,

along with pointwise 95% confidence bands. Agents a1 and a2 handled many calls of type

A: 8360 and 8098 calls, respectively. We also got consistent results for agents who answer a

relatively small number of calls of a given call type, e.g., 200-300 calls during the year. For all

agent-call type pairs, we conducted the Lilliefors test for normality on the residuals of model

A1; across all such pairs, the first three empirical quartiles of the distribution of p-values for
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Figure 11: Q-Q plot for the residuals of Model A1 for
agent a1 and 95% confidence bands .
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Figure 12: Q-Q plot for the residuals of Model A1 for
agent a2 and 95% confidence bands .

this test are 0.005, 0.08, and 0.3, respectively. Overall, we found that there was typically

not enough statistical evidence to reject the null hypothesis that αi,j = 0. Specifically, the

empirical estimates of the first three quartiles of the distribution of corresponding p-values

are given by: 0.007, 0.2, and 0.5, respectively; in particular, we could not reject the null

hypothesis in more than 60% of the agent-call type pairs. We also conducted Ljung-Box

tests on the autocorrelations of residuals for Model A1, and the quartiles of the empirical

distribution of p-values were 0.04, 0.3, and 0.6. For at least 25% of the agent-call type pairs,

autocorrelations are significant at the 5% level.

3.3. Model A2: Serial Correlations

Capturing dependencies between successive service times amounts to capturing depen-

dencies between (approximately) normal mean service times. Mixed-effects models are ideal

to capture such dependencies with roughly normally-distributed data; we now propose one

such model. We consider a Gaussian linear mixed-effects model for M
(k)
i,j :

M
(k)
i,j = βi,j + γ

(wk)
i,j + ν

(k)
i,j , (3.4)

where γ
(wk)
i,j is a random effect specific to the week wk of day k, and ν

(k)
i,j is a normally

distributed residual error. We assume that these residuals ν
(k)
i,j are independent normal with

mean 0 and variance σ2
νi,j
/n

(k)
i,j . The residual variance of ν

(k)
i,j is specific to each (i, j) pair; as
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such, we can capture differences in variance across different agent/skill pairs. The random

effects γ
(wk)
i,j are normally distributed weekly deviations which we use to capture correlations

in the average service times, for the same agent and call type, across successive weeks and

across successive weekdays within the same week. Because of the aggregated nature of the

available data, we do not consider a daily random effect in (3.4), but rather a weekly one,

and we do not impose a covariance structure on the residuals ν
(k)
i,j . Indeed, both would lead

to identification issues since we do not have data for individual calls during a given day.

Thereafter, we omit the subscript of a random variable when the specific index is not

important. In a Gaussian mixed-effects framework, γ
(wk)
i,j and ν

(k)
i,j are assumed to be normally

distributed and independent. Here, we assume that the random effects, γ
(wk)
i,j , are identically

normally distributed with expected value E[γ
(wk)
i,j ] = 0 and variance Var[γ

(wk)
i,j ] = σ2

γi,j
, and

that γ
(wk)
i,j follows a first-order autoregressive covariance structure, AR(1). That is,

γ
(u)
i,j = ρi,jγ

(u−1)
i,j + ψ

(u)
i,j , (3.5)

where ρi,j is the autocorrelation parameter, and ψ
(u)
i,j are i.i.d. normally distributed random

variables with E[ψ
(u)
i,j ] = 0 and Var[ψ

(u)
i,j ] = σ2

γi,j
(1− ρ2i,j). The covariance between γ

(u1)
i,j and

γ
(u2)
i,j is given by

Cov(γ
(u1)
i,j , γ

(u2)
i,j ) = σ2

γi,j
ρ
|u2−u1|
i,j . (3.6)

Assuming an AR(1) covariance structure for γ
(wk)
i,j is both useful and computationally effi-

cient, because it requires the estimation of only two parameters, σγi,j and ρi,j.

Here, the weekly random effect that follows an AR(1) process replaces the linear trend

that we had in Model A1. It allows for a situation where for a given agent, for example, the

mean decreases for some period of time due to learning, then remains stable, then increases

later because the agent loses interest or has other problems, etc. This AR(1) process is very

simple and yet sufficiently flexible to model such mid-term variations in the mean.

We also tried Model A2 with a linear trend as in A1 in addition to the AR(1) term, and

found that the version without the linear trend provided a better fit to the data out of sample.

For this reason, we omitted the linear trend. In Table 1, we present point estimates for the

different parameters of Model A2, based on our data, for 3 agent/call type combinations.

The p-values in the table are computed automatically in SAS R© as follows: Assuming the

normality of the random effects and residuals, we can construct a statistic depending on the

fixed effects (β) and the random effects (γ) which can be shown to have approximately a

t−distribution for which we can estimate the degrees of freedom. Based on this statistic

we can make inference about whether the random and fixed effects (the linear trend) are

equal to 0. The weekly random effect and the autocorrelation parameter are generally found

14



to be statistically significant. When testing the linear trend, the quartiles of the empirical

distribution of p-values were 0.06, 0.3, and 0.6. The trend is statistically significant at the

95% level for 125 pairs out of 550. For the model without the linear trend, autocorrelation

is statistically significant at the 95% level for 246 pairs out of 550, and the quartiles of the

distribution of p-values are 0, 0.002 and 0.3.

(Agent,call type) Category Value Std. error p-value

σ2
γi0,j0

1270 1004 0.1035

ρi0,j0 0.705 0.269 0.00870
(i0, j0) σ2

εi0,j0
146000 20800 < .0001

βi0,j0 602 45.7 < .0001
αi0,j0 -0.634 0.204 0.00250
σ2
γi1,j1

608 356 0.0439

ρi1,j1 0.870 0.0846 < .0001
(i1, j1) σ2

εi1,j1
93867 10300 < .0001

βi1,j1 295 21.9 < .0001
αi1,j1 0.0885 0.101 0.383
σ2
γi2,j2

1320 684 0.0267

ρi2,j2 0.652 0.244 0.00760
(i2, j2) σ2

εi2,j2
51000 8030 < .0001

βi2,j2 283 25.4 < .0001
αi2,j2 0.243 0.156 0.124

Table 1: Results for Model A2 for 3 different agent/call type combinations. Point estimates of model
coefficients are shown with corresponding standard errors and p-values of t-tests for statistical significance.

3.4. Model A3: Serial and Cross Correlations

Dependencies in the time series of service times may be due to factors linked to the agents

themselves, such as stress, fatigue, demotivation, etc. Such short-term effects may influence

agent performance during a given period of time and cause dependencies between the service

times of all calls handled by that same agent. Considering models with cross correlations is

therefore important to capture similar effects.

In Model A3, we jointly model the service times of different call types handled by the

same agent. We consider a mixed-effects model for the mean service time (just as in Model

A2) where we merge alternative call types together and have the same weekly random effect

common to all types handled by the same agent. This gives:

M
(k)
i,j = βi,j + γ

(wk)
i + ν

(k)
i,j . (3.7)
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The intercept βi,j is specific to call type j handled by agent i. We continue to assume an

AR(1) covariance structure for γ
(wk)
i . We let γ

(wk)
i depend on the agent i and the week wk,

but not on the call type j. We also continue to assume that model residuals are i.i.d. normal

with expected value 0 and variance σ2
νi,j
/n

(k)
i,j . The random effect γ

(wk)
i , which is common for

all call types handled by agent i, exploits both serial correlations across successive weeks,

and cross correlations across different call types. The residual variance of ν
(k)
i,j is specific to

each (i, j) pair; as such, we capture differences in variance across different agent/skill pairs.

As an illustration, Table 2, gives parameter estimates of Model A3 for the agent i0

considered in Table 1. Here, the p-value for the weekly random effect is 0.0858. Some other

p-values are quite small. We also tested Model A3 with a linear trend, for our cohort of

200 agents, and the quartiles of the distribution of p-values for the test on the linear trend

were 0.04, 0.3, and 0.6. That is, for most agents the trend is not significant. In out-of-

sample goodness of fit tests and predictions based on Model A3 both with and without this

linear trend, the version without a trend fit the data better. Therefore, we omit this linear

trend from consideration in §4 and 5. For the model without a trend, the autocorrelation

parameter is usually found to be statistically significant: the quartiles of the distribution of

p-values were (approximately) 0, 0.005, and 0.2.

Category Value Std. error p-value

σ2
γi0

1240 901 0.0858

ργi0 0.687 0.270 0.0108
σ2
εi0,1

146000 47200 0.001

σ2
εi0,2

149000 32300 < 0.0001

σ2
εi0,3

145000 19800 < 0.0001

β(i0,1) 562.1 107 < 0.0001
β(i0,2) 454 43.2 < 0.0001
β(i0,3) 624 42.7 < 0.0001
α(i0,1) -0.628 0.686 0.361
α(i0,2) -0.371 0.193 0.0564
α(i0,3) -0.727 0.192 0.0002

Table 2: Results for Model A3 for agent i0, featured in Table 1, answering 3 different call types, numbered
1-3. Point estimates of model coefficients are shown with corresponding standard errors and p-values for
statistical significance.

4. Goodness of Fit of the Models

In this section, we assess the goodness of fit to data of our candidate models.
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4.1. Model Residuals

We begin by analyzing the residuals of each model, where model residuals are defined

to be equal to the differences between the observed daily average service times and the

corresponding fitted values. In Table 3, we present summary statistics for the square of the

residuals for our cohort C of agents; see §2. Table 3 shows that Models A2 and A3 are

better fits to data than Model A1, B1 and B2, and that Model A2 is a slightly better fit

than Model A3. Models B1 and B2 lag behind, and Model B1 clearly yields the worst fit.

We also compute estimates of the root mean squared errors (RMSE) for the cohort C

under the different models. In Figure 13, we present box plots for the RMSE’s across all

models. Figure 13 shows that Models A2 and A3 are a better fit to data than the rest of the

models. In Figure 14, we plot the empirical cumulative distribution functions (ECDF) of the

RMSE’s for all models. Once more, Figure 14 shows that Models A2 and A3 provide superior

fits to data compared to other models. For the RMSE’s, we ran matched-pair t-tests, at the

95% confidence level, for all model pairs and found that the differences in RMSE’s were all

significantly different from 0 (the corresponding p-values of all tests were very close to 0).

4.2. Distributional Fits

We can use our candidate models to obtain full distributional fits for the service times,

beyond expected values. However, given the aggregated nature of our data, it is not possible

to investigate how well our models fit the distributions of the individual service times. In-

stead, we can only test how well they reproduce the distribution of daily averages observed in

our data sample. In order to do so, we simulate independent replications of the mean service

times under each model, and use the probability integral transform (PIT) (as in Rosenblatt

(1952)) which is defined as follows for day k, agent i, and call type j:

PIT
(k)
i,j ≡

1

N

N∑
l=1

I(m(k)
i,j < s

(k)
i,j (l)) , (4.1)

where I(·) denotes the indicator function, N is the number of simulation replications, m
(k)
i,j

is the observed average service time on day k for agent i and type j, and s
(k)
i,j (l) is the

corresponding simulated value, on replication l, assuming the same number of calls on day

k as was observed in the data set. This measure has been used extensively in econometrics;

see Weinberg et al. (2007).

Assume that M
(k)
i,j is the random variable representing the mean service time for each

i, j, and k. If our model is correct, then the distribution of S
(k)
i,j (according to which

we simulate s
(k)
i,j ) and the distribution of M

(k)
i,j should be identical. In particular, the ran-
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Statistic Model B1 Model B2 Model A1 Model A2 Model A3

Mean 15,243 10,131 9,214 7,272 7,428
Median 4,238 2,296 2,099 1,574 1,624
First quartile 894 454 415 308 322
Third quartile 13,396 7,844 7,217 5,581 5,690

Table 3: Summary statistics for the square of residuals, under each model, across the cohort C of agents.

dom variable F
S
(k)
i,j

(M
(k)
i,j ) should then be U [0, 1], where FX denotes the cumulative distri-

bution function of a random variable X. It is not hard to see that PIT
(k)
i,j is, for large

N , distributed as F
S
(k)
i,j

(M
(k)
i,j ). Therefore, if our model is correct then the random sample

PIT
(1)
i,j ,PIT

(2)
i,j ,PIT

(3)
i,j , ...,PIT

(K)
i,j should behave like i.i.d uniform U [0, 1] random variables for

all i, j. To test whether the PIT’s under a given model are a good fit to the uniform dis-

tribution, we use chi-square goodness of fit tests under the 95% confidence criterion. Under

these tests, the null hypothesis is that the PIT comes from a U [0, 1] distribution.

In Table 4, we summarize the results of those chi-square tests for the cohort C of agents

that we considered. Recall that there are 550 different agent/skill combinations in the

subset of the data that we consider. For each combination, we consider whether the uniform

distribution is a good fit for the corresponding PIT’s. Then, for each model, we report the

proportions of the chi-square tests that reject the null hypothesis at the 95% level. Table

4 shows that Models A2 and A3 yield better distributional fits to the data than Model

A1 and the benchmark models, and that Models A2 and A3 fit the data roughly similarly.

Indeed, Table 4 shows that, with Model 1, we fail to reject the null hypothesis of uniform

PIT’s for only 59% of the different agent/skill combinations. In contrast, with Model A2, we

fail to reject this null hypothesis for roughly 73% of the different agent/skill combinations,

and with Model 3 we do so in roughly 70% of the agent/skill combinations. While these

numbers remain below the desired 95% level, the improvement in fit over the remaining

models, particularly the benchmark models commonly used in practice, is significant.

Model B1 Model B2 Model A1 Model A2 Model A3

Reject 0.812 0.533 0.413 0.267 0.300

Table 4: Summary of results of chi-square goodness of fit tests to the uniform distribution for the PIT of
all models, across the 550 agent/call type combinations considered. We report the proportions of tests for
which the null hypothesis that the PIT’s fit the uniform distribution is rejected at the 95% level.
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Figure 13: Box plots of the RMSE’s of model residuals
when fitting all models to the data from the cohort C
of agents.
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Figure 14: ECDF’s for the RMSE’s of model residuals
when fitting models to the data from the cohort C of
agents.

5. Predictions of Average Service Times

We now compare the statistical models of §3 based on their out-of-sample forecasting perfor-

mance, for our cohort C of agents. For each agent and call type, each model, and each day

i, we estimated the model based on all the observations up to day i − δ only (the learning

period), where δ is a selected prediction lag or lead time, and from that we computed a

prediction m̂i of the average service time mi for day i. We considered only days i for which

i − δ ≥ 60. Each m̂i is an out-of-sample forecast (based only on past information). We

consider three different prediction lead times δ, namely 2 weeks, 1 week, and 1 day, to mimic

real-life challenges faced by call center managers. We roll the learning period forward so as

to preserve the length of the lead time. We re-estimate all model parameters after each pre-

diction. We use the Mixed Procedure in SAS R© to compute maximum likelihood estimates

of the parameters for Model A2 and Model A3, and to generate the corresponding forecasts;

see §2 of the supplement for a detailed description of how we compute each prediction.

5.1. Performance Measures

We quantify the accuracy of a point prediction by computing the root mean squared error

(RMSE) per day, defined by:

RMSE ≡

√√√√ 1

K

K∑
i=1

(mi − m̂i)2 , (5.1)
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where mi is the observed average service times for a given day i, m̂i is the predicted value of

mi, and K is the total number of predictions made. The RMSE is in units of seconds. We

also compute the mean absolute percentage error (MAPE), which gives a relative measure

of accuracy defined by:

MAPE ≡ 100 · 1

K

K∑
i=1

|mi − m̂i|
mi

. (5.2)

5.2. Predictive Performance

In Tables 5 and 6, we report aggregate results for the out-of-sample forecasts over all 200

agents, call types, and days. Detailed numerical results for each agent are given in Tables

3-5 of the supplement. In Table 5, we include estimates of the average, the median, and the

first and third quartiles of the MAPE’s and RMSE’s obtained across all agents. Recall that

each MAPE and RMSE is over all call types and days, for each agent. We highlight in bold

the minimum RMSE and MAPE in each row. Clearly, Model A3 is superior throughout. It

clearly outperforms our benchmark models, commonly used in practice, particularly with a

short forecasting lead time (one day). We now briefly discuss the results for lead times of 2

weeks and 1 day, respectively.

Two-Weeks-Ahead Predictions. Over this long lead time, Models A2 and A3 perform

nearly the same. Model B2 is competitive as well, and yields smaller prediction errors than

Model A1, for both the MAPE and the RMSE. The average MAPE for Model A3 is roughly

12% lower than for A1 and 3% lower than for B2. On the other hand, Model B1 clearly lags

behind, with a MAPE 26% larger than for Model A3. Similar results hold when comparing

the average RMSE, which is roughly 18% larger for Model A1 than for A3, and 3% larger

for B2 than for A3. We ran matched-pair t-tests, for all possible model pairs, to test if the

differences in the RMSE’s and MAPE’s are significantly different from 0. The p-values of

those tests were all very small (the difference is clearly significant, with p < 0.0001) except

in two cases: When comparing the RMSEs for Models B1 and A1, we obtain p = 0.48 and

when comparing the MAPEs for Model A2 and A3, we obtain p = 0.12.

One-Day-Ahead Predictions. With a forecasting lead time of 1 day, the advantage of ex-

ploiting correlations between weekly averages increases. Models A1, A2, and A3 yield more

accurate predictions than both benchmark models, with Model A3 taking the lead. For

example, the average MAPE is roughly 6% smaller for Model A3 than for B2, and roughly

5% smaller for A2 than for A1. The average RMSE is roughly 10% smaller for Model A3

than for A1, and roughly 9% smaller for A2 than for A1. Model B1 is clearly outperformed

by all other models. In matched-pair t-tests, all p-values were very small (p < 0.0001).
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Forecast lead time of two weeks
Model B1 Model B2 Model A1 Model A2 Model A3

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Average 107 26.2 91.5 20.1 109 22.0 89.6 19.6 88.7 19.4
Median 95.2 21.7 88.1 18.6 97.4 20.7 86.7 18.0 86.0 17.9
First quartile 77.3 17.3 70.0 15.3 74.7 16.5 69.1 15.0 68.2 14.9
Third quartile 122.0 28.9 109 23.3 136 25.7 108 22.8 106 22.8

Forecast lead time of one week
Model B1 Model B2 Model A1 Model A2 Model A3

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Average 107 26.2 90.6 19.9 100.0 20.4 88.3 19.2 87.2 19.0
Median 94.7 21.8 87.6 18.5 96.1 19.4 85.0 17.8 84.2 17.6
First quartile 77.3 17.4 68.5 15.3 73.5 15.9 67.9 15.0 67.4 14.7
Third quartile 122 28.8 109 23.3 124 23.5 107 22.3 105 22.7

Forecast lead time of one day
Model B1 Model B2 Model A1 Model A2 Model A3

RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

Average 107 26.2 89.9 19.6 95.2 19.4 86.6 18.5 85.4 18.4
Median 95.1 21.7 86.1 18.3 91.6 18.4 82.3 17.2 82.3 17.1
First quartile 77.6 17.4 67.6 15.2 70.4 15.3 66.8 14.6 65.9 14.2
Third quartile 122 28.7 108 23.2 117 22.0 104 21.6 102 21.7

Table 5: Predictive accuracy for Models A1, A2, and A3, averaged across our cohort C of agents.

Forecast lead time of two weeks
Model B1 Model B2 Model A1 Model A2 Model A3

MAPE 0.202 0.227 0.202 0.157 0.253
RMSE 0.167 0.182 0.106 0.212 0.364

Forecast lead time of one week
Model B1 Model B2 Model A1 Model A2 Model A3

MAPE 0.172 0.187 0.227 0.202 0.278
RMSE 0.141 0.152 0.131 0.232 0.389

Forecast lead time of one day
Model B1 Model B2 Model A1 Model A2 Model A3

MAPE 0.141 0.146 0.207 0.232 0.338
RMSE 0.116 0.116 0.136 0.278 0.424

Table 6: Proportions where a given model is the winner, i.e., yields the smallest performance measure,
across our cohort C of agents.
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Figure 15: ECDF’s for the RMSE’s for a forecasting
lead time of 1 day, across all agents in cohort C.
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Figure 16: ECDF’s for the MAPE’s for a forecasting
lead time of 1 day, across all agents in cohort C.

Proportion of wins for each model. Table 6 compares the models from a different viewpoint:

it reports the proportions of agents (in our cohort C) where each model yields the smallest

performance measure, across all models. For example, the first row in Table 6 indicates

that, across the 200 agents considered, the smallest MAPE was achieved by Model A1 for

20.2% of the agents, by Model A2 for 15.7% of the agents, and by Model A3 for 25.3% of

the agents. With a forecasting lead time of two weeks, Model B2 is competitive, but it is

still outperformed by Model A3. The proportions in Table 6 do not sum up exactly to unity

because there may be multiple minimizers of the MAPE (or RMSE) for a given agent. In

Table 6, Model A3 generally performs better than all remaining models. This is especially

true with a short forecasting lead time. For example, with a lead time of 1 day, Model A3

yields the smallest RMSE for 42.4% of the agents, compared with 11.6% for B2.

In Figures 15 and 16, we plot the empirical cumulative distribution functions for the

RMSE’s and MAPE’s, respectively, for all models, with a lead time of one day. These

figures illustrate the improvement in forecasting accuracy that is summarized in Table 5.

6. Simulation Experiments

In the previous sections, we illustrated the improvement in goodness-of-fit to data, both in-

sample and out-of-sample, which results from considering more realistic service-time models.

We now discuss the results of simulation studies which assess the impact of considering dif-

ferent service-time models on performance measures of interest in a call center. Specifically,

we consider both the average waiting time (AWT) of calls and the service level (SL(s)),

defined as the percentage of calls whose waiting times are less than s seconds (for fixed s).
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6.1. Performance Impact of the Different Service-Time Models

Our objective in this subsection is to quantify the differences in average system perfor-

mance across our alternative service-time models. As such, we show that effectively modelling

service times also matters from an operational point of view. To do so, we consider a model

of a small subset of the real HQ call center from which our data was taken.

We consider two call types and two agent groups, and an N -queueing design for call

routing (1 flexible and 1 dedicated agent pools). The two call types are for the same type of

service (related to billing), but one is in French (F) while the other is in English (E). The

first group (F, with 10 agents, numbered from 1 to 10) can only handle the first call type

and the second group (EF, with 2 agents, numbered 11 and 12) can handle both. That is, F

agents only answer calls in French and EF agents are bilingual. Those 12 agents are the ones

that worked on each day of week number 45 in our data set, and handled only those two call

types. The center is open from 8h to 18h. The arrival process for each of the two call types

is piecewise-Poisson, with a gamma random arrival rate in each 15-minute time interval, and

a normal copula to model the dependence between those rates. This model is explained in

Oreshkin et al. (2015), where it was also shown to provide a good fit to the arrival data

for this HQ call center. The arrival rates were scaled down to fit our smaller number of

agents. Abandonments are modeled with exponential patience times. Calls are served in

first-come-first-served order within each group. All other details, such as the parameters of

the arrival-rate model, the abandonment rates, and the detailed staffing and routing rules

are given in the supplement (§3).

The target day that we simulate is Friday of week 45. For each selected agent, and each

skill for the EF agents, we estimate the parameters of models B1, B2, A2, and A3 based on

all data collected until Thursday of week 45. (We omit A1 because it is outperformed by A2

and A3.) Using those parameter estimates, we generate service times for each agent on that

Friday. For B1 and B2, this is straightforward. For A2, as in (3.4), we can write, omitting

the specific indices for simplicity, that M = β+γ+ν where (conditional on past information)

β is a constant, γ is normally-distributed with conditional mean γ̂ and conditional variance

v, and ν is normal with mean 0 and variance σ2
ν/N , where N is the number of calls of that

type handled by the agent on that day. To simulate one day, we first generate γ from the

appropriate normal distribution and, conditional on γ, we generate independent service times

that are lognormal with mean β + γ and variance σ2
ν . For A3, we proceed in a similar way.

In Table 1 of the online supplement, we present the RMSE and MAPE (comparing mean

actual and predicted service times) for call types E and F, corresponding to each service-time

model. And, in Table 2 of the online supplement, we present the observed average service

times for our simulated Friday, the forecasts from each service-time model, and estimated
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values for σ2
ν and v for each agent and skill.

Our model was simulated for r = 10, 000 independent days under each service-time model

with all remaining system parameters held fixed. We purposely choose a large number of

simulation replications so as to ensure that the differences observed between our alternative

service-time models are statistically significant. We used inversion with common random

numbers across the four models to generate the lognormal service times. Thus, the only

differences between the four models (in the simulations) are the means and variances of

the lognormal service times. We computed the AWT W and the service level SL(120) (the

fraction of calls answered within 120 seconds), for each simulated day. In Table 7, we report

95% confidence intervals for E[W ] and E[SL] based on those r simulations, for each model

and call type. Table 7 illustrates potential differences in the SL and AWT across the different

models. Although such differences may appear minimal at first glance, they could lead to

significant cost savings in practice. For example, ACS Wireless found that decreasing the

AWT by a mere 0.6 second lead to $8 million of savings annually (Hanks 2014). Also,

small percent differences in the SL could mean the difference between abiding and violating

service-level agreements, which may involve hefty penalties for the call center. Thus, our

numerical results illustrate that different service-time models may lead to different average

system performances. Such differences could lead to significant cost reductions in practice.

SL (%) AWT (s)

Model F E F E

B1 82.68 ± 0.31 56.17 ± 0.41 68.72 ± 1.40 261.80 ± 3.9
B2 78.28 ± 0.25 55.31 ± 0.40 73.76 ± 1.30 166.68 ± 2.00

A2 79.58 ± 0.23 55.91 ± 0.40 68.20 ± 1.23 160.06 ± 1.98
A3 79.26 ± 0.24 54.95 ± 0.40 69.75 ± 1.27 162.42 ± 1.99

Table 7: Performance estimates and confidence intervals for our N model.

Our service-time models could be used in practice to enable a more accurate assessment

of the performance of different agents. This, in turn, allows for better agent classification

into pools handling different call types. Next, we investigate such selection effects.

6.2. Extending the Small Example in Gans et al. (2010)

It is intuitively clear that changing the expected service times (or service rates), all else

remaining unchanged, can have a strong impact on the performance measures in the system.

In simple models, e.g., Erlang-A for a single call type, such performance impact can be

computed or approximated easily by a formula. It has also been observed that if agents are

heterogeneous in terms of expected service times and a subset of those agents is chosen at

random for a given day, then the mean expected service time for the selected agent group
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has more variability than if all agents were identical (Gans et al. 2010), and the AWT over

the day should also exhibit a larger variance and (intuitively) a larger mean.

Gans et al. (2010) showed that agent heterogeneity affects the average waiting times. In

this subsection, we go beyond their results and look in more detail on the impact of that

heterogeneity on the distribution of the AWT, going beyond just the means. In particular,

suppose that we have a fixed pool of agents, each with a given skill set and a given service-

time distribution for each skill. Suppose that we select, at random, a subset S from this

pool, say with a fixed number of agents for each skill set, on a given day. Letting W denote

the AWT value for that day, we have that:

Var[W ] = Var[E[W | S]] + E[Var[W | S]]; (6.1)

in this variance decomposition, the first term is the variability due to the randomness of S,

and the second term is the residual variability of W once the set S is known.

Gans et al. (2010) reported an experiment in which they selected 12 agents with expo-

nential service times and service rates ranging from 3.86 to 6.33, with an average of 5.015.

They simulated 100 independent days as follows. On each day, they picked a set S of 6 agents

at random from the original 12, and then simulated a small Erlang-A call center model with

Poisson arrivals at a rate of 21 calls per hour, abandonment rate of 2 per hour, and the

6 selected agents. With a service rate of 5.015 for all agents, the Erlang-A formula gives

an AWT of 58.8 seconds over an infinite-time horizon. Gans et al. plotted a histogram of

the 100 values of W obtained from their simulation and observed a large variability: about

1/3 of the values are more than 12 seconds (20%) away from 58.8. As such, their example

illustrates that “a random draw of 6 from the 12 service rates described above will most

typically yield results that do not match the intended QoS target” (p. 111).

We now go further: the variability of W has two parts, as shown in (6.1), and only the

first part is due to the random draw of service rates. To estimate the two parts, for each of the

C12
6 = 924 subsets of 6 agents that can be selected, we simulated 1000 days with their model

parameters and computed the average and variance of the resulting 1000 values of W , say Mi

and Vi for subset Si, for i = 1, . . . , 924. We have E[Mi] = E[W | Si] and E[Vi] = Var[W | Si],
so we can view the distribution of the Mi’s as an estimate of the distribution of E[W | S].

We can also estimate Var[E[W | S]] by the empirical variance of the Mi’s, and E[Var[W | S]]

by the average of the Vi’s. We computed those estimates and obtained E[W ] ≈ 64.84,

Var[W ] ≈ 1530.29, Var[E[W | S]] ≈ 165.25, and E[Var[W | S]] ≈ 1365.04. Thus, the choice

of S only accounts for 10.8% of the variance of W . Nevertheless, there are some choices of

S for which E[W | S] differs considerably from E[W ]. In particular, if S contains the six
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fastest agents, then we obtain E[W | S] ≈ 0.21, whereas if it contains the six slowest agents,

then we have E[W | S] ≈ 365.69. This is indeed a very large spread. That is, selecting the

agents at random does not have a large impact on the variance of the AWT. Nevertheless,

selecting specific agent subsets can lead to significantly different values for the AWT.

6.3. Impact of Agent Selection

To illustrate the potential impact of agent selection for a given day, we now consider

additional simulations for models B2, A2, and A3 (we omit model B1 because it assumes that

all agents are identical). Here, we summarize our results in Tables 8 and 9; for corresponding

histograms of the results, see Figures 7-9 in the supplement. In the previous example, the F

agents numbered 1, 2 and 8 (in Table 2 of the supplement) are slowest and agents 3, 7, and 10

are the fastest (according to actual mean service times). We replace the three slowest agents

by clones of the three fastest agents, so that we now have two copies of agents 3, 7, and 10.

With this new staffing, we simulated r = 10, 000 independent days and computed W and

SL for each day, as in the previous example. In Table 8, we report 95% confidence intervals

for E[W ] and E[SL] based on these r simulations, for each model and each call type. We

find that, in comparing with Table 7, performance has improved significantly in the system,

across all service-time models. We also note in passing that the differences between the

performances according to the alternative models is greater under this choice of agent pool.

SL (%) AWT (s)

Model F E F E

B2 83.25 ± 0.28 59.87 ± 0.37 57.57 ± 1.03 147.17 ± 1.80

A2 81.94 ± 0.31 58.38 ± 0.40 60.65 ± 1.11 151.50 ± 1.8
A3 85.38 ± 0.26 60.46 ± 0.37 48.89 ± 0.95 143.80 ± 1.69

Table 8: Performance estimates and confidence intervals for our N model, with faster agents.

Suppose now that we replace EF agent 11 by a clone of (the slower) agent 12 in our

original example, and we repeat the same experiment. In Table 9, we present the results for

this case. Comparing Table 9 with Table 7 shows that system performance is significantly

degraded, despite changing only one agent. Thus, our numerical results show that selecting

specific agent groups with different processing speeds, based on our service-time models, can

lead to significant differences in system performance.

7. Concluding Remarks

In this paper, we took a data-based approach to modelling service times in call centers. We

evaluated the goodness-of-fit to data, both in-sample and out-of-sample, of several service-
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SL (%) AWT (s)

Model F E F E

B2 76.54 ± 0.36 52.68 ± 0.40 78.89 ± 1.38 175.86 ± 2.02

A2 76.88 ± 0.36 52.68 ± 0.40 78.89 ± 1.38 175.86 ± 2.02
A3 76.13 ± 0.26 50.78 ± 0.36 76.48 ± 0.9 182.28 ± 1.65

Table 9: Performance estimates and confidence intervals for our N model with two slow EF agents.

time models. Our models incorporate several properties commonly observed in practice,

such as: (1) agent/ call type heterogeneity, (2) a time-dependent performance of agents,

(3) the existence of cross/ serial correlations in the data. In general, we found that mod-

els which exploit those properties are superior to models which do not. To demonstrate

the added benefit of that improved goodness-of-fit, we presented and discussed results of

simulation experiments which showed that: (1) selecting different service-time models may

have a significant impact on average system performance, potentially leading to significant

cost cuts, and (2) our service-time models may be used to aid in agent classification into

different pools, and system performances under different pools can be drastically different.

In our simulation study, we considered a relatively small call center setting to illustrate the

operational impact due to different service-time models. In reality, we anticipate that such

an impact will be most pronounced in small to medium call centers (tens of agents), and

may be smaller, due to averaging effects, with a very large agent population. Nevertheless,

the statistical properties (of service times) that we observed in our data set should continue

to apply more broadly, irrespective of the size of the call center at hand.

Given the promising results that we obtained using Models A2 and A3, one possible

direction for future research is to consider alternative similar models which incorporate daily,

or intra-daily, random effects when modeling individual service times. For these models, we

may also experiment with nonparametric functions for the trends. To do so requires access

to a detailed call-by-call data set. Given the results of §5, we anticipate that such models will

lead to increasingly accurate predictions of future mean service times in the system. With

a detailed call-by-call data set, it would also be possible to test for the goodness of fit and

predictive accuracy of those models beyond the mean service time. That is, we could test

how well those models fit the entire distributions of individual service times in the system.

Indeed, complex operational decisions in call centers rely on having models that accurately

fit and predict those distributions. We leave developing such models, testing them with data,

and assessing their operational performance via simulation, to future research.
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