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Abstract

This thesis is devoted to the task of investigating the merits of employing a generalised

reward-to-risk ratio for the dual purpose of ranking assets and forming optimal portfo-

lios. In quantitative portfolio optimisation and risk management, the optimal allocation

of assets often relies on traditional and well-established measures including the Sharpe

ratio. Despite their frequently-documented drawbacks, these quantitative tools continue

to be relied on. This is partly due to familiarity and ease of use. Another reason stems

from the empirical evidence that alternative and more complex measures often produce

results highly correlated with those based on their standard counterparts. This thesis

presents an objective analysis of various risk-to-reward measures, for the purpose of port-

folio optimisation, which are flexible enough to represent asymmetry in risk and return

preferences. In particular, we regard the one-sided variability ratio (Farinelli and Tibiletti

(2002)), φ(b, p, q), as an intuitive tool to be used in an optimal allocation model on ac-

count of its flexibility and ability to account for any distributional model. Focusing on

two parameterisations of φ(b, p, q) (Omega = φ(b, 1, 1) and Sortino ratio = φ(b, 1, 2)), we

show how these ratios can be analytically reduced to functions of the Sharpe ratio based

on Student t returns. This sheds unfavourable light on such alternative and supposedly



superior measures and verifies what practitioners commonly observe: that several theoret-

ically advocated ratios replicate the same, or near identical, outcomes as the Sharpe ratio.

Analogously, Eling and Schuhmacher (2012) provide further support for this hypothesis,

conditional on the location-scale property being satisfied. Relaxing this distributional

assumption, however, we cannot claim that ratios including Omega and Sortino do not

produce substantially different results to the Sharpe ratio. In an empirical setting, it is

questionable to suppose that return distributions satisfy the location-scale property. We

consider anisotropic bivariate distributions proposed by Shaw and Lee (2008) to facilitate

the simulation of situations where alternative measures produce different results in terms

of asset rankings and dissimilar optimal asset weights. In light of this, we argue that it is

critical to take an objective approach to constructing a portfolio optimisation model from

modelling the underlying data to selecting the relevant risk and performance measures.
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Chapter 1

Introduction

The Sharpe ratio is often the first performance measure that comes to mind in the context

of measuring the relative risk and performance potential of a collection of assets. In short,

it is the expected return in excess of the risk-free rate divided by the standard deviation

of returns. An extensive list of alternative performance measures exists, however, the

majority of which were devised for the purpose of overcoming the drawbacks associated

with the Sharpe ratio. We focus on a particular family of performance measures, the

one-sided variability ratio (Farinelli & Tibiletti, 2002), to be explained in due course, due

to its ability to account for any distributional model and capture a broad spectrum of

investor preferences. We believe this measure is an intuitive tool for the dual purpose of

ranking assets and constructing optimal portfolios.

The task of setting up a framework for portfolio optimisation requires making a
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number of decisions relating to the following questions: Which utility function is most

appropriate for our objective?; Which distribution or family of distributions shall we

use to model the marginal densities? On the same train of thought, which dependency

structure should we employ to characterise the relationship between the assets (returns)

in our investment universe? Furthermore, what are the constraints, if any, that must be

satisfied?1 All these questions demand well-chosen answers in the sense that we must

strive for accuracy in modelling the ‘truth’ yet, for practical purposes, be able to produce

results in a reasonable and sensible amount of time.

The optimal allocation problem in portfolio optimisation involves combining a num-

ber of appropriate optimisation and risk tools. In a risk-return analysis, we generally

have an objective function (a function of the returns) that we wish to maximise whilst

simultaneously minimising a measure of risk; this relates to the first question above.

Commonly used risk and performance functions include the Sharpe ratio, Value-at-Risk

(VaR), Conditional Value-at-Risk (CVaR) and variance2. There are, however, a large

number of other measures, some which are more relevant for certain objectives and more

effective in turbulent market conditions.
1Such constraints can include control of turnover on rebalancing the portfolio, short-selling restric-

tions, deviation from an index, sector exposure as well as more exotic requirements.
2VaR and CVaR are measures of loss and have widespread use in the finance industry. In particular,

VaR is industry-standard for calculating regulatory capital. In short, for a given probability level, α, and

time horizon, VaR(α) is the portfolio loss that, with probability α should not be exceeded (Rockafellar

& Uryasev, 2002). CVaR is then the conditional expectation of losses beyond VaR(α).
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Traditionally, the risk attached to a certain allocation is often measured by the

standard deviation of the expected returns of the portfolio. This is often associated with

the seminal work of Markowitz (1952; 1956; 1959). However, as we shall discuss later on

in this thesis, standard deviation was employed as a measure of risk due, predominantly,

to its familiarity and convenience. In his earlier paper, Markowitz (1952) proposes a

methodology for selecting a diversified portfolio based on what is, and equally important,

what isn’t desirable. Here is where the ‘expected returns - variance of returns’ rule was

first introduced into the finance literature, the use of which serves ‘both as a hypothesis to

explain well-established investment behaviour and as a maxim to guide ones own action’

(Markowitz, 1952).

Markowitz is often erroneously associated with advocating variance as a measure of

risk and the assumption of a quadratic utility function.3 In a more recent publication,

Markowitz (2010) reiterates the statement he made in his 1959 paper where he asserted

that if a utility function can be defined as a quadratic for a ‘sufficiently wide range of

returns’, then the expected value of that utility function can be characterised in terms

of the expected return and variance. Essentially, what this is saying is that, provided a

quadratic utility function suffices for a broad range of returns, then the first two moments

(mean and standard deviation) are sufficient for describing the data. There was never the

implication that standard deviation is the optimal measure of risk. Rather, we should
3As a result of assuming returns should be modelled with the Gaussian distribution.
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aim to utilise the most appropriate method which is computationally practical in favour

of a precise method which is computationally impossible or unfeasible (Markowitz, 1991).

It must be noted that various alternative measures of risk were considered in Markowitz’

1959 paper for the purpose of carrying out a risk-return analysis for selecting a ‘good’

portfolio. We consider this further in Chapter 2.

Our view is that one should avoid making assumptions concerning the return dis-

tribution and which risk measure or portfolio performance measure should be employed.

Central to this thesis is the view that, imposing a fixed model for portfolio optimisation

from the beginning without fully characterising the objective, inputs and outputs could

possibly yield results which hide imperfections due to unmanaged risk or foregone upside

potential. This view is common with that of Markowitz (1959) in that an optimal port-

folio should represent a ‘balanced whole’ in the sense that it should represent the needs

of the investor, both in terms of ‘potential and protection’. There exists a real danger of

investors becoming complacent with existing asset allocation methodologies: not knowing

what their objectives are and how to define their targets.

As a single investor, we may have a certain belief regarding a particular set of stocks

or sectors and wish to construct a portfolio with significant exposure to our preferred

assets. Hedge funds typically have the capital and technology to take on more risk

and invest in financially complex instruments. Consequently, the distribution of their

portfolio return will be significantly different from that of, say, a government portfolio.
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For a pension fund, the time horizon over which they typically invest is on the scale of

decades rather than a few years or even months. The objective of a pension fund will

therefore be very different to that of a hedge fund, the main difference arising from the fact

that hedge funds are much less regulated than pension funds who are required to abide

by constraints set by an external actuary. The management of defined benefit pension

funds, for example, requires satisfying solvency constraints as a primary objective based

on, amongst other things, credit quality and the debt level of the underlying company.

Several steps must be taken when solving a generic portfolio optimisation problem:

1. Establishing the random variables: which of our inputs do we need to model?

2. Defining model parameters and estimating of random variables: Unless our ap-

proach is entirely empirical, an important stage of the portfolio optimisation pro-

cess requires estimating the characteristics of our random variables. Parametrically

speaking, this means first selecting one distribution or a family of distributions and

subsequently estimating the relevant parameters to best fit the data. It is important

to mention at this point the difficulty one can face when estimating the parameters

of such a problem. This is a challenge in itself.Where necessary, we use a maximum

likelihood method in Mathematica.4

3. Defining the optimal outcome: one must consider in what sense a portfolio is optimal
4In Mathematica, we use the function EstimatedDistribution[] which employs maximum likelihood

estimation by default.
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or not. For this reason, one needs to mathematically characterise the objective,

identify what it is we want to maximise and what exactly we want to minimise or

preferably eliminate.

4. Defining our risk measure: defining in what sense a portfolio is optimal or not

will dictate which risk measure is relevant. The chosen risk measure can either be

incorporated within the objective function or applied to the portfolio optimisation

problem as a constraint.

5. Modelling and computing the optimal portfolio: the objective function illustrates

how we map the random variables, namely returns, into a measure that characterises

our optimal outcome. It is then a question of computing asset weights such that

our objective function is maximised and our constraints are satisfied.

The subject of this thesis concerns points 3. and 4. above. A thorough mathematical

study of all topics above can be found in Meucci (2009). In the following chapter, we

discuss two main approaches to mathematically formulating the portfolio objective func-

tion. Of course, one cannot review these approaches without mentioning Markowitz who

can be credited for bringing portfolio theory into the domain of mathematics. His work

at the time fits into the broader category of what is known as modern portfolio theory. In

a nutshell, this approach to constructing an optimal portfolio is founded on a risk-return

analysis, where risk was traditionally characterised by the variance of returns. Related to

this, Sharpe (1966) postulated constructing the optimal portfolio by maximising what has
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come to be called the Sharpe ratio; a risk-to-reward ratio given by the ratio of expected

return, in excess of the risk-free rate, to the standard deviation of returns. For asset i,

when expected return and standard deviation are defined as Ei and σi, respectively, and

p denotes the risk-free rate, the Sharpe ratio was defined in Sharpe (1966) as follows:

Ei − p
σi

. (1.1)

Several drawbacks associated with modern portfolio theory are well-documented and

will be discussed further in Chapter 2. By extending the general framework underlying

modern portfolio theory to include alternative risk measures, a new branch of portfo-

lio theory emerged: post modern portfolio theory. This extension to modern portfolio

theory focused on analysing returns about a specified target. Motivated by the work of

academics including Sortino and Price (1994), Stone (1973) and Fishburn (1977), alter-

native methods of measuring risk were proposed.

Chapter 3 summarises the key components of a parametric portfolio optimisation

model. Here, we consider distribution choices, portfolio performance measures and,

briefly, dependency models. On the former of these, we focus our attention on ap-

propriate substitutes for the normal distribution. We review some of the well-known

papers analysing financial returns and discuss other distributions capable of capturing

the observed properties of returns beyond mean and variance, of which only the Gaus-

sian distribution can be fully described. In particular, we highlight papers advocating
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the Student t distribution as a model yielding the highest likelihood in terms of fitting

the empirical data. In the greater part of Chapter 3, we discuss several performance

measures and how these are defined in terms of incorporating risk and return. Here, we

explore various measures of risk stemming from the work of Stone (1973). This section

forms the basis and motivation for the rest of this thesis.

Numerous researchers have focused their efforts on studying portfolio performance

measures. For example, Cogneau and Hubner (2009) review 101 performance measures

and categorise them on the basis of how the objective is defined and, consequently, how

assets are selected, how flexible they are in terms of being able to represent the general

investor and how returns are built in; whether it is absolute vs. relative return which

matters or excess return vs. gain measure. Farinelli and Tibiletti and co-authors propose

a more flexible formulation for performance measurement than the Sharpe ratio to allow

for one-sided performance and risk evaluations ( see Farinelli & Tibiletti, 2002; Farinelli

et al, 2006; Farinelli et al, 2008). Wiesinger (2010) reviews performance tools in terms of

how returns are adjusted for risk. On the subject of risk itself, as far back as 1973, Stone

recognised the limited use of standard deviation as a proxy for risk and proposed a broad

family of risk measures of which Fishburn’s two-parameter family is a subset (Fisburn

1977). We discuss these later on in this thesis. Building on the work of Stone (1973),

Pederson and Satchell (1998) offer an even more general class of risk measures in addition

to proposing a decision criteria for which of these risk measures are appropriate. More
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specifically, whether the choice of performance measure really matters is investigated by

Eling and Schuhmacher (2005), and Huyen (2007) for the purpose of analysing hedge

funds. Zakamouline (2011) asserts that, for the evaluation of hedge funds, the choice of

performance measure does matter.

The phenomenon of risk is pertinent in multiple disciplines and it is interesting to

read that risk measures that have been used for applications ranging from psychology

to management science have also been proposed for their potential to measure risk in

financial returns (Pederson & Satchell, 1998). We dedicate a large part of Chapter 3

to the one-sided variability ratio first introduced by Farinelli and Tibiletti (2002). This

ratio is known as the Farinelli-Tibiletti ratio in Eling and Schuhmacher (2012). It is the

ratio of upper partial moment of order p to the lower partial moment of order q where

deviations are quantified about a benchmark, b.

φ(b, p, q) =
E[|(X − b)+|p]1/p

E[|(X − b)−|q]1/q
. (1.2)

In (1.2) above, ()+ and ()− refer to maximum and minimum functions, respec-

tively. More specifically, ()+ is equivalent to max(x, 0). Similarly, (x)− is equivalent to

min(x, 0)+. The one-sided variability ratio can be tailored to the needs of any investor

on account of its three parameters b, p and q. This measure, φ(b, p, q), possesses many

desirable characteristics. Firstly, it is general in three senses: how we define optimal

return, how we define risk and about which value or variable we measure return and risk.
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Secondly, it can be used for the application in both an empirical and parametric analysis.

Furthermore, in a parametric framework, it is capable of capturing all moments of the

distribution of the underlying random variables. It is for these reasons why we advocate

its use for applications in portfolio optimisation. Further explanation regarding equation

(1.2) is provided in Chapter 3. In addition, we discuss the motivations that lead to the

creation of a general performance measure.

In Chapter 4, we focus on two parametrisations of (1.2): the Omega Index, φ(b, 1, 1)

and Sortino ratio, φ(b, 1, 2). We show how to reduce the problem of computing the Omega

Index and Sortino Ratio to the evaluation of analytical functions of the Sharpe ratio when

the underlying random variable is modelled by a Student t distribution. Based on several

statistical studies over many decades, we propose to use the Student t model as a suitable

representation of asset returns. We take the view that, since this model is at least less

worse than the Gaussian model and exhibits the empirically observed fat tails, we have

grounds for employing the Student t distribution for the purposes of risk management

or portfolio optimisation, (Breymann, Luthi & Platen, 2009). Prior to selecting values

for parameters p and q in φ(b, p, q), we show how to simplify the performance measure,

in its general form, when the underlying random variable is a linear transformation of a

random variable with zero mean and unit variance. We then present the reductions of

Omega and Sortino in a Gaussian model for comparative purposes. Following this, we

give a brief overview of the Student t distribution to facilitate calculations made in the
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rest of the thesis.

It was our belief that a wider family of risk-to-reward performance measures could be

reduced to a function of the Sharpe ratio and that, under certain conditions, these func-

tions may possibly be monotonically increasing functions of the Sharpe ratio. In carrying

out research to support this belief, we encountered the work of Eling and Schuhmacher

(2007; 2012), who proved that a large class of risk-to-reward ratios are monotonically in-

creasing functions of the Sharpe ratio provided the location-scale property is satisfied and

certain properties exist regarding the performance measures. In addition, each reward

and risk component must satisfy certain conditions on their functional form. In brief,

two random variables satisfy the location-scale property if their de-meaned and de-scaled

equivalents are equal in distribution. We review the paper of Eling and Schuhmacher

(2012), as their result generalises our analysis provided in Chapter 4, and consider the

implications of their findings in the context of asset allocation. The conclusions reached

in Eling and Schuhmacher (2012), however, are due to restrictive statistical properties

which we claim should not be imposed on general grounds. On the one hand, the results

in Eling and Schuhmacher (2012) may lead the reader to believe that these alternative

measures are, in fact, no more superior than the Sharpe ratio. Consequently, due to its

simplicity and familiarity, one may rely solely on the Sharpe ratio as the most adequate

risk-to-reward ratio. We claim that consistency between the Sharpe ratio and other risk-

to-reward ratios does not exist in general. To maintain the flow of the thesis, we take



14

the Omega Index and Sortino ratio as special cases of the one-sided variability ratio,

φ(b, p, q), and test whether asset rankings and optimal portfolios based on these mea-

sures are consistent with the Sharpe-optimal equivalent portfolios when we first impose

the location-scale property and then relax this condition. Our approach in Chapter 6 is

to consider anisotropic bivariate distributions, as formulated by Shaw and Lee (2008),

and asymmetric dependency structures, two concepts not considered in Eling and Schuh-

macher (2012). Our results show that one doesn’t need to suppose highly exotic distri-

butional models for asset returns to lead to inconsistencies between performance ratios.

The analysis in Chapter 6 thus further emphasises the need to expand our toolbox of

risk-to-reward ratios beyond the traditional measures such as the Sharpe ratio.

Everything considered, this thesis studies the merits of a flexible class of performance

measures, namely the one-sided variability ratio in Farinelli and Tibiletti (2002), not

just in terms of how they value individual assets but also on how they combine these

assets via the process of optimising a portfolio. Whilst several authors investigate the

strengths and weaknesses of various performance measures and explore whether they

provide any advantages relative to more traditional measures such as the Sharpe ratio,

the focus is usually aimed at questioning whether they differ in terms of individual asset

rankings. Exploring the benefits of various parameterisations of φ(b, p, q) from both

an individual asset and portfolio perspective is, to the best of my knowledge, where

this thesis constributes to the existing literature. Our conclusions are of importance
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for the purpose of understanding why it is important to consider a broad spectrum of

performance measures in a general portfolio optimisation setting not just theoretically

but also for practical implementation.

1.1 Data description and optimisation process

In order to investigate the various parameterisations of the one-sided variability ratio in

terms of how they compare with the Sharpe ratio, we calculate optimal portfolios by

maximising four parameterisations of (1.2): φ(b, 1, 1) (Omega Index), φ(b, 1, 2) (Sortino

ratio), φ(b, 1, 3) and φ(b, 1, 4) where b ∈ {5%, 10%, 15%}. The resulting optimal portfolios

are compared with the Sharpe-optimal equivalent portfolios. Individual asset rankings

are also calculated and compared. Four sets of optimal portfolios are calculated for this

set of performance measures. Two sets use empirical return data from two distinct time

periods (to be explained in due course). The same optimisations are then carried out us-

ing Student t simulated return data where the first two moments of each asset are taken

from the empirical asset returns and we assume four degrees of freedom, homogeneously.5

This approach essentially assumes returns follow a particular continuous statistical dis-

tribution to which risk-adjusted performance measures and portfolios optimal in terms

of these performance measures are calculated, accordingly. The point here is to simulate
5The choice of four degrees of freedom is trivial but a natural choice given the findings in Platen and

Sidorowicz (2007) and Breymann, Luthi and Platen (2009).
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return data such that the marginal densities satisfy the location-scale property in accor-

dance with the framework underlying the work in Eling and Schuhmacher (2012). What

we are interested in is whether the theoretical results presented in Eling and Schuhmacher

(2012) agree with our results. As far as this author is aware, there is no obvious relation-

ship between asset rankings and optimal asset weights for any risk-adjusted performance

measure. We will find that agreement in asset rankings between a subset of risk-adjusted

performance measures does not imply agreement in optimal asset weights based on the

same set of measures. It is this distinction we wish to make clear and is the motivation

for carrying out these tests.

Initially, we carry out the above analysis on a universe of UK equities. To add

another dimension, we also carry out the same analysis where our universe of assets con-

sists of three major currencies and three commodities. UK equities tend to be positively

correlated whereas non-equity asset returns do not necessarily tend to move in the same

direction. The latter optimisation analysis will therefore provide further clarification of

whether the broad range of performance measures in (1.2) offers anything different to the

Sharpe ratio under alternative scenarios.

The first dataset to be used consists of daily returns of eighteen stocks selected from

the FTSE 100 Index traded on the London Stock Exchange as of September 2014. The

dataset covers the period January 2003 to March 2012. The eighteen stocks are chosen

due to their return distributions exhibiting various shapes. That is, the stocks chosen
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offer a broad range of statistical characteristics. The second dataset consists of six asset

return series: three currencies (EUR, GBP and JPY) and three commodities (Gold, Oil

and Silver) denominated in USD.

The two periods under investigation are January 2003 to July 2007 and August 2007

to March 2012. The former represents the years considered to be, by and large, economi-

cally thriving. The latter covers the recent financial crisis. The reason for choosing these

time periods is to show that the various parameterisations of the one-sided variability

ratio behave as we would expect them to over diverse economic climates.

The results presented in this thesis are all produced using the package, StochOptia,

in Mathematica. This package is centered on a Monte Carlo framework which carries

out optimisations by simulating both random returns and random portfolios. For the

benefit of the reader, we provide an overview of the optimisation method carried out

when running the StochOptia package.

In general, we wish to use return data of a set of assets to calculate those asset

weights which yield the optimal value of a pre-defined objective function, subject to pos-

sible constraints. We would like to have the option to use empirical or simulated data

where asset returns are drawn from standard distributions. The method proposed is

Monte Carlo in nature. We carry out a computational search amongst possible portfo-

lios based on any multivariate return model (including the empirical dataset), inter-asset

dependency structure, objective function as well as any investor-specific constraints. Op-
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timum portfolio weights are chosen such that no other set of simulated portfolio weights

produce a higher objective value. The extensive computational search involves simulating

random portfolios in addition to simulating portfolio return samples. Calculation of the

objective function is carried out on each set of feasible portfolio weights. The search then

chooses the set of weights yielding the optimal value of the objective function.

Simulation of random portfolios in an un-biased manner is achieved using a ‘Face-

Edge-Vertex Biased’ scheme (Shaw, 2011). This method of generating random portfolios

is chosen due to its ability to capture solutions along the faces, edges and vertices as well

as the interior of a feasible hyperspace.6 Essentially, weights are sampled as a function

of uncorrelated Uniform random variables on (0, 1) and rescaled to sum to unity:

wi =
f(Ui)∑
i f(Ui)

. (1.3)

The finer details of the theory underpinning this method are beyond the scope of

this thesis. For the interested reader, however, the author would recommend referring to

Shaw (2011) where the sampling methods of Devroye (1986) are summarised. For now,

let us consider an investment universe comprising of N assets. We generate M sets of

samples of N uncorrelated uniform random variables, Up
n,m, taken to the 2p-th power. For

6This compares with even simplicial sampling whose solutions tend to cluster around the equally-

weighted point rather than producing possible solutions on or towards the edges of the feasible hyper-

space.
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some integer p, a full set of simulated portfolios is then generated as follows:

wn,m =
U2p

n,m∑N
i=1 U

2p
i,m

. (1.4)

To illustrate the various levels of face-edge-vertex bias that can be achieved with

this method of random portfolio sampling, Figure (1.1) exhibits the 3-asset case where

p takes the values p = {0, 1, 2, 3, 4, 5, 6} and the number of samples is 3000 (that is,

m = 3000 in (1.4)). One can see that as we increase the value of p, more weights on

the boundaries of the hypercube will be selected. When incorporating constraints, both

linear and non-linear constraints are dealt with simply by rejecting those set of simulated

portfolio weights which do not satisfy the criteria. A visualisation of how the feasible

space is shrunk for two different sets of constraints is illustrated in Figure (1.2). In both

cases p = 3 and m = 10000. In the plot on the left-hand side of Figure (1.2), optimal

asset weights are bound below at -0.1. Feasible portfolios are constrained more tightly in

the plot on the right-hand side where we impose a lower bound of −0.5 on all assets and

constrain the total weight of short positions to lie in the range (−0.5,−0.2).

In concluding this introduction, the objective of this thesis is to advocate employing

a wide range of performance measures for portfolio optimisation and quantitative risk

management. Given the vast amount of literature disregarding the Gaussian distribution

as an appropriate model of financial returns, it is clear that alternative measures beyond

those that rely solely on mean and variance should be considered. In the greater part
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Figure 1.1: A visual representation of various levels of random sampling that can be

achieved using Face-Edge-Vertex Biased for sampling three asset weights.

of the thesis, we concentrate on two parameterisations of the one-sided variability ratio:

The Omega Index and Sortino ratio. In light of the recent financial crisis, the emphasis

on risk management has never been higher. We believe that limiting the set of risk

management tools to one, or even a few similarly defined risk tools can be risky in itself.

In the context of asset allocation, combining the Omega Index and Sortino ratio to the

box of tools for optimisation purposes may lead to different optimal portfolios that will

force the portfolio manager to question exactly what the investor’s objectives are. By

no means should the reader interpret this to mean we ought to disregard traditional
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Figure 1.2: A visualisation of how a feasible portfolio space for three assets is reduced

under certain constraints. The figure on the left displays how imposing a lower bound of

−0.1 chops the feasible portfolio space. By setting a lower bound of −0.5 on all assets

and constraining the total weight of shore positions to lie in the range (−0.5,−0.2) we

illustrate the level to which our feasible portfolio space is reduced.

measures including the Sharpe ratio. In fact, what we wish to emphasise is that certain

measures serve their purpose better in different scenarios. What is necessary is to select

the appropriate measures based on the nature of the inputs and the objective of the

investor. A timely article on this matter by Hoffman and Rollinger (2013) provides

evidence that alternative risk-adjusted performance ratios such as the Sortino ratio are

being considered in industry.
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Whilst the mathematical content in what follows predominantly focuses on two

particular performance ratios, broadly speaking, the proceeding analysis and general phi-

losophy of this paper extends to other ratios and components of a portfolio optimisation

model.



Chapter 2

Portfolio optimisation

‘... uncertainty has to do with

the range of returns that could

occur, and risk has to do with

some of those returns.’

Sortino

The task of allocating an amount of wealth amongst a number of assets is an endur-

ing challenge. In its simplest form, this problem consists of making a choice as to what

percentage of our wealth we should allocate to n assets. From a more theoretical perspec-

tive, however, we generally want to share our wealth amongst those n assets such that we

optimise a well-chosen objective function. Additionally, we may have to reduce our set

of feasible allocations in order to satisfy particular constraints or targets. Finally, it is
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often required that our optimal allocation represents a degree of diversification. Having

all your eggs in one basket, as the age-old proverb states, is generally not a safe bet.7

Note that a portfolio can be diversified in a number of ways. Traditionally, the most

diversified portfolio is the equally-weighted or ‘1/n’ portfolio.8 Distributing ones wealth

equally amongst a basket of assets is a tried and tested method. However, alternative

definitions of a well-diversified portfolio have come to fore. For example, an asset alloca-

tion methodology gaining in popularity is the equal risk contribution portfolio, (Maillard,

Roncalli & Teiletche, 2010), which is diversified in terms of variance rather than market

capitalisation. With this in mind, a general formulation for the portfolio optimisation
7Whilst this is a well-known saying and one often reciprocated in the context of portfolio optimisation,

it is in fact an interpretation of the original Spanish proverb. Carrying out a thorough search of the

original version, one will uncover many different translations where there is no mention of ‘eggs’ anywhere.

Regardless of the translation, the proverb as it is know in modern times appears to make sense in the

context of numerous situations. Having all your eggs in one basket, and then dropping that basket,

leaves you with nothing. On the contrary, however, Mark Twain (1894) can be quoted as saying: “Put

all your eggs in one basket and watch that basket.”
8The concept of sharing one’s wealth equally amongst all assets is certainly not a modern strategy.

As quoted by DiMiguel, Garlappi and Uppal (2009) and Benartzi and Thaler (2001) (who both cite

‘Babylonian Talmud: Tractate Baba Mezi’a, folio 42a’ as the source), as far back as the fourth century,

the Rabbi Isaac bar Aha offered the following advice: ‘One should always divide his wealth into three

parts: a third in land, a third in merchandise, and a third ready to hand.’
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problem is as follows:

Aim: maxw(Ψ(w))

Subject to: constraints and targets,

where Ψ(.) represents our objective function.

In this chapter, we discuss the two main branches of portfolio optimisation; modern

portfolio theory and post-modern portfolio theory. Firstly, with reference to modern

portfolio theory, we introduce the pioneering work of Harry Markowitz whose contribution

to portfolio analysis cannot be ignored. On account of the drawbacks associated with

the work of Markowitz and modern portfolio theory in general, we discuss the succeeding

area of research known as post-modern portfolio theory.

2.1 Modern portfolio theory

The pioneering work of Harry Markowitz during the 1950s (1952; 1956; 1959) initiated the

mathematical theory of portfolio selection. These studies laid the groundwork for what is

known as ‘Modern Portfolio Theory’ (Markowitz, 1952; 1959). Modern Portfolio Theory

(henceforth MPT) is a method for portfolio selection which promotes diversification. This

is achieved by seeking to reduce the variance of a portfolio through the methodology of

combining assets which are not perfectly positively correlated. The MPT framework is

based on a number of restrictive assumptions, notoriously on the return distribution and
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on the definition of risk. For instance, it postulates that all investors are risk averse and

markets are perfect. More infamously, though, is the perception of normally distributed

returns and the use of standard deviation as a proxy for risk.

In the preliminary paper on portfolio selection via mean-variance analysis (Markowitz,

1952), which is a particular application of MPT, risk was characterised by the variance.

This is where the mistaken belief that Markowitz solely advocated the standard devia-

tion to represent risk lies. If one refers to his later publication, the reader will verify that

Markowitz had it in mind to use semi-variance as a superior and investor-tailored risk

measure (Markowitz, 1959). Whereas variance is an average of the squared deviations of a

data set either side of the mean or target value, semi-variance solely measures the squared

deviations below the mean (or target value when we refer to target semi-deviation). This

is defined as E[((x− b)−)2] or, computationally, in the empirical (discrete) case:

Semi-variance = 1
n

n∑
x<b

(b− x)2. (2.1)

For comparative purposes, Markowitz (1959) considered the standard deviation, semi-

variance, expected value of loss, expected absolute deviation, probability of loss and

maximum loss as potential measures of risk in a risk-return analysis. Efficient portfolios

based on the latter five of these measures were compared with the corresponding efficient

portfolio based on mean-variance analysis. Associating these measures with their utility

function, Markowitz concluded that portfolios optimal in the sense of expected loss,

expected absolute deviation, maximum loss and probability of loss should not be trusted
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on theoretical grounds as they may lead to undesirable portfolios.9 Markowitz asserted

that a portfolio efficient in terms of expected return and semi-variance is always on par

with, if not superior than, the equivalent efficient portfolio resulting from mean-variance

analysis. Despite this conclusion, the technology available at the time led Markowitz

to settle for variance. The problem of calculating an optimal portfolio was therefore

characterised mathematically in terms of a function of the covariance matrix. For n

assets, optimal weights, ω = {ω1, . . . , ωn}, could then be determined by minimising

the following function given, the return vector, R, covariance matrix, C, and Lagrange

multiplier, λ, representing the investor’s level of risk aversion:

f(ω1, . . . , ωn, λ) =
n∑
i=1

n∑
j=1

ωiωjCij − λ
n∑
i=1

Riωi. (2.2)

In addition, constraining the weights to be positive and imposing a fully-invested

strategy provided the following constraints:

ωi ≥ 0

N∑
i=1

ωi = 1.

(2.3)

There are several issues with this well-known model. Primarily, as we mention

above, risk is characterised exclusively by the variance. The notion that the general

investor endeavours to reduce variance should be rejected purely on intuitive grounds;
9See Markowitz (1959) for a thorough review on the approach to optimising a portfolio via utility

theory.
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variance in returns contributes to generating profits and is not necessarily an undesirable

characteristic. In addition, defining risk in terms of variance alone can often be linked

to an assumption that the distribution of returns is Gaussian. This implicit assumption

is further illustrated by the dependency model between returns being represented by the

covariance.10

Whilst the long-only and fully-invested constraints are standard in portfolio optimi-

sation models, in a general framework there may be more complex constraints. As an

example, limits on sector exposure and individual stock weights or allowing for shorting

might need to be imposed.

Several studies, both theoretical and empirical, assert how the mean-variance ap-

proach to portfolio selection can be appropriate only for certain conditions. On the one

hand, Samuelson (1970) defends the mean-variance model on the grounds that it remains

useful in situations where riskiness is limited. In which case the quadratic solution is

approximately true. When these conditions cannot be assumed, however, both Feldstein

(1969) and Samuelson (1970) highlight the limitations of the mean-variance model both

in terms of restrictions on distribution and quadratic utility approximations. Restrict-

ing the model in one direction (that is, exclusively relying on mean and variance in the

analysis) leads to further restrictions elsewhere. Feldstein (1969) rightly states that a
10A common approach, at least traditionally, to asset allocation was to begin with a utility function

whose expected value was to be maximised. This methodology yields equation (2.2) if an exponential

utility model is employed and again Gaussian returns are assumed (Shaw, 2011).
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preference ordering (when a portfolio contains more than one risky asset) in terms of

µ and σ can be justified only if each asset is distributed in such a way that any linear

combination of these assets can be represented by a distribution that depends only on

two independent parameters.

From a more economical viewpoint, Simaan (1993) considers the opportunity cost

of mean-variance strategies relative to the investors optimal strategy on the basis of

maximising his utility function. The opportunity cost is measured by the dollar amount

the investor would require in order to invest in the mean-variance portfolio instead of his

utility-maximising optimal portfolio. This premium depends upon, amongst other things,

the joint distribution of asset returns in addition to the investor’s utility function. Simaan

(1993) concludes that for general distributions, the mean-variance strategy is inferior to

the optimal strategy.

In response to the theoretical progress in formulating portfolio selection, Sharpe

(1966) defined a technique for measuring the performance of a mutual fund. Originally

named the reward-to-variability ratio, it is now referred to as the Sharpe ratio. Con-

sidering the choices a mutual fund manager is required to make, the Sharpe ratio was

proposed as a means to which a portfolio can be selected amongst all feasible portfolios

exhibiting an appropriate degree of risk. Based on the expected rate of return, E[r], and

the standard deviation of returns, σ(r), Sharpe proposed selecting the portfolio yielding
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the highest rate of excess return per unit of volatility (or variability),

S =
E[r]− b
σ(r)

, (2.4)

where b is the reference rate about which return is measured and is often the risk-free

rate.11 Equation (2.4) is derived from the fact that all feasible efficient portfolios lie on

the straight line expressed as,

E[r] = b+ λσ(r). (2.5)

Here, λ represents the risk premium and is assumed to be positive in accordance with

the assumption that investors are risk-averse. As pointed out by Kaplan and Knowles

(2004), the Sharpe ratio quantifies the sign and magnitude of average return relative to

risk given by the standard deviation. Evidently, the key assumption is that two statistics

(mean and variance) are sufficient for evaluating portfolio performance (Avouyi-Dovi et

al., 2004). In this respect, we observe how Sharpe’s work relates to Markowitz’ mean-

variance model.

Despite its drawbacks, the Sharpe ratio is still frequently used today both in its own

right and as a tool for comparing other performance measures (Avouyi-Dovi et al., 2004).

Its use is widespread even amongst the hedge fund community despite that fact that, by

and large, they seek negatively skewed returns (Passow, 2005). Stimulated by the need

for an improved version of modern portfolio theory, several portfolio measures based on
11In Sharpe (1966), the reference rate in (2.4) was given by p. We define it as b here to be consistent

with the definitions given in the rest of this thesis.
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the formulation of the Sharpe ratio were introduced. We discuss several of these in the

subsequent chapter.

2.2 Post-modern portfolio theory

Due to its limitations, the MPT framework has been expanded to what is now known

as Post-Modern Portfolio Theory, henceforth PMPT. PMPT was first introduced to the

finance literature due to Rom and Ferguson (1994) at Investment Technologies. The work

of Sortino and Price (1994) provided a theoretical foundation for this branch of portfolio

theory and is a response to the shortcomings of MPT. In contrast to MPT, PMPT is

concerned with the return that must be achieved (or exceeded) in order to meet future

liabilities and satisfy solvency constraints. Hence, PMPT lends itself well to pension

fund optimisation where both assets and liabilities need to be managed.12 The origins of

this framework lie in the theory presented in Fishburn’s 1977 paper (see Chapter 3 for
12When managing pension portfolios, it is likely that pension funds will be in a state of deficit due

to liabilities (current and future) being greater than assets (returns). In the context of pension fund

optimisation, in particular for the Defined Benefit setting, we have the following situation: A pension

fund will carry a deficit taking into account past, current and future liabilities. Given a specified time

horizon, the objective is to manage the fund such that solvency, as defined by an actuary, is achieved by

the end of this time period. The length of the time horizon is due to factors including credit quality and

asset performance. Every three years, under pension regulations, an actuary assesses the performance of

the pension fund and ensures the solvency plan is performing.
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further comments on this paper). Thanks to increased computational power and further

progress in portfolio analysis, several of the limitations embedded in Markowitz’ standard

mean variance portfolio theory had, by the early 90s, been overcome. As an alternative

to variance, downside deviation (equivalently, target semi-deviation) was introduced as

a measure of risk. Rather than treating volatility equally over the entire distribution,

only variation in returns below a specified target were captured; this is more consistent

with the way investors perceive risk. The reasons for this are two-fold. Firstly, variation

in returns above the benchmark should not necessarily be penalised. In doing so, one is

limiting the potential upside to an optimal investment. Secondly, when the distributional

properties of our returns exhibit skewness, using a symmetrical measure to construct an

optimal portfolio can lead to underestimating (or overestimating) potential risk. Even

when returns are symmetrically distributed, downside deviation can provide different

information than standard deviation. As a simple illustration, let us consider an asset

whose returns are normally distributed with mean, µ and standard deviation, σ. We

compare the squared deviation and downside squared deviation of our returns relative to

a benchmark b. For the variance,

E[(X − b)2] =
1√
2πσ

∫ ∞
−∞

(x− b)2e−
1
2
(x−µ)2/σ2

dx

= (µ− b)2 + σ2 = V(b). (2.6)
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When we measure the downside deviation, we obtain

E[((X − b)−)2] =
1√
2πσ

∫ b

−∞
(b− x)2e−

1
2
(x−µ)2/σ2

dx

=
σ√
2π
e−

1
2
b2(−bσ − 2(µ− b)) + (σ2 + (µ− b)2)Φ(b)

= DV(b), (2.7)

where Φ(.) is the cumulative distribution function for the standard normal distribution.

We can observe immediately that DV(b) is not linearly related to V(b),

DV(b) =
σ√
2π
e−

1
2
b2(−bσ − 2(µ− b)) + V(b)Φ(b). (2.8)

Based on the concept of measuring performance and risk about a benchmark, Sortino

and Price (1994) sought to define a measure in the same spirit as the Sharpe ratio which

measured performance on a risk-adjusted basis. The motivation for seeking a new measure

stemmed from the concept that risk should only be associated with a subset of uncertain

returns. Only returns that occur below a pre-specified benchmark, not necessarily the

mean, are considered unfavourable and should be minimised accordingly. With this in

mind, the reference level should act as a separation between good and bad outcomes.

Therefore, it does not make sense for ‘good’ outcomes to enter the risk calculation. Taking

everything into consideration, the Sortino ratio is defined as follows:

SRX(b) =
E[(X − b)+]√
E[((X − b)−)2]

. (2.9)

We define the reference, b, here to denote the benchmark about which the investor

perceives good and bad outcomes. Originally, the benchmark b stood to represent the
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minimum accepted return (Hoffman & Rollinger, 2013). In this context, the Sortino

ratio is an appropriate tool for measuring performance and,in particular, constructing an

optimal portfolio for a pension fund. We find, as will be illustrated in Chapter 4, that the

Sortino ratio turns out to be a particular parameterisation of the one-sided performance

ratio in (1.2).

In Chapter 4, we propose and analytically show that the Omega index and Sortino

ratio are functions of the Sharpe ratio for Student t distributed returns. In Chapter

5, we discuss the recent work of Eling and Schuhmacher (2012) who prove that several

post-modern risk-to-reward ratios are monotonically increasing functions of the Sharpe

ratio.13 Based on the conclusions in Eling and Schuhmacher (2012), one can justify the

consistent use of the Sharpe ratio in industry. Nevertheless, towards the end of this thesis,

we provide situations where agreement between asset rankings based on the Sharpe ratio,

Omega and Sortino does not exist in the general case.

The key components to any portfolio optimisation problem in the PMPT framework

are the distribution models and which performance measure to employ. We reiterate

our view that reducing our tools to one distribution and contending ourselves with one

risk performance measure is risky in itself. We discuss, in finer detail, the choice of

distribution and risk-adjusted performance measure for portfolio optimisation in the next
13This conclusion, however, is founded on certain conditions on the distribution of the underlying

variables and the performance ratio being satisfied.
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chapter. There, we discuss the consequences this choice can have in the context of

portfolio optimisation and risk management.



Chapter 3

Parametric portfolio optimisation

This chapter discusses the components that contribute to constructing a parametric port-

folio optimisation model. In a parametric setting, we have three key decisions to make:

1. Which distribution to use for modelling the random variables, primarily the returns;

2. How we define our objective function;

3. How to characterise the relationship between the underlying random variables.

In this thesis we are, primarily, interested in investigating various alternative risk-

adjusted performance ratios which can be used for the purpose of constructing a flexible

portfolio optimisation model. In this chapter, we draw attention to a number of those

that have been discussed in the literature. This concerns the second decision above.
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For completeness, however, we discuss the nature of dependencies and marginals with

familiar distributions. This is what we mean by a ‘parametric’ setting. When it comes

to simulation, a copula and marginal quantiles suffice for simulating a parametric return

dataset.

3.1 Modelling the return distributions

Accurately modelling asset returns in a parametric setting remains a challenge today,

despite huge advancements in both computer technology and mathematical data analysis.

Since Markowitz’ seminal 1952 paper, several alternative statistical distributions have

been proposed for modelling financial return data. Even as far back as 1963, Mandelbrot

recognised that returns were far from Gaussian.

The task of modelling financial returns is concerned with analytically characterising

the relevant features and patterns of the data in order to capture as best as possible its

‘true’ behaviour.14 In the context of asset allocation and portfolio management, our choice

of distribution plays a critical role in measuring risk and performance. The calculation

of risk, whether on a single asset basis or at the portfolio level, is highly dependent on

the assumptions and choices we make in the modelling process. Beyond the existence of

higher moments, by ignoring or misrepresenting certain observable facts, risk measures
14What we mean here is that one endeavours to capture enough of the features of the data to illustrate

the point under investigation.
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including VaR become practically useless for quantifying the risk of extreme price swings

(Rachev, Iotova & Stoyanov, 2010). A vast amount of literature spanning several decades

on the subject of estimating return distributions exists. Yet, there is still no agreement

as to which distribution is considered universal nor is there a concise methodology for

selecting the most appropriate distribution under any scenario. Furthermore, there is yet

to be a widespread abandonment of the normality assumption.

Constructing a model for the behaviour of price returns entails forming a hypothesis

on the distribution capable of exploiting the relevant features, commonly referred to

in the literature as stylised facts, (Breymann, Luthi & Platen, 2009; Jondeau, Poon

& Rockinger, 2007; Cont, 2001). It is well-known that variations in asset prices are

influenced by numerous events, predominantly of an economical or political nature, and

that not all asset price movements will be affected in the same way. Nevertheless, based on

an empirical and somewhat qualitative approach, Cont (2001) presents a set of properties

common to a wide range of assets. In this paper, Cont (2001) lists a set of stylised

statistical properties shared amongst a broad class of financial assets. These include

absence of autocorrelations, heavy tails, asymmetry between perceptions of gain and loss,

aggregational Gaussianity, intermittency, volatility clustering, conditional heavy tails,

slow decay of autocorrelation in absolute returns, the effect of leverage, volume and

volatility correlation and asymmetry in time scales. Faced with the challenge of choosing

the best-fitting parametric model for characterising asset returns, one should therefore
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aim to replicate as many of these empirically observed properties as practically possible.

On its own, the existence of heavy tails mentioned in Cont (2001) confirms the inadequacy

of the Gaussian distribution for modelling financial data.

In light of these stylised facts, numerous phenomena must be taken into account.

Depending on the nature of our model, the properties listed in Cont (2001) will have

varying degrees of applicability and importance. One must consider the type of asset,

or assets, in our investment universe as returns associated with all asset classes do not

necessarily behave in the same way. It should not be assumed that the returns of a stock,

commodity or hedge fund, for example, will behave according to the same distribution.

Exogenous factors including information arrival, political occurrences and other external

stochastic conditions can play a huge part in the distributional properties of an asset.

In addition, the distribution of an asset can differ across varying time horizons. One

often assumes that a return distribution converges to a Gaussian model as the time

horizon increases. However, as shown in Breymann, Luthi and Platen (2009), this is not

necessarily true. For a more detailed and theoretical analysis on the estimation of ‘market

invariants’, see Meucci (2009).

It is common practise during the process of constructing a parametric portfolio model

to make certain assumptions relating to the underlying random variables. The notorious

assumption of normality in returns has frequently been discredited in the finance litera-

ture since Mandelbrot (1963) first highlighted the non-Gaussian properties of historical
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returns. Several academic papers based on the analysis of financial returns highlight the

non-normal properties of the data, (Shaw, 2008; Mandelbrot, 1963; Fama, 1965). Yet,

due to the analytical properties and readily available (off-the-shelf) numerical code for

the functions associated with its distribution, the Gaussian model is still frequently used

today despite the fact that this model, based solely on two moments, leads to a poor

representation of the characteristics of returns. One procedure that allows the practi-

tioner to remain within the Gaussian picture involves explaining away, and consequently

eliminating, large price changes to selected causes (Mandelbrot, 1963). Removing such

outliers should be avoided, particularly in the field of risk measurement where capturing

extreme returns is of great importance (Platen & Sidorowicz, 2007). The two-parameter

Gaussian story is a far too simplistic explanation of reality.

The main criticism of the normal distribution is that it fails to capture the existence

of heavy tails on account of its zero excess kurtosis, (Platen & Sidorowicz, 2007; Rachev,

Iotova & Stoyanov, 2010; Shaw, 2008; Jondeau, Poon & Rockinger, 2007). Thus, it

renders the model ineffective for calculating risk which will arise due to data occurring

in the tails of the distribution. As mentioned in Shaw (2011) and Fergusson and Platen

(2006), in going from a Gaussian distribution to a Student t distribution with 4 degrees

of freedom, we are approximately 10130 times more likely to observe a 25σ event. Another

example is provided in Shaw (2011) where, for a Student t model with 2.25 degrees of

freedom, a 30σ event is possible within roughly 100 years. A 30σ event is expected to
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occur approximately once in more than a few lifetimes of the universe, however, in a

Gaussian model with the same mean and variance. In the context of estimating portfolio

risk, assuming normally distributed returns for calculating VaR, for example, could result

in a drastic underestimation of potential portfolio loss.

In light of the above, it is clear that several cases call for the need to deviate from

the Gaussian world. Several alternative distributions for modelling returns have been

proposed in the literature. For capturing the fat-tailed phenomenon, a Student t density

is the most frequently documented alternative (Shaw, 2011; Blattberg & Gonedes, 1974;

Fergusson & Platen, 2006; Breymann, Luthi & Platen, 2009; Platen & Sidorowicz, 2007;

Rachev, Iotova & Stoyanov, 2010). From a practical perspective, one advantage of the

Student t density is the ease with which it can be employed. Its statistical relationship

with the Gaussian density means that many of the built-in Gaussian functions can be

recycled in the Student t model. Furthermore, in terms of parameters, it is as well

understood as the Gaussian model. A theoretical discussion of this distribution can be

found in Chapter 4.

Platen and Sidorowicz (2007) conduct an empirical investigation into the distribu-

tions of log-returns of diversified world stock indices. They first hypothesise that each

random variable, X, representing the return is governed by a normal mean-variance mix-

ture distribution as follows,

X = m(W ) +
√
WσZ. (3.1)
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Here, Z is standard normal (Z ∼ N(0, 1)), σ ∈ R is a constant, m : [0,∞) → R

is a measurable function and W≥ 0 is a non-negative random variable, independent of

Z. More specifically, they apply the maximum likelihood methodology to the symmetric

generalised hyperbolic density function. Based on an equally-weighted index15 and a

99.9% level of significance, the Student t distribution with approximately 4 degrees of

freedom best fitted the empirical data. The results showed a significant superiority of the

Student t density compared with the normal inverse Gaussian, hyperbolic and variance

gamma densities.

Employing the same methodology, Breymann, Luthi and Platen (2009) also estimate

the parameters of the generalised hyperbolic distribution to fit the observed log-returns

of a well-diversified stock index. For short time horizons, the Student t density with 4−6

degrees of freedom yielded the highest likelihood. More interestingly, though, was that as

the time horizon was lengthened, they did not observe an often assumed transition to the

normal density. Rather, the Student t density with 4 and 6 degrees of freedom remained

superior.

Since the Student t model belongs to the family of elliptical distributions, an obvious

drawback is its inability to capture skewness.16 Limiting our distribution choice to the
15Platen and Sidorowicz (2007) advocate the equally-weighted index on the grounds that it ‘forms the

best diversified portfolio’ and does not require using the data to calculate the portfolio weights.
16These distributions are symmetrical and fully characterised by the location parameter, dispersion

parameter and the generator of the probability density function (Meucci (2009)).
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elliptical family may have negative consequences further on in the optimisation process.

The obvious solution is to consider one of the numerous distributions capable of modelling

asymmetry.

Several distributions exist that are capable of modelling asymmetry. Our purpose

here is not to discuss all possible distributions, merely we wish to highlight their exis-

tence and their applicability to financial data modelling. A few of the most well-known

distributions able to represent skewness include the general hyperbolic distributions, ex-

ponential distribution and lognormal distribution. One distribution in particular that is

gaining in popularity in the quantitative finance literature is the Johnson family (Passow,

2005; Choi, 2001; Kaplan and Knowles, 2004 and references therein). In brief, the four-

parameter Johnson family, introduced in 1949 (see Johnson (1949) for the original paper),

represents a system of distributions capable of modelling a wide spectrum of shapes. It

includes the normal and lognormal distributions as special cases. A random variable, X,

follows a Johnson distribution if it can be expressed as,

X = ζ + λf−1
(Z − γ

δ

)
, (3.2)

where ζ is the location parameter, λ represents the scale and γ and δ are shape parameters.

The random variable Z is standard normal (Z ∼ N(0, 1)) and f can take on one of

four particular functions17. The reader will observe that a Johnson distributed random
17Please refer to the appendix in Kaplan and Knowles (2004) for the four functional forms of the

Johnson distribution family.
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variable is simply a transformation of a standard normal variable. Its probability density

function is defined as:

p(x) =
δ

λ
√

2π
f
′
(x− ζ

λ

)
exp
(
−1

2

(
γ + δf

(x− ζ
λ

))2)
. (3.3)

For brevity, we mention just one member of the Johnson family: the Johnson SU

unbounded distribution, obtained by defining f as follows,

f(z) = ln(z +
√
z2 + 1). (3.4)

Substituting (3.4) into (3.3), we obtain,

pSU (x) =
δ

λ
√

2π

(
(x− ζ)2 + λ2

λ2

)−1/2

× exp

(
−1

2

(
γ + δ ln

(x− ζ
λ

+
(x− ζ)2 + λ2

λ2

))2)
. (3.5)

A Johnson SU distributed random variable is then expressed as

X = ζ +
λ

2

(
exp
(
Z−γ
δ

)
− exp

(
γ−Z
δ

))
. (3.6)

The ease with which this flexible distribution can be simulated is obvious. In Figure

(3.1), we plot three Johnson SU probability distribution functions with equal mean and

standard deviation but varying degrees of skewness. These plots illustrate the flexibility

of this distributional family for the application of modelling financial data.

Several applications of the Johnson SU distribution in mathematical finance can

be found. In the context of portfolio optimisation, Passow (2005) analytically derives



Modelling the return distributions 45

-1.0 -0.5 0.5 1.0

1

2

3

4

5

6

Positively Skewed

No Skew

Negatively Skewed

Figure 3.1: Johnson (SU) distribution function plots. All distributions have mean =

0.08 (8%) and standard deviation = 0.16 (16%)

the Omega ratio where returns are assumed to follow the Johnson distribution. Choi

(2001), on the other hand, presents a GARCH-SU model for the purpose of estimat-

ing VaR18. Kaplan and Knowles (2004) consider assuming returns are governed by the

Johnson SU distribution for the purpose of estimating Kappa, a generalised risk-adjusted

performance measure which we explain later in this chapter. The aim here was to assume

a particular continuous distribution in order to calculate Kappa using return distribution

characteristics rather than empirical return data. In particular, Kaplan and Knowles

(2004) calculated Kappa values of eleven hedge fund indices using both raw return data

and estimated Johnson SU return distributions. Rankings of these hedge fund indices in
18In brief, a GARCH (Generalised Autoregressive Conditional Heteroskedasticity) process is a time

series estimation methodology where the variances of the error term are not assumed to be constant.
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terms of the resulting Kappa values based on both approaches were calculated for the

purpose of quantifying whether assuming the Johnson SU distribution as a model of re-

turns can be justified. The results showed that, for certain parameterisations of Kappa,

rank correlations between empirical and Johnson SU estimated Kappa values were at

or very close to 100%. What is of interest here, is the use of the Johnson distribution

for the application to portfolio analysis. Kaplan and Knowles (1994) conclude that, for

the purpose of ‘evaluating competing investment alternatives’, the Johnson SU estimated

Kappa calculations were robust.

For illustrative purposes, Figure (3.2) exhibits four distributions with equal mean

and standard deviation: a negatively skewed Johnson SU distribution, a normal distri-

bution and two Student t distributions, one with 8 degrees of freedom, another with 3

degrees of freedom. Visually, these plots demonstrate the inadequacy of basing risk and

performance measures solely on the first two distributional moments.

The subject of the next section concerns the interpretation of a risk measure, the

definition of which is of great importance when formulating a risk-adjusted performance

measure.
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Figure 3.2: Distribution plots with equal means and standard deviations.

3.2 Risk measures

Before proceeding to the topic of risk-adjusted performance measures, we focus our at-

tention on how one defines risk. Incorporating risk into a portfolio optimisation model

can be done in one of two ways. Firstly, it can be integrated into the constraint set. This

way, specific bounds on losses, for example, can be maintained. Second, and of particular

relevance to the subsequent work in this thesis, a risk measure can be included in the

objective function to facilitate maximising some measure of return and managing risk

simultaneously.

An open challenge in optimal asset allocation is choosing which risk measure is most

appropriate. Several factors play a role in making this decision. First and foremost, how

risk will be incorporated into any analysis needs to be considered. For use in finance,
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investor preferences play a fundamental role in determining how risk is characterised. For

the purpose of calculating an optimal portfolio, the nature of the underlying data will

help to identify a suitable risk measure.

Pederson and Satchell (1998) propose a set of axioms for choosing a desirable measure

of risk. These ‘Basic Properties’ include non-negativity, homogeneity, sub-additivity,

shift-invariance and, for assigning zero weight to returns not considered to lie in the risky

part of the distribution, a downside-only axiom. On page 15 of Pederson and Satchell

(1998), a risk measure is defined as follows:

Definition 3.1. A risk measure in the financial sense will be a measure which, given a

random variable y, returns a non-negative number on the real line:

R[y] : Ω→ R+.

Everything considered, the motivation of this section is to call attention to some of

the risk measures which have been suggested in the finance literature. Since the list of

risk measures that have been proposed to date is vast, we are not able to discuss the

entire set without detracting from the flow of this thesis. Rather, our aim is to bring

to light the wide range of tools at our disposal beyond conventional measures such as

standard deviation. We concern ourselves, in what follows, with the risk measures which

allow for limits on the range of returns to be included in the calculation of risk.

As far back as 1973, Stone defined a general class of risk measures encompassing sev-
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eral well-known dispersion measures as special cases. Two forms of this class, L(W0, k, A)

and R1(W0, k, A), were presented as we show below:

R1(W0, k, A) =
(∫ A

−∞
|W −W0|kdF (W )

) 1
k

= L(W0, k, A)
1
k , k ≥ 0. (3.7)

Evidently, this family of risk measures is governed by three parameters: k, A and

the target or benchmark level W0. Depending on the choice of parameterisation, Stone’s

class of risk measures demonstrate various ways of calculating deviations of wealth from

a specified reference level. The parameter k represents the sensitivity of deviations from

W0. When k ≥ 1, larger values of k imply greater degrees of sensitivity to large deviations

from the reference level. For k in the range (0, 1), smaller deviations are weightier than

larger deviations from W0. When k = 1, all levels of deviation are given equal weight.

Lastly, the parameter A states the range of returns accountable for risk. When W0 = A,

R1(W0, k, A) is equivalent to the denominator of the one-sided variability ratio in (1.2).

In the thread of research that stems from Stone’s paper, Fishburn (1977) defined

a two-parameter risk function represented by a probability-weighted dispersion measure.

For α > 0, Fishburns’ (α − t) model, also referred to as a mean-risk dominance model

(Fishburn, 1977), is given by:

Fα(t) :=

∫ t

−∞
(t− x)αdF (x) α > 0, (3.8)

where t determines the level of returns below which risk is calculated and α signifies the
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degree to which deviations from t are weighted. One will observe that when W0 = t,

k = α and A = t in L(W0, k, A) in (3.7) above, we obtain Fα(t). For α = 2, (3.8) leads to

the target semi-variance model that Markowitz originally intended to use to characterise

risk (Markowitz, 1959; Fishburn, 1977; Harlow, 1991).

On the basis that investors perceive gains and losses disproportionately, Harlow

(1991) utilises lower partial moments for characterising a downside risk measure. For

returns, Rp, and when τ represents the reference return level, Harlow (1991) defines the

lower partial moments as:

LPMn(τ) =
τ∑

Rp=−∞

pp(τ −Rp)
n. (3.9)

In (3.9) above, n represents the degree to which deviations from the reference level,

τ , should be weighed and is equivalent to k in Stone’s risk measure (3.7). The probability

of Rp occurring is denoted by pp. Smaller values of n indicate that one is more concerned

with returns not falling below τ . On the other end of the spectrum, large values of n imply

a greater sensitivity to returns falling far below τ in the lower tail of the distribution.

Various parameterisations of LPMn(τ) lead to measures frequently mentioned in the

risk literature. For any τ , n = 0 gives the probability of returns falling below τ , n = 1

yields the target shortfall and n = 2 leads to the target semi-variance. When τ is equal

to the mean return and n = 2, we obtain the standard semi-variance which, for Gaussian
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returns, is exactly half the variance (Harlow, 1991).

Rather than depending on specific moments of the distribution, LPMn(τ) takes

the entire distribution into account (Harlow, 1991). For a given τ , the resulting value

of LPMn(τ) is determined by how much weight is given to certain parts of the return

distribution about τ . For this reason, optimal asset allocations calculated via the min-

imisation of LPMn(τ) for different n can differ dramatically. As will be revealed in the

next section, LPMn(τ) features in the denominator of Kappa (Kaplan & Knowles, 1994)

and the one-sided variability ratio (Farinelli & Tibiletti, 2002).

Following Harlow’s article on the topic of downside risk (Harlow, 1991), Pederson and

Satchell (1998) survey a broad range of risk measures employed in the field of psychology,

operations research, management science, economics and finance in order to construct a

general class of risk measures. Based on Stone’s three-parameter risk measure (3.7), for

some bounded function W (.) and parameters A,b,α,θ > 0 (A, b, α, θ ∈ R+) this family

of risk measures is given by:

R2[A, b, α, θ,W (.)] =

(∫ A

−∞
|y − b|αW (F (y))f(y)dy

)θ

. (3.10)

Letting W (x) = x, b = W0, α = k and θ = 1/k and interchanging y for W yields Stone’s

measure:

R2(A,W0, k,
1
k
,W (x) = x) =

(∫ A

−∞
|W −W0|kdF (W )

)1

k = R(W0, k, A). (3.11)

As with other risk measures discussed in this section, many parameterisations of
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the general family in (3.10) yield common risk measures including, but not limited to,

standard deviation, semi-standard deviation, semi-variance and lower partial moments.

The breadth of research focusing on incorporating downside or one-sided risk into a

general family of risk measures highlights the intuitive appeal for optimising a function

of the returns where only those returns that negatively impact upside performance are

minimised. The concept of splitting the return distribution and calculating risk based,

solely, on those considered as ‘bad’ returns motivated the risk measures introduced above.

In the subsequent section, we introduce risk-adjusted performance measures. Of

relevance to this thesis, we study the one-sided variability ratio proposed by Farinelli and

Tibiletti (2002) which incorporates both upside potential and a one-sided risk measure.

We use this ratio in an optimal asset allocation framework for the purpose of highlighting

its differences from conventional measures, most notably the Sharpe ratio.

3.3 Risk-adjusted performance measures

Evaluating portfolio performance solely on the basis of total return ignores the notion

that investors regard return in terms of the risk required to achieve it. This trade-off

between risk and return is most simply characterised by the Sharpe ratio (Sharpe, 1966),

the drawbacks of which have already been discussed.

Whilst Sharpe (1966) first proposed a way of quantifying risk-adjusted performance,
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Modigliani and Modigliani (1997) realised that the values it produced lacked any clear

economic meaning. Consequently, despite its simplicity, it is not necessarily easily un-

derstood amongst investors or fund managers who are less familiar with financial theory

(Modigliani & Modigliani, 1997).

To combat this shortcoming, the Modigliani risk-adjusted performance measure

(MRAP ) was proposed as an alternative to the Sharpe ratio. MRAP is risk-adjusted in

the sense that the relationship between a porfolios’ risk and return is adjusted by the risk

of the benchmark portfolio. Letting rf represent the risk-free interest rate, rp the port-

folio return and σp and B representing portfolio risk and benchmark risk, respectively,

MRAP is defined as follows:

MRAP =
(rp − rf )σB

σp
+ rf . (3.12)

WhatMRAP tells us is what the return of the evaluated portfolio is when its risk is

matched to that of the benchmark portfolio. By construction, it incorporates the Sharpe

ratio. Multiplying by the benchmark portfolio risk, however, yields a value given in basis

points which should be more economically meaningful. One can then consider it as a

more economically intuitive and easier to interpret version of the Sharpe ratio.

For the purpose of evaluating mutual funds, Simons (1998) surveys Morningstar’s

rating methodology, the results of which are determined by use of their risk-adjusted per-

formance measure. In this fashion, funds are rated depending on how they rank in terms
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of Morningstar’s risk-adjusted performance measure. Where Morningstar’s measure dif-

fers from the Sharpe ratio is due to how return and risk are defined. Morningstar’s return

for any fund is the ratio of its sales-loaded excess return (relative to the 90-day Treasury

bill rate) to the average excess return for the asset class the fund under analysis belongs

to. In replacement for standard deviation, risk is defined as the ratio of the funds’ down-

side risk (based on monthly negative returns) to the average underperformance of the

funds’ asset class. The difference between both components above (Morningstar return -

Morningstar risk) leads to Morningstar’s risk-adjusted performance measure.

Thus far, the above performance measures discussed above lack the level of generality

we uncovered in the previous section on the theme of risk. To accommodate the spectrum

of investor preferences, one calls for a flexible class of risk-adjusted performance measures

capable of representing the general investor. The Kappa ratio (Kaplan & Knowles, 1994)

offers generality through the use of lower partial moments. Essentially, for any threshold

return τ , Kappa is the ratio of excess return (µ − τ) to the normalised lower partial

moments:

Kn(τ) =
µ− τ

n
√
LPMn(τ)

, n ≥ 0, (3.13)

where LPMn(τ) is given in (3.9) and was used in Harlow (1991) as a downside

risk measure. When plotting Kn(τ) against τ , the steepness of the curve is governed,

inversely, by the parameter n. Kaplan and Knowles (1994) evaluate the sensitivity of

Kn(τ) to skewness and kurtosis for values of the threshold, τ , near to and further away
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from the mean return. They conclude that Kappa is relatively insensitive to skewness and

kurtosis when τ lies near to or is just above the mean return but is sensitive to skewness

and kurtosis for values of τ much further below the mean return. Therefore, one can

think of n as representing the risk appetite for skewness and kurtosis risk aversion for

threshold returns below the mean, (Kaplan & Knowles, 1994).

A similar, yet more general measure was proposed by Farinelli and Tibiletti (2002)

and is the subject of the next section. Special cases of Farinelli and Tibiletti’s family

of performance measures, including the Omega ratio and Sortino ratio, are also special

cases of Kappa.

3.3.1 A general class of performance ratios

The one-sided performance ratio (Farinelli & Tibiletti 2002), shown in equation (1.2)

is flexible enough for representing a continuum of investor objectives and suitable for

separating upside and downside risk, a valuable property which mean-variance analysis

fails to achieve. In order to validate the method of mean-variance optimisation, one has

to assume the underlying returns are normally (and hence symmetrically) distributed or

that investors have quadratic utility functions (Harlow, 1991)19. In addition, investors

are assumed to be equally averse to variation across the full distribution of returns.
19In defence of mean-variance analysis, if returns are approximately Gaussian, the standard deviation,

being less computationally complex and more familiar, may suffice (Harlow, 1991).
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Broadly speaking, minimising risk over the entire distribution will not represent the

general investor’s objective. The possibility that one may have a certain inclination

towards upside risk and hence wish to focus on penalising downside risk means that

some form of risk separation is required. Mean-variance optimisation fails to capture this

asymmetry in perception of risk. Therefore, alternative tactics need to be employed.

Taking into account the spectrum of risk aversion preferences and avoiding the need

to impose strong assumptions on the return distribution, Farinelli and Tibiletti (2002)

propose the one-sided variability ratio, henceforth OV R, as a suitable measure when the

underlying random variable potentially possesses asymmetry. Based on the investor’s

choice of the benchmark parameter, b, and parameteres p and q representing the orders

of the right-sided and left-sided moments, respectively, OV R captures ‘good’ volatility

above the benchmark and ‘bad’ volatility below the benchmark. For certain choices of p

and q, the performance ratio can prove to be a more appropriate measure than quantile-

based risk measures such as VaR and other risk-adjusted performance measures including

Sharpe ratio. The class of performance ratios is given below:

φ(b, p, q) =
E[|(X − b)+|p]1/p

E[|(X − b)−|q]1/q
. (3.14)

For any parametrisation, OV R is a ratio of the upper partial moment and lower

partial moment with respect to the boundary level, b.20 The reader may observe that
20Although not directly mentioned in Farinelli and Tibiletti (2002), we take the curly brackets in their

definition of the performance ratio to be modulus signs.
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φ(b, p, q) in (3.14) above incorporates the n-th square root of (3.9). The denominator in

(3.14) is also equivalent to the q-th root of (3.8) when α = q and t = b which, in itself, is

a particular case of (3.7).

Appropriate choices for parameters p and q in (3.14) depends on the investor’s

aversion to uncertainty in returns about the benchmark, b. As highlighted in Stone

(1973), one must consider: ‘what value of the benchmark, about which deviations we are

measuring, should we choose; how we perceive small deviations versus large deviations

relative to the benchmark; and which outcomes should be included in the calculations

of the risk measures’. By specifying values for p and q, we are able to capture all levels

of risk aversion preferences. The generality of this class of measures make them an

appealing alternative with respect to traditional mean-variance theory since it possesses

the ability to provide more information regarding the risk-adjusted performance of a single

asset or portfolio. As pointed out by Harlow (1991), when returns are not Gaussian, this

approach of allowing for asymmetry in perceptions of risk will result in portfolio decisions

which disagree with those made in a mean-variance framework on account of the added

information garnered from past asset returns.

The choice of orders p and q depend on our preference, or dislike for, extremal events.

High values for p and q indicate greater emphasis to variation in returns far from b in the

tails of the distribution. That is, further weight is given to volatile outcomes. To put it

another way, high values for p (q) imply a preference (aversion) for a risky trade whereas
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low values for p and q indicate a low concentration on data occurring deep in the tails.

For empirical data, the performance ratio can be highly beneficial in terms of capturing

skewness and other distributional characteristics beyond the first two moments.

With regard to asset allocation and risk management, φ(b, p, q) provides an attractive

alternative to Markowitz’ mean-variance analysis on the basis of their consistency with the

way investors generally perceive risk, (Harlow & Rao, 1989). In concept, φ(b, p, q) is also

consistent with common market practise of calculating performance statistics relative to

a benchmark (Mausser, Saunders & Seco, 2006,Kaplan & Knowles, 1994). Furthermore,

one does not need to make the same, unrealistic assumptions, particularly on the family

of distributions the underlying random variable should follow or the utility function it

should satisfy. The benefit of utilising a downside risk measure in a performance tool is

that one may employ arbitrary distributions providing a richer approach to reducing risk

and, at the same time, augmenting return potential.

To illustrate the differences between various parameterisations of Farinelli and Tibiletti’s

one-sided performance measure (3.14), we take a universe of 18 stocks from the FTSE 100

Index and calculate optimal portfolio weights based on maximising φ(b, 1, 1) (Omega),

φ(b, 1, 2) (Sortino), φ(b, 1, 3) and φ(b, 1, 4) and, for comparison, the Sharpe ratio. We vary

two components of this analysis; time period and return threshold. Two distinct time

periods are considered; a ‘boom’ period (January 2003 - July 2007) and a ‘bust’ period

(August 2007 - March 2012) to cover the recent financial crisis. Three return thresholds
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are tested, b ∈ {5%, 10%, 15%}. We use the empirical return dataset from each period

for calculating the one-period optimal portfolio weights. The first four moments of each

stock’s return data over the boom and bust periods are given in tables (3.1) and (3.2),

respectively. Optimal portfolio weights with respect to the boom period are given in table

(3.3) and for the bust period, optimal portfolio weights are presented in table (3.4).

Optimal portfolio weights with respect to the boom period are given in table (3.3)

and for the bust period, optimal portfolio weights are presented in tables (3.4).

One will immediately notice that portfolio weights resulting from optimising different

parameterisations of φ(b, p, q) differ substantially from the equivalent Sharpe-optimal

portfolios. For any return threshold, the correlation between φ(b, 1, q)-optimal weights

and Sharpe-optimal weights decreases considerably as we increase the parameter q. This

is significantly more apparent for the ‘boom’ period as exhibited in Table (3.5). We leave

the discussion regarding performance ratio based asset rankings to Chapter 5. In the

interim, the numbers presented thus far illustrate the benefits of utilising a richer family

of performance measures such as OV R for calculating optimal portfolios.

In summary, the set of risk and performance measures available to us is vast. Whilst

we advocate employing one or a number of the one-sided risk-adjusted performance mea-

sures defined in (3.14), it is critical to bear in mind that traditional tools including the

Sharpe ratio are not redundant. For certain distributional properties of the underlying

random variables, the ranking and allocation of assets based on the Sharpe ratio are
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Table 3.5: Correlations between φ(b, 1, q)-optimal and Sharpe-optimal portfolios for

q ∈ {1, 2, 3, 4}

Perfomance Measure Benchmark Boom period Bust Period

φ(b, 1, 1) - Omega 5% 56.4% 100.0%

φ(b, 1, 2) - Sortino 5% 60.6% 90.1%

φ(1, 3) 5% 43.8% 98.0%

φ(1, 4) 5% 43.3% 46.3%

φ(b, 1, 1) -Omega 10% 53.9% 100.0%

φ(b, 1, 2) - Sortino 10% 85.5% 96.8%

φ(1, 3) 10% 72.3% 94.9%

φ(1, 4) 10% 72.4% 57.5%

φ(b, 1, 1) -Omega 15% 68.2% 99.9%

φ(b, 1, 2) - Sortino 15% 57.2% 99.7%

φ(1, 3) 15% 19.1% 94.8%

φ(1, 4) 15% 18.9% 62.9%

similar, if not the same, to the equivalent analysis based on more complicated ratios. A

thread of research in accord with this statement is given in Eling and Shuhmacher (2005)

and Eling and Schuhmacher (2012) which is the subject of Chapter 5.

3.4 Dependency

As a final note in this chapter, we briefly discuss a few methods for modelling dependence

between asset returns. For a number of applications in finance, modelling the dependence

structure between multiple random variables is a necessary procedure. Solely relying on

the correlations21 is not always adequate for capturing the relationship between assets in

a general framework. This can only be justified when the underlying distributions are
21More specifically, Pearson’s correlation coefficient.



Dependency 64

elliptical, for example, all Gaussian or Student t. When the underlying distributions do

not belong to the elliptical family, Pearson’s correlation coefficient can be a misleading

metric. Of several potential undesirable properties, one may calculate a positive correla-

tion value between two random variables when, in fact, they are not positively related to

each other. See, for example, Jondeau, Poon and Rockinger (2007).

Modelling the returns of a number of assets with a multivariate Gaussian distribu-

tion is, generally, over simplistic. When such a multivariate model cannot be assumed,

an analytical expression or numerical model for the multivariate distribution may not

exist. This is particularly true in situations where a set of returns do not exhibit equal

marginal distributions. Copula functions provide the answer to such situations and offer a

generalisation to the linear dependence structure, provided by the correlation, to include

non-linear dependence.

One cannot discuss the concept and use of copulas without mentioning Sklar’s the-

orem as much of the theory associated with copulas stems from this result. For concrete-

ness, we present Sklar’s theorem below.

Sklar’s Theorem.. Let H be a two-dimensional distribution function with marginal dis-

tribution functions F and G. Then there exists a copula C such that

H(x, y) = C(F(x),G(y)). (3.15)

Conversely, for any univariate distribution functions F and G and any copula C, the



Dependency 65

function H is a two-dimensional distribution function with marginals F and G. Further-

more, if F and G are continuous, then C is unique.

In summary, what Sklar’s theorem tells us is how any joint distribution can be

decomposed into separate marginals and a copula. In other words, a copula provides

the missing information needed to combine the marginal distributions in order to to fully

describe the joint probability distribution. The theory of copulas is based on the following

key results:

Result 1. Let X be a random variable. Regardless of the distribution of X, the random

variable obtained from applying its cumulative distribution function to X is uniformly

distributed,

FX(X) ≡ U ∼ U[0,1]. (3.16)

Meucci (2009) refers to these uniform variables as ‘grades’.

Result 2. Given a specified target distribution, one can transform a uniform random

variable into another random variable with any distribution by feeding it through the

inverse cumulative distribution function of the desired distribution. This method is known

as inverse transform sampling.

The uniform random variables, or grades, mentioned in Result 1 are generally not

independent and it is their joint distribution which is the subject of copulas. One of

the most powerful properties of copulas is that we can model any marginal distribution
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based on the dependency structure of the original dataset. This splitting up of the

joint distribution into its marginals and copula, often referred to as the copula-marginal

decomposition, is a two-stage process. The first stage requires separating the distribution

into its marginals and its copula. The second process involves gluing the copula to

arbitrary marginals, creating a new joint distribution.

Copulas can, broadly, be categorised into two types: parametric and nonparametric.

In a nonparametric framework, empirical distribution functions can be used to construct

an empirical copula, the details of which can be found in Jondeau, Poon and Rockinger

(2007) (see also Meucci, 2009 and Nelsen, 2006). In a parametric setting, several families

of copulas exist. Within the elliptical family, the Gaussian and Student t are familiar.

The advantage of these copulas is that analytical expressions can be used to derive them.

The obvious disadvantage is the symmetry of dependence they impose due to equality

of dependence in both tails. These copulas share the property that they are derived

from multivariate distribution functions. An alternative copula formulation exists in the

Archimedean family, many of which have closed form expressions yet do not result from

multivariate distribution functions. Archimedean copulas are defined by the following

theorem,

Archimedean Copula:. Let ϕ be a continuous, strictly decreasing function from [0, 1]

to [0,∞), ϕ : [0, 1]→ [0,∞), such that ϕ(1) = 0 and ϕ−1 be the inverse of ϕ. Then, the
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function from [0, 1]2 to [0, 1] given by

C(u, v) = ϕ−1(ϕ(u) + ϕ(v)) (3.17)

is a copula if and only if ϕ is convex and non-increasing. The function ϕ is known as the

generator.

Examples of Archimedean copulas include the Frank family, Gumbel and Clayton

copulas. In Figure (3.3) we illustrate four different parameterisations of a Clayton copula.

We leave the discussion of copulas here. For the interested reader, an in-depth text

on the subject of copulas is given in Nelsen (2006).
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Figure 3.3: Three parametrisations of the Clayton copula illustrating the various degrees

of dependency that can be represented by the archimedean family of copulas.



Chapter 4

Omega & Sortino Ratio analytics

4.1 The Omega Index & Sortino ratio

In this section, we introduce the Omega Index and Sortino Ratio and study their prop-

erties in the context of asset allocation and portfolio risk management. In Chapter 3,

we discussed the one-sided variability ratio introduced by Farinelli and Tibiletti (2002).

This measure is the ratio of normalised upper and lower partial moments and is defined

as follows:

φ(b, p, q) =
E[|(X − b)+|p]1/p

E[|(X − b)−|q]1/q
. (4.1)

Unlike other commonly used measures in industry, this functional form is capable of

representing a diverse range of investor preferences on account of the choice of parameters
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b, p and q. The values we assign to p and q are indicative of the risk aversion preferences

of the investor.

We consider two particular parameterisations of (4.1): the Omega Index (p = q = 1)

and the Sortino ratio (p = 1, q = 2). These special cases have been recognised in the

existing literature for applications in portfolio optimisation (Avouyi-Dovi, Morin & Neto,

2004; Chaudry & Johnson, 2008; Hoffman & Rollinger, 2013; Kane et al., 2007; Mausser,

Saunders & Seco, 2006; Passow, 2005; Shaw, 2011). More often than not, Omega and

Sortino are utilised for comparitive purposes with more traditional measures (Chaudry

& Johnson, 2008, Eling & Schuhmacher, 2005; Eling & Schuhmacher, 2012; Nguyen-

Thi-Thanh, 2007; Zakamouline, 2011). The reasons for this are twofold. Firstly, as

measures for portfolio selection, they lack the same familiarity as, for example, the widely-

used Sharpe ratio. Secondly, portfolios optimal with respect to Omega or Sortino can

differ dramatically to optimal portfolios calculated via more traditional methods such as

mean-variance analysis (Harlow, 1991). For this reason, certain financial institutions are

cautious about employing new methods unless competitors simultaneously build them

into their methodologies.

In this chapter, we provide an overview of the Omega and Sortino ratios and illustrate

how these functions can be reduced to analytical expressions when the underlying return

is distributed according to the Student t model. Familiar measures including standard

deviation, VaR and the Sharpe ratio continue to be used in a risk and portfolio manage-
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ment setting based on the assumption of Gaussian returns. Maintaining this assumption

yields neat, analytical functions expressed in terms of well-understood parameters and

built-in functions. We show that Omega and Sortino can also be reduced to neat expres-

sions without the need to assume Gaussian returns. The following analysis demonstrates

the ease with which one can deviate from the restrictive Gaussian framework. Further-

more, we are able to express the Omega Index and Sortino ratio in terms of the Sharpe

ratio. As we discuss in Chapter 5, Eling and Schuhmacher (2012) extend this analysis

and prove that, under certain conditions (to be explained in due course), a wide range of

performance measures are monotonically increasing functions of the Sharpe ratio. Based

on these findings, one might question the benefit of using more complex measures such

as Omega and Sortino when the Sharpe ratio may suffice under certain conditions. It

certainly makes sense that if several measures effectively do the same job then one will

use the measure that is easiest to implement. Nevertheless, these findings should not

be taken for granted in the general case. We focus our attention to this discussion in

Chapter 6 where we consider situations outside of the restrictive framework laid out in

Eling and Schuhmacher (2012). There, we present a few case studies to demonstrate

that optimal portfolio weights and asset rankings are not always consistent between the

Omega Index, Sortino ratio and the Sharpe ratio when we relax the assumptions in Eling

and Schuhmacher (2012).

For the rest of this chapter, we concentrate solely on the Omega ratio and Sortino
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ratio and base our calculations on assuming that returns can be fully characterised by the

Student t distribution. In sections (4.2) and (4.3), we present these alternative perfor-

mance ratios as particular parameterisations of the OV R (4.1). For reference, we express

Omega and Sortino analytically for Gaussian returns in section (4.5) before describing the

Student t distribution in section (4.6). Subsequently, we present the analytically-reduced

expressions for Omega and Sortino when the underlying random return is characterised

by the Student t model.

4.2 The Omega Index

Keating and Shadwick (2000; 2002) first defined the Omega Index for applications in

quantitative finance. It can be obtained as a particular parametrisation of (4.1) when

setting p = q = 122:

Ω(b) = φ(b, 1, 1) =
E[|(X − b)+|]
E[|(X − b)−|]

=
E[(X − b)+]

E[(b−X)+]
. (4.2)

In Keating and Shadwick (2000), the Omega Index was expressed in terms of the

cumulative distribution function of the underlying random variable:

Ω(b) =

∫ b
r
(1− F (x))dx∫ r
a
F (x)dx

, (4.3)

where x takes values in the range [a, b]. One can obtain (4.3) from (4.2) by writing

expectations in terms of the probability distribution function of X and integrating by
22We use Ω to denote the Omega Index as done in Keating and Shadwick (2000).
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parts (Shaw, 2011). Basing our analysis on the former representation, (4.3), Omega can

be simplified to a ratio of the excess return and lower partial moment plus an additional

unit constant:

Ω(b) =
E[(X − b)+]

E[(b−X)+]

=
E[(b−X)+ − (b−X)]

E[(b−X)+]

=1− E[(b−X)]

E[(b−X)+]

=
E[X]− b

E[(b−X)+]
+ 1.

(4.4)

This simplification can also be found in Kappa (2004) and is obtained without the

need to impose a specific distribution on the random variable X. As a point of interest,

one can also define Omega as the ratio of the price of a European call option and the cor-

responding European put option where expectations are taken in the real world measure

(Farinelli et al., 2006). Regardless of the form in which one expresses the Omega function,

it can be described as the ratio of expected gains and losses (Keating & Shadwick, 2000;

Keating & Shadwick, 2002; Avouyi-Dovi et al., 2004)

In the context of optimal asset allocation, optimising Omega implies maximising the

upside potential whilst simultaneously minimising downside risk. Since p = q for this

particular performance measure, the Omega ratio allocates equal weight (has a symmet-

rical preference) to small and large deviations from the reference level. In other words, all

returns above the benchmark are ‘good’ no matter the degree to which the return exceeds

b. This is in view of the fact that using Omega as a means for optimal asset allocation
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implies concentrating on the likelihood of not meeting the pre-defined return threshold

(Avouyi-Dovi et al., 2004). Analogously, returns lower that the specified reference level

are all considered undesirable regardless of the distance between the two. For certain

investors, this is a desirable property if their objective is, primarily, to reach a chosen

target but not have to pay extra in terms of risk for generating higher returns.

It is worth noting a few mathematical properties associated with Omega since it is

important to identify and understand what the output values signify, particularly when

carrying out a comparison against better understood measures. Firstly, Omega takes the

value 1 when b is set equal to the mean return (Keating and Shadwick, 2002). This is

independent of the underlying distribution and can be seen immediately by substituting

b = E[X] into (4.4):

E[|(X − b)+|]
E[|(X − b)−|]

∣∣∣∣
b=E[X]

=
E[X]− b

E[(b−X)+]
+ 1

∣∣∣∣
b=E[X]

= 1. (4.5)

This implies that, for any application of the Omega Index to any number of random

variables, the level of deviations of Omega from 1 are indicative of the desirability of each

asset relative to the others. In addition, equality in the Omega value between a number

of assets for a particular return threshold implies an indifference point between those

assets. Furthermore, the slope of the Omega Index as a function of the benchmark is a

gauge for risk; the steeper the curve, the lower the risk of the asset under consideration

(Keating and Shadwick, 2002).
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There exist several references to the use of Omega in the context of quantitative

finance. With particular significance to this thesis, optimisation of Omega over possible

portfolio weights has been considered by several authors (see, for example, Avouyi-Dovi,

Morin & Neto, 2004; Chaudry & Johnson, 2008; Kane et al., 2007; Mausser, Saunders &

Seco, 2006; Passow, 2005; Shaw, 2011).

The fact that the Omega Index is capable of capturing higher moment information is

brought to light by Avouyi-Dovi et al. (2004) who compare Omega-optimal portfolios with

portfolios optimal in terms of the Sharpe ratio. In this case, the underlying investment

universe consists of three stock market indices (US, UK and Germany). Avouyi-Dovi et al.

(2004) demonstrate the disagreement between both portfolios. In particular, for smaller

return thresholds, differences in optimal weights are more pronounced. It is for this reason

that Omega is best-suited for minimising losses (Avouyi-Dovi et al., 2004). In Chapter 3

we tabulated optimal portfolio weights for different risk-adjusted performance measure-

based objective functions. We showed that optimal weights based on these measures do

not agree. This is further discussed in Chapters 5 and 6.

The analyses presented in this thesis all take the return threshold to be deterministic.

Generalising this approach to allow for a stochastic threshold, such as a government trea-

sury rate or the return of an index, is the subject of Mausser, Saunders and Seco (2006)

for the purpose of constructing an Omega-optimal portfolio in a non-parametric setting.

Alternatively, Passow (2005) follows the parametric approach to optimising Omega where
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returns are modelled with the flexible family of Johnson distributions (see Chapter 3 for

an overview of this distribution). As we show with Student t returns in sections (4.9)

and (4.10), Passow (2005) analytically expresses the Omega ratio for Johnson distributed

returns. Here, it is illustrated how and why Johnson-Omega optimal portfolios can differ

from the equivalent Sharpe-optimal portfolios. As Passow (2005) points out, strategies

with low volatility do not necessarily imply low risk on account of the existence of higher

moments and the effect of autocorrelation. This standpoint harmonises with the view

that standard deviation should not be taken as a maxim for characterising risk.

From an industry perspective, Winton Capital (2003a), a UK-based hedge fund, use

Omega to evaluate their performance as well as the performance of other diversified CTAs

(Commodity Trading Advisors). They advocate the Omega Index on the premise that it

is capable of using all information regarding the return distribution and is designed to

account for any risk appetite. In a later paper, Winton (2003b) include the Sortino ratio

in their analysis and use this measure as well as Omega to rank a number of CTAs to

compare with the rankings based on the Sharpe ratio. We discuss their results in Chapter

5 as their findings relate to the work of Eling and Schuhmacher (2012) and the analyses

we discuss later in this thesis.
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4.3 The Sortino ratio

According to Satchell (2009), the Sortino ratio was created in the 1980’s by Brian Rom

at Investment Technologies. It is a potentially superior performance measure compared

with the Sharpe ratio on account of defining risk as the the target semi-variance being

used, as opposed to the standard deviation. Assigning p = 1 and q = 2 in (4.1) results in

the Sortino ratio:

SR(b) = φ(b, 1, 2) =
E[((X − b)+)]

E[|(X − b)−)2|]1/2
. (4.6)

In practise, it has been frequently used as a performance measuring tool in the

pension and mutual fund industry (Hoffman & Rollinger, 2013). In this context, portfolio

and risk managers are required to guarantee a level of profitability whilst simultaneously

meeting future liabilities. That is, the funding ratio (the ratio of the value of assets to

the value of liabilities) needs to be maintained in order to meet solvability constraints.

For this purpose, the benchmark b in (4.6) is often set equal to the ‘Minimum Acceptable

Return’ (MAR) (Hoffman & Rollinger, 2013):

φ(b = MAR, 1, 2) =
E[((X −MAR)+)]

E[|(X −MAR)−)2|]1/2
.

Optimising the Sortino ratio implies maximising the upside potential whilst min-

imising the downside semi-standard deviation. In other words, the Sortino ratio is a

useful measure if we desire outcomes which yield returns exceeding the benchmark and

simultaneously wish to penalise outcomes yielding relatively high volatility below the
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benchmark. Unlike Omega, the Sortino ratio does not exhibit a symmetrical preference

for data occurring either side of the benchmark (Pedersen & Satchell, 1998). The down-

side risk component in the denominator gives further weight to extreme tail values than

the denominator of Omega.

On a theoretical note, one must not confuse the upside potential return with the

conditional mean of the excess return given the return exceeds the benchmark, (Satchell,

2009). The numerator of Sortino is simply a measure of excess return. As for the

denominator, the use of downside variance was inspired by Fishburn (1977) and, as

also mentioned by Sortino and Van der Meer (1991), reflects the rational attitude of risk

aversion for underperformance. Taking the square root then makes it consistent (in terms

of units) with the numerator.

As a means of measuring downside risk, Sortino and Van der Meer (1991) introduced

the Sortino ratio for asset allocation purposes as an alternative to the classical mean-

variance methodology. As they explain, mean-variance analysis can result in selecting

two assets based on their net volatility being zero. However, this does not take into

account for considering whether these assets will yield a desired return and does not, like

the Sortino ratio, make a distinction between ‘good’ and ‘bad’ volatility.

In summary, the Omega Index and Sortino ratio offer alternative ways of evaluating

portfolio performance measures to the classical Sharpe ratio. To advocate the use of

Omega, Keating and Shadwick (2000) call attention to situations where the ranking of
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assets by Sharpe can differ dramatically to the ranking of assets by Omega. Furthermore,

given a portfolio of differently distributed assets, measuring performance by Sharpe is not

optimal, (Farinelli & Tibiletti, 2006). As often is the case, when the investor wishes to

control the overperformance or underperformance, using the Sharpe ratio can lead to

misleading results, (Farinelli et al., 2008).

4.4 General reduction of φ(b, p, q)

As a point of interest and to lead us in to the subsequent analysis, we show that the

one-sided variability ratio, φ(b, p, q), emerges as a function of the Sharpe ratio (given as

s = (µ−b)/σ in this case) when the underlying random variable is a linear transformation

of a random variable with zero mean and unit standard deviation. That is, we suppose

that X in (4.1) is such that X = µ + σW where W has zero mean and unit standard

deviation. Substituting X for µ+ σW in the numerator of φ(b, p, q), we have,

E[|(X − b)+|p]1/p = E[|((µ+ σW )− b)+|p]1/p (4.7)

= E[|σ(µ−b
σ

+W )+|p]1/p

= E[σp|(s+W )+|p]1/p

= σE[|(s+W )+|p]1/p,
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where, again, s = (µ− b)/σ. Similarly, the denominator reduces to,

E[|(X − b)−|q]1/q = E[|(µ+ σW − b)−|q]1/q (4.8)

= E[|σ(µ−b
σ

+W )−|q]1/q

= E[σq|(s+W )−|q]1/q

= σE[|(s+W )−|q]1/q.

After cancelling the common σ term, the one-sided variability ratio is expressed as,

φ(b, p, q) =
E[|(s+W )+|p]1/p

E[|(s+W )−|q]1/q
, (4.9)

which depends on b through s.

4.5 The Omega Index and Sortino ratio under Gaus-

sian returns

In this section, we present an explicit formula for the Omega index and Sortino ratio

when the underlying random variable is modelled in a Gaussian framework. Whilst Shaw

(2011) recently presented the analytical form of the Omega Index in a Gaussian world, the

author is unaware of an explicit formula for the Sortino in a Gaussian framework being

documented. In a recent publication, Hall and Satchell (2010) present an analytic solution

of the downside semi-variance (the squared denominator of the Sortino ratio) when the

underlying is modelled by a Gaussian random variable. In their article, the portfolio
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return is denoted as rp, p and t refer to portfolio and reference level, respectively and

µt = µp − t, that is, the portfolio excess return. When rp ∼ N (µp, σ
2
p), we have the

following:

I(t) =

∫ t

−∞
(t− rp)2pdf(rp)drp (4.10)

= (σ2
p + µ2

t )Φ

(
−µt
σp

)
− µtσpφ

(
µt
σp

)
,

where pdf denotes the Gaussian density function:

pdf(rp) =
1

σp
√

2π
exp
(
−(rp − µp)2

2σ2
p

)
. (4.11)

For the rest of this section, let X denote a Gaussian random variable with mean µ

and variance σ2. Therefore, X can be written as X = µ + σY , where Y is a standard

normal random variable (Y ∼ N(0, 1)). As shown in Shaw (2010; 2011), in a Gaussian

world, Omega can be simplified to the following expression:

Ω(b) =
E[(X − b)+]

E[(b−X)+]
(4.12)

=
E[b−X)+ − (b−X)]

E[(b−X)+]

= 1− b− µ
E[(b−X)+]

= 1− b− µ
E[(b− µ− σY )+]

= 1− b− µ
σE[( b−µ

σ
− Y )+]

= 1− z

E[(z − Y )+]
,

which depends on b through z where z = (b− µ)/σ (the negative Sharpe ratio).
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To reduce this expression fully, we therefore only need to reduce the denominator

in (4.12) to an analytical expression. In this section, functions Φ(.) and φ(.) will denote

the standard normal cumulative distribution function and probability density function,

respectively. The expectation in (4.12) can then be written as follows:

E[(z − Y )+] =
1√
2π

∫ z

−∞
(z − y)e−

1
2
y2dy

=zΦ(z) + φ(z).

(4.13)

As a result, for a normally distributed random variable, the Omega index reduces

to:

Ω(b) = 1− z

zΦ(z) + φ(z)
. (4.14)

Substituting z = −s in (4.14) where s = (µ− b)/σ, we have:

Ω(b) = 1 +
s

φ(s)− s(1− Φ(s))
. (4.15)

For reducing Sortino in the Gaussian framework, we make use of the general reduc-

tion given in (4.9) above where W is a standard normal random variable, W = Z ∼

N(0, 1), and s denotes the Sharpe ratio as defined for the Gaussian-Omega above:

SR(b) =
E[(s+ Z)+]

E[((s+ Z)−)2]1/2
. (4.16)
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The numerator in (4.16) is then evaluated as follows:

E[(s+ Z)+] =

∫ ∞
−s

(s+ z)φ(z)dz

=s

∫ ∞
−s

φ(z)dz +

∫ ∞
−s

zφ(z)dz

=sΦ(s) + φ(s).

(4.17)

The expression under the square root sign in the denominator of (4.16) is then:

E[((s+ Z)−)2] =

∫ −s
−∞

(s+ z)2φ(z)dz

=s2
∫ −s
−∞

φ(z)dz + 2s

∫ −s
−∞

zφ(z)dz

+

∫ −s
−∞

z2φ(z)dz

=s2 − (s2 − 1)Φ(s)− sφ(s).

(4.18)

Therefore, the Gaussian-Sortino can be expressed as follows:

SR(s) =
sΦ(s) + φ(s)√

s2 − (s2 − 1)Φ(s)− sφ(s)
. (4.19)

Since the evaluation of the Omega Index and Sortino ratio in section (4.8) is based

on the underlying random variable being modelled by the Student t distribution, we

dedicate the next section to describing this model and its analytical relationship with the

Gaussian distribution.
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4.6 An overview of the Student t distribution

The Student t distribution was introduced into the statistical literature in 1908 byWilliam

Gosset. It is a particular case of the generalised hyperbolic distribution, a member

of the mean-variance normal mixture distributions (Breymann, Luthi & Platen, 2009).

Similar to the normal distribution, it belongs to the family of elliptical distributions and

is therefore symmetrical. However, due to the denominator in the characterisation of a

Student t statistic, this distribution is more likely to produce data points that lie far

from the mean. As defined in Platen and Sidorowicz (2007), one can derive the Student

t density function from a random variable modelled as a normal mean-variance mixture

distribution defined as

X = m(W ) +
√
WσZ. (4.20)

Here, Z is a standard normal random variable (Z ∼ N(0, 1)), W ≥ 0 is a non-

negative random variable independent of Z, σ ∈ R is a constant and m : [0,∞) →

R is a measurable function. In Shaw (2008), when X in (4.20) above is a standard

Student t random variable, we have m(W ) = 0 and W = ν/C2
ν where C is a Chi-squared

random variable with ν degrees of freedom. In this case, the associated probability density

function of X is given by

fX(x) =
1√
νπ

Γ[(v + 1)/2]

Γ[v/2]

(
1 + x2

v

)−(v+1)/2

. (4.21)
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4.7 A note on the multivariate Student t

In multidimensional problems, we need to consider the multivariate Student t model.

As mentioned in Shaw and Lee (2008) and Shaw (2011), there are several methods in

which we can generalise to the multivariate t case.23 The multivariate model we consider

is given in Shaw (2011) and is of the form where the random variables Xi are given as

follows:

Xi = (χ2
ν/ν)−1/2

N∑
k=1

AikZk. (4.22)

As before, Zj represents a standard Gaussian random variable for each j ∈ {1, . . . , N}, χν

is a Chi-squared random variable with ν degrees of freedom and Aik is a mixing matrix.

The covariance of this system is then as shown below,

E[XiXj] =
ν

ν − 2
(A.AT )ij. (4.23)

For weights, wi, the random vector,

X =
N∑
i=1

wiXi, (4.24)

will also be a Student t distributed random variable with variance,

V (X) =
ν

ν − 2

∑
ij

wi(A.A
T )ijwj. (4.25)

The author wishes to elucidate the fact that by no means do we suggest that all

financial returns should be modelled by the Student t distribution. Several alternatives
23The interested reader may wish to consult the study by Shaw and Lee (2008) on generating bivariate

t distributions and discussions on the grouped t distributions and copulas.
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to the Gaussian distribution exist, one example being the Johnson family (Johnson, 1949)

discussed in Chapter 3. Nevertheless, numerous statistical evaluations of empirical data

point to the Student t model as the most appropriate distribution for describing the

behaviour of financial returns (Platen and Sidorowicz, 2007); Breymann, Luthi & Platen,

2009; Shaw, 2011).

4.8 The Omega Index and Sortino ratio for Student t

distributed returns

To facilitate evaluations carried out in this chapter, the calculations presented are based

on the following form of a general Student t distributed random variable with ν degrees

of freedom, mean µ, scale σ and standard deviation σ
√
ν/(ν − 2):

Tν = µ+ σX, (4.26)

where X is a standard Student t random variable with zero mean and variance ν/(ν− 2)

as described in section (4.6). To simplify notation, we denote the standard Student t

probability density function, φX(x), and cumulative density function, ΦX(x) as follows:

φX(x) =
Γ
(
ν+1
2

)
√
νπΓ

(
ν
2

)(1 + x2

ν

)−ν+1
2

= γ(ν)(ν + x2)−(ν+1)/2, (4.27)

where Γ represents the Gamma function and γ(ν) is given below:

γ(ν) =
νν/2√
π

Γ[(ν + 1)/2]

Γ(ν/2)
. (4.28)
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The cumulative density function is defined as:

ΦX(x) =

∫ x

−∞
φX(x)(u)du = 1− 1

2
IXν

(ν
2
,
1

2

)
, z(x) =

ν

x2 + ν
, (4.29)

where I is the regularised incomplete beta function.

The Sharpe ratio for Student t distributed returns which we will denote as STν , where

a Student t random variable is denoted as in (4.26) and the excess return is measured

relative to a generic benchmark, b, is then:

STν =
E[Tν ]− b
V ol[Tν ]

(4.30)

=
µ− b

σ

√
ν

ν − 2

=
µ− b
σν∗

,

where ν∗ =
√
ν/(ν − 2). The scalar ν∗ is determined by the degrees of freedom and will

become useful in what follows.

It is interesting to note that, regardless of the values we choose for parameters p and

q in (4.1), when the underlying random variable is distributed according to the Student

t model, one can reduce (4.1) as will be shown below.

For any p,

E[|(Tν − b)+|p]1/p =E[|(µ+ σX − b)+|p]1/p

=σE[((
µ− b
σ

+X)+)p]1/p

=σE[((ν∗STν +X)+)p]1/p

(4.31)
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where STν is defined in (4.31). Similarly, for any q,

E[((b− Tν)+)q]1/q =E[|(b− µ− σX)+|q]1/q

=σE[((
b− µ
σ
−X)+)q]1/q

=σE[((−ν∗STν −X)+)q]1/q.

(4.32)

After cancelling the common term, σ, in both (4.31) and (4.32), we obtain:

E[|(Tν − b)+|p]1/p

E[|(b− Tν)+|q]1/q
=

E[((ν∗STν +X)+)p]1/p

E[((−ν∗STν −X)+)q]1/q
. (4.33)

Therefore, Student-Omega and Student-Sortino can be expressed, respectively, as:

ΩTν =
E[(ν∗STν +X)+]

E[(−ν∗STν −X)+]
= 1 +

ν∗STν
E[(−ν∗STν −X)+]

. (4.34)

SRTν =
E[(ν∗STν +X)+]

E[((−ν∗STν −X)+)2]1/2
. (4.35)

In the next two sections, we focus our efforts on expanding (4.34) and (4.35) further to

explicit functions of the Student t Sharpe ratio.

4.9 The Omega Index as a function of the Sharpe ratio

In (4.34) above, we partially reduced the Omega Index for Student t returns. To reduce

this expression even further, we need to expand the expectation in the denominator in
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(4.34) to characterise Omega explicitly in terms of the Student t Sharpe ratio. Hence,

E[(−ν∗STν −X)+] =

∫ −ν∗STν
∞

(−ν∗STν − x)φx(x)dx

=− ν∗STν
∫ −ν∗STν
−∞

φx(x)dx−
∫ −ν∗STν
−∞

xφx(x)dx

=− ν∗STνΦX(−ν∗STν )− γ(ν)

∫ −ν∗STν
−∞

x(ν + x2)−(ν+1)/2dx

=− ν∗STνΦX(−ν∗STν )−
γ(ν)

(1− ν)

∫ −ν∗STν
−∞

d

dx

(
(ν + x2)−(ν−1)/2

)
dx

=− ν∗STνΦX(−ν∗STν )−
γ(ν)

(1− ν)

(
ν + (ν∗STν )

2
)−(ν−1)/2

=−
(
ν∗STνΦX(−ν∗STν ) +

γ(ν)

(1− ν)

(
ν + (ν∗STν )

2
)−(ν−1)/2)

.

Therefore, we have:

ΩTv(STν ) = 1− ν∗STν(
ν∗STνΦX(−ν∗STν ) +

γ(ν)

(1− ν)

(
ν + (ν∗STν )

2
)−(ν−1)/2) . (4.36)

Note that ΩTv(STν ) is a function of b through the Student t Sharpe ratio STν .

4.10 The Sortino ratio as a function of the Sharpe ratio

To fully reduce the Sortino ratio, we start with the expression in (4.35) and expand the

numerator and denominator separately. In this fashion, the numerator is evaluated as

follows:
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E[(ν∗STν +X)+] =

∫ ∞
−ν∗STν

(ν∗STν + x)φX(x)dx

=ν∗STν

∫ ∞
−ν∗STν

φX(x)dx+

∫ ∞
−ν∗STν

xφX(x)dx

=ν∗STν

∫ ν∗STν

−∞
φX(x) +

∫ ν∗STν

−∞
xφX(x)dx

=ν∗STνΦX(ν∗STν ) + γ(ν)

∫ ν∗STν

−∞
x(ν + x2)−(ν+1)/2dx

=ν∗STνΦX(ν∗STν ) +
γ(ν)

(1− ν)

(
ν + (ν∗STν )

2
)−(ν−1)/2

.

(4.37)

The denominator is then the square root of the following:

E[((−ν∗STν −X)+)2] =

∫ −ν∗STν
−∞

(ν∗STν + x)2φX(x)dx

=(ν∗STν )
2ΦX(−ν∗STν ) + 2ν∗STν

∫ −ν∗STν
−∞

xφX(x)dx

+

∫ −ν∗STν
−∞

x2φX(x)dx

=(ν∗STν )
2ΦX(−ν∗STν ) +

2ν∗STνγ(ν)

(1− ν)

(
ν + (ν∗STν )

2)
)−(ν−1)/2

−
∫ −ν∗STν
−∞

x2φX(x)dx.

(4.38)

The third term above can be integrated by parts to give:∫ −ν∗STν
−∞

x2φX(x)dx =− γ(ν)

(1− ν)
ν∗STν (ν + (ν∗STν )

2)−(ν−1)/2 +
1

(1− ν)
ΦX(−ν∗STν )

=
1 + (1− ν)(ν∗STν )

2

(1− ν)
ΦX(−ν∗STν ) +

ν∗STνγ(ν)

(1− ν)

(
ν + (ν∗STν )

2
)−(ν−1)/2

=
1 + (1− ν)(ν∗STν )

2

(1− ν)
ΦX(−ν∗STν ) +

ν∗STν
(1− ν)

(ν + (ν∗STν )
2)φX(ν∗STν ).

(4.39)
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The Sortino ratio as an explicit function of the Student t Sharpe ratio is thus:

SRTν (STν ) =

ν∗STνΦX(ν∗STν ) +
γ(ν)

(1− ν)

(
ν + (ν∗STν )

2
)−(ν−1)/2

√
1 + (1− ν)(ν∗STν )

2

(1− ν)
ΦX(−ν∗STν ) +

ν∗STν
(1− ν)

(ν + (ν∗STν )
2)φX(ν∗STν )

.

(4.40)

Note that both (4.39) and (4.40) both depend on b through STν .



Chapter 5

Consistency of risk-to-reward measures

Empirically, one often finds that many risk-adjusted performance measures lead to the

same rankings as the Sharpe ratio when used for comparing alternative investments (Eling

& Schuhmacher (2005)). Hence, for a long time now, one has suspected that such findings

can be justified theoretically. Eling and Schuhmacher (2012) present us with this theoret-

ical justification provided certain conditions on the performance ratio and the underlying

random returns are satisfied. In Eling and Schuhmacher (2012), it is shown that, un-

der certain conditions, partial-moments-based performance measures, value-at-risk-based

performance measures and other admissible performance measures are monotonically in-

creasing functions of the Sharpe ratio. This generalises the work we presented in Chapter

4 where we reduced the Omega Index and the Sortino ratio to explicit functions of the

Sharpe ratio based on Student t returns.
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The motivation for the study in Eling and Schuhmacher (2012) stems from the

research carried out by Meyer (1987) who showed that expected utility implies Sharpe

ratio rankings if the location-scale (LS) property is satisfied. The conclusions reached

in Eling and Schuhmacher (2012) are strongly based on the LS property. In short, two

random variables satisfy the LS condition if they differ only by their location and scale

parameters. Meyer (1987) defines the LS property in terms of the cumulative distribution

functions. In this manner, two random variables are said to satisfy LS if their cumulative

distribution functions, G1(.) and G2(.), differ only by their location and scale parameters.

Mathematically, this implies that G1(x) = G2(α + βx) where x represents the random

variable and α and β are the (constant) difference in their location and scale parameters,

respectively. The LS property can also be defined in terms of the respective probability

distribution functions (see Meyer (1987)). To summarise, two random variables satisfying

the LS property, as described above, once de-meaned and de-scaled, will be equal in

distribution.

The analysis carried out in Eling and Schuhmacher (2012) also builds on an earlier

empirical study (Eling & Schuhmacher (2005)), where the rankings of hedge funds based

on a set of performance measures (including the Sharpe ratio) were compared. They found

that, despite the non-normal behaviour of the underlying returns, rankings between ten

alternative performance measures (including Omega and Sortino) and the Sharpe ratio

when applied to the individual hedge funds generated very high correlations. This case
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study prompted the need to lay out a theoretical framework in Eling and Schuhmacher

(2012) for why these performance measures were ranking assets, by and large, in the same

order. For clarity, and since their work is highly relevant to this thesis, we recapitulate

the findings provided in Eling and Schuhmacher (2012) below.

Within the literature concerning performance and risk measures, several sets of

axioms exist which outline a maxim that such a measure should satisfy (Artzner et al.

(1999), Pedersen & Satchell (1998)). For example, in Artzner et al. (1999), a list of four

properties a risk measure should possess in order to be defined as ‘coherent’ is proposed.

Discussions on this subject can also be found in Fishburn (1977), Meucci (2009) and

Stone (1973). The LS property is one of the conditions required in order to arrive at the

conclusions in Eling and Schuhmacher (2012). In addition, the following conditions are

required of the reward (π(x)) and risk (ρ(x)) measures:

Positive Homogeneity

• π(k.x) = k.π(x)

• ρ(k.x) = k.ρ(x) for all k > 0 and ρ(0) = 0.

Functional Translation Invariance.

• π(x+ s) > π(x) for s > 0

• ρ(x+ s) ≤ ρ(x) for s > 0.
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Positive homogeneity is a condition commonly demanded of a risk measure, (see,

for example, Meucci (2009)). As noted in Eling and Schuhmacher (2012), positive homo-

geneity corresponds to a performance measure being invariant to leverage. In addition,

functional translation invariance should be intuitive; adding a positive constant to a ran-

dom variable, in this case the asset return, is a deterministic advantage. Consequently,

in terms of risk, adding a value that is known with certainty should not increase risk.

Rather, it can only lower the risk measure.24

Our approach in Chapter 4 was to consider two specific performance measures;

the Omega Index and the Sortino Ratio. Instead, the analysis carried out by Eling and

Schuhmacher (2012) is centered on a more general performance measure, P (Xi), expressed

as the ratio of a reward measure, π(Xi), and risk measure, ρ(Xi). The performance

measure, P (Xi), embodies a large subset of known risk-to-reward ratios including the

one-sided variability ratio (4.1). Other examples include performance ratios based on VaR

and CVaR and the Generalised Rachev ratio defined in Eling and Schuhmacher (2012)

as E[X|X ≥ −V aR(X; 1− β)]/E[−X|X ≤ −V aR(X;α)] where V aR(X; p) defines VaR

for probability level p. Since the set of admissible performance measures in their study

includes (4.1), the Omega Index and Sortino ratio are, therefore, also included.

Proving such admissible measures, henceforth ES measures, are increasing functions
24Strictly speaking, invariance refers to the property that a function behaves sensibly under translation,

that is, that f(x+ h) = f(x).
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of the Sharpe ratio is a consequence of the positive homogeneity and functional trans-

lation invariance axioms shown above. Suppose X1 and X2 are two random variables

representing asset returns. When the Sharpe ratios of X1 and X2 exhibit equality, in-

equality or second-degree stochastic dominance, the same relation manifests itself for all

other ES performance measures25. To add to the above, if the Sharpe ratios of X1 and

X2 are identical then so will their respective ES performance ratios. Furthermore, when

their Sharpe ratios disagree, for example S(X1) < S(X2), then the same relation will

exist between their respective ES measures. As a result of the above, every ES measure

is an increasing function of the Sharpe ratio. The proofs of the preceding statements can

be found in Eling and Schuhmacher (2012).

In further support of the conclusions reached in Eling and Schuhmacher (2012),

Chen, He and Zhang (2011) prove that risk-adjusted performance measures based on

lower partial moments (3.9) which include both the Omega Index and the Sortino ra-

tio, are equivalent to the Sharpe ratio when used in a modelling framework where the

underlying return distribution belongs to the family of Q-radial distributions. In brief,

the Q-radial distributions are a more general family of multivariate normal distributions

which are capable of modelling the heavy tail phenomenon lacking in the normal Gaus-

sian framework (see Chen, He and Zhang (2011) and references therein for a theoretical
25Second-degree stochastic dominance, in the context of portfolio theory, refers to the preference of

one allocation over another if the former involves less risk and has a mean greater than, or equal to, the

latter portfolio.
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overview of this class of distributions). Provided Q-radially distributed returns are as-

sumed, equivalence between the Sharpe ratio and the set of lower partial moments-based

risk-adjusted performance measures leads Chen, He and Zhang (2011) to deduce that

they are in fact monotonic transformations of the Sharpe ratio. Consequently, for re-

turns following a Q-radial distribution, the Sharpe ratio, as a more familiar and less

complex risk-adjusted performance measure is ‘the’ measure to rely on (Chen, He &

Zhang (2011)). Proving that these measures are in fact monotonically increasing func-

tions of the Sharpe given the distributional conditions mentioned above, relies on the

following Lemma (Chen, He & Zhang (2011)):

Lemma 5.1. Suppose that Ψn(y) is a density function of a probability distribution, and

the following function is finite

hk(z) :=

∫ ∞
−z

(y + z)kΨn(y)dy, k ≥ 0. (5.1)

Then,

(hk)
′(z) = khk−1(z), (5.2)

and

hk(z) ≥ 0, ∀z ∈ R.

In other words, hk(.) is an increasing function, for any k ≥ 0.

One will notice that hk(z) in (5.1) is equivalent to the non-normalised numerator of
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the one-sided variability ratio (4.1) when we set b = −z:

hk(z) =

∫ ∞
−z

(y + z)kΨn(y)dy (5.3)

=

∫ ∞
b

(y − b)kΨn(y)dy b→ −z

= E[((y − b)+)k].

Common to the analysis carried out in both Eling and Schuhmacher (2012) and

Chen, He and Zhang (2011) is the fact that the underlying random returns are symmet-

rically distributed.

For the benefit of illustrating the differences between various parameterisations of the

one-sided variability ratio in a practical setting, we calculated optimal portfolio weights

based on employing four parameterisations of (4.1) as objective functions and compared

the optimal weights with the Sharpe-optimal portfolios in Chapter 3. The results were

tabulated in Table (3.3) and (3.4) for the ‘Boom’ period and ‘Bust’ period, respectively,

where the underlying investment universe consisted of eighteen FTSE 100 stocks, (see

Chapter 1 for further details). This analysis used empirical return data rather than

simulating the underlying returns on the basis of assuming a particular distributional

family. Here, we carry out the same analysis however, by using the same underlying

data to simulate Student t distributed returns where the first two moments were taken

from the empirical return dataset for each period and setting the degrees of freedom

to be equal to four (ν = 4), we place ourselves in the ES framework (see Tables (3.1)
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and (3.2) for the first four moments of each asset return for the Boom period and Bust

period, respectively). That is, we impose that all asset returns are distributed such

that each marginal distribution is a location and scale translation of any of the other

seventeen marginal distributions. In carrying out the same optimisation analysis within

this framework, we wanted to investigate whether we see any agreement in optimal asset

weights and, with particular significance to the papers discussed in this chapter, asset

rankings in order to corroborate the theoretical findings in Eling and Schuhmacher (2012).

Optimal asset weights based on optimising all five risk-adjusted performance mea-

sures (φ(b, 1, 1) (Omega), φ(b, 1, 2) (Sortino), φ(b, 1, 3), φ(b, 1, 4) and the Sharpe ratio)

are tabulated in the appendix in Tables (9.3) and (9.4). What is of interest here is how

each asset ranked when applying the performance measures to their individual returns.

In Table (5.1) and (5.2), we present the rank correlations between the various parame-

terisations of (4.1) and the Sharpe ratio when applied to the Student t simulated asset

returns corresponding to each asset.

In Table (5.2), we observe that the Omega ratio ranks assets in the same order as the

Sharpe ratio. In Table (5.1), although the rankings are not equal, Omega still exhibits

an almost-exact preference for each asset as the Sharpe ratio. Comparing the Sortino

ratio and Sharpe ratio, we observe high rank correlations again however, differences in

preferences occur. When we set b = 3 and b = 4 in (4.1), a different picture emerges. We

do not see strong agreement in asset preferences. In this sense, we see the benefit of using
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Table 5.1: Boom Period: Rank Correlations to the Sharpe ratio in the ES framework.

Performance Measure Benchmark (% p.a.) Rank Correlation (%)

Omega 5 99.59

Sortino 5 88.24

φ(b, 1, 3) 5 49.43

φ(b, 1, 4) 5 36.02

Omega 10 99.79

Sortino 10 88.85

φ(b, 1, 3) 10 53.97

φ(b, 1, 4) 10 37.67

Omega 15 99.79

Sortino 15 89.68

φ(b, 1, 3) 15 55.83

φ(b, 1, 4) 15 39.32

Table 5.2: Bust Period: Rank Correlations to the Sharpe ratio in the ES framework.

Performance Measure Benchmark (% p.a.) Rank Correlation (%)

Omega 5 100.00

Sortino 5 97.73

φ(b, 1, 3) 5 71.31

φ(b, 1, 4) 5 40.35

Omega 10 100.00

Sortino 10 98.56

φ(b, 1, 3) 10 73.79

φ(b, 1, 4) 10 45.72

Omega 15 100.00

Sortino 15 97.11

φ(b, 1, 3) 15 69.04

φ(b, 1, 4) 15 42.21
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alternative risk-adjusted performance ratios, even when the underlying asset returns are

homogeneous in distribution. As one would expect, when we turn to using these measures

for the purpose of calculating optimal portfolios, discrepancies between Sharpe-optimal

portfolios and portfolios optimal in the sense of alternative performance ratios will be

more apparent. In practise, when the underlying asset returns exhibit varying distri-

butions, these alternative risk-adjusted performance measures can potentially provide a

more informative investigation into individual assets and resulting optimal portfolios.

To enrich this analysis, we apply the above performance ratios to a universe of six

assets from non-equity asset classes and calculate optimal portfolios as carried out in

the above case. The assets in this scenario include three currencies (EUR, GPM and

JPY) and three commodities (Gold, Oil and Silver denominated in USD). The same

time periods are covered and we use empirical asset returns for calculating both asset

ranks and optimal portfolio weights using, again, φ(b, 1, 1) (Omega), φ(b, 1, 2) (Sortino),

φ(b, 1, 3), φ(b, 1, 4) and the Sharpe ratio. The motivation for carrying out the same

analysis in an empirical setting with these underlying assets is to investigate whether

we observe strong agreement between any of the four parameterisations of (4.1) when

we deviate from the ES framework. In the 18-asset case, applying the Omega ratio

to the individual asset returns resulted in a preference ordering which was very highly

correlated with the rankings based on the Sharpe ratio when both the empirical and

Student t simulated returns were considered. This investigation is similar in spirit to
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that presented in Kaplan and Knowles (2004) where they explored how certain cases of

the Kappa ratio (3.13), a ratio of excess return to the normalised lower partial moment

relative to a benchmark, ranks assets when using empirical return data and Johnson SU-

return data simulated to match the first four moments of the enpirical returns. Their goal

was to investigate whether knowing the first four moments of a distribution is enough

to determine Kappa values. In addition, sensitivity of Kappa to skewness and kurtosis

was also considered. They found that discrepancies between empirical asset rankings and

asset rankings produced from applying Kappa to the simulated data widened for levels

of the threshold far below the mean. Similar to their analysis, we consider a negative

benchmark. We also set the benchmark equal to zero and the mean of the underlying

returns from each time period.

In this 6-asset case, we still see a high correlation in preferences between Omega

and Sharpe however, for the Sortino ratio, φ(b, 1, 3) and φ(b, 1, 4) asset preferences differ

dramatically as can be seen in tables (5.3) and (5.5). How correlated these asset rankings

are with the Sharpe-rankings are presented in tables (5.4) and (5.6).

Whilst the framework underlying the latter analysis above, where the universe con-

sisted of non-equity assets, deviated from the ES framework, our purpose here was to

provide further evidence that alternative risk-adjusted performance ratios offer the prac-

titioner an enriched set of tools for both ranking assets and calculating optimal portfolios.

Even in the ES framework, for higher powers in the one-sided variability ratio, (4.1), asset
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Table 5.3: Boom Period: Asset Rankings.

Asset Benchmark (%) Sharpe Omega Sortino φ(b, 1, 3) φ(b, 1, 4)

EUR 0 4 4 1 2 2

GBP 0 5 5 2 1 1

JPY 0 6 6 5 4 4

Gold (USD) 0 1 1 4 5 5

Oil 0 2 3 3 3 3

Silver (USD) 0 3 2 6 6 6

EUR 14.2 4 4 4 2 3

GBP 14.2 5 5 5 3 2

JPY 14.2 6 6 6 5 5

Gold (USD) 14.2 3 3 2 4 4

Oil 14.2 2 2 1 1 1

Silver (USD) 14.2 1 1 3 6 6

EUR -1 4 4 1 2 2

GBP -1 5 5 2 1 1

JPY -1 6 6 5 4 4

Gold (USD) -1 1 1 4 5 5

Oil -1 2 3 3 3 3

Silver (USD) -1 3 2 6 6 6

Table 5.4: Boom Period: Rank Correlations.

Performance Ratio Benchmark (%) Rank Correlation (%)

Omega 0 94.29

Sortino 0 -8.57

φ(b, 1, 3) 0 -42.86

φ(b, 1, 4) 0 -42.86

Omega 14.2 100.00

Sortino 14.2 82.86

φ(b, 1, 3) 14.2 -2.86

φ(b, 1, 4) 14.2 -8.57

Omega -1 94.29

Sortino -1 -8.57

φ(b, 1, 3) -1 -42.86

φ(b, 1, 4) -1 -42.86
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Table 5.5: Bust Period: Asset Rankings.

Asset Benchmark (%) Sharpe Omega Sortino φ(b, 1, 3) φ(b, 1, 4)

EUR 0 4 4 3 2 1

GBP 0 5 5 5 5 4

JPY 0 6 6 6 6 6

Gold (USD) 0 1 1 1 1 2

Oil 0 3 3 4 3 3

Silver (USD) 0 2 2 2 4 5

EUR 10.7 4 4 4 4 2

GBP 10.7 5 5 5 5 5

JPY 10.7 6 6 6 6 6

Gold (USD) 10.7 1 1 1 1 1

Oil 10.7 3 3 3 2 3

Silver (USD) 10.7 2 2 2 3 4

EUR -1 4 4 3 1 1

GBP -1 5 5 5 5 4

JPY -1 6 6 6 6 6

Gold (USD) -1 1 1 1 2 2

Oil -1 3 3 4 3 3

Silver (USD) -1 2 2 2 4 5

Table 5.6: Bust Period: Rank Correlations.

Performance Ratio Benchmark (%) Rank Correlation (%)

Omega 0 100.00

Sortino 0 94.29

φ(b, 1, 3) 0 77.14

φ(b, 1, 4) 0 42.86

Omega 10.7 100.00

Sortino 10.7 100.00

φ(b, 1, 3) 10.7 94.29

φ(b, 1, 4) 10.7 77.14

Omega -1 100.00

Sortino -1 94.29

φ(b, 1, 3) -1 60.00

φ(b, 1, 4) -1 42.86
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rankings differed dramatically to those given by the Sharpe ratio. Hence, alternative risk-

adjusted performance ratios should not be discounted on the basis that they frequently

rank assets in the same order as the Sharpe ratio under certain statistical scenarios.

These results serve as a reminder that rankings of assets can change, sometime dramati-

cally, depending on which risk-adjusted performance ratio we employ. As pointed out by

Kaplan and Knowles (2004), this is largely due to their varying sensitivity to moments

beyond the mean and standard deviation.

In the next chapter, we illustrate a few more cases where discrepancies between

Sharpe ratio asset rankings and those calculated via alternative risk-adjusted performance

measures arise. We achieve this by considering anisotropic distributions in a bivariate

framework. In brief, these are simulated bivariate distributions as described by Shaw and

Lee (2008) where inhomogeneous marginals (In our case different degrees of freedom) can

be modelled. We describe these in more detail in the subsequent chapter. Accordingly,

we show that we do not need to model highly exotic marginal distributions to exhibit

situations where asset rankings differ amongst a range of risk-adjusted performance ratios.



Chapter 6

Optimal portfolios with anisotropic

bivariate distributions and asymmetric

dependency structures

In Chapter 5, we discussed the work of Eling and Schuhmacher (2012) who have neatly

formalised what has long been suspected in industry; that ranking assets via the Sharpe

ratio is frequently consistent with the equivalent computations in terms of other perfor-

mance measures. Nevertheless, their theoretical justification of this observed phenomenon

is founded on the hypothesis that the statistical characteristics of underlying asset re-

turns satisfy the LS property and that certain properties of the performance measure

are preserved. This supposes that all returns can be modelled by the same statistical
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distribution. When the constituents comprising the investment universe have returns

that vary significantly in behaviour, it is erroneous to model their returns with the same

distribution. Furthermore, their study ignores the effect of dependence between returns.

For the purpose of comparing the individual assets over a certain period of time, selecting

one on account of its Sharpe ratio ranking the highest disregards whether its performance

was highly correlated with an asset whose Sharpe ratio was relatively low. In addition,

in terms of quantifying risk, overlooking the true nature of dependence can result in a

misleading distributional structure of the portfolio.

Based on the notion that returns can be modelled by the same distribution, the

deductions of Eling and Schuhmacher (2012) may possibly lead readers to suppose that

calculating the optimal portfolio by means of maximising the Sharpe ratio is the most

favourable methodology or at least sufficient enough to not require the use of more com-

plex ratios (satisfying the ES criteria) on the basis that the asset rankings determined

by these performance measures are highly correlated. We stress, however, that their

conclusions are not entirely universal and should be taken with caution.

In Chapter 5, we calculated several optimal portfolios and ranked individual assets

based on a number of risk-adjusted performance ratios in an empirical and parametric

setting where, in the latter case, we supposed that all marginal distributions satisfied

the location-scale property. The purpose of this was to investigate whether, in practise,

sorting and weighting assets via the Sharpe ratio provided highly correlated, if not the
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same, results to those derived from ranking assets and optimising portfolios in terms of

other risk-adjusted performance measures. In our case, we considered four parameterisa-

tions of (4.1); φ(b, 1, 1) (Omega Index), φ(b, 1, 2) (Sortino ratio), φ(b, 1, 3) and φ(b, 1, 4).

All of these belong to the measures satisfying the ES criteria in that they satisy positive

homogeneity and translation invariance as described in Eling and Schuhmacher (2012).

In both an empirical and parametric setting, we observed considerable differences in op-

timal portfolio weights. In agreement with the work in Eling and Schuhmacher (2012),

we showed that, for low integer powers of the denominator of (4.1), asset rankings were

highly correlated with those calculated via the Sharpe ratio. This was true when we used

both empirical return data and simulated return data which was modelled to satisfy the

location-scale property. For higher powers of the denominator of (4.1) however, asset

rankings were far from perfectly positively correlated in all cases.

For the benefit of highlighting the capabilities of employing a wider range of risk-

return measures in a portfolio context, we also calculated optimal portfolio weights and

ranked assets according to the Sharpe ratio, the Omega Index and Sortino ratio when

our underlying index consisted of non-equity assets. In this chapter we present a few

more cases to exhibit scenarios under which asset rankings dictated by the Sharpe ratio,

Omega Index and Sortino ratio do not necessarily agree. We also show that Sharpe-

optimal portfolios differ considerably to portfolios optimal in terms on the Omega Index

and Sortino ratio.
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In these case studies, we consider i) anisotropic bivariate distributions and ii) asym-

metric dependency structures for the purpose of asset ranking and optimal asset allo-

cation. The term anisotropic refers, in this situation, to distributions whose properties

differ beyond mean and variance and can be considered as the antithesis to the location-

scale property described in Eling and Schuhmacher (2012). Traditionally, many multi-

dimensional asset models have used simple multivariate distributions such as the Gaussian

and the standard multivariate t. These have the appeal that they are tractable. How-

ever, they tend to be very isotropic in character after variance scaling. So for example, in

the standard multivariate t, all dimensions have the same degrees of freedom and power

law in the tails. However, we might wish to allow for different assets to have differing

marginal distributions. Some might be close to Gaussian, others might be heavy tailed.

This is what I mean by an anisotropic distribution.

The analysis carried out in the first part of this chapter below is based on the work of

Shaw and Lee (2008). In their study, they proposed a method for generating anisotropic

bivariate Student t distributions with canonical analytical functions. The motivation

for carrying out this research was to highlight the ease with which one can produce

anisotropic bivariate distributions with existing simulation techniques. Shaw and Lee

(2008) show how to construct bivariate Student t distributions via techniques used in

the simulation of t-copulas. In doing so, they propose a class of multivariate Student t

distributions which allow for unequal degrees of freedom containing both the independent
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and dependent case, a property not satisfied in the common multivariate representation

of the Student t distribution which is, as shown in Shaw and Lee (2008):

gν(t1, t2, . . . , td) ≡ gν(t) =

√
|A|

√
νdπd

Γ(ν+d
2

)

Γν
2

(
1 + tTAt

ν

)−(ν+d)/2
. (6.1)

Various analytical examples of anisotropic Student t bivariate distributions have

been given by Shaw and Lee (2008), where an explicit mechanism is given for varying

the degrees of freedom between the marginals. Having the flexibility to model a set of

returns with varying degrees of freedom is of interest in multiple disciplines, in addition

to mathematical finance and has obvious practical appeal. Focusing on the bivariate case,

Shaw and Lee (2008) are able to explicitly characterise a canonical bivariate distribution

for the Student-normal case with a "naturally associated copula" and density function.

For the more general Student - Student case, there also exists a canonical representation

of the bivariate distribution with certain restrictions in order to be able to extract the

case of zero correlation. We employ these in two of our case studies further on in this

chapter.

The theory underpinning Shaw and Lee’s (2008) paper relies on the following rep-

resentation of a Student t random variable

T =
Z√
C2/a

, (6.2)

where Z is normally distributed and C2, independent of Z, has a χ2 distribution
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with a degrees of freedom.26 From this representation, it is an easy task to arrive at the

univariate density for the Student t:

fa(t) =
1√
aπ

Γ(a+1
2

)

Γ(a
2
)

1

(1 + t2/a)
a+1
2

. (6.3)

In terms of characterising the linkage between the two distributions, a parameter, θ,

is introduced. This can be considered as a rotation angle corresponding to the relationship

between the marginals. The correlation is then defined in terms of θ.

Since we will be making use of the Student-normal and Student-Student bivariate

anisotropic distributions in what follows, we describe how these are formulated in sections

(6.1) and (6.2) below.

6.1 The Student-normal case

For the case where we want one Student t marginal (T1) and one Gaussian marginal (T2),

our bivariate anistropic distribution can be characterised as follows:

T1 =
Z1√
C2

1/a
, T2 = Z1 sin(θ) + Z2 cos(θ), (6.4)

where Z1 and Z2 are two independent normal random variables and C is as before.

By rearranging the above expression in terms of the normal variables, Z1 and Z2, and

using the standard normal density, Shaw and Lee (2008) show that the bivariate density
26Note that a does not need to be an integer (Shaw & Lee, 2008).
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function is,

f(t1, t2) =
eγ

2/2−(1/2) sec2(θ)t22α−a/2−1/2√
2aΓ(a

2
)π cos(θ)

× (6.5){√
2γΓ

(
a
2

+ 1
)
1
F1

(
1
2
− a

2
; 3
2
;−γ2

2

)
+ Γ

(
a+1
2

)
1
F1

(
−a

2
; 1
2
;−γ2

2

)}
,

where f depends on t1 and t2 through α, γ and β which are given in Shaw and Lee

(2008) as below:

α = 1 +
t21

a cos2(θ)
, β =

t1t2 sin(θ)√
a cos2(θ)

, γ =
β√
α
. (6.6)

The correlation in this case is given by

ρ = sin(θ)
Γ(a−1

2
)

Γ(a
2
)

√
a
2
− 1. (6.7)

Several density contour plots of the Student-normal case are shown in Figure (6.1).

These plots represent the bivariate Student-normal anisotropic densities where a takes

values a ∈ {1, 2, 4, 20} and θ ∈ {0,−π/4, π/4} in (6.5).

6.2 The Student-Student case

For the Student-Student case, the marginals are formulated as follows:

T1 = Z1√
C2

1/a
, T2 =

√
a+b

C2
1+C

2
2
[Z1 sin(θ) + Z2 cos(θ)], (6.8)

where a and b are the degrees of freedom of T1 and T2, respectively, Z1 and Z2 are as

before and C2
1 and C2

2 are χ2 distributed which, in this case, are coupled. There appears
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Figure 6.1: Contour Plots of Student-normal anisotropic bivariate densities given by (6.5) for

a ∈ {1, 2, 4, 20} (columns from left to right) and θ ∈ {0, −π/4, π/4} ( rows from top to

bottom).

to be no closed form expression for the density in this case. Shaw and Lee (2008) did

however explicitly formulate the correlation for the Student-Student anisotropic case as

follows:

ρ = sin(θ)
Γ(a−1

2
)

Γ(a
2
)

√
a
2
− 1

Γ(a+b−2
2

)

Γ(a+b−1
2

)

√
a+b
2
− 1. (6.9)
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6.3 Testing for agreement with Sharpe ratio asset rank-

ings

We consider two cases where a bivariate asset return distribution can be modelled by one

of Shaw and Lee’s (2008) anisotropic bivariate distributions and investigate whether asset

rankings agree when various risk-adjusted performance ratios are applied to the marginals

for various levels of the benchmark. We also calculate optimal portfolio weights based on

these same performance ratios and benchmark values. Our first case considers a Student-

normal bivariate anisotropic distribution. We then simulate an anisotropic bivariate

Student-Student distribution. Both these cases require employing simulation techniques

suggested in Shaw and Lee (2008). To enrich this analysis further, we consider a third

case; a bivariate anisotropic distribution coupled with an exotic dependency structure.

In this instance, we suppose that the dependency structure can be modelled by a Crash

Clayton copula.

6.3.1 The anisotropic Student-normal bivariate distribution

For this case, we suppose a bivariate return dataset can be modelled by the Student-

normal case described in section (6.1). In this hypothetical case, we suppose the Gaussian

marginal (T2) has mean 4% and standard deviation 10% and the Student t marginal (T1)

has mean 8% and standard deviation 20% with 3 degrees of freedom. We simulate these
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marginals based on (6.4) above. The correlation coefficient between T1 and T2 is then

determined by the value we assign to θ in the following expression for ρ in (6.7):

ρ = sin(θ)
Γ(a−1

2
)

Γ(a
2
)

√
a
2
− 1 = sin(θ)

Γ(1)√
2Γ(3/2)

. (6.10)

Based on this parametrisation, we calculate optimal weights based on maximising

the Sharpe ratio, the Omega index and Sortino ratio when we set the correlation to 0 and

0.5. Here, we find that even when marginal densities are elliptical and we impose one

Gaussian return, our optimal portfolios and asset rankings for the two levels of correlation

(by varying θ) do not agree across all values of the benchmark.

The reader can consult tables (??) and (??) for optimal weights when ρ = 0 and

ρ = 0.5. Of particular interest are the values we obtain from applying the three risk-

adjusted performance ratios to the individual marginals. In the zero correlation case in

Table (??), one will observe that Sortino ranks assets in the opposite order to the Sharpe

ratio and Omega Index when b = 1%. Disagreement in asset preferences are also seen in

the case where b = 0% and b = 1%. A similar picture emerges in the ρ = 0.5 case where

optimal asset weights also differ significantly.

6.3.2 The anisotropic Student-Student bivariate distribution

Based on the Student-Student anisotropic model given by (6.8) in section (6.2), we give an

example where discrepancy between the Sharpe-, Omega- and Sortino-optimal portfolios
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b (%) Performance Ratio T1 T2

-1% Sharpe 68.646% 31.354%

-1% Omega 60.258% 39.742%

-1% Sortino 76.766% 23.234%

0% Sharpe 66.322% 33.678%

0% Omega 56.280% 43.720%

0% Sortino 75.014% 24.986%

1% Sharpe 62.803% 37.197%

1% Omega 51.271% 48.729%

1% Sortino 72.907% 27.093%

2% Sharpe 56.795% 43.205%

2% Omega 43.609% 56.391%

2% Sortino 70.145% 29.855%

3% Sharpe 44.241% 55.759%

3% Omega 30.742% 69.258%

3% Sortino 65.997% 34.003%

Table 6.1: Optimal Portfolio weights for the Student-Normal Anisotropic Bivariate case with

zero correlation.
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b (%) Performance Ratio T1 T2

-1% Sharpe 1st 2nd

-1% Omega 2nd 1st

-1% Sortino 1st 2nd

0% Sharpe 1st 2nd

0% Omega 2nd 1st

0% Sortino 1st 2nd

1% Sharpe 2nd 1st

1% Omega 2nd 1st

1% Sortino 1st 2nd

2% Sharpe 2nd 1st

2% Omega 2nd 1st

2% Sortino 2nd 1st

3% Sharpe 2nd 1st

3% Omega 2nd 1st

3% Sortino 2nd 1st

Table 6.2: Individual asset rankings in the Student-Normal Anisotropic Bivariate case with

zero correlation.
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b (%) Performance Ratio T1 T2

-1% Sharpe 72.362% 27.638%

-1% Omega 54.500% 45.500%

-1% Sortino 54.498% 45.502%

0% Sharpe 65.434% 34.566%

0% Omega 40.103% 59.897%

0% Sortino 40.102% 59.898%

1% Sharpe 53.873% 46.127%

1% Omega 19.302% 80.698%

1% Sortino 19.303% 80.697%

2% Sharpe 30.673% 69.327%

2% Omega 0.000% 100.000%

2% Sortino 0.000% 100.000%

3% Sharpe 0.000% 100.000%

3% Omega 0.000% 100.000%

3% Sortino 0.000% 100.000%

Table 6.3: Optimal Portfolio weights for the Student-Normal Anisotropic Bivariate case with

positive (0.5 correlation.
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b (%) Performance Ratio T1 T2

-1% Sharpe 1st 2nd

-1% Omega 2nd 1st

-1% Sortino 1st 2nd

0% Sharpe 2nd 1st

0% Omega 2nd 1st

0% Sortino 1st 2nd

1% Sharpe 2nd 1st

1% Omega 2nd 1st

1% Sortino 1st 2nd

2% Sharpe 2nd 1st

2% Omega 2nd 1st

2% Sortino 2nd 1st

3% Sharpe 2nd 1st

3% Omega 2nd 1st

3% Sortino 2nd 1st

Table 6.4: Individual asset rankings in the Student-Normal Anisotropic Bivariate case with

positive (0.5) correlation.
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and asset rankings exists. In this hypothetical situation, we assume that one marginal

(T1) has mean 8%, standard deviation 20% and 3 degrees of freedom (ν = 3) and the

second marginal (T2) has mean 4% and standard deviation 10% with 10 degrees of freedom

(ν = 10). These are given in Table (6.5).

Mean Standard Deviation ν

T1 8% 20% 3

T2 4% 10% 10

Table 6.5: Student-student Case.

We calculate optimal portfolio weights for these two assets as well as rank the assets

for various benchmark values, performance ratios (specifically the Sharpe ratio, Omega

Index and Sortino ratio) and parametrisations of θ. In particular, for ρ = 0.28, we observe

inconsistencies in both allocations and rankings.

As can be seen in Table (??), for b = 1%, whilst Sharpe- and Sortino optimal weights

broadly agree, the Omega-optimal weights differ by over 10%. Similarly for other values

of the benchmark. In particular, Omega-optimal portfolios focus on one asset for lower

levels of the benchmark than the Sharpe and Sortino equivalent weights.

If we now consult Table (6.7) containing asset rankings, although asset rankings

agree for three out of four levels of the benchmark, we see that, for b = 0%, employing
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b (%) Performance Measure T1 (%) T2 (%)

1 Sharpe 39.1 60.9

1 Omega 55.3 44.7

1 Sortino 31.8 68.2

2 Sharpe 51.2 48.8

2 Omega 75.2 24.8

2 Sortino 36.9 63.1

3 Sharpe 80.2 19.8

3 Omega 100 0

3 Sortino 45.1 54.9

4 Sharpe 100 0

4 Omega 100 0

4 Sortino 64.9 35.1

Table 6.6: Optimal Portfolio Weights for the Student-Student Anisotropic Case.

the Omega ratio to sort assets results in a different order to those given by the Sharpe

ratio and Sortino Index. In light of the results presented for the optimal weights, it is

apparent that asset rankings do not explain the full picture. Furthermore, in situations

where our asset universe consists of more than two stocks (a likely and more realistic

scenario), we may observe more inconsistencies than we observe for this illustrative case.

These results indicate that we don’t have to consider extreme alternative distribu-

tional models to find situations where the conclusions in Eling and Schuhmacher (2012)

don’t ring true anymore. This is just one example based on one particular parametrisation
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Omega Sortino Sharpe

b T1 T2 T1 T2 T1 T2

0% 2nd 1st 1st 2nd 1st 2nd

1% 1st 2nd 1st 2nd 1st 2nd

2% 1st 2nd 1st 2nd 1st 2nd

3% 1st 2nd 1st 2nd 1st 2nd

Table 6.7: Asset Rankings: Student-Student Case.

of the bivariate family defined above.

6.3.3 LS marginals coupled with a Clayton copula

A limitation of the theory set out in Eling and Schuhmacher (2012) is that they ignore

dependency. To add to the previous analysis and to conclude this section, we investigate

the impact that a less conventional dependency structures has on the ranking of assets

and consequent optimal portfolios. As before, we consider two assets which are both

Student t distributed. However, we now suppose that their dependency structure can

be modelled by a Clayton Crash copula. In this framework, we test whether consistency

between Sharpe- and Omega-optimal portfolios prevails.

In Chapter 2, we gave a brief overview of copulas. Here, we focus on the Clayton
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copula as a model of dependency, a family of dependency structures belonging to the

asymmetric Archimedean copula group. Its profile exhibits a higher concentration of

dependency on the downside than the upside, hence it is often referred to as the Clayton

Crash copula.

We briefly introduced the Archimedean copula family in Chapter 2. In the bivariate

case, an Archimedean copula function is given by

C(u, v) = ψ−1(ψ(u) + ψ(v)). (6.11)

For the Clayton copula, the generator function ψ(.) takes the form:

ψ(t) = (t−θ − 1). (6.12)

Therefore, the inverse is given by

ψ−1(t) = (1 + t)−1/θ, (6.13)

and the copula is defined as

Cα(u, v) = max([u−θ + v−θ − 1]−1/θ, 0), θ ∈ [−1,∞) \ {0}. (6.14)

For most applications, θ > 0, therefore Cα(u, v) reduces to

Cα(u, v) = (u−θ + v−θ − 1)−1/α θ ∈ (0,∞). (6.15)

The parameter, θ, governs the strength of negative dependency between the under-

lying marginals. Its corresponding probability density function is then given by

c(u, v) = (1 + θ)(uv)(θ+1)(u−θ + v−θ − 1)−(2θ+1)/θ, (6.16)
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and the relationship between the dependency parameter, θ, and Kendall’s tau, τ , is as

follows:

τ(θ) = θ/(θ + 2). (6.17)

We simulate Student t returns and model their dependency structure with a Clayton

copula. We then calculate optimal Sharpe- and Omega portfolios for different values of

the benchmark.

Before we proceed, we briefly outline the necessary steps required to simulate Clayton

random variables. The principal objective in copula simulation is to simulate uniformly

distributed random variables from the unit hypercube with the desired dependency struc-

ture. Generating ∼ U [0, 1] random variables is fundamental for simulating other number

sequences and is a huge subject in its own right. Leaving aside the numerous historical

approaches for such simulations,27 several numerical and arithmetic methods exist and

the reader should consult a dedicated source for a thorough grounding in this field.

Assuming we have a uniform generator with all the desirable properties,28 simulating
27Such approaches include throwing dice, dealing cards and methods based on electric circuits or π.
28A good uniform random number generator should produce a sequence of numbers which behave as

the realisation of a set of independent and identically uniformly distributed (i.i.d) numbers over the unit

interval. For practical purposes, the generator should be able to produce a sequence of numbers, as

described above, quickly without demanding vast amounts of storage. Nowadays, most programming

languages have an in-built system for producing uniform random variables as they form the basis for

simulating numerous other random variable sequences. For example, the Box-Muller transform, or its

polar variation, can be used to generate two independent normal random variables in its original form,
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a copula amounts to carrying out a transformation on these uniformly distributed random

variables. The form of the transformation dictates the characteristics of the dependency

structure. Hence, to simulate Clayton random variables, we apply the Clayton generator

function to our uniform random variates. More specifically, Aas (2004) suggests a method

which involves making use of the fact that the inverse of the Clayton generator, (6.13),

is equal to the Laplace transform of a Gamma variate. For this reason, a procedure

for generating Clayton random variables entails first simulating a Gamma variate (X ∼

Gamma(1/θ, 1)), then simulate n independent uniform random variables V1, V2, . . . , Vn.

Generating Clayton random variables results from transforming these uniform random

variables and the Gamma variate, X,29

U = ((1− log V1
X

)1/θ, (1− log V2
X

)1/θ, . . . , (1− log Vn
X

)1/θ). (6.18)

A visualisation of various bivariate Clayton plots are shown in Figure (6.2).

For our final analysis, we calculate optimal portfolio weights when employing a

Clayton crash dependency model and we impose the condition that marginal densities

satisfy the location-scale property. In this case, we suppose that two marginals are

and in Bailey’s variation of it, single Student t variates (Bailey, 1994).
29As described in Aas (2004), this method is derived from the fact that, if ψ is the inverse of

the Laplace transform of a distribution function, G, on R+ with G(0) = 0 then an Archimedean

copula can be simulated by first simulating a random variable from the distribution, G as well

as simulating (independently) n uniform variates and then applying them to the expression, U =

(φ−1(− log(V1)/X), . . . , φ−1(− log(Vd)/X)).
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Figure 6.2: Clayton Bivariate Dependency Plots.

distributed according to the Student t model with means, standard deviations and degrees

of freedom parameters tabulated in Table (6.8). We begin by simulating 10, 000 samples

(20, 000 for the two assets) from a Clayton Crash model, with dependency parameter set

equal to 4 (α = 4 in (6.15))30. Due to Sklar’s theorem, the dependency structure and

the underlying marginal characteristics can be separated completely so that once we have

modelled the dependency structure all that is left is for us to feed these Clayton-dependent

uniforms through the quantile functions of the marginal distributions. For calculating

optimal portfolios, we can now feed the simulated returns through the respective objective

function (see Chapter 1 for a description of the optimisation process). We run three

optimisations for various benchmark levels for maximising Omega, Sortino and the Sharpe

ratio. The optimal portfolio weights are given in Table (6.9). We also calculate the order

in which each performance measure ranks each asset. Interestingly, all asset rankings
30This is purely hypothetical, in general the lower α the more dependent the assets are on the downside.
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agree in this case as can be seen in Table (6.10).

Mean Standard Deviation d.o.f

Asset 1 9% 24% 3

Asset 2 5% 9% 3

Table 6.8: Asymmetric Dependency coupled with LS-marginals.

Sharpe Omega Sortino

b T1 T2 T1 T2 T1 T2

1% 2% 98% 0% 100% 0% 100%

2% 13% 87% 0% 100% 0% 100%

3% 46% 54% 100% 0% 100% 0%

4% 100% 0% 100% 0% 100% 0%

Table 6.9: Optimal portfolio weights: LS marginals with asymmetric dependency.

In this chapter, we set out to provide a number of analyses to check whether the

findings in Eling and Schuhmacher (2012) are true when we relax one or a few of the

conditions that they impose. In the first two cases, we employed Shaw and Lee’s (2008)

method of simulating anisotropic bivariate distributions for modelling two asset returns.

In both the Student-normal case and the Student-Student case, we found that when we

ranked the assets according to the Sharpe ratio, Omega Index and Sortino ratio, we did
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Sharpe ratio Omega Index Sortino ratio

b (%) T1 T2 T1 T2 T1 T2

-1 2nd 1st 2nd 1st 2nd 1st

0 2nd 1st 2nd 1st 2nd 1st

1 2nd 1st 2nd 1st 2nd 1st

2 2nd 1st 2nd 1st 2nd 1st

3 1st 2nd 1st 2nd 1st 2nd

4 2nd 1st 2nd 1st 2nd 1st

5 2nd 1st 2nd 1st 2nd 1st

Table 6.10: Asset Rankings: LS marginals combined with a Clayton crash copula.

not observe a universal agreement in preferences. We also calculated optimal portfolio

weights by maximising these risk-adjusted performance measures, all of which belong

to the family of measures satisfying the conditions set out in Eling and Schuhmacher

(2012). In the latter example presented in this chapter, we considered the case where

two marginals satisfied the LS property however, we supposed that their dependency

structure could be modelled by the Clayton crash copula. In this instance, we did in fact

find 100% correlation between asset rankings despite the fact that we observed rather

different optimal portfolio weights. In this case, we verified the conclusions laid out in

Eling ad Schuhmacher (2012). However, it would be interesting to see if this is still true
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when we carry out the same investigations on a much larger or diverse universe of assets

or a wider variety of dependence structures.
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Conclusion

For applications in portfolio optimisation, we advocate a broader use of alternative per-

formance and risk measures. Notwithstanding the large number of quantitative tools

available, traditional methods and measures continue to be used despite their well-known

drawbacks. The focus of this thesis was to take a closer look at alternative reward-to-risk

measures such as those belonging to the class of one sided variability ratios, φ(b, p, q), pro-

posed by Farinelli and Tibiletti (2002). Concentrating on the Omega Index and Sortino

ratio, we showed how these measures can be reduced to analytical functions of the Sharpe

ratio based on Student t returns. In a more general framework, Eling and Schuhmacher

(2012) proved that reward-to-risk measures satisfying positive homogeneity and transla-

tion invariance are monotonically increasing functions of the Sharpe ratio conditional on

the location-scale property being satisfied.
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The implications of the analytic representations of Omega and Sortino in Chapter

4 as well as the conclusions in Eling and Schuhmacher (2012) discussed in Chapter 5

suggest that many supposed mathematically superior and more complex performance

ratios achieve the same result as the universally familiar Sharpe ratio when used for

comparing alternative investments. In the latter part of this thesis, however, we provide

situations outside of the framework of Eling and Schuhmacher (2012) where portfolio

rankings and optimal portfolio weights based on the Sharpe ratio, Omega Index and

Sortino ratio yield different results. On the other hand, when we considered the case

where we impose the LS condition on two marginal return distributions yet incorporate an

asymmetric dependency structure, in this case the Clayton copula, our findings coincided

with those of Eling ad Schuhmacher (2012).

The motivation of this thesis was to explore a richer class of risk-adjusted perfor-

mance ratios capable of incorporating all the information regarding the return distribu-

tions. Whilst the results in Eling and Schuhmacher (2012) theoretically show that the

Sharpe ratio suffices as a means of comparing alternative investments under certain con-

ditions, we wish to emphasise that there will be situations where a more general measure

capable of capturing a wide range of distributional shapes should yield more realistic

results than those measures that rely on a small number of statistical characteristics of

the underlying dataset.

The author acknowledges that there are clear limitations contained in the analyses
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presented in this thesis. We centered the analytics in Chapter 4 on the assumption that

returns can be modelled by the Student t model. We should consider whether a similar

analysis can be achieved based on alternative distributions, preferably those capable of

modelling additional moments. We have already mentioned that Passow (2005) claims

to have analytically reduced the Omega Index when the underlying return is modelled

by the Johnson SU distribution. Furthermore, investigating the merits of various param-

eterisations of the one-sided variability measure in an optimisation setting over multiple

time periods is also of interest.

To conclude this thesis, our general philosophy is that one should not base a portfolio

optimisation model on one single measure. Rather, a number of performance and risk

measures should be considered both ex ante and ex post for selecting the optimal portfolio.

As Sortino and Forsey (1996) summarises, ‘No one risk measure is the be-all and end-all.’
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Chapter 9

Appendix

6-Asset Case: Asset return first four moments

Table 9.1: 6-asset case (Boom period): First four moments.

Statistic/Asset EUR GBP JPY GOLD Oil SILVER

Mean (% p.a.) 6.30 5.45 0.37 15.58 25.17 27.02

Standard Deviation (% p.a.) 8.81 8.36 8.76 16.97 29.44 32.24

Skewness -0.09 -0.07 -0.20 -0.44 -0.07 -0.77

Kurtosis 3.72 3.52 4.23 5.58 4.16 8.98

18-Asset Case: Optimal Portfolios
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Table 9.2: 6-asset case (Bust period): First four moments.

Statistic/Asset EUR GBP JPY GOLD Oil SILVER

Mean (% p.a.) 0.00 -0.05 -0.08 0.23 0.18 0.32

Standard Deviation (% p.a.) 0.12 0.12 0.12 0.23 0.38 0.46

Skewness 0.21 0.03 -0.31 -0.13 0.06 0.01

Kurtosis 5.78 6.72 6.68 6.03 6.74 9.59
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