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Abstract

In both historical and modern conflicts, space plays a critical role in how interactions occur over time.

Despite its importance, the spatial distribution of adversaries has often been neglected in mathematical

models of conflict. In this paper, we propose an entropy-maximising spatial interaction method for

disaggregating the impact of space, employing a general notion of ‘threat’ between two adversaries.

This approach addresses a number of limitations that are associated with partial differential equation

approaches to spatial disaggregation. We use this method to spatially disaggregate the Richardson

model of conflict escalation, and then explore the resulting model with both analytical and numerical

treatments. A bifurcation is identified that dramatically influences the resulting spatial distribution of

conflict and is shown to persist under a range of model specifications. Implications of this finding for

real-world conflicts are discussed.
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1 Introduction

The spatial distribution of resources can have a significant effect on the actions of adversaries during conflict.

Mathematical models that incorporate such factors can help in the consideration of strategies for deployment

over space or the forecasting of those geographic regions that may be more at risk. Historically, dynamic

ecological models of interacting populations have been used extensively to investigate conflict between ad-

versaries, but have typically neglected the influence of space. Examples include the Richardson model of

conflict escalation (Richardson, 1960), the Lanchester equations of attrition warfare (Lanchester, 1916), and

the Lotka-Volterra model for predator-prey interactions, originally described as an ecological model in Lotka

(1925). Since these landmark publications, a number of studies have sought to develop these models and

insights have been obtained into different types of conflict (Deitchman, 1962; Jackson et al., 1978; Zinnes

and Muncaster, 1984; Intriligator and Brito, 1988; Karmeshu et al., 1990; Saperstein, 2007; Liebovitch et al.,

2008; Blank et al., 2008; Atkinson et al., 2011; Qubbaj and Muneepeerakul, 2012; Rojas-Pacheco et al., 2013;

Kress and MacKay, 2014), but explicit modelling of spatial interactions is rarely considered. By neglecting

space, it is implicitly assumed that total resource levels are the main drivers that govern the system, but it

may be that, in fact, the distribution of resources has a material effect on real-life outcomes.

When models of conflict have incorporated some form of spatial dependence, it is often modelled by adding

reaction-diffusion dynamics to a system of ordinary differential equations (Epstein, 1997; Brantingham et al.,

2012). Some have argued, however, that reaction-diffusion models may not always be the most appropriate

method of accounting for such dependence (Durrett and Levin, 1994; Ilachinski, 2004; González and Villena,

2011). Diffusive dynamics, in which conflict is modelled as spreading from areas of high concentration to

low, may not always correspond to real-world spatial interactions.

Other studies have incorporated other mechanisms, such as advection, in an effort to construct more

realistic models (Protopopescu and Santoro, 1989; Short et al., 2010a,b; Pitcher, 2010; Keane, 2011). Such

models still rely on a number of restrictive assumptions. For instance, they require smooth dependent

variables in space in order to ensure existence of second partial derivatives. Since data is often aggregated

into discrete geographic areas, this requires the construction of kernel density estimators, which, in turn,
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requires further modelling assumptions regarding the choice of estimator and associated parameters.

Discontinuities in space are also likely to be encountered, for example via physical (rivers and roads) or

geopolitical boundaries, which can contradict assumptions of smooth dependent variables (although some

techniques have been developed to account for such effects (Smith et al., 2010)).

Finally, solutions to partial differential equations require the specification of spatial boundary conditions,

which, in many cases, may be difficult to define if the spatial area of interest has no natural boundary that

contains the dynamics.

To address these limitations, we propose an entropy maximising approach to the spatial disaggregation of

conflict models. We demonstrate this approach by disaggregating the Richardson model of conflict escalation.

In what follows, we first outline the Richardson model before presenting this disaggregation. We then consider

the resulting model in a range of scenarios. Starting with highly simplified scenarios, for which the behaviour

of the model can be analytically determined, the complexity of the model is increased by considering higher-

dimensional phase spaces and corresponding parameter spaces. This leads to an understanding of the model’s

behaviour and implications in more general scenarios.

2 The Richardson model

The Richardson model was initially conceived as a model of arms expenditure between two nations in the lead

up to war (Richardson, 1960). As a consequence, the dependent variables, given here by p and q, were taken

to be the levels of military expenditure of two nations. The model is given by the following two-dimensional

linear system of ordinary differential equations:

dp

dt
= ṗ = −σ1p+ ρ1q + ϵ1 (1)

dq

dt
= q̇ = ρ2p− σ2q + ϵ2,

where parameters σ1 and σ2 determine the influence on the change in military expenditure proportional to

existing expenditure, and ρ1 and ρ2 determine the rate of the action-reaction relationship between the two

adversaries. The terms ϵ1 and ϵ2 are those associated with external grievances. Typically, ρ1 and ρ2 will
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be positive, as an increase in military defences of one side spurs increased defences of the other. σ1 and σ2

are also typically positive: Richardson hypothesised that there will be some inhibition associated with an

increasing military arsenal, perhaps through pressures placed upon the government of each nation by their

electorate. The inhibition terms may also be interpreted as the rate of depreciation of existing arms.

Richardson showed that if ρ1ρ2 < σ1σ2 then there is a unique positive equilibrium in the plane, which

is globally attractive. In this case, p and q are constrained more by their internal dynamics (with intensity

given by the parameters σ1 and σ2) than by the interaction terms (with intensity given by ρ1 and ρ2). If

this condition does not hold, then the equilibrium is a saddle, and escalatory dynamics such as arms races

can occur.

It has been argued elsewhere that the model represents a very general conflict escalation process (Zinnes

and Muncaster, 1984) and, as such, can be considered to model a wide range of potential systems in which

two adversaries are subject to retaliation (see also Liebovitch et al. (2008), who present a nonlinear variant

of Richardson’s model to consider general conflict processes). Consequently, for the remainder of this article,

the dependent variables p and q are taken to be a more general and abstract measure of hostility between

two adversaries.

Although Richardson’s model was not spatially explicit, he was highly interested in spatial and geographic

problems such as the measurement of borders and population density (Richardson (1961); see also Mandelbrot

(1967)). He also considered how such measures might influence conflict in his work on deadly quarrels

(Richardson, 1952).

3 A spatially-explicit Richardson model

Spatial interaction models have been employed previously within both static and dynamic spatial models

to consider retail systems (Harris and Wilson, 1978; Wilson, 2008); international migration (Dennett and

Wilson, 2013); rioting (Davies et al., 2013); international trade (Fry and Wilson, 2012) and ecological

dynamics (Wilson, 2006). They have been empirically shown to provide plausible accounts of spatial processes
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for many of these examples.

To begin, we consider a two-dimensional manifold M, on which conflict between two adversaries takes

place. Suppose that one adversary is located at the points x1,x2, ...,xN ∈ M, while their opponent is

located at y1,y2, ...,yM ∈ M. In other words, each adversary is discretely distributed over M, perhaps due

to the positions of military bases, allied settlements, or gang safe houses, depending on the application of

the model.

In order to maintain generality, the dependent variables for the system are taken to be general measures

of conflict, hostility or defence capability of each adversary. In the disaggregated system, these measures are

tracked individually at each location. In other words, the variables to be considered are p1, p2, ..., pN , which

correspond to levels of hostility associated with locations x1,x2, ...,xN , respectively, and q1, q2, ..., qN , which

correspond to levels of hostility associated with locations y1,y2, ...,yM , respectively.

It is assumed similar mechanisms to the original Richardson model influence the variable pj , for each

index j. That is, ṗj depends on three terms as in equation (1): the action-reaction term that itself depends

on the adversary who is distributed over the manifold, representing the retaliatory dynamics driving the

system; a measure of inhibition, representing each adversary’s natural inclination to avoid conflict; and

external grievances that may be present at xj .

The action-reaction term within the equation for ṗj is assumed to depend on the variables q1, q2, ..., qM ,

representing the level of hostility of their adversary. In particular, it is proposed that this term is given by

a weighted sum of these terms, with corresponding weighting factors wlj ∈ [0, 1], which serve to specify the

proportion of ql that contributes to the action-reaction dynamics of pj for every l and j. These weighting

factors will be modelled explicitly in what follows. Following Richardson, the second term, representing

inhibition mechanisms, is taken to be proportional to the hostility pj and the third term, representing

external grievances associated with the hostility pj , is taken to be a constant.

With an analogous equation for q̇l, for some index l, but with corresponding action-reaction weighting
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factors denoted by vjl, the spatial Richardson model is

ṗj = −σ1pj + ρ1

M
∑

l=1

qlwlj + ϵ1ιj , j = 1, ..., N, (2)

q̇l = ρ2

N
∑

j=1

pjvjl − σ2ql + ϵ2κl, l = 1, ...,M,

where, as before, ρ1 and ρ2 specify the intensity of the action-reaction dynamics, σ1 and σ2 specify the

extent to which there is inhibition to growth in hostility, and ϵ1ιj and ϵ2κl are the levels of external grievance

associated with pj and ql, respectively.

Since the model is a disaggregation of the full Richardson model, it is assumed that the dynamics of the

aggregated system—that is, the system defined by the hostility of each adversary as a whole—follow the

original Richardson dynamics. Thus, it is assumed that

N
∑

j=1

wlj = 1, l = 1, ...,M ;
M
∑

l=1

vjl = 1, j = 1, ..., N, (3)

and that
N
∑

j=1

ιj = 1,
M
∑

l=1

κl = 1. (4)

Setting p =
∑N

j=1 pj and q =
∑M

l=1 ql, it can be seen that the aggregation of the system in equation (2),

obtained by summing the derivatives of each component, is equivalent to the system in equation (1).

In order to derive an explicit form for the model, further assumptions are required. It is assumed that

ιj = 1/N and κl = 1/M , so that external grievances impact pj and ql similarly over different values of j and

l. This assumption can be easily generalised, although such generalisations are not considered in the present

article.

Equation (3) and the requirement that the weightings wlj ∈ [0, 1] imply that the problem of finding

an explicit analytical expression for wlj is equivalent to finding a probability distribution describing the

probability that xj is the location towards which a resource at yl (with hostility ql) will exert its threat. To

do this, we employ the principal of maximum entropy (Wilson, 1970; Senior, 1979) to find the probability

distribution that is least biased with respect to some modelling assumptions, or constraints, which we state

in what follows.
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To specify these constraints, we define a metric d : M × M → R such that, for any two locations

xj ,yl ∈ M, d(xj ,yl) is a measure of impedance, distance, or travel cost between xj and yl. We fix the

average cost of exerting threat in the system, so that:

M
∑

l=1

N
∑

j=1

wljd(xj ,yl) = c1, (5)

for some positive constant c1. This constraint formulates Tobler’s first law of geography in the model, forcing

nearer things to be more related than farther things (Tobler, 1970) and, therefore, more threat to be exerted

between opponents that are nearby.

Additionally, we assume that there is some incentive bj in addition to the cost of transporting threat

to xj from yl (as given by d(xj ,yl)) that can be offset against d(xj ,yl). It is assumed that targets with a

higher threat incentive can have threat exerted on them even when the cost of exerting this threat is high.

Similarly to equation (5), we fix the average cost of exerting threat in the system, offsetting the added benefit

that might be obtained by the incentive measure, as

M
∑

l=1

N
∑

j=1

wlj(d(xj ,yl)− bj) = c2, (6)

for some constant c2.

Finally, we assume that the incentive to exert threat on xj is proportional to the logarithm of the hostility

pj . Thus, locations xj with higher levels of hostility will provide more incentive for threats to travel longer

distances as these locations will represent more of a threat to opponents at yl. A logarithm function is used

so that this added incentive has diminishing returns to scale. Using equation (5) and equation (6), we obtain:

M
∑

l=1

N
∑

j=1

wlj ln pj = c3, (7)

for some constant c3. This constraint is often employed in similar production-constrained spatial interaction

models to reflect the added benefit associated with interacting with a particular target (Wilson, 1967, 2008;

Davies et al., 2013).

Following Wilson (1970), the values for the weightings wlj for l = 1, ...,M and j = 1, ..., N can be

determined by analogy with a problem in information theory, where a system comprised of a large number
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of very small distinct units originating at locations xj must be assigned to destinations yl. In previous

applications of the model, the individual units that flow have included money and people; however, for the

present purposes, in which a general model of conflict is sought, the quantity flowing from i to j is assumed

to be a conceptual measure of ‘threat’. This is a novel interpretation of the following well-known derivation

of the model, and, as will be demonstrated, enables a link between this modelling framework and a range of

conflict models, such as the spatial Richardson model to which it is applied here.

When framed in this light, it can be shown that the most likely outcome for wlj may be determined via

maximisation of the function:

S = −
M
∑

l=1

N
∑

j=1

wlj lnwlj , (8)

where S is the sum of the Shannon entropy for probability distributions {wlj}j=1,2,...,N for l = 1, 2, ...,M

(see Senior (1979) for more detail), subject to constraints in equations (3), (5) and (7). Using the method

of Lagrangian multipliers, this obtains

wlj =
pαj e

−βd(xj ,yl)

∑N
j′=1 p

α
j′e

−βd(xj′ ,yl)
, (9)

for parameters α and β, and where the subscript j′ has been introduced to distinguish it from j. The

weighting wlj determines the extent to which ql influences the reactive retaliatory behaviour of pj . It can

be interpreted as a weighted comparison of pj against pj′ for j′ = 1, 2, ...N , with each weighted according to

the distance to the adversary at yl.

By an analogous derivation, a similar expression may be derived for the retaliatory effect on ql from pj ,

with corresponding weightings vjl, given by

vjl =
qγl e

−δd(yl,xj)

∑M
l′=1 q

γ
l′e

−δd(yl′ ,xj)
, (10)

for further new parameters γ and δ, and subscript l′.

Returning to equation (2), the spatially-explicit Richardson model for two adversaries discretely dis-
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tributed over a manifold M with associated distance metric d : M×M → R is, therefore, given by

ṗj = −σ1pj + ρ1

M
∑

l=1

ql
pαj e

−βd(xj ,yl)

∑N
j′ p

α
j′e

−βd(xj′ ,yl)
+

ϵ1
N

(11)

q̇l = −σ2ql + ρ2

N
∑

j=1

pj
qγl e

−δd(yl,xj)

∑M
l′ qγl′e

−δd(yl′ ,xj)
+

ϵ2
M

,

for j = 1, 2, ..., N and l = 1, 2, ...,M .

Equation (11) extends the version of Richardson’s model in equation (1) by explicitly incorporating the

impact of space via the metric d. Advantages over other methods of modelling spatial conflict processes

(such as partial differential equations or multi-agent simulations) include the explicit and relatively general

assumptions required to derive the model (without a reliance on the continuity of the locations of adversaries),

together with its concise analytical form, enabling the model to be interrogated analytically to obtain insights.

Since few restrictions have been placed upon the distance metric, the model can be applied to a range of

conflict processes involving retaliatory dynamics and spatial interaction.

4 Analysis

As a first step, some simplifying assumptions are made. In what follows, a reduced parameter space is

considered in which α = γ = 1, δ = β, and σ1 = σ2 = σ. These imply: that ṗ and q̇ depend linearly on p

and q respectively in both the numerator and denominator of the action-reaction term (which combine to

form a nonlinear function); that both adversaries react to impedance on M at the same rate; and that both

adversaries react to internal constraints at the same rate. In accordance with Richardson’s original model,

the remaining parameters ρ1, ρ2, σ1, σ2, ϵ1 and ϵ2 are set to be nonnegative. The parameter β is also taken

to be nonnegative, to ensure that distance plays a diminishing role in the values of the weighting factors wlj

and vjl.

It is possible to simplify the model further, this time at no cost to the generalisability of the model, by

rescaling the system. Indeed, substituting

t =
1

σ
t̂, ρi = σρ̂i, ϵi = σϵ̂i, (12)
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into the model eliminates the parameter σ. Relabelling the parameters by removing hats, and taking into

account the other simplifying assumptions above, the model in equation (11) becomes

ṗj = −pj + ρ1

M
∑

l=1

ql
pje−βd(xj ,yl)

∑N
j′ pj′e

−βd(xj′ ,yl)
+

ϵ1
N

(13)

q̇l = −ql + ρ2

N
∑

j=1

pj
qle−βd(yl,xj)

∑M
l′ ql′e−βd(yl′ ,xj)

+
ϵ2
M

.

There are five parameters in equation (13) whose effect on the system dynamics requires exploration. ρ1

and ρ2 are analogous to the action-reaction terms for each adversary in the original Richardson model and

are anticipated to play a similar role. That is, as they increase, the system is expected to become more

unstable. A similar comparison can be made for ϵ1 and ϵ2, which are external grievance terms, and are

anticipated to play a role in the magnitude of resulting solution curves. The parameter β, however, has

no analogy within the original Richardson model. Its inclusion in equation (13) is as a direct result of the

spatial disaggregation.

In the sections that follow, the model in equation (13) is considered in a series of idealised scenarios and,

later, more complex scenarios, from which important insights are obtained. Initially, the dimension of the

dependent variable, given by N +M , is minimised, since low dimensional non-linear systems are often the

easiest to analyse. To this end, in Section 4.1, the model is first considered with N +M = 3, which is the

lowest dimension of the dependent variable for which the model admits non-trivial spatial disaggregation of

conflict dynamics (N = M = 1 leads to Richardson’s original system). In Section 4.2, a scenario is considered

with N +M = 4, and then, in Section 4.3, N +M = 8. In Section 4.4 the model is investigated in a large

number of dimensions, using the findings of the more simple scenarios to instruct the analysis.

4.1 A three-dimensional scenario

The first scenario to be considered is the simplest with non-trivial spatial disaggregation. Without loss of

generality, this is given by the case when N = 2 and M = 1, so that one adversary is distributed over two

locations—at positions x1,x2 ∈ M—and the other adversary remains at just one location, given by y1 ∈ M.

This scenario can be thought of as one step below a macro-level model in which the spatial dependence is
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completely aggregated (and therefore given by the original Richardson model).

In order to fully specify the model, the metric d is defined. A metric is required that distinguishes between

the locations x1 and x2, and, for analytic simplicity, is set here so that

d(x1,y1) = 0, d(x2,y1) = 1,

so that the distance between x1 and y1 is negligible, whilst y1 and x2 are different locations on M. The

resulting three-dimensional system can be written as

ṗ1 = −p1 + ρ1
q1p1

p1 + p2e−β
+

ϵ1
2

ṗ2 = −p2 + ρ1
q1p2e−β

p1 + p2e−β
+

ϵ1
2

(14)

q̇1 = −q1 + ρ2(p1 + p2) + ϵ2.

Equation (3) ensures that the dynamics of the variables p = p1+ p2 and q = q1 are given by equation (1)

and, consequently, linear stability analysis of the original Richardson model can be utilised. The aggregated

system converges to a stable equilibrium if, and only if,

ρ1ρ2 < 1, (15)

(which is consistent with the corresponding condition for equation (1) since the parameters σ1σ2 have been

rescaled to one) and this equilibrium is given by

p = p1 + p2 =
ϵ1 + ρ1ϵ2
1− ρ1ρ2

, q = q1 =
ϵ2 + ρ2ϵ1
1− ρ1ρ2

. (16)

Equation (16) defines a line in three-dimensional (p1, p2, q1)-space as the intersection of two planes. If the

stability criteria are satisfied then the system converges to this line. If ρ1ρ2 > 1, then the aggregated system

is unstable and almost all solution curves diverge to infinity. For the remainder of this section, it is assumed

that ρ1ρ2 < 1, so that all solution curves in the aggregated system converge to a stable equilibrium, and all

solution curves in the three-dimensional system in equation (14) converge to the line defined by equation

(16).
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It remains to find the dynamics of the system on this line, representing the behaviour of the system that

is due to spatial disaggregation. This can be found through a change of variables which separates the model

into two components: the original linear Richardson system, which is well-understood, and the unknown

dynamics brought about by spatial disaggregation. To this end, the variables

p = p1 + p2, r = p1 − p2,

are introduced. Re-writing the system in equation (14) in terms of the variables p, q and r, leads to

ṗ = −p+ ρ1q + ϵ1 (17)

q̇ = −q + ρ2p+ ϵ2 (18)

ṙ = −r + ρ1q
p(1− e−β) + r(1 + e−β)

p(1 + e−β) + r(1− e−β)
, (19)

which isolates the unexplored dynamics on the line defined by equation (16) from those of the overall

aggregated system. Equations (17) and (18) correspond to the Richardson model in equation (1) with

σ1 = σ2 = 1, and do not depend on r. The unexplored dynamics captured by equation (19), which

encapsulates the effect of spatial disaggregation, can be considered as a distinct system for given values of p

and q. This system is undefined when

r = −

(

1 + e−β

1− e−β

)

p, (20)

and so the analysis presented here is restricted to cases in which this condition does not occur. Indeed,

for equality in equation (20), r and p must have opposite signs; however, since d(x1,y1) < d(x2,y1), and

since distance is hypothesised to have a diminishing effect on the resulting hostility, it may be assumed that

p1 > p2 for p > 0 and, therefore, that r > 0. Thus, this condition is assumed not to occur in scenarios of

interest.

There are two real equilibrium points to the one-dimensional system defined by equation (19), given by

r± = −
1

2

(

1 + e−β

1− e−β

)

(p− ρ1q)±
1

2

√

(

1 + e−β

1− e−β

)2

(p− ρ1q)2 + 4ρ1pq. (21)

Since 4ρ1pq > 0, r− < 0 and r+ > 0 and thus r+ is a unique positive equilibrium.
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The local stability of r+ in the one-dimensional system defined by equation (19) (whilst treating p and

q as constants) depends on the sign of

dṙ

dr
= −1 + ρ1pq

(1 + e−β)2 − (1− e−β)2

(p(1 + e−β) + r(1− e−β))2
,

at r = r+. It can be shown via algebraic manipulation that

dṙ

dr

∣

∣

∣

∣

∣

r+

< 0,

and, therefore, that the positive equilibrium is locally attractive. Furthermore, since the only other equilib-

rium at r− < 0 is the only point at which ṙ can change sign, r+ is an attractive equilibrium for r > 0.

Equation (21) enables the investigation of how the parameters influence the value of r+, and therefore

influence the resulting spatial distribution of hostility. The parameters ρ1, ρ2, ϵ1 and ϵ2 have a similar

interpretation on the aggregate equilibrium value given in equation (16); however, the parameter β does not

appear in the original model as it results from the spatial disaggregation. Analytically, it can be shown from

equation (21) that

lim
β→0

r+ = 0, lim
β→∞

r+ = ρ1q. (22)

The value of r+ in equation (21) is plotted in Figure 1 against β with the values of the other parameters as

given. The parameter β determines the extent to which hostility is distributed over the locations x1 and x2,

and therefore captures the strength of the spatial dependence in the system. As β → 0, the system becomes

aggregated, regardless of the spatial distribution, and the hostility levels in the two locations are equal.

As β → ∞, r+ reaches its maximum and the system becomes increasingly local: each location interacts

only with their closest adversary. The value of β specifies the accessibility of the space, and will require

appropriate calibration in the application of the model to conflict scenarios.

4.2 A four-dimensional scenario

In this section, the complexity of the model is increased by considering a scenario in which each adversary

is located over two distinct locations. Suppose that the locations x1,x2,y1,y2 ∈ M are associated with
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Figure 1: The value of r+ for different values of β. The parameter values used are ϵ1 = ϵ2 = 1, ρ1 = ρ2 = 0.5.

hostility measures p1, p2, q1, q2 ∈ R, respectively. For analytic simplicity, the distance metric d is chosen to

consist of zeros and ones. In this case, the 2× 2 matrix D given by Djl = d(xj ,yl) is defined to be

D =

⎛

⎜

⎜

⎝

0 1

1 0

⎞

⎟

⎟

⎠

,

so that adversaries are distributed identically on M. The two adversaries can be thought of as being both

distributed across two spatial zones where within-zonal impedance is negligible. In this scenario, the model

in equation (13) becomes

ṗ1 = −p1 + ρ1
q1p1

p1 + p2e−β
+ ρ1

q2p1e−β

p1e−β + p2
+

ϵ1
2

ṗ2 = −p2 + ρ1
q1p2e−β

p1 + p2e−β
+ ρ1

q2p2
p1e−β + p2

+
ϵ1
2

(23)

q̇1 = −q1 + ρ2
p1q1

q1 + q2e−β
+ ρ2

p2q1e−β

q1e−β + q2
+

ϵ2
2

q̇2 = −q2 + ρ2
p1q2e−β

q1 + q2e−β
+ ρ2

p2q2
q1e−β + q2

+
ϵ2
2
.

Similarly to the three dimensional case, the dynamics of the original Richardson model can be extracted from

this system by a change of variables, leading to a reduced dynamical system to which the system converges
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for ρ1ρ2 < 1. The following variables are therefore introduced:

p = p1 + p2, r = p1 − p2,

q = q1 + q2, s = q1 − q2.

Substituting these expressions into equation (23), and re-writing the system so that it depends only on p, q,

r and s, obtains

ṗ =− p+ ρ1q + ϵ1 (24)

q̇ =− q + ρ2p+ ϵ2 (25)

ṙ =− r +
ρ1
2

(q + s)
(1− e−β)p+ (1 + e−β)r

(1 + e−β)p+ (1− e−β)r

+
ρ1
2

(q − s)
(e−β − 1)p+ (1 + e−β)r

(1 + e−β)p+ (e−β − 1)r
(26)

ṡ =− s+
ρ2
2

(p+ r)
(1− e−β)q + (1 + e−β)s

(1 + e−β)q + (1− e−β)s

+
ρ2
2

(p− r)
(e−β − 1)q + (1 + e−β)s

(1 + e−β)q + (e−β − 1)s
. (27)

Equations (24) and (25) are equivalent to the original Richardson system with σ1 = σ2 = 1, whilst equations

(26) and (27) represent the added dynamics and complexity that is due to spatial disaggregation. For

ρ1ρ2 < 1, the system converges to the plane defined by the equilibrium of the aggregated system, given by

p =
ρ1ϵ2 + ϵ1
1− ρ1ρ2

, q =
ρ2ϵ1 + ϵ2
1− ρ1ρ2

. (28)

For the remainder of the section, it is assumed that ρ1ρ2 < 1 and that a sufficient amount of time has passed

so that p and q have reached their equilibrium values, and the unexplored dynamics of the system are given

by equations (26) and (27), where p and q are constants given in equation (28).

The system is undefined when

r = ±

(

1 + e−β

1− e−β

)

p,

or when

s = ±

(

1 + e−β

1− e−β

)

q.
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Consequently, the analysis presented here is restricted to solutions that do not cross this region in phase

space. For a value of β > 0, the lines at which the system is undefined generate a rectangle in rs-space

surrounding the origin. Considering possible solutions within this rectangle, it can be observed that the

origin is an equilibrium, representing the point at which p1 = p2 and q1 = q2 and thus where hostility is

equally distributed amongst the different locations in space.

Linearisation of the planar system in equations (26) and (27) about the origin leads to

⎛

⎜

⎜

⎝

ṙ

ṡ

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

−1 + ρ1(1− η2) ρ1η

ρ2η −1 + ρ2(1− η2)

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

r

s

⎞

⎟

⎟

⎠

, (29)

where

η =

(

1− e−β

1 + e−β

)

, (30)

which is dependent on β > 0 in such a way so that 0 < η < 1. The eigenvalues of the system in equation

(29) are

λ± = −1 +
1

2
(ρ1 + ρ2)

(

1− η2
)

±
1

2

√

(ρ1 − ρ2)
2 (1− η2)2 + 4η2ρ1ρ2. (31)

For clarity, a simplified scenario in which ρ1 = ρ2 = ρ is first considered. This implies that the intensity

of the action-reaction dynamics for each adversary is equal. The eigenvalues simplify to

λ± = −1 + ρ(1− η2 ± η). (32)

Considering first λ−,

λ− = −1 + ρ(1− η2 − η) < −1 + ρ < 0, (33)

since η > 0 and 0 < ρ < 1. Thus one eigenvalue is always negative and the condition for stability depends

solely on the eigenvalue λ+. In particular, the equilibrium is stable when

λ+ = −1 + ρ(1− η2 + η) < 0, (34)

which occurs when

ρ <
1

1− η2 + η
=

(eβ + 1)2

e2β + 4eβ − 1
. (35)
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Considering the right hand side of equation (35),

0 <
(eβ + 1)2

e2β + 4eβ − 1
<

e2β + 2eβ + 1 + 2(eβ − 1)

e2β + 4eβ − 1
= 1, (36)

and, thus, for ρ < 1, it is possible that the equilibrium can be either stable or unstable, depending on the

value of ρ in comparison to the value ρ̄ given by

ρ̄(β) =
(eβ + 1)2

e2β + 4eβ − 1
. (37)

A bifurcation occurs as ρ increases above ρ̄, and ρ̄ is said to be a bifurcation point.

In Figure 2, the function ρ̄(β) for β > 0 is shown, in order to demonstrate how the bifurcation point ρ̄

varies with the parameter β. The minimum of ρ̄ occurs at

βmin = ln 3 ≈ 1.1, ρ̄(βmin) ≈ 0.8. (38)

The existence of the bifurcation has important implications for the model. Given an appropriate value for β,

Figure 2: The bifurcation point ρ̄ plotted against β.

for relatively small values of ρ < 1, corresponding to scenarios in which retaliatory dynamics are weak, then

hostile activity is likely to be evenly distributed in space. However, if ρ < 1 is close to one, corresponding to
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scenarios with stronger retaliation and therefore higher levels of aggression, then hostile activity is likely to

be more unevenly distributed, even if the aggregate system converges to a stable equilibrium.

Taking the Taylor expansion of the planar system given by equations (26) and (27) about the origin, and

retaining terms up to third order, leads to

⎛

⎜

⎜

⎝

ṙ

ṡ

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

(−1 + ρ− ρη2)r + ρηs+ ρη2

p2 (1− η2)r3 − ρη
p2 (1− η2)r2s

(−1 + ρ− ρη2)s+ ρηr + ρη2

q2 (1− η2)s3 − ρη
q2 (1− η2)s2r

⎞

⎟

⎟

⎠

, (39)

which can be used to identify the existence of two stable equilibria for ρ > ρ̄, some solution curves of which

are shown in Figure 3 for ρ < ρ̄ and ρ > ρ̄.

Figure 3: Selected solution curves of the system in equation (39) for two different values of ρ. In a), ρ = 0.7,

whilst in b), ρ = 0.803. All other parameter values are such that ρ̄ = 0.801.

Supposing that r = s and ϵ1 = ϵ2 in equation (39), leads to

ṙ =
(

−1 + ρ(1− η2 + η)
)

r −

(

ρη

p2
(1− η2)(1− η)

)

r3. (40)

If ϵ1 = ϵ2, then the system in equation (39) is symmetric and equilibria of the system in equation (40)

will correspond to equilibria of the system in equation (39). Equilibria of the system in equation (40) occur

when either r = 0 or when

r2 =
1− ρ(1− η2 + η)
ρη
p2 (1− η2)(η − 1)

, (41)
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which has solutions only when the right-hand side of equation (41) is greater than zero. It can be shown

that this occurs when

ρ >
1

1− η2 + η
,

corresponding to the condition for the loss of stability in the equilibrium at the origin. In Figure 4, the

equilibrium values for the system in (40) are shown for different values of ρ. As ρ increases beyond ρ̄, two

stable equilibria appear, with values given by

r± = ±p

(

1− ρ(1− η2 + η)

ρη(1− η2)(η − 1)

)
1
2

. (42)

Figure 4: Equilibria of equation (40) for varying values of ρ.

A bifurcation of the system in equations (26) and (27) at the equilibrium of the rs-plane has been shown

to exist in the special case when ρ1 = ρ2. It is important to determine whether the same bifurcation occurs

when ρ1 ̸= ρ2. This is because conflict scenarios to which the model may be applied will often be asymmetric:

each adversary may adopt different tactics, resulting in different retaliatory mechanisms and therefore result

in different action-reaction parameters, as given by ρ1 and ρ2. In Figure 5 the stability of the origin of the
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rs-plane is shown for values of ρ1 and ρ2 between 0.5 and 1, and for three different values of β. In this figure,

green represents stability of the equilibrium, and blue represents instability. The bifurcation can be observed

in the transition from stability to instability in each of the three cases considered, across different values

for β. This figure confirms that the identified bifurcation is persistent under variation of the parameter

values. Furthermore, the change in the bifurcation point appears to be smooth with varying parameters: an

increase in ρ1 moves the bifurcation point in the direction of decreasing ρ2. This suggests that the system

requires some total sum of aggression, as determined by a combination of the parameters ρ1 and ρ2, before

the equilibrium at the origin of the rs-plane becomes unstable.

Figure 5: Stability of the equilibrium at the origin of the rs-plane for ρ1 ∈ [0.5, 1) and ρ2 ∈ [0.5, 1) and for

β = 0.5, β = 1, and β = 2.

The four-dimensional model given in equation (23) has been shown to exhibit richer behaviour than the
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three-dimensional case. By investigating the stability of the most natural equilibrium point in the system,

given by the point at which hostility levels are equally distributed over adversaries, a supercritical pitchfork

bifurcation has been identified in the case of a symmetric system, which can occur within a feasible region

of the parameter space. It has been shown that a bifurcation persists for asymmetric conflicts, which we

suspect to be of pitchfork form. In what follows, further properties of the bifurcation are sought that serve to

remove any suspicions of reliance on some of the limiting assumptions employed in this section. In particular,

the model is considered with different distance metrics and in higher-dimensional scenarios.

4.3 An eight-dimensional scenario

The bifurcation identified in Section 4.2 may have existed as a consequence of the particular form of the

distance metric or as a result of the number of dimensions used. In this section, two eight-dimensional

scenarios with N = M = 4 are explored, and the stability of the most natural equilibrium as system-wide

aggression increases is investigated. Doubling the dimension of the model leads to a reduction in analytical

tractability. As a consequence, numerical simulation of the model is used to explore the range of potential

scenarios in what follows. Numerical simulations are performed using the Runge-Kutta method for temporal

discretisation. It was found that step sizes of 0.1 produced simulation results in agreement with much smaller

step sizes as well as in agreement with the analytical results presented in the previous sections.

The two scenarios are constructed by defining the 4 × 4 matrices D(1) and D(2) where D(i)
jl = d(xj ,yl)

for i = 1, 2 and are given by

D(1) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, D(2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 2 3

1 0 1 2

2 1 0 1

3 2 1 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (43)

D(1) defines a scenario that is a natural extension to the example in Section 4.2. It is assumed that,

instead of adversaries being located across two zones, they are instead located across four zones. In this

case, impedance within the same zone is negligible, whilst any two distinct zones are a significant distance
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from each other. D(2) defines a scenario in which a different spatial structure is imposed on the system. In

this case, since the distance between j and l is determined by |j − l| for j, l = 1, 2, 3, 4, consecutive zones

can be considered to be near to each other in space, and non-consecutive zones farther apart. In contrast to

the previous example, the strength of inter-zone interaction now varies according to the particular pairing

in question.

Figure 6(a) shows two runs of the model with distance metric D(1) and Figure 6(b) shows two runs of

the model with distance metric D(2). The two different runs of the model are chosen to correspond to two

scenarios in which the level of aggression in the system, determined by the parameters ρ1 and ρ2, lies on

either side of some characteristic level of aggression, denoted by ρ̂. The value of ρ̂ is obtained by utilising the

results of the previous section, in which it was found that, when two adversaries with equal aggression have

parameters that exceed 0.8, a bifurcation occurs. For each scenario considered, the sum of the two solution

curves in each zone is plotted for each model run and, in both cases, a bifurcation is observed: on either side

of the characteristic value of ρ̂, a qualitatively different equilibrium is obtained.

In the case of Figure 6(a), prior to the bifurcation, analogously to the scenario studied in Section 4.2,

the system converges to an equilibrium which is constant across each zone. Since the aggregated system is

given by the original Richardson system, this equilibrium is given by

pj =
ρ1ϵ2 + ϵ1

4(1− ρ1ρ2)
, ql =

ρ2ϵ1 + ϵ2
4(1− ρ1ρ2)

, (44)

for j, l = 1, 2, 3, 4. After the bifurcation occurs, solution curves in zone 1 converge to a larger equilibrium

value and solution curves in the other zones decrease to compensate for the increase in zone 1. In performing

both numerical simulations, initial conditions in zone 1 were perturbed slightly to ensure the solution curves

did not rest on the potentially unstable equilibrium in equation (44). We conjecture that it is for this reason

that hostility levels increase in zone 1, as opposed to any of the other zones.

In Figure 6(b), prior to the bifurcation, the system converges to a natural equilibrium, which, according
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(a) A scenario with distance metric given by D
(1).

(b) The same scenario but with distance metric given by D
(2).

Figure 6: The sum of the two solution curves in each zone, for two different sets of parameter values for

scenarios defined by D(1) and D(2) in equation (43). For the two scenarios, the parameters values are, in

the case of the solid line, ρ1 = 0.75, ρ2 = 0.8, ϵ1 = ϵ2 = 0.4, and β = 1; and, in the case of the dashed line,

ρ1 = 0.8, ρ2 = 0.9, ϵ1 = ϵ2 = 0.4 and β = 1.
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to the numerical simulation, is given by

p1 = 0.21, p2 = 0.25, p3 = 0.25, p4 = 0.21,

q1 = 0.20, q2 = 0.23, q3 = 0.23, q4 = 0.20.

In this case, the hostility levels are not equal across zones. The relative values of the equilibrium emphasise

the spatial structure of the system, since zones 2 and 3 are the zones that are closest to all other zones

and will therefore have the greatest interaction with the other zones. The equilibrium brought about by

the magnitude of aggression in the system being less than ρ̂ is not the equilibrium that leads to equality

of resulting hostility across zones, but represents a spatially-weighted equilibrium in which zones that are

closest to other zones naturally contain higher levels of hostility than zones that are farther away.

After the bifurcation, a different equilibrium is found and a bifurcation is observed with this different

spatial structure. Similarly to the previous example, zone 1 is given perturbed initial conditions to avoid

resting on an unstable equilibrium. However, in this case, rather than zone 1 experiencing a dramatic increase

in hostility levels, zone 2 is the one that increases. It is hypothesised that this is due to the more central

location of zone 2 in comparison to zone 1.

This section has explored the application of the model to two spatial conflict scenarios. The two eight-

dimensional models considered have been shown to contain bifurcation-type behaviour for feasible parameter

values, supporting the hypothesis that the bifurcation identified in Section 4.2 exists in higher dimensions and

in more general spaces. The second example used in this section, in which the spatial structure of the system

is less symmetric, has shown that the most natural equilibrium to which the system appears to converge for

small values of ρ1 and ρ2 is not necessarily an equilibrium with equal hostility levels in each zone, as was the

case for the first example. Instead, the model appears to converge to a spatially-weighted equilibrium, for

which adversaries located closest to other adversaries have a higher resulting level of hostility. The fact that a

spatially-weighted solution is an equilibrium confirms intuition regarding the evolution of spatial conflict: it

is those areas nearest to an adversary that are likely to experience greater levels of conflict over long periods

of time. The existence of the bifurcation, however, and the somewhat unpredictable nature of resulting
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solution curves after the bifurcation has taken place, is a counter-intuitive finding that is generalised further

in the next section.

4.4 A Euclidean large N-dimensional model

Conflicts can occur over large areas and involve participants in a number of distinct locations. So far, only

scenarios involving up to four distinct locations on each side of the conflict have been considered. The model

is now investigated in higher dimensions, demonstrating how the model might be scaled up to consider

conflict occurring over large spatial scales. We test whether there is evidence that the bifurcation identified

in Sections 4.2 and 4.3 exists in these more general scenarios. To this end, the model proposed in this section

contains 100 dimensions, in which N is not necessarily equal to M , and in which a Euclidean distance metric

is used that is distinct from the zonal approach to defining the metrics used previously.

To specify the model, we first setM =
{

(x, y) ∈ R2|0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}

, so that adversaries are located

within a unit square, and we define d : M × M → R to be the Euclidean distance metric. One hundred

points in M are uniformly randomly generated and each point is uniformly randomly allocated to either one

of two adversaries. Each point is assigned an initial hostility level equal to one.

The model is then initialised with ϵ = ϵ1/N = ϵ2/M = 0.1, β = 1 and ρ1 = ρ2 = ρ. Solutions of the

system in equation (13) are numerically solved using the Runge-Kutta method. If there exists t̄ > 0 such

that

|pj(t̄+ δt)− pj(t̄)| < 10−3, |ql(t̄+ δt)− ql(t̄)| < 10−3, (45)

for j = 1, 2, ..., N and l = 1, 2, ...,M , where δt = 0.1, it is assumed that the system converges to an equilibrium

and that this equilibrium is given by the values of pj(t̄) and ql(t̄) for j = 1, 2, ..., N and l = 1, 2, ...M , where

t = t̄ is the first value of t for which the condition in equation (45) holds.

This process is repeated 100 times, ensuring that a range of random spatial configurations of the model

are tested. For each of these, equilibria for different values of ρ are calculated and these are compared using

the skewness of the distribution of equilibrium values over the different locations of one of the adversaries.
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That is, for each random spatial configuration k and for each ρ, we calculate

S(k)(ρ) =

1
N

∑N
j=1

(

p(k)j (t̄; ρ)− p̄(k)(t̄; ρ)
)3

(

1
N

∑N
j=1

(

p(k)j (t̄; ρ)− p̄(k)(t̄; ρ)
)2

)3/2
, (46)

where p̄(k)(t̄; ρ)) is the mean of the equilibrium values p(k)1 (t̄; ρ), p(k)2 (t̄; ρ), ..., p(k)N (t̄; ρ), for k = 1, 2, ..., 100.

Skewness measures the asymmetry in a set of values. If a set of values are positioned evenly on either

side of their mean, as in a Gaussian curve, the skew will be zero. If there is a long tail of large values in

comparison to the mean then the skew will be positive. Figure 7 shows the distribution of S(k)(ρ) over k as

ρ increases. The solid line represents the mean of the skew statistic over 100 random spatial configurations,

the darker shaded region represents the interquartile range (within which 50% of the values are situated),

and the lighter shaded region represents a region containing 90% of the values of the skew statistic over the

different realisations.

Increasing ρ from 0.5 slowly increases the skew statistic from a mean of around zero. As ρ increases

further, after around ρ = 0.8, the value of the skew dramatically increases before settling at a maximum.

For small values of ρ, the values are therefore largely symmetric around the mean, but, as ρ increases, a

small number of increasingly large values start to make a disproportionately large contribution to the value

of the mean. This finding is consistent with the loss of stability of a naturally weighted equilibrium as ρ

increases, providing evidence that a bifurcation persists in this more general setting.

Figures 7(a) and 7(b) show the modelled scenario for two values of ρ, one on each side of a potential

bifurcation. The colour of each point is used to distinguish between the adversaries and the position of each

point represents its location on M. The size of the point is proportional to the corresponding equilibrium

value at that location. As ρ increases, hostility becomes increasing concentrated within a small number of

locations. These locations are towards the centre of the manifold; however, it would be difficult to predict

these locations a priori, since there are many possible locations that might have experienced a similar increase

in hostility. The system with ρ = 0.9 might be considered much more unpredictable and potentially more

dangerous than the system with ρ = 0.8, in which the hostility levels are more balanced over the possible

locations. That is, we get a change from broadly-spread tension to an acute concentration of hostility levels
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Figure 7: The distribution of the skew statistic S(k)(ρ) over 100 random spatial configurations of the model

for different values of ρ. Subfigures a) and b) show the equilibrium of one spatial configuration for two

different values of ρ.
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in a very small area. In the latter case, the system might be interpreted as being on the brink of a severe

escalation in hostility.

Evidence has been presented that the bifurcation identified in Section 4.2 is persistent under a variety of

parameter values, dimensions and distance metrics. This is a significant result brought about by the spatial

disaggregation of the system, and highlights the types of insights that can be obtained using non-linear

dynamical systems analysis. In particular, according to the model, in spatially dependent systems with

increasing aggression, a qualitative change in the spatial distribution of hostility levels would be anticipated

to be observed, before the entire system becomes unstable and an arms race is initiated (according to the

original Richardson model).

5 Conclusion

We have proposed a novel method for the spatial disaggregation of models of conflict by considering how

an abstract notion of ‘threat’ flows between two adversaries. We have demonstrated this approach by

spatially disaggregating the Richardson model of conflict escalation between two adversaries, and explored

the resulting spatial dependency. A bifurcation was identified that occurs as the magnitude of aggression in

the system increases, and was shown to be persistent under a range of model specifications.

Prior to the bifurcation, for low levels of aggression in the system, solution curves are expected to converge

naturally to an equilibrium which is spatially weighted according to the relative locations of adversaries.

For higher levels of aggression in the system, once the bifurcation has occurred, the spatially weighted

equilibrium becomes unstable and the model converges to a new equilibrium in which hostility levels are

highly concentrated within a few locations. Increasing the level of aggression in the system further can, as

demonstrated in the analysis of Richardson’s original model, lead to an unstable escalating arms race. The

bifurcation hints at a potential early-warning system for real-world conflicts: with increasing aggression,

before the system results in an arms race and hostility increases exponentially, some spatial instability is

expected and particular locations may suddenly experience disproportionate increases in hostility or conflict.
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If vulnerable locations can be identified prior to such increases in aggression, then policy interventions might

seek to reduce tensions in those areas that are likely to experience this initial increase in hostility.

There are a number of avenues for further research. First, the model has been explored within a relatively

restricted region of the phase space. Specifically, it was the geographically weighted equilibrium, which was

attractive for low levels of aggregation in the system, and the deviation from this equilibrium as the level

of aggression increased, that was explored. Since the model is nonlinear, a number of other trajectories

and equilibrium solutions are possible. The analysis was also not extensive with respect to the range of

parameters considered and thus further research might do more to comprehensively explore the parameter

space. Further investigation into the nature of the bifurcation—for example, via a centre manifold reduction

that employs equivariant bifurcation theory or via parameter-following computational techniques—might

lead to a greater understanding as to its emergence and persistence. Finally, the model has not yet been

applied to real-world scenarios in order to assess its empirical validity. Calibration of the model against

empirical data might determine where the system lies in the phase space, and therefore might indicate

whether the system is near to an undesirable bifurcation.

The analysis presented here is a significant contribution to the literature exploring spatial dependency

in models of human conflict. We have presented an alternative method based on the principle of maximum

entropy for capturing such dependency, which alleviates some of the problems that might be encountered

when employing reaction-diffusion dynamics. In addition, the spatial disaggregation of the Richardson model

provides an analytical framework to explore a range of conflict scenarios that play out over some manifold

with an associated metric. The identification of a bifurcation that occurs as a result of this disaggregation

highlights the complex dynamics that the model is capable of exhibiting, as well as providing potential

insights into how the spatial distribution of conflict evolves in systems with increasing aggression.
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González, E. and Villena, M. 2011. Spatial Lanchester models. European Journal of Operational Research,

210(3):706–715.

Harris, B. and Wilson, A. 1978. Equilibrium values and dynamics of attractiveness terms in production-

constrained spatial-interaction models. Environment and Planning A, 10:371–388.

Ilachinski, A. 2004. Artificial War: Multiagent-Based Simulation of Combat. World Scientific Publishing

Co. Pte. Ltd., Singapore.

Intriligator, M. D. and Brito, D. L. 1988. A predator-prey model of guerrilla warfare. Synthese, 2:235–244.

Jackson, S., Russett, B., Snidal, D., and Sylvan, D. 1978. Conflict and coercion in dependent states. Journal

of Conflict Resolution, 22(4):627–657.

Karmeshu, M., Jain, V., and Mahajan, A. 1990. A dynamic model of domestic political conflict process.

Journal of Conflict Resolution, 34(2):252–269.

Keane, T. 2011. Combat modelling with partial differential equations. Applied Mathematical Modelling, 35

(6):2723–2735.

Kress, M. and MacKay, N. J. 2014. Bits or shots in combat? The generalized Deitchman model of guerrilla

warfare. Operations Research Letters, 42:102–108.

Lanchester, F. W. 1916. Aircraft in Warfare: The Dawn of the Fourth Arm. Constable and Company

Limited, London.

Liebovitch, L. S., Naudot, V., Vallacher, R., Nowak, A., Bui-Wrzosinska, L., and Coleman, P. 2008. Dy-

namics of two-actor cooperation-competition conflict models. Physica A: Statistical Mechanics and its

Applications, 387(25):6360–6378.

Lotka, A. J. 1925. Elements of Physical Biology. Williams & Wilkins Company, Baltimore.

31



Mandelbrot, B. 1967. How long is the coast of britain? Statistical self-similarity and fractional dimension.

Science, 156(3775):636–638.

Pitcher, A. B. 2010. Adding police to a mathematical model of burglary. European Journal of Applied

Mathematics, 21:401–419.

Protopopescu, V. and Santoro, R. 1989. Combat modeling with partial differential equations. European

Journal of Operational Research, 38:178–183.

Qubbaj, M. and Muneepeerakul, R. 2012. Two-actor conflict with time delay: A dynamical model. Physical

Review E, 86(5):056101.

Richardson, L. F. 1952. Contiguity and deadly quarrels: The local pacifying influence. Journal of the Royal

Statistical Society. Series A (General), 115(2):219–231.

Richardson, L. F. 1960. Arms and Insecurity. The Boxwood Press, Pittsburgh, PA.

Richardson, L. F. 1961. The problem of contiguity; an appendix to statistics of deadly quarrels. General

Systems Yearbook, 6:140–87.

Rojas-Pacheco, A., Obregón-Quintana, B., Liebovitch, L. S., and Guzmán-Vargas, L. 2013. Time-delay

effects on dynamics of a two-actor conflict model. Physica A: Statistical Mechanics and its Applications,

392(3):458–467.

Saperstein, A. M. 2007. Chaos in Models of Arms Races and the Initiation of War. Complexity, 12(3).

Senior, M. 1979. From gravity modelling to entropy maximising: a pedagogic guide. Progress in Human

Geography, 3:175–210.

Short, M. B., Bertozzi, A., and Brantingham, P. 2010a. Nonlinear patterns in urban crime: Hotspots,

bifurcations and suppression. SIAM Journal of Applied Dynamical Systems, 9(2):462–483.

32



Short, M. B., Brantingham, P. J., Bertozzi, A. L., and Tita, G. E. 2010b. Dissipation and displacement of

hotspots in reaction-diffusion models of crime. Proceedings of the National Academy of Sciences, 107(9):

3961–3965.

Smith, L. M., Keegan, M. S., Wittman, T., Mohler, G. O., and Bertozzi, A. L. 2010. Improving density

estimation by incorporating spatial information. EURASIP Journal on Advances in Signal Processing,

2010:265631.

Tobler, W. R. 1970. A computer model simulating urban growth in the Detroit region. Economic Geography,

46:234–240.

Wilson, A. G. 1967. A statistical theory of spatial distribution models. Transportation Research, 1.

Wilson, A. G. 1970. Entropy in Urban and Regional Modelling. Pion, London, UK.

Wilson, A. G. 2006. Ecological and urban systems models: Some explorations of similarities in the context

of complexity theory. Environment and Planning A, 38:633–646.

Wilson, A. G. 2008. Boltzmann, Lotka and Volterra and spatial structural evolution: An integrated method-

ology for some dynamical systems. Journal of the Royal Society, Interface / the Royal Society, 5(25):

865–71.

Zinnes, D. A. and Muncaster, R. G. 1984. The dynamics of hostile activity and the prediction of war.

Journal of Conflict Resolution, 28(2):187–229.

33


