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Summary 

Background To adequately adjust for confounding multivariable models need to be correctly 

specified and include a sufficient number of subjects per estimated parameter.  

Methods A simulation study was conducted which explored the performance of logistic 

regression (LR), propensity score (PS) analysis and disease risk score (DRS) methods to adjust 

for confounding. Events/exposed subjects per coefficient (EPC) was set to 10, 5, 2.5, 1.0 and 

0.5. Model misspecification was induced by ignoring treatment and/or interaction effects in the 

DRS training data (i.e., independent dataset to develop the DRS model). 

Results At low EPCs of 1.0 and 0.05, the LR estimates had a relative bias of more than 100%. 

Bias of the DRS estimates was at most 13.40% and 18.84%. For the PS model this was 8.80% 

and more than 100%, respectfully. Coverage of the LR estimates became less than the nominal 

level of 0.95 at an EPC of 5 (0.936). For the DRS and PS methods coverage became less than 

0.95 at an ECP of 2.5 and 1.0, respectfully. Depending on the direction of the interaction effect 

relative to the main treatment effect, ignoring the interaction resulted in a bias of 16.94% for the 

DRS models.  

Conclusion In settings with small events/exposed subjects per coefficient, DRS methods can 

be useful alternative to LR models, especially when PS models cannot be used. However, while 

in our simulations DRS estimates were the leased unbiased in low EPCs settings, coverage was 

below acceptable levels after EPC of 2.5 and always less than the more biased PS method.  

Keywords: confounding, statistics, simulations study, logistic regression, propensity score, 

disease risk score. 
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Background 

Nonrandomized studies on (pharmacological) therapeutics are often conducted to complement 

results from randomized clinical trials (RCTs). For example, nonrandomized studies might be 

more appropriate to assess the occurrence of rare, but severe, adverse events such as 

anaphylactic reactions 1-3. Furthermore, nonrandomized studies are used to estimate the 

relative effectiveness in real-life clinical practice. Depending on the relationship between the 

intervention and the outcome, different degrees of confounding can be expected 1-3. For 

example, after launch of a new drug it is expected that patients who responded poorly to older 

drugs cross-over to the new drug (i.e., channelling). In this case the crude association between 

treatment and outcome is very likely confounded4.  

 

Frequently, the outcome of interest is dichotomous, such as mortality, in which case 

multivariable logistic regression (LR) 5 is commonly used to adjust for confounding. One (of 

many) assumption(s), is that the associations between confounders and the outcome are 

sufficiently estimated to adjust for confounding bias. In settings (e.g., nonrandomized early post-

launch studies) where both the number of events and the number of exposed subjects are 

small, controlling for confounding can be problematic. Further complicating the matter is that it is 

not uncommon to consider more than 100 potential confounders 6. Simulation studies showed, 

that for prognostic LR models 10 or more events per coefficient (EPC) were needed to get 

unbiased estimates 7,8. However, in prognostic studies, the interest lies in correctly estimating all 

associations between possible predictors and the outcome, whereas in nonrandomized 

therapeutic studies, the interest is usually in estimating a single association (i.e., the treatment 

outcome association), while adjusting for numerous potential confounders. Vittinghoff and 

McCulloch 9 showed that in this case LR models with EPC as small as 6 can adequately adjust 

for confounding.  
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In settings where LR models are expected to perform poorly (i.e., EPC smaller than 6), 

propensity score (PS) 10,11 and disease risk score (DRS) 12-16 methods can be applied to 

summarize the information of multiple confounders into a single variable. It seems logical that 

these methods require less events/exposures per coefficient. However, it remains unclear how 

many events/exposures per variable are needed to sufficiently control for confounding using PS 

and DRS methods. Furthermore, in training (i.e., developing) DRS models, it is often implicitly 

assumed that there is no treatment effect or no treatment by confounder interaction. How 

sensitive DRS models are to violations of these assumptions is unknown, particularly when the 

DRS model is trained in one dataset and applied in another. We therefore conducted a 

simulation study to compare LR, PS and four kinds of DRS models with varying amount of EPC 

and under different levels of model misspecification.  

 

Methods 

 

Simulation set-up 

Following the examples given above, we focused on scenarios in which the effects of a new 

drug (or any other type of medical intervention) were evaluated early post-launch. In addition, 

pre-launch data on the comparator drug were considered to be available. In each simulation, a 

training dataset was generated, containing pre-launch information, as well as a test dataset, 

containing post-launch information. Each training dataset included 5000 subjects of whom 

approximately 2500 were exposed to the comparator drug C and 2500 to drug B. Approximately 

2500 subjects experienced the event of interest. The test dataset included 400 subjects of 

whom, on average, 200 were exposed to comparator drug C and 200 to the new drug A. 

Approximately 200 subjects in the test data set experienced an event. The training data were 

used to train the DRS models. The test data were then used to compare the estimated effect of 

the intervention (drug A vs. C) obtained through the DRS, LR and PS methods.  



4 
 

 

Data-generating process 

Data of the training and test datasets were generated using the same algorithm. First, 𝑗 

independent confounding variables 𝑍 were generated. 𝑍1 was sampled from a normal 

distribution with mean 3 and variance 1. The remaining 𝑍𝑗−1 variables were sampled from 

independent Bernoulli distributions, each with a success probability of 0.5. A subject’s 

probability of treatment was given by the model:  

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) = 𝛼0 +  𝛼1𝑧𝑖1 + ⋯ + 𝛼𝑗𝑧𝑖𝑗       [1] 

 

𝑝𝑖,𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 indicates the probability of the 𝑖𝑡ℎ individual to receive treatment. The value of 𝛼0 

was set so that on average 50% of the subjects were exposed. Please see Table 1 and the 

simulation scenarios section below for an overview parameter values used. For each 

𝑖𝑡ℎ individual the probability of experiencing an event was given by:  

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑒𝑣𝑒𝑛𝑡) = 𝛿0 + 𝛿1𝑥𝑖 + 𝛿2𝑧𝑖1 + ⋯ + 𝛿𝑗𝑧𝑖𝑗 + 𝛿𝑖𝑛𝑡𝑥𝑖𝑧𝑖1     [2] 

 

The intercept (𝛿0) was chosen so that on average 50% of the subjects experienced an event. 

Depending on the value of 𝛿𝑖𝑛𝑡 there was an interaction between treatment and continuous 

confounder 𝑍1. The treatment and outcome states were then sampled from Bernoulli 

distributions: 

 

𝑥𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖,𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡) 

𝑦𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖,𝑒𝑣𝑒𝑛𝑡)  
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Data analyses 

The test data contained post launch information on subjects receiving new drug A (indicated 

by 𝑋 = 1) or drug C (indicated by 𝑋 = 0). To adjust for confounding in the association between 

treatment and the outcome the subsequently described methods were applied.  

 

Logistic regression confounding adjustment 

To adjust for confounding the following LR model was used: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑜𝑏[𝑦𝑖 = 1|𝑥𝑖, 𝑧𝑖𝑗]) =  �̂�0 + �̂�1𝑥𝑖 + �̂�1𝑧𝑖1 + ⋯ + �̂�𝑗𝑧𝑖𝑗   [3] 

 

Where �̂�1 is an estimate of the ln(odds ratio) of the association between treatment and outcome 

adjusted for confounders 𝑍.  

 

Propensity score analysis 

An alternative to LR models is to first estimate the associations of the confounder with the 

treatment variable. As a second step, the (logit of the) predicted probability of treatment (i.e., the 

propensity score) can be used to control for confounding:  

 

𝑃𝑆 = 𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑜𝑏[𝑥𝑖 = 1| 𝑧𝑖𝑗]) =  �̂�0 + �̂�1𝑧𝑖1 + ⋯ + �̂�𝑗1𝑧𝑖𝑗     [4] 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑜𝑏[𝑦𝑖 = 1|𝑥𝑖, 𝑝𝑠𝑖]) =  �̂�0 + �̂�1𝑥𝑖 + �̂�2𝑝𝑠𝑖    [5] 

 

Here �̂�1, can be interpreted as the ln(odds ratio) of the treatment outcome association adjusted 

for the confounders included in step 1. Because PS models regresses exposure on the 
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confounders, instead of the event, PS models is known to be able to adjust for more 

confounders when the treatment is more common than the outcome. 

 

Disease risk score adjustment 

Another approach to control for confounding is adjustment using a disease risk score (DRS). 

First, the associations between the confounders and outcome are estimated in a training 

dataset, using equation 3. In the second stage, these associations are used to calculate the logit 

of the predicted probability of the outcome (the DRS) for the patients included in the test data. 

Controlling for the DRS variable in a model regressing the outcome on treatment, results in a 

confounding adjusted treatment outcome association: 

 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑟𝑜𝑏[𝑦𝑖 = 1|𝑥𝑖, 𝑑𝑟𝑠𝑖]) =  𝛾0 + 𝛾1𝑥𝑖 + 𝛾2𝑑𝑟𝑠𝑖     [6] 

 

𝛾1, can be interpreted as the ln(odds ratio) of the association between treatment and the 

outcome, adjusted for the confounders included in the first stage. 

 

Depending on the size of the training dataset a (very) large number of confounder can be 

including using this DRS method. This makes DRS models particularly interesting for post-

launch settings. However, ideally a training dataset is used in which all patients are untreated 16, 

yet this is often impossible. To explore this, subjects in the simulated training data were 

exposed to drug C or B. Four DRS model were subsequently applied with the first DRS model 

ignoring treatment in the training data (DRS 1). In the DRS 2 model, the treatment variable was 

included in the training model. In the DRS 3 model a treatment by confounder 𝑍1 interaction was 

included. Instead of assuming that all interactions are appropriately modelled, DRS 4 prevented 

interaction by restricting the training dataset to subjects treated with drug C (the reference). 

Note that these four DRS models differed in how treatment was handled in training data, 
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however, analysis of the test data did not differ and entailed including the DRS in a logistic 

regression model regressing outcome on treatment (equation 6). 

 

Simulation scenarios 

In all simulations two datasets were generated, a training and test dataset. For both dataset 

(unless stated otherwise) the association of the continuous confounders 𝑍1 with treatment and 

outcome was set to an odds ratio (OR) of 0.60 per unit increase. The associations of the 

remaining binary confounders with treatment and the outcome were set to an OR of 0.97. The 

association of treatment with the outcome was set to an OR of 1.00. See Table 1 for an 

overview.  

 

In scenario I different EPCs were generated by increasing the number of coefficients from 20 to 

400. EPC was calculated as follows, 𝐸𝑃𝐶 =
200

2+𝑗
  where 𝑗 = {18, 38, 78, 198, 398}, the 200 in the 

numerator representing the expected number of events and the 2 in the denominator 

representing the intercept and treatment coefficient. For the PS model, the EPC was calculated 

by taking the number of subjects expected to be exposed to drug A (200) and dividing this by 𝑗 

confounder coefficients plus the intercept coefficient. In scenarios II and III EPC was set to 10 

in the test data, the treatment and interaction OR in the training data were set to 0.30 and 0.30 

(for scenario II) or 3.00 and 0.30 (for scenario III). To determine in more detail the susceptibility 

of the DRS models for misspecification, the interaction effect in the training data was set to 0.30, 

0.70, 1.00, 1.50 and 3.00 in scenario IV, while the EPC was set to 2.5. In scenario V the 

treatment OR in the training data was set to 0.30, 0.70, 1.00, 1.50 and 3.00 and the interaction 

effect to 3.00. In scenario VI power (i.e., the probability to detect an association if it is present) 

was explored by setting the treatment OR in the test data to 0.30, 0.70, 1.00, 1.50 and 3.00. 
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Finally, scenario VII was created to explore performance is less extreme settings as those 

previously explored.  

 

All simulations were repeated 10 000 times and were performed with the statistical package R 

version 3.0.2 17. The number of replication was chosen to ensure sufficient precision to detect 

small deviations from the typical coverage rate of 0.95 (the 95% lower and upper bounds were 

0.946 and 0.954) 18,19. Furthermore, with 10 000 replications the 95% upper and lower bounds 

around a mean odds ratio of 1.00 was 0.996 and 1.004 (calculated using the empirical SE of the 

unadjusted OR which was constant across scenarios). 

  

Performance metrics 

The different methods to control for confounding were compared on the mean odds ratio, mean 

relative bias (see Appendix), the coverage rate, the mean estimated standard error (SE) (see 

Appendix)15, the empirical SE (see Appendix), the square root of the mean squared error 

(RMSE) 18, power, number of models that failed to converge and the number of models with 

implausible estimates. Mean relative bias was defined as: 𝐸 [
𝑂�̂�−𝑇𝑟𝑢𝑒 𝑂𝑅

𝑇𝑟𝑢𝑒 𝑂𝑅
] ∗ 100, where E 

indicates the expectation, 𝑂�̂� the estimated treatment OR and True OR the simulated treatment 

OR. The coverage was defined as the number of times the true value was included in the Wald 

based 95% confidence interval. The mean SE was defined as the mean of the estimated 

standard errors 15,18. The empirical SE was estimated by taking the standard deviation of the 

distribution of 𝑂�̂�. The RMSE was calculated by taking the square root of the sum of the 

squared bias and the squared empirical SE18. Power equalled the proportion of simulations in 

which the null-hypothesis of 𝑂𝑅 = 1 was correctly rejected, i.e., when the null-hypothesis was 

false (scenario VI). Implausible estimates were defined as treatment |ln (𝑂𝑅)̂ | > 5.  
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Sensitivity analysis. 

Instead of using DRS models when the number of EPC is very small, Firth penalized logistic 

regression (PLR) models have shown promise 20-22 in such settings. To explore this alternative 

to DRS models, scenario I was repeated with LR, PS and a PLR models. PLR was implement 

using the package logistf version 1.21 23. For comparisons sake Wald based p-values were 

calculated, however the reader should note that better performance is expected using profile 

likelihood p-values.  

 

Results 

Table 2 shows the results of the simulations evaluating the LR, PS and DRS models under 

different EPCs (scenario I), in the absence of a treatment effect. Relative bias of the LR and PS 

models was similar up to and including an EPC of 2.5. After this the LR model showed extreme 

bias. Relative bias of the PS model increased to 8.80% at an EPC of 1.0. Mean and empirical 

SE increased for both methods as EPC increased and extreme estimates were seen after EPC 

of 2.5 (for the LR) and 1.0 (for the PS). The coverage rate of LR model started to deviate from 

0.95 at an EPC of 5.0 (0.936), with a more serious deviation at an EPC of 1.0 (0.651). For the 

PS models the coverage rate started to deviated from 0.05 at an EPC of 1.0 (0.939). 

  

In the same scenario I, the mean odds ratios of the different DRS methods already deviated 

more than could be explained by random error at an EPC of 10. However, the bias was only 

small (1.38%) and increased to a maximum of 18.84% at an EPC of 0.5. The relative bias of the 

DRS model 4 was consistently larger than that of the other DRS models. . After an EPC of 5.0 

the coverage rates of the DRS models were smaller than 0.95. Throughout the RMSE increased 

as the ECP increased.  
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In scenario II and III model misspecification of DRS 1 and 2 were introduced by adding a 

treatment by confounder interaction to the training data. In scenario II (interaction OR 0.30) the 

relative bias was small and the coverage rates were close to 0.95 for all methods (Table 3). In 

scenario III (interaction OR 3.00) DRS model 1 and 2 showed relative bias of 9.22% and 

16.94%. Similarly, the coverage rates of these models were 0.930 and 0.881. On the other hand 

DRS models 3 and 4 showed coverage rates close to 0.95 and relative bias of 1.87% and 

3.25%.  

 

In Figure 1 the relative bias, coverage rates and RMSE of the simulation results of scenarios IV 

and V are presented. In scenario IV the treatment by confounder interaction effect was iterated 

from 0.30 to 3.0 at an EPC of 2.5. As expected, the relative bias of the LR and PS was small, 

and the coverage rate of the LR model was consistently 0.92, while the PS estimates had 

correct coverage of 0.95 (Figure 1, column 1). The relative bias of DRS model 1 was more or 

less symmetric and peaked at 14.6% for an interaction effect of 3.0. At an interaction effect of 

0.30 DRS model 2 had the least amount of bias (2.52%). This increased to a bias of 19.27% 

with an interaction effect of 3.00. Relative bias of DRS model 3 and 4 was almost constantly 

about 5% or 8%. A marked increase was only seen for an interaction effect of 0.30.  

 

In scenario V (Figure 1, column 2) the treatment effect in the training data was iterated from 

0.30 to 3.00. All models performed very similar regardless of the treatment effect. The exception 

being DRS model 1 were the relative bias decreased from 14.42% to 8.66% as treatment 

increased to 3.00.  

 

Empirical power was explored in scenario VI (depicted in figure 2), EPC 2.5. Power was below 

0.40 for treatment effects between 0.70 and 1.50; at treatment ORs of 0.30 and 3.00 power was 
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almost 1.00. LR models were consistently more powerful than PS models; however previous 

results showed that in these settings coverage of the LR estimate is less than 0.95.  

 

In scenario VII the DRS models were evaluated with an EPC of 10 with smaller confounder and 

interaction effects. In these settings the relative bias of the DRS models ranged from 0.86% 

(DRS 3) to 1.94% (DRS 2), compared to -0.09% for the LR and -0.10% for the PS and coverage 

rates were close to 0.95 for the DRS and PS methods but not for the LR method (0.941).  

 

In all scenarios every model converged and no estimates were excluded. However, in scenario I 

extreme values were observed for the LS and PS models. Arbitrarily defining extreme, as an 

estimate above 5, resulted in excluding 7,243 and 9,421 of the 10,000 estimates for the LR 

method at an EPC of 1.0 and 0.05. For the PS model this resulted in excluding 4,711 estimates 

at an EPC of 0.05.  

 

Results of the sensitivity analyses comparing PS and LR models to the PLR methods are 

presented in Appendix Table 1. Briefly, the PLR model showed a maximum relative bias of -

9.13% and coverage rate of 1.000 at an EPC of 0.5. At an EPC of 1.0 relative bias and 

coverage rate of the PLR model was -0.16% and 0.931, at 0.5 this was -9.13% and 1.000. With 

regard to coverage the PS model performed similar to the PLR model, however bias was larger 

(8.75%, 0.942 at an EPC 1.0 and -98.56% and 0.973 at an EPC of 0.05).  

 

Discussion 

Our simulations show that, in settings with a relatively small number of events/exposed per 

coefficient (EPC), disease risk score (DRS) and propensity score (PS) methods provided less 

biased estimates of the association between treatment and outcome than logistic regression 

(LR). While DRS methods were more biased than LR and PS methods when EPC was large 



12 
 

(i.e., 10), in smaller settings they outperformed both. However, this was at the cost of a smaller 

coverage rate than the PS method. Additionally, DRS models were sensitive to misspecification 

of the treatment by confounder interaction effect. With DRS models, excluding the interaction 

effect, showing bias of 17% versus 2% to 3% when the interaction was appropriately modelled. 

However, in settings with less confounding and model misspecification bias was at most 1.94%. 

Finally, we showed that the PS method needs less exposed subjects per coefficient than LR 

method needs events per coefficient.  

 

In our simulations the PS estimates were the least biased while keeping a coverage rate closest 

to the nominal 0.95. Additionally, in a sensitivity analysis PS models had similar coverage rates 

as penalized logistic regression models; a method which is generally expected to perform best 

in small EPC settings. Previously, Cepeda et.al.,24 also explored EPC of PS models, focussing 

on the number of outcome events. Recognizing that PS model performance is more influence 

by the number of exposed than the number of event, the present simulations focussed on the 

number of exposed subjects per coefficient. For comparisons sake the proportion exposed and 

events was set to 0.50. We recognize that in most empirical studies, the proportion of exposed 

subjects will be closer to 0.50 than will be the proportion of events. Thus in most empirical 

studies the benefit of using PS models over LR and DRS models is expected to be greater than 

shown here. However, in small EPC settings where proportion of exposed subjects is less than 

the proportion of events, DRS method will likely outperform both LR and PS methods. In setting 

where EPC was 1.0 or less, DRS estimates were less biased and coverage was closer to 0.95 

than estimates from PS and LR methods, however, coverage still deviated from 0.95. 

Essentially, in these settings, all methods failed and perhaps inclusion of additional subjects 

would be a more reasonable solution. Furthermore, at the tipping point of an EPC of 2.5, power 

was less than 40%, unless large treatment effects were present (OR > 1.5). Unless such a large 

effect is to be expected, inclusion of more subjects might again be the best solution. Finally, we 
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note that in all simulations the PS model consistently included one coefficient less than the LR 

model. This resulted in a slightly larger EPC: 10.53, 5.13, 2.53, 1.01, 0.50. This small difference 

seems unlikely to explain the improved performance of the PS models.  

 

Previous simulation studies on DRS models trained the DRS in the tests data 13,15. Because the 

same number of events is available, these DRS models cannot include more confounder than 

regular LR models and where not considered here. Instead we focussed on DRS models with 

an independent and larger training dataset. Depending on the size of the training data, these 

DRS models can potentially adjust for an enormous number of confounders. We expected bias 

to remain stable over increasing EPCs (due to the size of the training data). However, in our 

simulations bias did increase, which was probably due to an increase in random difference 

between the associations in the training and test data (due to an increase in variables as EPC 

increased). Obviously, this bias could be decreased by increasing the size of the test data. 

However when the test data increases in size the need for DRS model is less apparent and LR 

models might be a better choice. Surprisingly, DRS model 4, which limited the derivation 

dataset to subjects treated with drug C only, consistently showed larger bias than the other DRS 

models. As Wyss et.al discusses this bias is caused by overfitting the model to the reference 

group 25.  

 

The simulations presented here are naturally limited. We feel that the following points merit 

discussion. First, in our simulations we predominantly focused on dichotomous confounders. 

Because continuous data is less sensitive to small cell counts it seems likely that if the 

simulations were repeated with only continuous confounders, bias would be smaller. Second, 

previous studies that explored EPC fixed both the number of event and the number of 

covariables. In the current paper we only fixed the number of covariables, and the number of 

events was an average. We feel that this approach more closely follows research practice, 
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where at the design phase it is possible to specify which and how many confounder would be 

included, however, only an expected number of event can be specified 26. Thirdly, while we 

focussed on the situation where confounders are pre-specified 27, our results are also relevant 

for researchers wishing to reduce model complexity using e.g., backward selection methods. In 

the first stage of such an approach a full model is constructed which is equal to the pre-specified 

model applied here and similar concerns on model misspecification and EPC apply. Note, 

however, that applying model selection in LR models will increase the type 1 error rate, of the 

treatment association, beyond the level shown here 28,29. Finally, all PS and DRS models were 

implemented using generalized linear models (GLMs). In empirical data, typically, the functional 

form of the PS or DRS with the outcome is unknown; hence, it seems advisable to use 

nonparametric methods such as matching or stratification. In our simulations however, the 

functional form was known and no disadvantage of using GLMs is expected  

 

In conclusion, when the number of events and the number of exposed subjects are equally 

sparse disease risk models result in the least biased point estimates, however, at the cost of a 

smaller coverage rate. The propensity score estimates are more biased at an ECP of 1.0 and 

0.5, however, coverage levels are close to 0.95. Depending on the settings and aim of the 

research, estimation or testing, a different method might be preferred. However, at very low 

EPCs (0.5) all methods had bias and coverage levels below acceptable levels and a better 

approach would be to include more subjects.  
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Tables 

Table 1 Simulation scenarios, assessing performance of different confounding adjustment methods*. 
Parameters Scenario I Scenario II Scenario III Scenario IV Scenario V Scenario VI Scenario VII 

        

Training data        

Sample size [𝑛] 5000 5000 5000 5000 5000 5000 5000 

OR of reference treatment A vs. 

treatment B [𝛿1] 

1.00 0.30 0.30 0.30 {0.3, 0.70, 

1.00, 1.50, 

3.0} 

0.30 0.90 

OR of treatment by Z1 interaction 

[𝛿𝑖𝑛𝑡] 

1.00 0.30 3.0 {0.3, 0.70, 

1.00, 1.50, 

3.0} 

3.00 3.00 1.25 

Confounder Z1 OR (event 
[𝛿2]/treatment[𝛼1]) 

 

0.60/0.60 0.60/0.60 0.60/0.60 0.60/0.60 0.60/0.60 0.60/0.60 0.80/0.80 

Other confounders (event 

[𝛿𝑗−1]/treatment[𝛼𝑗−1]) 

0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 

        

Test data        

Sample size [𝑛] 400 400 400 400 400 400 400 

OR of reference treatment A vs. 

treatment C [𝛿1] 

1.00 1.00 1.00 1.00 1.00 {0.3, 0.70, 

1.00, 1.50, 

3.0} 

1.00 

OR of treatment by Z1 interaction 

[𝛿𝑖𝑛𝑡] 

1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Events per coefficient  {10, 5, 2.5, 

1, 0.5} 

10 10 2.5 2.5 2.5 10 

Number of coefficients 20-400 20 20 80 80 80 20 

Confounder Z1 OR (event 
[𝛿2]/treatment[𝛼1]) 

0.60/0.60 0.60/0.60 0.60/0.60 0.60/0.60 0.60/0.60 0.60/0.60 0.80/0.80 

Other confounders (event 

[𝛿𝑗−1]/treatment[𝛼𝑗−1]) 

0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 0.97/0.97 

* Changes from the previous scenario (on the left) are presented in bold. 
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Table 2 Simulation results from scenario I assessing performance of different confounding adjustment methods with 
different events per coefficient*. 
 10 EPC 5 EPC 2.5 EPC 1 EPC 0.5 EPC 

Mean odds ratio      

LR 1.00 1.00 1.00 N/A# 9.2*10118 

PS 1.00 1.00 1.00 1.09 1.2*109 

DRS1 1.01 1.03 1.05 1.10 1.15 

DRS2 1.01 1.03 1.05 1.10 1.15 

DRS3 1.01 1.03 1.05 1.10 1.15 

DRS4 1.03 1.05 1.08 1.13 1.19 

Relative bias      

LR 0.05 -0.06 -0.49 N/A# 9.2*10120  

PS 0.00 -0.12 -0.30 8.80 1.2*1011 

DRS1 1.38 2.57 4.57 9.53 14.70 

DRS2 1.38 2.57 4.57 9.53 14.71 

DRS3 1.39 2.59 4.61 9.56 14.72 

DRS4 2.55 4.62 7.52 13.40 18.84 

Coverage      

LR 0.946 0.936 0.920 0.651 1.000 

PS 0.954 0.950 0.954 0.939 0.975 

DRS1 0.951 0.949 0.945 0.926 0.898 

DRS2 0.951 0.949 0.945 0.926 0.898 

DRS3 0.950 0.949 0.945 0.927 0.898 

DRS4 0.948 0.945 0.936 0.904 0.867 

SMSE      

LR 0.22 0.25 0.30 2.9*1014 1.7*104 

PS 0.21 0.22 0.23 0.27 1317.99 

DRS1 0.21 0.21 0.21 0.23 0.25 

DRS2 0.21 0.21 0.21 0.23 0.25 

DRS3 0.21 0.21 0.21 0.23 0.25 

DRS4 0.21 0.21 0.22 0.24 0.25 

* SMSE = square root of the mean squared error.  # While all LR samples converged,  

the OR estimate was exp(5.42*1012) resulting in an error when calculating the mean OR and relative bias. 
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Table 3 Simulation results from scenario II and III comparing different DRS models  
in the presence of an interaction effect in the training data*. 
 LR PS DRS1 DRS2 DRS3 DRS4 

Scenario II# 
Mean odds ratio  
Relative bias 
Coverage 
RMSE 
 

 
1.00 
-0.16 
0.950 
0.22 

 
1.00 
-0.19 
0.956 
0.21 

 
1.05 
5.10 
0.947 
0.21 

 
1.01 
0.51 
0.954 
0.21 

 
1.02 
2.19 
0.954 
0.21 

 
1.04 
4.14 
0.949 
0.21 

Scenario III^ 
Mean odds ratio  
Relative bias 
Coverage 
RMSE 

 
1.00 
0.27 
0.948 
0.22 

 
1.00 
0.23 
0.954 
0.21 

 
1.09 
9.22 
0.930 
0.22 

 
1.17 
16.94 
0.881 
0.26 

 
1.02 
1.87 
0.952 
0.21 

 
1.03 
3.25 
0.950 
0.21 

* SMSE = square root of the mean squared error.  # Treatment by confounder 1 interaction OR of 0.30. 

 ^ Treatment by confounder 1 interaction OR of 3.0 
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Figure captions 

Figure 1 Simulation results from scenarios IV and V comparing different DRS models to PS and 
LR models on relative bias, coverage rate and square root of the mean squared error (RMSE). * 
 
[Figure 1 here] 
 
* line number 1 logistic regression; line number 2 propensity score; line number 3 disease risk score 
(DRS) 1 model; line number 4 DRS 2; line number 5 DRS 3 and line number 6 DRS 4.  
 
Figure 2 Simulation results from scenario VI comparing different DRS models to PS and LR 
models on power.* 
 
[Figure 2 here] 
 
* line number 1 logistic regression; line number 2 propensity score; line number 3 disease risk score 
(DRS) 1 model; line number 4 DRS 2; line number 5 DRS 3 and line number 6 DRS 4.  
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