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Light Detection and Ranging (LiDAR) systems are frequently used in ecological

studies to measure vegetation canopy structure. Waveform LiDAR systems offer

new capabilities for vegetation modelling by measuring the time-varying signal

of the laser pulse as it illuminates different elements of the canopy, providing

an opportunity to describe the 3D structure of vegetation canopies more fully.

This article provides a comparison between waveform airborne laser scanning

(ALS) data and discrete return ALS data, using terrestrial laser scanning (TLS)

data as an independent validation. With reference to two urban landscape

typologies, we demonstrate that discrete return ALS data provided more biased

and less consistent measurements of woodland canopy height (in a 100% tree

covered plot, height underestimation bias = 0.82 m; SD = 1.78 m) than wave-

form ALS data (height overestimation bias = �0.65 m; SD = 1.45 m). The same

biases were found in suburban data (in a plot consisting of 100% hard targets

e.g. roads and pavements), but discrete return ALS were more consistent here

than waveform data (SD = 0.57 m compared to waveform SD = 0.76 m). Dis-

crete return ALS data performed poorly in describing the canopy understorey,

compared to waveform data. Our results also highlighted errors in discrete

return ALS intensity, which were not present with waveform data. Waveform

ALS data therefore offer an improved method for measuring the three-dimen-

sional structure of vegetation systems, but carry a higher data processing cost.

New toolkits for analysing waveform data will expedite future analysis and

allow ecologists to exploit the information content of waveform LiDAR.

Introduction

The spatial and volumetric structure of vegetation in

ecosystems is a key driver of function (Shugart et al.

2010), and Light Detection and Ranging (LiDAR) instru-

ments provide critical data for describing and modelling

vegetation structure (Vierling et al. 2008). LiDAR instru-

ments can be operated from the ground (e.g. Terrestrial

Laser Scanning; TLS) from airborne platforms (e.g. Air-

borne Laser Scanning; ALS) or from satellites [e.g. freely

available data from ICESat (Harding and Carabajal

2005)], and come in two forms – discrete return and full

waveform systems (Lefsky et al. 2002; Vierling et al.

2008). The difference between these is the way in which

data are recorded. Discrete return systems (most com-

monly used) measure the time taken for a laser pulse to

travel to an object and are used to determine height. In

products derived from ALS data, there are usually two

datasets: a digital surface model (DSM) provides an esti-

mate of the top-of-canopy height, while the digital terrain

model (DTM) shows topographic variability in the neigh-

bouring ground surface. Such data can be used to

describe canopy patterns (Anderson et al. 2010; Luscombe

et al. 2014), model hydrological flow paths (Jones et al.

2014), monitor wildlife habitat (Hyde et al. 2006), or pro-

duce carbon inventories at patch (Calders et al. 2015) or

landscape (Asner et al. 2011) scales. Waveform ALS data

(Fig. 1), however, have the potential to provide much

richer spatial information about canopy characteristics in

three dimensions. This is because these systems record
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the range to multiple targets within the canopy (Danson

et al. 2014). By measuring the time-varying signal of the

laser pulse as it illuminates different elements of the

canopy, these systems can be used to model the spatial

character and arrangement of structures that drive canopy

biophysical processes such as canopy architecture and size

and woody biomass (Mallet and Bretar 2009; Armston

et al. 2013), and can provide useful data for studies

requiring tree species discrimination (Alonzo et al. 2014).

It is only since around 2010 that waveform systems

have begun to be heavily explored in ecological contexts

(with limited earlier examples by Anderson et al. (2006),

and Hyde et al. (2005), for example). This is probably

because of the high data volumes requiring high comput-

ing power, and the complexity of analysing the return sig-

nal [e.g. rather than a few ‘hits’ (typically, up to five)

from a discrete return system, waveform systems give a

near-continuous pulse; Fig. 1]. Waveform data represent

a significant signal processing task – tracing the photon

from the sensor to the ground and understanding what

the interactions represent is a potential barrier to their

application in ecology and beyond. Extracting 3D canopy

information from the waveform is challenging because

the pulse can be perturbed on its path through the

canopy – for example, the electromagnetic radiation in

the pulse can be redirected within the canopy and is

known to suffer ‘multiple scattering’ between different

elements (e.g. leaves and woody biomass). This leads to

highly complex signals requiring denoising and correction

using signal processing approaches, followed by product

validation. Despite this challenge, there are a variety of

new waveform signal processing approaches emerging,

particularly for vegetation applications, with most studies

following one of three methods:

1 Decomposition into points and attributes using func-

tion fitting (Hofton et al. 2000; Wagner et al. 2008);

2 Decomposition into points using deconvolution (Han-

cock et al. 2008; Jiaying et al. 2011; Roncat et al.

2011);

3 Extracting metrics such as height of median energy

(Drake et al. 2002).

The points or metrics from the resulting models can

then be used to infer plot-level characteristics or calculate

canopy height (Boudreau et al. 2008), fit geometric prim-

itives to crowns (Lindberg et al. 2012); or fill voxels to

enable construction of three-dimensional models from a

regular grid of cubes (e.g. as in Minecraft) where canopy

structure can be optimally modelled (Hosoi et al. 2013).

Waveform laser scanning technology is now at a tip-

ping point, evidenced by NASA’s forthcoming ‘Global

Ecosystem Dynamics Investigation LiDAR’ space mission,

due for launch in 2018 [GEDI (Krainak et al. 2012;

NASA, 2014)]. It is hoped that the enhanced capability of

the waveform system on GEDI will provide superior glo-

bal estimates of vegetation carbon stocks.

In this article, we address the pragmatic research ques-

tion of what benefits waveform ALS data can offer ecolo-

gists over more easily obtainable discrete return ALS

products, using urban systems as an exemplar. Quantita-

tive description of the pattern and 3D structure of urban

vegetation demands fine-scale spatially distributed infor-

mation describing canopy architecture (Yan et al. 2015).
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Figure 1. Stylized representation of a waveform airborne laser scanning (ALS) system over a tree canopy, showing a typical waveform pulse

return (left of figure). In contrast, a discrete return system would not provide details of the pulse, but would instead report a series of ‘hits’ from

various components of the landscape being monitored, typically from near to the top of the tree and from somewhere close to the ground

surface (sometimes with further returns from points in between). Simulated discrete returns are shown on the plot in the left of the figure.
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This is because the pattern and extent of green infrastruc-

ture (e.g. street trees, parks, domestic yards and gardens)

is a key determinant of the provision of ecosystem ser-

vices in cities and towns, including nutrient cycling, tem-

perature and flood risk regulation, reduction in

atmospheric pollution, aesthetics, and multiple dimen-

sions of human health (Gaston et al. 2013). Most exam-

ples of remote sensing approaches for mapping urban

green space rely on either optical classification of aerial

photographs, or height-based classification of discrete

return ALS to determine the spatial distribution of basic

classes such as trees, bushes and grass (Chen et al. 2014;

Yan et al. 2015). While these data are appropriate to the

particular scale range of the texture of urban vegetation

variance, and allow the small patch sizes of urban green

space to be mapped (e.g. in yards and gardens), they

neglect to characterize the important vertical distribution

of vegetation and photosynthetic material through the

depth of the canopy and its spatial form. Furthermore,

they cannot account for important habitat features such

as the understorey, which are important in driving urban

ecological connectivity. This work sought to establish the

impact of those omissions in describing urban vegetation

complexity.

Here, we compare a simply processed waveform ALS

product with discrete return ALS data from the perspec-

tive of ecologists working in urban environments. We val-

idate the findings using a ground-based TLS survey,

quantify differences in each approach and evaluate the

relative processing costs of each. Finally, we discuss the

wider implications for using waveform ALS data for vege-

tation monitoring in other ecological settings.

Materials and Methods

ALS survey data

An ALS survey was carried out over the town of Luton,

UK on 5 and 6 September 2012 (Fig. 2) when the urban

vegetation was in full leaf-on stage. The survey utilized

the UK Natural Environment Research Council (NERC)

Airborne Research and Survey Facility (ARSF) Dornier

228 aircraft platform and the Leica ALS50-II ALS system

with a WDM65 full-waveform digitizer, measuring at

1064 nm. Georegistration of the scans was achieved using

differential global positioning system (GPS) data from the

aircraft and at a linked GPS ground station. All ALS data

were collected by a single instrument with separate dis-

crete return and waveform output streams. The footprint

density of ALS data (waveform and discrete return data)

were collected with a density of between one point per

25 cm2 and one point per 4 m2 – this variability is nor-

mal and is dependent on scan angle and overlap between

flight lines. The discrete return ALS data had up to four

returns per pulse. Raw ALS data were processed into a

geolocated point cloud with associated waveforms using

Leica ALSPP software (version 2.75). More detailed docu-

mentation about the data processing can be found online

(NERC ARSF, 2014a,b).

Two data products from the ALS survey were com-

pared: a discrete return ALS point cloud describing x, y, z

spot heights and intensity; and a waveform ALS dataset,

which required pre-processing before it could be used.

Field site description

Data from two field validation sites (both within an area

of Luton, UK, called Little Bramingham Woods) are pre-

sented in this article (Fig. 2). The first site was in an

area of dense and varied tree cover with a clear under-

storey (referred to as the ‘woodland’ site) and the sec-

ond was from a residential area (referred to as the

‘suburban’ site). A very simple 2 m resolution land cover

map (LCM) was generated for these sites using data

from an airborne hyperspectral survey (with the AISA

Eagle 12 bit pushbroom scanner) carried out at the same

time as the ALS survey. The LCM was generated by

applying an unsupervised classification algorithm to dis-

crete return ALS data and a Normalized Difference

Vegetation Index (NDVI) product. The NDVI was calcu-

lated using equation 1 where qvis was the mean visible

reflectance in channels from 500 to 680 nm, and qnir
was the mean infrared reflectance between 761 and

961 nm.

NDVI ¼ qnir � qvis
qnir þ qvis

(1)

A 70-cm threshold for discriminating tall from short

vegetation and an NDVI threshold of 0.2 for discriminat-

ing vegetated from non-vegetated areas was used. In the

woodland area, the LCM showed that the majority of the

site was covered by tall vegetation. In the suburban area,

as was expected, there was a mix of tall and short vegeta-

tion and vegetated and non-vegetated areas. For both

woodland and suburban sites, the discrete return and

waveform ALS data were extracted for a 20 m by 20 m

square at the centre of each TLS ground validation site for

comparison. These comparison areas were chosen because

they were proximal to sampling sites where complemen-

tary ecological data were being collected – specifically bird

feeders where population counts were being collected and

where flows of biodiversity through urban systems were

being measured. These sites were also evaluated in the

waveform LiDAR datasets prior to collection of the TLS

validation data, and were found to be representative areas

with a variety of waveform shapes and widths.
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Figure 2. (A) A map of Luton with position in the UK shown inset, (B) air photo with two urban end member typologies shown, (C) Photographs

showing typical vegetation structure at the woodland site and (D) at the suburban site, (E) airborne laser scanning (ALS) discrete return dataset

showing a basic vegetation height model of the focus area in Luton, UK.
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Method for processing waveform ALS data

The ALS50-II system recorded the intensity of reflected

light as an eight-bit value every 1 ns. The first step in sig-

nal processing the waveform data was to remove back-

ground electronic noise – which is known to be very

stable in the Leica ALS50-II (Hancock et al. 2015). Here,

we used a simple method to extract canopy signals from

the waveform ALS data. The first peak in the waveform

above the noise threshold was traced back to the mean

noise level (DN = 12, derived from a histogram) to pro-

vide a consistent estimate of the canopy maxima. The his-

tograms of signal intensity from Hancock et al. (2015)

were then used to set the simple noise threshold at

DN = 16 (see Hancock et al. 2015, figure 5b) to remove

all background noise, and the result was a product show-

ing point height information that could be used to com-

pare datasets quantitatively. Further processing – for

example, using function fitting, deconvolution or pulse

width subtraction may have further improved the retrieval

of the ‘true’ canopy top (Hofton et al. 2000). These more

complex signal processing methods were not the focus of

this article and will be discussed in a subsequent article,

which develops a validated voxel-based approach for 3D

canopy description in urban settings.

Validation data from TLS survey

To validate the information content of the two ALS prod-

ucts, a waveform TLS system was deployed [Riegl VZ-

400, operating at 1545 nm (near infra-red)] to measure

vegetation structure (from the ground up) on 5 and 7

August 2014. The TLS instrument had a reported 5-mm

accuracy and 3-mm repeatability, which was far greater

than the ALS data. Previous work by Calders et al. (2015)

has shown that this approach provides a good validation

(accurate tree heights were obtained and attenuation was

not found to be significant). The dates of field sampling

with TLS were chosen to ensure that the vegetation was

in a similar state to the time of the ALS survey. Valida-

tion sites were chosen to cover a range of observed habi-

tat structures, and a variety of ALS waveform shapes and

urban typologies. As a result, the TLS scan methodology

had to be adapted for each site so as to capture the vari-

ability in canopy structure appropriately. The plot sizes

also varied, with small (5 m) plots sometimes requiring

three scan positions to capture variability in the dense

vegetation while sparsely vegetated plots measuring tens

of metres in size only required two scan positions due to

reduced occlusion. Each site was scanned from two or

three different positions so as to infill shadowed areas,

and multiple scans were co-registered using reflector tar-

gets. TLS point clouds were then manually translated to

align the roofs of buildings with the geolocated ALS data

to within 10 cm vertically and <30 cm horizontally.

Quantitative comparison

To compare quantitatively the consistency of the height

estimate error in the datasets, the mean difference

between the ALS and TLS-derived ranges to the tallest

object, and the standard deviation (SD) of those differ-

ences were calculated for a 595 m area around the plot

centres of the 20920 m extracts. In the woodland area,

this 595 m measurement area was covered with dense

trees. The LCM classification indicated that the woodland

plot comprised of 100% tall vegetation. In the surburban

zone, the 595 m measurement area was a road surface

with neighbouring pavement and lamp posts with no

green elements. The LCM classification indicated that this

plot comprised 75% short non-vegetation (e.g. roads,

footpaths, gravel driveways or cars), and 25% tall non-

vegetation (e.g. buildings or lamp posts). These compar-

ison plots therefore represent end members of urban

structural diversity and so offer the most effective insight

into the relative merits of waveform versus discrete return

ALS products.

The ALS waveform-derived canopy top was calculated

using the method described in Hancock et al. (2011)

using a mean noise level of 12 and a noise threshold of

16. Calders et al. (2015) have demonstrated that TLS-

derived estimates of canopy height are very reliable (see

figure 6 in Calders et al. 2015) and our comparisons

therefore rely on TLS being able to provide a robust vali-

dation of true canopy height. Biases between TLS measur-

ing the leaf underside versus the ALS measuring the leaf

topside are treated as negligible here.

Results

Validation of airborne discrete return and
waveform ALS data with TLS

Figure 3 shows the results of comparing waveform and

discrete return ALS data with TLS data. Over hard sur-

faces with little spatial complexity in height and structure,

such as roads and buildings in the suburban area

[Fig. 3(A) and (B)], the discrete return data provided a

height model that indicated basic trends, while the wave-

form data showed pulse blurring caused by the 3.55 ns

system pulse (Hancock et al. 2015). Conversely, the wave-

form pulses (coloured green) in Figure 3(B) travelled

through urban green space components like bushes and

shrubs, and so provided potentially useful within-canopy

structural information, while the discrete return points

failed to capture the detail of the canopy profile.
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In the woodland setting, the ALS waveform system

recorded returns from throughout the canopy and could

be used to provide useful information on the canopy

understorey (e.g. presence/absence, density and structure).

In some settings, there was penetration of the ALS wave-

form all the way to the ground, allowing the urban habi-

tat to be described much more accurately than with

discrete return data [Fig. 3(C) and (D)]. In some places,

however, there were data shadows – for example, beneath

the centre of a large tree [Fig. 3(D)]. This same figure

shows that in a few places, the discrete return ALS heights

of the tree tops appear to be underestimated relative to

the height derived from TLS. A few further issues are evi-

dent with the waveform data – in Figure 3(B) and (D)

some of the waveform returns appear below the TLS-

derived ground surface. These errors are caused by the

combination of multiple scattering of photons in the

canopy and automatic instrument settings applied at the

point of data collection. These erroneous points can be

corrected using signal processing approaches (see ‘Intro-

duction’), but these are computationally complex and

require extensive testing and validation.

A

B

C

D

Figure 3. Comparison of terrestrial laser scanning (TLS), and waveform and discrete return airborne laser scanning (ALS) data for two urban

typologies. (A) and (B) show sections through the ‘suburban’ scanning site while (C) and (D) show sections through the ‘woodland’ scanning site.

The simple plots (A) and (C) show a cross section through a 2-m deep area, while the more complex plots (B) and (D) show a cross section

through a 20-m deep area to give a broader perspective to the comparison. The results highlight where waveform airborne laser scanning (ALS)

intensity carries information on within-canopy structures while also demonstrating how discrete return ALS performs best over hard surfaces such

as roads.

10 ª 2015 The Authors Remote Sensing in Ecology and Conservation published by John Wiley & Sons Ltd on behalf of Zoological Society of London.

Waveform LiDAR Considerations in Ecology K. Anderson et al.



Quantitative comparison

Applying the method explained in 2.3 and 2.4, statistics

were generated that showed that discrete return ALS data

consistently overestimated the range (and so underesti-

mated height), with a bias of 0.82 m (SD = 1.78 m) in the

595 m woodland test area. Conversely, the waveform

ALS data consistently underestimated range (and so over-

estimated height), but with a smaller bias, and provided a

more consistent estimate of height (i.e. smaller SD) than

the discrete return data (bias = �0.65 m; SD = 1.45 m).

In the 595 m suburban test area, the biases showed simi-

lar patterns (discrete return bias = 0.78 m; waveform

bias = �0.29 m), but the discrete return data had a lower

SD (0.57 m) compared to the waveform data (0.76 m),

indicating that more consistent results were achieved with

discrete return data where vegetation was not present.

This analysis adds weight to the suggestion that the dis-

crete return algorithms are optimiszd for hard surfaces

(such as roads), where they outperform simply processed

waveform data, and that waveform data provide more

accurate results over vegetation. It should be noted that

the waveform ALS product could be processed to generate

a product which performed as well as the discrete return

data over hard surfaces, but the computational costs of

doing so would be high.

ALS intensity measures

Further issues with discrete return ALS products are

apparent when evaluating discrete return ALS intensity

values over vegetated surfaces. Figure 4 demonstrates this

by comparing the intensity measured from the discrete

return ALS product with the reflected energy from the

waveform data (the integral of the waveform intensity

with time) over a mixed urban landscape in Luton. Areas

of high intensity appear brighter than those with lower

intensity. At 1064 nm, healthy green vegetation would be

expected to reflect radiation strongly and yet some of the

vegetated areas in Figure 4(A) show low intensity (indi-

cated by dark areas), which is an artefact of the diffuse

return containing a large amount of energy, but having a

low, broad peak (Hancock et al. 2015). Therefore, there

are often non-physical effects caused by signal distortion,

and these could lead to large errors in interpretation of

discrete return ALS data if used for automated land cover

determination. This is frequently overlooked – for exam-

ple, studies by Antonarakis et al. (2008) and Donoghue

et al. (2007) both utilized discrete return ALS intensity as

an additional measure to derive a supervised classification

of vegetation types. The discrete return intensity is a

function of vegetation structure (e.g. foliage profile),

albedo (e.g. phenology) and the processing algorithm

applied, so will confound classification accuracy if one or

more of those variables is changed. Waveform ALS data

are much less prone to such limitations, being able to

record a much more accurate measure of reflected radia-

tion and shape of the signal response of the target, allow-

ing the same discrimination using the physically based

shape rather than an artefact [Fig. 4(B)].

Computational requirements

When deciding which ALS product to use, one must con-

sider data volumes and computational requirements under-

A

B

Figure 4. The impact of using discrete return intensity versus

waveform airborne laser scanning (ALS) in the near infrared (1064 nm)

is shown for a mixed zone in the focal area of Luton. In (A) the intensity

of the discrete return ALS data are shown, while (B) shows the

difference when waveform ALS intensity is used. The major differences

in intensity appear in zones with dense vegetation. These data show

that relying on discrete return intensity would lead to bias – the area of

dense trees appear as having low intensity (low reflectance at

1064 nm) when they should have high reflectance (the two are

related). This bias is not present in waveform intensity, which shows

both the mown grass and the dense trees as having high intensity

which is correct given the known strong vegetation reflectance

response in this region of the spectrum.
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pinning information extraction. Data volume and process-

ing costs are currently much higher with waveform data

than with discrete return data. For example, the waveform

files used here [LAS1.3 format (ASPRS, 2015)] were 6 to 10

times larger than the discrete return (LAS1.0 format) files.

For example, one strip of discrete return ALS data would

occupy 700 mb of disc space, while the same spatial extent

of waveform ALS data would occupy 4.2 gb. Much of this

additional data volume is occupied by wave bins that con-

tain no usable signal, but which must be retained for post-

processing. Once the background noise is removed, file

sizes can be reduced by roughly an order of magnitude by

simple run-length encoding. The signal processing needed

to extract target properties is computationally expensive:

applying the method described in Hancock et al. (2008)

took 25 processor days on a computer with a 3-GHz CPU,

although this could be parallelized on a cluster workstation

to expedite processing time. In comparison, the discrete

return point cloud is processed by the instrument during

collection and typically, is ready for use in geographical

information systems or other image processing software on

delivery (although some users will subsequently choose to

apply additional topographic normalization techniques or

post-process the data using other tools).

While considering the various costs of extracting infor-

mation from waveform ALS data, it is also important to

highlight the recent development of new software tools

for expeditious analysis of such data. Not all of these

tools are mature, but they offer a means by which most

users could extract useful information from both discrete

return and waveform-capable LiDAR systems (from both

ALS and TLS systems). Such tools [we list only free-to-

use (FTU) or open-source (O/S) options] are briefly sum-

marized in Table 1.

Summary and Conclusions

The results shown here suggest that discrete return ALS

data are optimized for use in measurement of simple hard

targets (i.e. roads), and that the methods and assumptions

used to generate discrete return ALS products do not per-

mit accurate description of the three-dimensional struc-

tural complexity of vegetated areas. Using two urban

landscape typologies, we have shown that if discrete

return data were used alone, measurements of the vegeta-

tion system would be biased in terms of canopy height

(underestimation), inaccurate in terms of intensity (likely

resulting in physical misclassifications of green space) and

missing vital data on the characteristics of the canopy

understorey. Inaccuracies arising from the use of discrete

return ALS data in measuring tree canopy height have

been reported previously, for example, by Zimble et al.

(2003) who showed bias in deriving canopy height mod-

els from discrete return ALS (in this example, the under-

estimation was caused by the points missing tree tops,

hitting the shoulders of tree crowns and thus, underesti-

mating canopy height). The bias in canopy height in the

discrete return ALS data reported in our study is most

likely caused by the signal processing algorithms used to

generate the discrete return products and has also previ-

ously been reported also by Gaveau and Hill (2003). This

is a different, and additional effect to that described by

Zimble et al. (2003). Such biases in discrete return ALS

data could be addressed on a site-by-site basis using an

empirical calibration against ground data, although using

the waveform allows this bias to be removed in a more

consistent way (Hancock et al. 2011).

By adopting a waveform ALS approach, there are ben-

efits and costs for the ecologist. The major benefits are a

more complete three-dimensional description of the veg-

etation canopy. With waveform data, we show how ecol-

ogists can obtain improved canopy height models, which

are critical for improving understanding of spatial car-

bon assessment and biomass, for example (Lefsky et al.

2005; Hilker et al. 2010). We also show the potential of

the waveform approach for improved detection and

description of understorey characteristics, which are

important if spatial models of biodiversity, resource

Table 1. Summarizing free-to-use (FTU) and open-source (O/S) tools for processing and visualizing waveform LiDAR data.

Software FTU or O/S Function Coding expertise required References

LAStools FTU Handling and visualizing

discrete return LiDAR

Low http://www.cs.unc.edu/~isenburg/lastools/

(Podobnikar and Vrecko 2012)

Pulsewaves FTU Waveform LiDAR analysis Low http://rapidlasso.com/category/pulsewaves/

SPDLib O/S Processing LiDAR data including

waveform formats

High, requires C++ coding http://www.spdlib.org/doku.php

(Bunting et al. 2013)

PyLAS O/S Converts LiDAR formats

into GIS layers

Medium, requires Python coding https://code.google.com/p/pylas/

LibLAS O/S Converts LiDAR formats and

links with GDAL functionality

Medium, requires Python coding http://www.liblas.org/

Cloudcompare O/S Visualizing 3D LiDAR

point clouds

Medium, requires data

in specific formats

http://www.danielgm.net/cc/
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availability (Decocq et al. 2004), and variables such as

propagule abundance and connectivity (Jules and Sha-

hani 2003) are to be determined. To date, there have

only been a limited number of studies that have investi-

gated canopy understorey characteristics with LiDAR sys-

tems, and none currently exist which use waveform ALS

for this purpose. For example, Hill and Broughton

(2009) used leaf-off and leaf-on discrete return ALS data

to map the spatial characteristics of suppressed trees and

shrubs growing beneath an overstorey canopy, and Ash-

croft et al. (2014) have demonstrated the capability of

TLS to capture three-dimensional vegetation structure,

including understorey. With waveform data, we have

shown that there exists an unexplored capability to

model canopy understorey in leaf-on stage, over large

areal extents: an exciting scientific opportunity. The costs

are a high data storage and processing demand (see

‘Computational requirements’), and in this thread, there

is certainly a great need for more work to improve and

optimize the processing of waveform data to account for

multiple scattering effects and for accounting for the

waveform pulse shape. It is also worth noting that cur-

rently there are many LiDAR systems (both ALS and

TLS systems) that are waveform capable, but the wave-

forms are often discarded during the automated process

of generating discrete return data [e.g. Riegl LMS-Q1560

(Disney et al. 2010)].

In answering the question posed in the title of the arti-

cle, we therefore conclude that there is a hidden and rich

resource in data from waveform ALS systems that would

provide added value for spatial ecologists investigating

vegetation systems and dynamics across a range of ecolog-

ical systems. The ‘costs’ of processing waveform data

should not be overlooked, but a growing suite of process-

ing tools (Table 1) will reduce the processing costs and

the technical requirements for users of waveform data to

have signal processing expertise. As waveform data

become more readily available [e.g. through new global

missions such as NASA’s GEDI (NASA, 2014; Krainak

et al. 2012)] and tools become available to make those

data easier to process, we suggest that these will provide a

rich source of accurate, three-dimensional spatial infor-

mation for describing vegetation canopies. This will

improve scientific understanding of the functional rela-

tionships between vegetation structure and related,

important ecological and environmental parameters in a

wide range of settings.
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