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Thesis abstract 

This thesis arose from a 2006 study performed by the author and his collaborators that 

attempted to gain regulatory approval for computer-assisted detection (CAD) software. 

The USA Food & Drug Administration (FDA) obliged us to use the change in the area 

under the receiver-operator characteristic curve (ROC AUC) as our primary outcome. 

Despite its wide dissemination in radiology research, we found implementation of  ROC 

AUC very problematic. This thesis explores the hurdles we encountered and argues for 

an alternative approach. 

Chapter 1 describes the rationale for and against ROC AUC as a measure of 

diagnostic performance. An alternative analysis based on net benefit is proposed on 

the basis that it is more transparent and simpler to interpret. 

Chapter 2 uses the net benefit method to analyse a multi-reader multi-case (MRMC) 

study of CAD for CT colonography. The analysis requires an estimate of relative 

misclassification costs for false-negative versus false-positive diagnoses; “W”. This 

study used a conservative value for W, arrived at via consensus. 

In Chapter 3 an evidence-based value for W in the context of screening for colorectal 

cancer and polyps by CT colonography is arrived at via a discrete choice experiment 

(DCE) of patients and healthcare workers. 

Chapter 4 uses the value for W obtained in Chapter 3 in a net benefit analysis to 

compare observer performance in two MRMC studies of CAD for CT colonography. 

Chapter 5 obtains W by DCE for a different clinical context – detection of extracolonic 

pathology by CT colonography. 

Chapter 6 describes a systematic review that aims to determine whether reporting of 

MRMC ROC AUC methods in the radiological literature is comprehensive. 

Chapter 7 then provides guidelines for the comprehensive reporting of MRMC ROC 

AUC studies. 

The thesis finishes with a summary of the work performed and suggestions for further 

research. 
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Chapter 1: Disadvantages of using the area under the 
receiver operator characteristic curve (ROC AUC) to 
assess imaging tests: A discussion & proposal for an 
alternative approach. 

 

This Chapter has been published as: 

Halligan S, Altman DG, Mallett S. Disadvantages of using the area under the receiver 

operating characteristic curve to assess imaging tests: A discussion and proposal for 

an alternative approach. European Radiology 2015:25:932-9.   

Winner, Gold Medal for best GI paper published in European Radiology. 

 

Abstract  

Aim To describe the disadvantages of the area under the receiver operating 

characteristic curve (ROC AUC) to measure diagnostic test performance. To propose 

an alternative based on net benefit. 

Methods Narrative review supplemented by data from a study of computer-assisted 

detection for CT colonography. 

Results We identified problems with ROC AUC: Confidence scoring by readers was 

highly non-normal and score distribution bimodal. Consequently, ROC curves were 

highly extrapolated with AUC mostly dependent on areas without patient data. AUC 

depended on the method used for curve-fitting. ROC AUC does not account for 

prevalence or different misclassification costs arising from false-negative and false-

positive diagnoses. Change in ROC AUC has little direct clinical meaning for clinicians. 

An alternative analysis based on net benefit is proposed, based on the change in 

sensitivity and specificity at clinically relevant thresholds. Net benefit incorporates 

estimates of prevalence and misclassification costs, and is clinically interpretable since 

it reflects changes in correct and incorrect diagnoses when a new diagnostic test is 

introduced. 

Conclusions ROC AUC is most useful in the early stages of test assessment whereas 

methods based on net benefit are more useful to assess radiological tests where the 

clinical context is known. Net benefit is more useful for assessing clinical impact.  
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Introduction 

Most of our working week as radiologists is concerned with diagnostic tests: we 

interpret medical images with the aim of detecting disease. The choice between one 

test or another (e.g. CT or MRI?) will depend on a variety of factors including 

availability and cost. However, for the most part, the choice is influenced by how 

effectively the test and its interpretation by a radiologist detects or excludes the 

disease being considered by the referring clinician. In this sense, the radiologist is 

acting as a “classifier”(1), whose task is to sort patients into disease-positive and 

disease-negative cases. Sensitivity, the ability of a test to identify patients with disease, 

is a measure of diagnostic test accuracy that is very familiar to radiologists. At the 

same time we must also consider specificity, the ability of a test to identify patients who 

do not have disease. Sensitivity and specificity are inextricably linked and usually move 

in different directions. Most obviously, if we designated every image we interpreted as 

positive for disease, then we would have 100% sensitivity but 0% specificity, which 

means all normal patients would be subjected to unnecessary further investigation and 

possibly treatment, which would be inconvenient, illogical, precipitate anxiety, and be 

extremely costly! Conversely, if we called every image negative, then specificity would 

be perfect but sensitivity would be 0% and we would never diagnose any pathology. 

Although sensitivity and specificity are "two sides of the same coin" and should virtually 

always be considered together, it is sometimes difficult to do so, especially when 

comparing between different tests. For example, if one test has high sensitivity and 

another high specificity, which is best? Combining both sensitivity and specificity into a 

single measure of diagnostic accuracy facilitates comparisons between different tests. 

For radiologists, the most familiar combined measure is the area under the receiver-

operator-characteristic curve, usually abbreviated to “ROC AUC” (2). 

 

The ROC plot 

A ROC curve is a plot of the true-positive rate (y-axis) of a test against the 

corresponding false-positive rate (x-axis), i.e. sensitivity against 1-specificity. A 

fundamental building block of the ROC curve is the concept of test performance at 

different “diagnostic thresholds”. Some diagnostic tests give a simple “yes/no” answer. 

One such example might be urinalysis for glucose; glucose is either present or absent. 

However, analysis of plasma glucose is different – there is a normal range of values for 

fasting blood glucose, 3.9 to 5.8 mmol/L. Diagnosis of diabetes becomes increasingly 

more likely as fasting blood glucose rises above this but, for example, not everyone 

with a level of 6.3 mmol/L will have diabetes; i.e. there is a “grey” area where diagnosis 
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is uncertain. It follows that the proportion of patients who truly have diabetes and those 

who do not will change with the threshold used for a positive diagnosis.  

 

Interpretation of radiological images is one diagnostic scenario where diagnostic 

thresholds vary, and where the thresholds are made and used by a human observer. 

Take diagnosis of colon cancer by CT colonography as an example. Imagine a study 

where a radiologist is confronted by scans from 100 patients, 50 of whom have colon 

cancer (i.e. a prevalence of abnormality of 50%). We would certainly expect a 

competent radiologist to get the diagnosis right more often than not but there will be 

occasions when this does not happen. Subtle cancers may not be seen or perhaps 

they are seen but misinterpreted as colonic spasm. Occasionally, even “obvious” 

tumours are missed and some cancers will be too small to be resolved adequately by 

the scan. As radiologists, we are all too familiar with the concept of uncertainty in our 

diagnosis. A measure of this uncertainty can be captured by asking the radiologist to 

attribute a confidence score to his/her diagnosis for each individual case. The following 

categories might be appropriate for colon cancer: “definitely normal”, “probably 

normal”, “equivocal”, “probably cancer”, “definitely cancer”.  The BI-RADS score for 

mammography is a well-known example of this type of rating used in daily diagnostic 

practice; “negative”, “benign”, “probably benign”, “suspicious”, “highly suggestive of 

malignancy”(3). In some situations, a rating system from 0 (definitely no disease) to 

100 (definitely disease) is used in an attempt to elicit finer rating detail(4). Such 

confidence scores are an amalgam of whether disease is or is not resolved by the test 

(technical adequacy) and whether the radiologist has or has not seen the abnormality 

subsequently and then interpreted it correctly (diagnostic accuracy).  

 

Of course, in reality, each patient either has cancer or not, so the issue arises of how to 

extract a binary diagnosis from such rating scales. For example, to determine how 

effective CT colonography is for detection of cancer, we might apply both CT and an 

independent reference test to patients with and without the disease, thus providing a 

CT diagnosis and a “ground-truth” or “Gold-standard” diagnosis for each patient. We 

could then apply a diagnostic threshold (cut-point) to the scale of diagnostic certainty, 

i.e. a point on the rating scale at which (and above) the patient is believed to have 

cancer and below which they do not. This result is then compared with the reference 

standard diagnosis, thereby calculating the number of correct (true-positive) and 

incorrect (false-negative) diagnoses for patients with and without disease at each 

threshold. For example, if we apply a threshold at “definitely cancer” then the large 

majority of patients labeled as such by CT will prove to have cancer (if CT is accurate). 

However, because of the uncertainties noted above, there will likely be many patients 
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labeled at the “probably cancer” threshold and below who also have the disease but 

who will be missed with a diagnostic threshold set at “definitely cancer”. Dropping the 

diagnostic threshold to “probably cancer” will therefore increase the proportion of 

positive patients identified; i.e. sensitivity increases. However, at the same time more 

patients without disease will be erroneously labeled as positive; i.e. the false-positive 

fraction will increase (decreased specificity). Plotting the proportion of true-positive 

against false-positive patients at each diagnostic threshold will build the ROC curve.  

 

Table 1 below shows a data table for our hypothetical study of CT colonography: 

 

Table 1: Data from a hypothetical study of diagnosis of colorectal cancer by CT colonography 
showing 50 patients with and 50 patients without cancer by reference standard, and the 
diagnostic rating score attributed by a radiologist observer who uses the following scale to rate 
their belief that cancer is present or absent: 1 – Definitely normal; 2 – Probably normal; 3 – 
Equivocal; 4 – Probably has cancer; 5 – Definitely has cancer. 
	  

 Rating score 
Reference diagnosis 1 2 3 4 5 

Cancer 2 5 10 18 15 
No cancer 15 18 10 5 2 
 

If we apply the diagnostic threshold for cancer at 5 (“definitely cancer”) then 15 patients 

with cancer are diagnosed correctly (true-positive), as are 48 without (true-negative). 

However 35 patents with cancer have been “missed” (false-negatives) and 2 patients 

without cancer diagnosed with disease (false-positives); i.e. sensitivity = 0.30 and 

specificity = 0.96. 

 

Dropping the diagnostic threshold to include those patients labeled “probably cancer” 

results in 33 true-positives at the cost of 7 false-positives. At this threshold sensitivity = 

0.66 and specificity = 0.86. 

 

A diagnostic threshold dropped to include “equivocal” patients means 43 true-positives 

and 17 false-positives; sensitivity = 0.86, specificity = 0.66.  

 

A diagnostic threshold dropped to include “probably not cancer” patients means 48 

true-positives and 35 false-positives; sensitivity = 0.96, specificity = 0.30.  

 

Of course, dropping the diagnostic threshold to include “definitely not cancer” (a small 

proportion of whom may actually have cancer) will mean that all possible thresholds 
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entail a positive diagnosis; i.e. there are 50 true-positives but also 50 false-positives; 

sensitivity = 1.0, specificity = 0.0.  

 

The figure below is a graph that plots these sensitivity/specificity pairs for each 

diagnostic threshold, i.e. a ROC plot.  

 

Figure	  1:	  ROC plot of the data shown in Table 1. The diagnostic thresholds from which 
the curve is built are labelled on the curve; for example, “Threshold 4” indicates the 
sensitivity and corresponding false positive rate at the diagnostic threshold of “Probably 
has cancer” (Threshold explanations are described in the legend for Table 1). The 
empiric ROC AUC is 0.828 (all ROC curves drawn using Eng J. ROC analysis: web-
based calculator for ROC curves. Baltimore: Johns Hopkins University 2006. Available 
from: http://www.jrocfit.org). 

	  

 

 

ROC AUC 

As explained in the section above, the ROC plot therefore describes the diagnostic 

performance of a test over the whole range of possible thresholds. Performance is 

usually summarised across all these thresholds using ROC AUC, corresponding to the 

area under the curve. The maths are complex but, in simple terms, they calculate how 
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likely it is that the test will rank two patients, one with disease and one without, in the 

correct order of their likelihood of having disease, across all possible thresholds(1, 5). 

A more intuitive way to express AUC is the chance that a randomly selected patient 

with disease will be ranked above a randomly selected patient without disease(2). 

Thus, the greater the AUC, the better the test at achieving this separation. A perfect 

test would have 100% sensitivity with a false-positive fraction of 0. This point lies at the 

extreme top left hand corner of the ROC plot space and a test this accurate at all 

thresholds would have an AUC of 1.0. If the ROC curve is a straight line connecting the 

extreme bottom-left (sensitivity, FPR: 0,0) and top-right (1,1) corners of the ROC plot 

space (sometimes called the “chance diagonal”) this describes a test with no 

discriminatory ability; AUC = 0.5 (equivalent to picking a test result by tossing a coin). 

The AUC for the data in Figure 1 is 0.828, indicating a test that is better than chance at 

discriminating patients with disease.  

 

In table 2 below, test sensitivity has been inflated while specificity remains the same as 

in Table 1.  

 

Table 2: Example data for the situation where CT more sensitive than the test in Table. 1 but 
which retains identical specificity. 
	  

 Rating score 
Reference diagnosis 1 2 3 4 5 
Cancer 1 2 5 22 20 
No cancer 15 18 10 5 2 
 

The ROC plot for these data is shown in Figure 2 below; the curve has moved upwards 

compared to figure 1 and ROC AUC rises to 0.891.  
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Figure 2: ROC plot of data from Table 2. The empiric AUC is 0.891. 
	  

 
 

Conversely, in table 3 below, test specificity has been inflated by the same amount but 

sensitivity remains the same as in table 1; The AUC again rises to 0.891 again but the 

shape of the curve is different to Figure 2, having moved towards the y-axis, reflecting 

the fact that specificity rather than sensitivity has improved.  

 

Table 3: Example data for the situation where CT is more specific than the test in Table. 1 but 
which retains identical specificity. 
	  

 Rating score 
Reference diagnosis 1 2 3 4 5 
Cancer 2 5 10 18 15 
No cancer 20 22 5 2 1 
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Figure 3: The Roc curve for these data is shown below. The empiric ROC AUC is 0.891. The 
curve has moved to the left compared to Figure 1. 
	  

 

 
In table 4 below, sensitivity has been raised to the level seen in table 2 but these gains 

are exactly mirrored by loss of specificity.  
 
Table 4: Example data for the situation where CT is as sensitive as the test in table1 but where 
these gains are exactly offset by diminished specificity. 
	  

 Rating score 
Reference diagnosis 1 2 3 4 5 
Cancer 1 2 5 22 20 
No cancer 1 2 5 22 20 
 

Figure 4 below shows the ROC plot arising from these data. This time the curve is 

actually a straight line and the empiric AUC is 0.5, suggesting the test has no 

discriminatory value.  
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Figure 4: ROC plot for the data presented in table 4. The empiric ROC AUC is 0.50. 
	  

 

 

When faced by an individual patient and their test result in clinical practice, we must 

settle on a threshold that denotes a positive test. The ROC plot is actually a composite 

of two distributions of diagnostic certainty, i.e. for patients both with and without 

disease. Figure 5 below shows the distribution of confidence scores for diseased and 

normal patients plotted separately (data taken from Figure 1). The two distributions 

cross at a confidence score of 3. The threshold that best separates patients with and 

without disease can be estimated by looking at the ROC plot (Figure 1) and identifying 

the threshold on the cure that lies nearest to the top left-hand corner of the plot space. 

This “best operating point” can be moved to maximise sensitivity at the expense of 

specificity, and vice-versa, but is conventionally placed where the test optimally 

separates diseased from non-diseased patients.  
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Figure 5: Plot of data from Figure 1. The x-axis represents confidence scores and the y-axis 
their frequency. Patients with cancer are represented by the dashed line and patients without 
cancer by the solid line. The two distributions cross at a confidence score of 3, indicating that 
this is the diagnostic threshold that best separates patients with and without cancer. Moving this 
boundary to the right or left of the graph is akin to raising or lowering the diagnostic threshold 
respectively. If CT were perfect at discriminating between patient groups, the two distributions 
would not cross. The less good a test at discriminating between diseased and non-diseased 
patients, the more the two distributions will overlap. 
	  

 

 

MRMC ROC studies 

When performing studies of radiological tests, it is usually desirable to have as many 

readers as possible who each read multiple cases. Such studies are known as “multi-

reader, multi-case” studies (MRMC)(6, 7). The MRMC design is popular because once 

a radiologist has viewed 20 cases there is less information to be gained by asking him 

to view a further 20 than by asking a different radiologist to view the same 20. This 

procedure enhances the generalisability of study results (i.e. the extent to which study 

results reflect the “real-world” situation) and having multiple readers interpret multiple 

cases enhances statistical power. Because multiple radiologists view the same cases, 

“clustering” occurs. For example, small lesions are generally seen less frequently than 

larger lesions, i.e. reader observations are clustered within cases. Similarly, more 

experienced readers are likely to perform better across a series of cases than less 

experienced readers, i.e. results are correlated within readers. For MRMC studies 

complex bootstrap resampling and multilevel modelling is needed to account for 
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clustering, linking results from the same observers and cases, so that 95% confidence 

intervals are not spuriously narrow (8). 

 

If 100 different radiologists were asked to rate the CT scans from our hypothetical 

study, then we would likely get 100 different ROC curves. Several factors underpin this: 

Some radiologists will be more experienced than others, some will have more intrinsic 

competence, and all will have differing internal thresholds (also known as implicit 

thresholds) for calling disease  – we are all aware of colleagues who have reputations 

as “over-callers” or “under-callers”. The net result is that because diagnosis for the 

same image may differ depending upon who is interpreting it, there is no single ROC 

curve for any imaging modality that incorporates human interpretation. The curve is 

therefore an amalgam of both the intrinsic technical ability of the test to resolve disease 

and the ability of the radiologist to detect it. On average, we would expect the more 

able and/or experienced radiologists to have a greater AUC than those who are less 

able and/or experienced.  

 

What are the advantages of ROC AUC? 

ROC AUC is a single metric and so it is easy to compare between different tests 

without having to conceptually “juggle” with sensitivity and specificity values that 

usually move in different directions. Proponents state that by measuring and averaging 

across all possible diagnostic thresholds the total “inherent” performance of a test is 

determined. This is achieved irrespective of an individual threshold used for diagnosis, 

and ROC is constant across the prevalence of abnormality in the dataset(4).  

 

Some proponents argue that it is most sensible to have a method that simply compares 

diagnostic accuracy across all possible diagnostic thresholds, and one that is 

independent of prevalence. For example, Zweig and Campbell wish to look at the 

performance of a laboratory test in isolation across all scales of measurement since 

they argue this provides the best assessment of intrinsic test accuracy(9). They go on 

to argue that different misclassification costs and prevalence (both discussed in the 

sections below) are important but should not be incorporated into ROC AUC since 

doing so detracts from clarity around the intrinsic accuracy of the test itself(9). The fact 

that no a priori knowledge is needed regarding the diagnostic thresholds at which a test 

would likely be used in clinical practice could be regarded as an advantage of ROC 

AUC. This is especially the case where such clinical diagnostic thresholds are simply 

not established. 
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Also, the ROC curve accounts for different thresholds existing between readers, known 

as “response criteria”. The assumption is that each individual technology has its own 

intrinsic ROC curve and that different readers will lie at different points on this same 

curve. The visual nature of data means that it is easy to compare different curves, 

especially they are displayed on the same scale.  

 

What are the disadvantages of ROC AUC? 

 

Clinical comprehension and relevance 

ROC AUC combines across sensitivity and specificity values yielding a single metric 

that facilitates comparison between diagnostic tests. However, sensitivity and 

specificity are familiar to clinicians and easy for them to understand. In contrast, ROC 

AUC has little meaning for clinicians (especially non-radiologists), patients, or health-

care providers. While it can be appreciated that a test whose AUC is 0.9 is “better” than 

one whose AUC is 0.8, how does this translate into gains in terms of patients 

diagnosed with and without disease?  

 

It is well-established that the capabilities of a diagnostic test are best understood by 

patients and clinicians when presented in terms of gains and losses to individuals(10), 

and are most meaningful when these gains/losses are presented at diagnostic 

thresholds relevant to clinical practice, along with the appropriate clinical context and 

representative disease prevalence. ROC AUC is not directly reconcilable to individual 

patients and so lacks clinical interpretability, and it is obscure what change in AUC is 

clinically important. The ROC curve itself suggests an operating point that best 

separates diseased from non-diseased patients, and this can be explained in terms of 

gains and losses to individual patients, but ROC AUC plays no role once an individual 

threshold has been identified. Moreover, clinicians are uninterested in diagnostic 

performance across all possible thresholds. Rather, they are only interested in those 

thresholds that are clinically relevant to their decision-making. How a test performs at 

near 100% sensitivity or specificity is clinically absurd in most cases. Interpreting the 

entire AUC gives clinically illogical or irrelevant thresholds the same weight as those 

that are reasonable and important. Moreover, two different tests may have the same 

AUC overall but have very different performance characteristics at the diagnostic 

threshold most appropriate to clinical practice. The use of “partial” AUC (PAUC), which 

considers the area under segments of the curve near to important clinical 

thresholds(11) is proposed as a means to focus performance onto the most relevant 



	   24	  

thresholds. However, choosing a relevant range of thresholds may often prove more 

problematic than simply picking a single clinically relevant threshold.  

 

Are sensitivity and specificity equally important? 

On average, the calculation of ROC AUC treats sensitivity and specificity as equally 

important. Notably, the conventional operating point occurs where the test optimally 

separates diseased and non-diseased patients (Figure 5). But what if sensitivity and 

specificity are not equally important? On reflection, it is obvious that the clinical 

consequences of gains/losses in sensitivity are not equivalent to those for specificity. 

Taking our CT colonography example, ROC AUC on average regards a true-positive 

diagnosis of cancer as equally beneficial as a true-negative diagnosis, and a false-

negative diagnosis as equally detrimental as a false-positive. It follows that, when using 

ROC AUC as a performance measure, a false-positive diagnosis of cancer on CT 

colonography is valued on average as equivalent to a missed diagnosis of cancer. The 

consequence for the first patient is an unnecessary colonoscopy that will ultimately 

prove to be normal whereas the consequence for the second is delayed treatment or 

even death. No-one would argue that these two situations are clinically equivalent yet 

they are treated as equivalent when ROC AUC is used as a measure of diagnostic 

performance. Supporting this, a mammographic study found that women were 

prepared to tolerate up to 500 false-positive diagnoses in order to achieve a single 

additional true-positive diagnosis of cancer(12). Indeed, Lusted's original statistical 

decision analysis for diagnosis of active tuberculosis rated the cost of one false 

negative as equivalent to 400 false positive diagnoses(13).  

 

Take the example given in Figure 4: Here sensitivity at a diagnostic threshold of a 

confidence score of 3 or more was raised to 94% for patients with cancer but was 

offset by equally diminished specificity with the results that the AUC is 0.5. Would 

patients and doctors agree the test is of no value at all? While the author would not 

argue that sensitivity should be enhanced at the cost of such enormously diminished 

specificity, there are many clinical scenarios where the modest gains in sensitivity 

achieved by a new test would be exchanged willingly for a proportionally larger drop in 

specificity. Analyses that do not account for this risk finding the new test of no value 

when patients and their doctors might consider otherwise. ROC AUC does not allow for 

any clinical differentials in “misclassification cost” for patients with and without disease 

and, furthermore, such costs are not clinically equivalent across the whole range of 

possible diagnostic thresholds(1). While in practice it may be difficult to quantify 

precisely the exact weights of false-positive versus false-negative misclassifications 
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(because these may change over time and vary according to external cultural and 

economic conditions) it is likely that something will be known about this ratio(14). 

 

While it is widely believed that ROC AUC weighs changes in sensitivity and specificity 

equally (i.e. any gain in test sensitivity would be exactly negated by an equivalent drop 

in specificity), this is only true for one point on the curve, where the gradient equals 

one. Other points on the curve assign different weights for sensitivity and specificity, 

which are determined by the shape of the curve, without reference to any available 

clinically meaningful information. It must be clarified that where the gradient equals 1 

then while an increase in sensitivity and a similar decrease in specificity do carry equal 

weight, that does not mean that a false-negative and a false-positive are considered 

equally undesirable – this only applies when the prevalence of abnormality is 0.50 (see 

section on prevalence below). In most clinical situations, prevalence is <0.10, with the 

result that there are more than 9 extra false-positive events for each false-negative 

avoided. It is necessary to correct for prevalence odds in order to translate ROC 

increments into consequences for individual patients.  

 

Test specificity is low in situations where most of the AUC is derived from the right 

hand side of the plot. For example, a 5% improvement in sensitivity contributes less to 

the AUC at values of high specificity, than the same improvement at low specificity. 

Thus AUC would consider a test that increased sensitivity at low values of specificity 

superior to a test that increased sensitivity at high values of specificity, which is not 

clinically meaningful. For example, when screening, better tests increase sensitivity at 

high values of specificity so that the programme is not overwhelmed by false-positive 

detections(15).  

 

It should be noted that it is possible to implement misclassification costs into ROC AUC 

analysis, as described by Zweig and Campbell(9), but the procedure is far from 

straightforward and, furthermore, does not appear to have filtered into study analyses 

(see systematic review, Chapter 6).  

 

Confidence scores may be inconsistent and unreliable 

Confidence scores are needed to build ROC plots when human observers interpret the 

test output, and radiology is the prime example. Confidence scores are not necessary 

where the test result is on a continuous scale such as occurs for laboratory tests, such 

as the blood glucose example already given – no human interpretation is needed and 

the value for blood sugar can simply be plotted against the reference diagnosis for the 
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patient (diabetic or not) across the whole range of values. In this context, ROC AUC 

can be very valuable to determine the intrinsic accuracy of a test, a fact noted by 

laboratorians(9). However, to build ROC plots from interpretation of medical image 

data by radiologists, it is necessary to assign a confidence score that reflects 

observers’ belief that the image is abnormal or not. This fundamental principle 

underpins the shape of the ROC curve but there is no evidence that scores assigned in 

this way are consistent and reliable. Scores can vary across radiologists for reasons 

completely unrelated to diagnostic certainty. For example, a study asking what is 

meant by "high confidence", found that radiologists gave 10 different interpretations 

including, "the image quality is good", "the finding is obvious", and "the finding is 

familiar"(16). Confidence scales must be ordinal, i.e. levels should be ranked in a 

meaningful order with a constant difference between them. However, radiologists may 

assign scales nominally. For example, BI-RADS 2 (benign abnormality) does not imply 

a greater suspicion of cancer than BI-RADS 1 (no abnormality), leading to variability 

and error(3). 

 

Consistent scoring is perturbed further by the multi-faceted nature of the radiological 

task. Take pulmonary nodules for example. A confidence score may be assigned to the 

probability that a nodule is present or absent, and also to whether a nodule (if present) 

is benign or malignant. A third score may be attached to where the abnormality is 

located. Thus there are three potential tasks – detection, localisation and 

characterisation. It is a prerequisite for ROC AUC analysis that confidence scores are 

distributed normally or can be transformed to a normal distribution. This is particularly 

difficult to achieve for identification tasks because, having once perceived an 

abnormality, readers are unlikely to then state they did so with low confidence. For 

example, the author, wishing to determine the utility of computer-assisted-detection 

(CAD) for diagnosis of colorectal polyps (17) was obliged by the USA Food and Drug 

Administration (FDA) to use ROC AUC as the primary outcome measure for the 

purpose of licensing the software. Adhering to guidance (6, 18), the author asked 

readers to score for the presence/absence of colorectal polyps at the patient level 

using a 100-point scale, with 100 reflecting complete confidence that a polyp was 

present and 0 the certain belief that no polyp was present. At the same time readers 

were asked to classify patients as normal or abnormal and, if believed abnormal, a 

confidence score was assigned to this belief. There were 60 patients with polyps and 

47 normal patients (17). Having believed they had identified a polyp, confidence scores 

assigned by readers were influenced strongly by polyp size, with larger polyps 

attracting higher scores. In contrast, where no polyp was identified patients were 

assigned no score. Furthermore, by definition observers do not see false-negative 
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polyps and so were not able to score these. In true-negative patients, confidence 

scores assigned to a polyp by readers can only apply to false-positive detections. In 

studies with 50% prevalence of abnormality, half of the patients may attract no per-

polyp confidence score. It is possible to impose a score of zero when coding the data 

but this introduces a second scoring method that is inconsistent with reader scores and 

imposes two different scoring methods on two different groups of patients. Confidence 

scores were therefore bi-modal and highly non-normal because, in effect, there were 

two different distributions, one continuous and one binary (Figure 6). It is often 

suggested that extensive scales (e.g. 100-points) and encouragement to use the whole 

range available will broaden distributions (4) but this contradicts clinical practice where 

binary decisions are appropriate. Gur et al (19) have stated that, "even when observers 

provide a distribution of confidence ratings, it may be more representative of the 

subtleness of the depicted abnormality rather than the confidence that the observer 

actually ‘saw’ or did not ‘see’ it."  

 

The binormal distribution is most often used to construct the ROC curve; i.e. it is 

assumed that confidence scores for both disease positive and negative patients are 

normally distributed, or can be transformed by a monotonic distribution (20). When 

publically available MRMC software is used for ROC AUC modelling, this often 

requires assumptions of normality for confidence scores or their transformations when 

ROC curve fitting methods are used, especially for the older and most prevalent DBM 

(Dorfman Berbaum Metz) software; many studies, especially older research, use this 

software. However, where confidence scores are not normally distributed these 

software methods are not recommended (21-24). Although Hanley shows that ROC 

curves can be reasonable under some distributions of non normal data (25), concerns 

have been raised, particularly in imaging detection studies that measure clinically 

useful tests with good performance to distinguish well-defined abnormalities. In tests 

with good performance two factors make estimation of ROC AUC unreliable. Firstly, a 

“good” test means that true-positive and true-negative diagnoses tend to be confident 

with the result that readers’ scores are often at each end of the confidence scale. 

Accordingly, the confidence score distributions for normal and abnormal cases have 

very little overlap (19, 21-23, 26). Secondly, tests with good performance also have few 

false positives making ROC AUC estimation highly dependent on confidence scores 

assigned to possibly fewer than 5% or 10% of cases in the study (21). Thus, a wide 

range of confidence scores would be unexpected in a test that performed well, for 

example one that was ready for clinical implementation. However, a wide range of 

scores is necessary to build the ROC curve. When scores are not normally distributed, 

even if non parametric approaches are used to estimate ROC AUC, this lack of 



	   28	  

normality may indicate additional problems with obtaining reliable estimates of ROC 

AUC (19, 21-23, 26).  

 
Figure 6: Histogram of confidence ratings ascribed by 10 radiologists in a prior study of CT 
colonography(17). The dark brown bars represent ratings for 107 patients (of whom 60 had 
colon polyps) when using computer-assisted detection (CAD) whereas the light brown bars 
represent ratings when unassisted. The distribution is bimodal: The highest peak occurs for 
patients who received zero scores both with and without CAD. There is a second broader, more 
continuous distribution for patients, with most scores being 50 or more and a peak at 
approximately 70.   

 
The issue of true-negative results and how these can confound confidence scores can 

be examined further. For example, while true-negative can apply to a patient who has 

no abnormality, it may also apply to a patient who has an abnormality but which is, for 

example, considered benign rather than malignant. For example, the classic paper by 

Lewin et al (27) describes 4,945 mammographic screening examinations. Readers 

used the BI-RADS scale, with zero scores given not only to cases where no 

abnormality was identified but also to cases with an abnormality that required further 

analysis at 6-months follow-up (i.e. likely benign). While a decision whether a 

perceived abnormality is benign or malignant may use a confidence scale such as BI-

RADS, when using a scale to indicate whether a lesion is present or not, there are an 

infinite number of locations where a lesion may be deemed not-present. A better test 

would be expected to improve confidence scores but there is no opportunity to improve 

on a score of zero for cases with no abnormality. In contrast, cases with benign lesions 

do present an opportunity for improved confidence scores, for example where better 

resolution switches an equivocal finding to benign. Also, changes in the proportion of 

true-negative classifications due to negative patients vs negative lesions will affect the 
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distribution of zero scores in the dataset. Because zero scores do not contribute to the 

shape of the ROC curve, AUC only summarises a subset of study data and excludes a 

large proportion of patients. In our colonography study (17) only 15% to 47% (varying 

by reader) of the 107 patients actually contributed to the shape of the ROC curve,and 

hence the AUC. Harrington states, "Under ROC reporting rules, the radiologist reports 

confidence levels only for a finding actually seen, or for a finding of normality. But 

seeing nothing with a given confidence level is not the same, for image quality 

purposes, as seeing something with that confidence level. As a result, ROC analysis is 

largely silent (or misleading) on one of the most important aspects of an imaging 

system's performance - the ability to avoid misses"(16). 

It is clear from the data I present that issues with confidence scores apply particularly 

when attempting to score the presence of an abnormality as opposed to situations 

where its character should be scored (e.g. benign vs. malignant). ROC paradigms have 

been developed to tackle this specifically: The “free-response” ROC paradigm (FROC) 

attempts to tackle the issue of lesion presence/absence at a specific location by 

dividing the medical image into pre-defined regions, with the radiologist then asked to 

indicate whether there is or is not a lesion in each individual region. The FROC curve is 

the plot of the lesion localisation fraction against the non-lesion localisation fraction.  

Jackknife alternative free response ROC curve (JAFROC) is used for analysis of 

MRMC data arising from such localisation studies. The issue for FROC and its 

derivatives is that the larger the number of locations specified, the more complex the 

reading and subsequent analysis. For example, a chest x-ray or mammogram may be 

divided into quadrants, but this procedure does not mimic the real-world clinical 

scenario where it is vitally important to localise an abnormality with greater precision, 

e.g. within a lung lobe. For our CT colonography example, in reality there are 

innumerable points on the endoluminal colonic surface where a potential polyp might 

be found. 

 

Curve extrapolation 

Issues around assigning confidence scores consistently have direct consequences on 

the shape of the ROC curve. In the author’s 2006 study of CT colonography (17), 

because very few false-positive polyps were reported, data points were clustered 

towards the lower left hand portion (0,0) of the ROC plot space (Figure 7). In order to 

complete a curve across all possible thresholds, it must be extrapolated beyond the 

last available data point. In situations such as our prior study, the majority of the AUC 

is then dominated by a region where there is no data. Furthermore, changing the 
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statistical method used to extrapolate the curve can have a profound effect on the 

calculated AUC (8)(Figures 7 and 8). Gur and colleagues have pointed out that, 

“selection of a specific analysis approach could affect the study conclusion” (28), noting 

that the problems associated with extrapolation occur, “when observers tend to be 

more decisive”. Indeed, many algorithms will not fit curves to “degenerate” data at all 

(i.e. data where there are no false-positive detections). Also, because false-positive 

diagnoses are infrequent, their scores exert disproportionate influence on curve shape 

as opposed to the more numerous true-positive scores. Thus the AUC is dominated by 

a small portion of the observed data. For example, in our prior study the median 

number of patients with false positive scores in unassisted reads was just 2 of 107 

patients (17). 

 

Figure 7: Data extrapolation: ROC plots each for an individual reader using CT colonography 
without CAD. Green dots indicate real data points underlying curve fitting.  ROC curve are 
shown extrapolated from these data using LabMRMC (red dotted line) and Proproc software 
(blue solid line). Plots for five individual readers are shown, labeled 1 to 5. 
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Figure 8 
	  

Figure 8A: Data extrapolation: ROC plots of individual readers using CT colonography with- and 
without CAD. These data are reproduced from an analysis of the study described in Chapter 2, 
sponsored by Medicsight plc, which was used to obtain FDA approval successfully. The primary 
outcome measure is diagnosis of polyps of any diameter on a per-segment basis. It can be 
seen that the data points cluster in the bottom left-hand area of the ROC plot space, and that 
the AUC is dominated by extrapolated data curves. Two types of extrapolation are shown. 
Figure 8A shows the data for all 17 readers. Figure 8B shows the data for a single reader (R14) 
markedly emphasising both the clustering and the fact that the method used for extrapolation 
markedly influences the ultimate AUC. 
	  

 

Figure 8B: 
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Prevalence of abnormality 

As noted above, a stated advantage of ROC AUC is that it is independent of 

prevalence of abnormality. However, test performance usually changes with 

prevalence so ROC AUC is uninformative regarding diagnostic performance at differing 

prevalence. AUC is calculated by ranking pairs of patients, one with disease and one 

without, which implicitly suggests a prevalence of 50%. In reality, the prevalence of 

disease in the study dataset is ignored and AUC is the same regardless. While 

sensitivity and specificity are independent of prevalence, the absolute numbers of 

patients with and without disease will change with prevalence. For example, in high 

prevalence situations a test has more “chance” of encountering a patient with disease 

and vice-versa, i.e. in high-prevalence situations the number of diseased patients will 

increase for a given increase in sensitivity, and the converse applies to low-prevalence 

situations (e.g. screening). Therefore, if a new test changes sensitivity and/or 

specificity with respect to the standard test, then the raw numbers of patients 

diagnosed with and without disease will change, contingent on prevalence. To be 

useful as a performance measure overall, ROC AUC needs to incorporate realistic 

disease prevalence so that absolute changes in patient numbers are clinically 

interpretable. While sensitivity and specificity are prevalence independent, these 

measures keep positive and negative patients separate, whereas ROC AUC does not. 

 

It is worth noting that while it is often stated that ROC AUC is unaffected by change in 

prevalence, this property arises from a model assumption. While it is true that the AUC 

is unaffected when one applies a different disease prevalence to an otherwise identical 

group, this does not hold when the group is different, for example patients referred by 

General Practitioners versus specialist clinics; i.e. diagnostic accuracy measured via 

ROC AUC in different populations of different prevalence can give different curves 

(although sometimes the AUC does not differ by much). 
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Alternatives to ROC AUC based on  net benefit 

I have described several problematic issues regarding use of ROC AUC as a measure 

of diagnostic performance of imaging studies in certain circumstances. These 

encompass conceptual issues (e.g. confidence scores may not be meaningful), non-

trivial statistical issues (non-normal distributions and problems with data extrapolation), 

practical issues (many patients do not contribute to ROC AUC), and ethical issues 

(patients’ and doctors values cannot be incorporated) with ROC AUC for analysis. An 

alternative should be easy to comprehend and express, incorporate explicit weightings 

for the value of gains in sensitivity vs loss of specificity, and account for disease 

prevalence. In particular, it should be possible to ascribe “costs” to the misclassification 

of true-positive versus true-negative patients in order to account for the different clinical 

consequences of false-positive and false-negative diagnoses.  

 

The need for such an alternative to ROC AUC is well-recognised and several novel 

methods have been proposed, although these have not enjoyed substantial penetrance 

into the radiological literature, probably because ROC AUC is considered so pre-

eminent (29, 30). Some authors have suggested simply moving the ROC curve 

operating point from one that optimises separation of events and non-events towards 

one event or the other, depending on the relative costs of misclassification (31). As 

noted already, clinicians are comfortable with using a test at a pre-specified diagnostic 

threshold (vs. across a range of thresholds), since this is more comprehensible and 

clinically relevant. Furthermore, since tests are often evaluated when close to clinical 

implementation, information is usually available regarding the most clinically 

appropriate threshold at which the test is likely to be used. It is therefore possible to set 

a diagnostic threshold for test positivity, determine sensitivity and specificity for disease 

at that threshold, and then compare this with the results obtained for an alternative test 

(or the same test used under different conditions, for example with and without CAD 

assistance) used at the same threshold. Such a comparison would present the change 

in sensitivity and corresponding change in specificity for the two tests/conditions when 

they are compared. Because comprehension is improved when sensitivity and 

specificity are combined into a single metric, it is then necessary to arrive at a method 

with which to achieve this. Simple summation of the change in sensitivity and change 

in specificity to give a “net benefit” could be performed but this would not take into 

account any differing misclassification costs. Therefore, in order to arrive at a 

comparison that is clinically useful, it is necessary to incorporate contextual information 

regarding the relative importance of false negative and false positive diagnoses, and 

prevalence of disease.   
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A search of the available literature reveals that “Reclassification Improvement”, 

“Weighted Net Reclassification Improvement”, and “Relative Utility” have all been 

advocated as measures that account the differing consequences of correct and 

incorrect diagnosis. A review of several different net benefit, threshold-based measures 

and the relationship between them has been provided by van Calster and colleagues 

(31), published subsequent to work starting on this thesis. Many of these measures, 

such as weighted-comparison (32) and Net Reclassification Index with two categories 

(33), are based directly on the difference in sensitivity and specificity between the two 

tests being assessed. Van Calster concluded that many of these measures, “are 

transformations of each other and hence always lead to consistent conclusions” (31).  

 

Moons and co-workers investigate the situation where a single diagnostic test is 

applied at a threshold where the decision is simply to treat or not treat. They consider 

the consequences (i.e. clinical costs, loss of utility) of treating and not treating a patient 

with disease. They also consider the costs of treating a patient without disease, and 

quantify and incorporate this. For example, they state, “a ratio of net risks of 10 means 

that it is 10 times worse to withhold treatment from a diseased patient than to treat a 

non-diseased patient”, i.e. a benefits/costs ratio (32). Given a particular treatment 

threshold and treatment strategy, they show that the benefits and risks of subsequent 

decisions can be calculated and expressed as one parameter that they describe as 

“expected risks, ER” (32). They show that ER for any diagnostic test is equivalent to: 

 

(p x ERD+) + ( [1 – p] x ERD- ) 

 

where p = disease prevalence 

ERD+ = expected risks to a patient with disease 

ERD- = expected risks to a patient without disease  

 

The sensitivity and specificity of the test can be calculated by estimating the probability 

of disease from each test result using a logistic model and dichotomising the range of 

estimated probabilities at the treatment threshold (Pt). Estimated probabilities greater 

than Pt is defined as a positive test result, and less than Pt as a negative test result. 

 

To determine the better of two diagnostic tests (or the same test under different 

conditions), the difference in their expected risks at a specific threshold can be 

compared; d(ER). They show that: 

 

d(ER) = [(sensitivity1 – sensitivity 2) + (1-p/p)] x [Pt/(1-Pt)] x [specificity 1 – specificity 2] 
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So, if Δsensitivity is the change in sensitivity and Δspecificity is the change in 

specificity, we get: 

 

D(ER) = [Δsensitivity + (1-p/p) ] x [ Pt/(1-Pt) ] x Δspecificity 

 

This equation provides an index for the comparison of the diagnostic performance of 

two tests (or the same test under different conditions, for example with and without 

CAD). 

 

Vickers (34) states that: 

 

Net benefit = TP – FP x (pt/1-pt) 

 

Where pt = the threshold at which the test is used. 

 

TP = sensitivity x p 

 

FP = (1-specificity)x(1-p) 

 

Thus net benefit = sensitivity x p – ((1-specificity)x(1-p)x(pt/1-pt)) 

 

The change in sensitivity (Δsensitivity) and corresponding change in specificity 

(Δspecificity) would apply if two tests were compared. 

 

We wished to investigate net benefit in situations where it is known at which threshold 

a test was to be used, specifically in binary situations (e.g. polyp present/polyp absent) 

as opposed to evaluation over a range of different thresholds. Taking the example of 

using CAD to interpret CT colonography, it is therefore possible to reframe the net 

benefit equation as follows:  

 

Net benefit = Δsensitivity + [Δspecificity x (1/W) x (1-p/p)] 

Where Δsensitivity is the change in sensitivity and Δspecificity is the change in 

specificity when using CAD assistance. Net benefit will be positive overall if CAD is 

beneficial; a zero value would indicate no benefit and a negative value would mean a 

net loss. We would expect CAD to increase sensitivity but decrease specificity. 

However, as I have explained, an increase in sensitivity may be regarded as 
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particularly desirable and therefore worth more than the negative consequences of a 

corresponding fall in specificity. In order to account for this a weighting factor “W” is 

used to diminish the effect of reduced specificity, achieved by multiplying Δspecificity 

by 1/W (i.e. the larger the value of W the less effect exerted by a given fall in 

specificity). This is analogous to the expression pt/1-pt, where W is equivalent to using 

the test in a binary, single-threshold fashion.  

p is the estimated prevalence of abnormality in the target population (i.e. the population 

in whom the test is to be used ultimately in clinical practice). It is necessary to 

incorporate a correction for prevalence because sensitivity and specificity are used to 

derive TP and FP patients. When disease prevalence is low, true-negative diagnosis is 

easier to achieve since most subjects are disease-free. 1-p gives the proportion of 

disease-free subjects and dividing this by p gives the odds of having disease-free 

patients diagnosed over and above diseased patients. When performing a clinical trial 

it is often assumed that the prevalence of abnormality in the trial dataset mirrors that in 

the target population but this is often not the case because of a need to increase power 

for positive subjects (screening is the most obvious example, a situation where positive 

subjects are encountered relatively infrequently). My current thinking is that when using 

the net benefit equation we need to use a prevalence weighting that reflects the target 

population because the raw numbers of patients who would be TP and FN due to any 

changes in sensitivity and specificity induced by the new test are determined by the 

prevalence of abnormality. There is an essentially philosophical issue when analysing 

the results of a research study – do you report how the new test performed in the trial 

(i.e. when used on high prevalence, enriched data) or report its likely performance in 

clinical practice (where prevalence is likely to be lower)? Both are technically correct 

but have different implications and will be examined in Chapters 2 and 4.  

A related point is that net benefit applies to each positive case detected rather than the 

net benefit per subject tested. It may be argued that the latter is more appealing 

because all individuals referred for testing are considered on an equal footing. In order 

to calculate the average consequences for all subjects it is necessary simply to multiply 

the net benefit formula by its divisor, i.e. Wp. 

It is implicit from the net benefit equation that it is necessary to specify a diagnostic 

threshold in order to arrive at a given change in sensitivity and a corresponding change 

in specificity with which to populate the equation. Use of the net benefit equation 

therefore requires some a priori knowledge regarding the clinically relevant threshold 

above which the diagnostic test would be deemed positive, and below which it would 

be deemed negative. 
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Net benefit for a MRMC study would be calculated using a multilevel approach much 

as is used in meta-analysis, treating each reader as if they were an “individual “study”. 

Bootstrap methods can be used to obtain 95% confidence intervals empirically, to take 

into account the correct clustering of results within readers and cases in these MRMC 

studies. A significant benefit for a new test is defined as a positive net effect whose 

95% confidence interval does not include zero. To enhance clinical interpretability, net 

benefit can be converted into an equivalent increase in true-positive and false-positive 

patients per 100 examined. Thus, in a series of 200 patients, 100 of whom have polyps, 

using CAD would result in the detection of approximately 7 additional true-positive 

patients at a cost of an additional 2 to 3 false-positives.  

Perhaps, the most challenging aspect of this approach is the need to make 

assumptions regarding the relative misclassification costs of false-negative and false-

positive diagnoses. While the precise value of W will often be unknown, it is likely that 

some insight will be available, even if just from expert opinion. 

 

Advantages of net benefit methods 

Like ROC AUC, net benefit combines sensitivity and specificity in a single metric, 

facilitating comparisons between tests but misclassification costs are transparent and 

incorporated in the analysis explicitly. Further, where the value of W is unknown or not 

known with precision, a range of weightings can be assigned via sensitivity analysis to 

examine the effect of using different values for W. Using net benefit based on decisions 

made in everyday practice can potentially avoid problems due to variations related to 

interpretation of diagnostic confidence scores. Prevalence is accounted for and there is 

no need to fit the available study data or extrapolate beyond it. Ultimately, the measure 

has clinical relevance and is interpreted easily; certainly easier than ROC AUC in the 

author’s opinion. In particular, study data are expressed in terms of false negative and 

false positive patient diagnoses (specified as difference in sensitivity and difference in 

specificity). 

 

Summary 

Diagnostic test accuracy studies should provide evidence in a comprehensible and 

intuitive format that facilitates choice of test for clinicians, their patients, and healthcare 

providers. Results should be reported in the context of clinical management decisions 

made at clinically sensible and important thresholds, preferably in terms of patients. 

For comparisons of tests, differences in true-positive and false-positive diagnoses 
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should be reported, and it is important that any statistical analysis should be able to 

incorporate misclassification costs that account for the fact that false-negative and 

false-positive diagnoses are rarely clinically equivalent. We have argued that in certain 

circumstances ROC AUC does not achieve these aims because the measure lacks 

clinical interpretability, incorporates confidence scales and thresholds that are clinically 

nonsensical, cannot account for the differing clinical implications of false-negative and 

false-positive diagnoses, and does not account for disease prevalence. The author and 

his collaborators propose an alternative measure based on net benefit that satisfies 

these requirements.   

Arguing for ROC AUC, Zweig and Campbell(9) state that, “The ROC plot provides a 

more global comprehensive view of the test, independent of prevalence”, going on to 

point out that, “sensitivity and specificity are properties inherent to the test; predictive 

value and efficiency (percentage of correct results) are properties of the application 

once the context (decision threshold and prevalence) is established”. I agree, and 

believe ROC AUC is most useful in the early stages of diagnostic test assessment, 

especially for tests not requiring subjective interpretation (e.g. laboratory tests where 

no human reader is required). However, most radiological research investigates tests 

or applications that are ready for clinical use (or indeed already in use), so the context 

is already established. For example, the diagnostic threshold that constitutes a positive 

result is known frequently. Because of this, meaningful evaluation must incorporate 

how the test influences results for individual patients, at prevalence applicable to daily 

practice, incorporating an explicit assessment of the differing misclassification costs of 

false-negative and false-positive diagnoses. Also, the data should be comprehensible 

and intuitive to facilitate choices for clinicians, their patients, and healthcare providers. 

ROC AUC cannot achieve these aims easily, and is beset by non-trivial statistical 

problems induced by the confidence scales used to build the ROC curve. By contrast, 

alternative net benefit methods provide meaningful and clinically interpretable results. 
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Chapter 2: Incremental benefit of computer-aided 
detection when used as a second- & concurrent-reader 
for CT colonography: Multi-observer study. 

This Chapter has been published as:       

Halligan S, Mallett S, Altman DG, McQuillan J, Proud M, Beddoe G, Honeyfield L, 

Taylor SA. Incremental benefit of computer-aided detection when used as a second 

and concurrent reader of CT colonographic data: Multiobserver study. Radiology 

2011;258:469-76 

Abstract  

Aim: To quantify the changes in reader performance levels, if any, during interpretation 

of computed tomographic (CT) colonographic data when a computer-aided detection 

(CAD) system is used as a second or concurrent reader. 

Methods: After institutional review board approval was obtained, 16 experienced 

radiologists searched for polyps in 112 patients, 56 of whom had 132 polyps. Each 

case was interpreted on three separate occasions by using an unassisted (without 

CAD), second-read CAD, or concurrent CAD reading paradigm. Reading paradigm and 

case order were randomised, with a minimal interval of 1 month between consecutive 

interpretations. Readers’ findings were compared with the reference-truth interpretation. 

Mean per-patient sensitivity and mean per-patient specificity with CAD were compared 

with those achieved unassisted. The primary outcome measure was the net benefit for 

CAD assistance compared to unassisted interpretation for identification of patients with 

polyps of any size, where an increase in per-patient sensitivity was considered to be 

clinically more important than an equivalent decrease in specificity. 

Results: The mean per-patient sensitivity for identification of patients with polyps of 

any size increased significantly with second-read CAD (mean increase, 7.0%; 95%CI: 

4.0%, 9.8%) and concurrent CAD (mean increase, 4.5%; 95%CI: 0.8%, 8.2%). The 

mean per-patient specificity did not decrease significantly with second-read CAD 

(mean decrease, 2 2.5%; 95%CI: 2 5.2%, 0.1%) or concurrent CAD (mean decrease, 2 

2.2%; 95%CI: 2 4.6%, 0.2%). These data gave a net benefit for second-read CAD of 

6.2% (95%CI 3.1% to 9.3%), indicating a significant increase. The net benefit for 

concurrent CAD was 3.8% (95%CI -0.03% to 7.6%), indicating a non significant 

increase.  

Conclusion: Use of second-read CAD significantly improves readers’ per-patient and 

per-polyp detection. Concurrent CAD is less effective. 
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Introduction 

Computer-aided-detection (CAD) to aid interpretation of CT colonography has recently 

become commercially available from both CT scanner manufacturers and independent 

software developers. CAD aims to improve diagnostic performance by alerting 

radiologists, via visual prompts, to pathology that might otherwise be missed. Initial 

assessments have focussed on the stand-alone sensitivity of CAD for colorectal polyps, 

estimating the incremental benefit that might be achieved in clinical practice via indirect 

comparison with the sensitivity of unaided radiologists and colonoscopists (35, 36). 

However, it is increasingly recognised that radiologists may misinterpret CAD prompts; 

true-positive prompts may be ignored and false-positive prompts may be interpreted as 

true polyps. The true benefit of CAD in clinical practice is therefore likely to be 

overestimated by indirect comparisons and direct comparisons that incorporate 

radiologists’ interpretations are needed.  

It has been hypothesised that CAD may diminish the need for prior reader experience 

(17) but results from such readers have been disappointing, despite undoubted benefit 

from CAD assistance (17). An estimate of the effect of CAD is therefore needed in 

readers who have some prior experience of CT colonography interpretation. 

Furthermore, the reading paradigm used for CAD may also influence lesion detection: 

A study of 10 radiologists found marginal evidence for enhanced detection of small 

polyps when a second-read CAD was used rather than concurrent CAD (37), but more 

powerful studies are needed to answer this question with precision. Also, artificial 

environments, where readers interpret large numbers of consecutive studies in a short 

period, may introduce a “laboratory effect” and findings may not be generalisable. By 

performing a multi-reader study undertaken in a representative environment and using 

experienced radiologists, we aimed to quantify the incremental benefit of CAD for 

interpretation using both second-read and concurrent paradigms. Because of the 

problematic issues relating to ROC AUC analysis outlined in Chapter 1 of this thesis, 

the present study used the net benefit equation for analysis of our primary outcome 

measure. 

 

Methods 

Following Institutional Review Board (IRB) or Research Ethics Committee (REC) 

approval, CT colonography data acquired between January 2002 and June 2005 were 

accrued from 3 USA and 2 European centres. Both symptomatic and asymptomatic 

screening patients were included. Prone and supine CT colonography had been 
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performed following full bowel purgation in accordance with published standards(38). 

Each patient subsequently underwent optical colonoscopy. Both positive and negative 

(normal) cases were accrued from centres contributing multiple patients, in temporally 

contiguous blocks to enhance generalisability of findings(39). Patients with known 

polyposis syndromes and/or known cancer were excluded, since the CAD system was 

not developed specifically to detect cancer. Non-diagnostic studies, defined as non-

visualisation of any colonic segment after the prone and supine studies had been 

assessed together, were also excluded (i.e. technical problems that would likely result 

in recall for further examination in normal clinical practice). Only non-diagnostic studies 

were excluded – there was no attempt to select only technically excellent studies since 

this would result in over-optimistic CAD performance. 116 patients were accrued and 

112 used for analysis after exclusions due to data incompatibility (Table 5). 

 

Table 5: Demographic and data acquisition details for the 112 patient cases interpreted. 
	  

  

USA 
center 1 

 

USA 
center 2 

 

USA 
center 3 

 

European 
center 1 

 

European 
center 2 

Number of patients 55 23 1 25 8 

Mean age (years) 60.2 61.1 54 59.6 59.2 

Male 31 22 0 12 4 

Female 24 1 1 13 4 

Symptomatic 0 11 0 0 0 

Asymptomatic 55 12 1 25 8 

Positive patients 30 17 1 8 0 

Negative patients 25 6 0 17 8 

Total number of 
polyps 

64 50 1 17 0 

Polyp size (mm) 2 to 20 2 to 17 25 3 to 15 0 

Total no polyps 

≥6mm 

36 11 1 8 0 

Tagging Fluid and 

faecal 

None None None Fluid  

Detector-rows 4 8 4 4 4 

Slice/recon interval 
(mm) 

2.5, 1.5 2.5, 1.25 1.25, 0 3.2, 1.6 1.25, 0.25 
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Definition of ground truth 

Three radiologists experienced in CT colonography interpretation (minimum 200 

endoscopically validated cases), interrogated each case to establish a “ground-truth” 

against which CAD and reader performance could be judged subsequently. Cases 

were interpreted without CAD. The original colonoscopy and histology reports were 

available and each case was read independently in its entirety twice in order to identify 

colonoscopic false-negatives. Polyps of all sizes were searched for and CT diameter 

and co-ordinates/segment noted. Polyps identified by colonoscopy but not visualised 

on CT were excluded because their co-ordinates could not be specified. Disagreement 

was resolved by consensus. There were 132 polyps in the 56 positive patients, 56 of 

which were ≥6mm (Table 5).  

Readers and case interpretation 

Sixteen radiologists from 10 different hospitals interpreted the 112 cases. Each 

reported CT colonography in their clinical practice (mean prior experience 264 cases, 

range 50 to >1000). Eleven (69%) had completed a training course previously. Two 

commercially available visualisation platforms were used (either Viatronix V3D, 

Viatronix Inc, Stony Brook, NY, USA or Vitrea2 4.0 Colon, Vital Images Inc, 

Minnetonka, MN, USA) into which a CAD system was integrated (ColonCAD API 3.1, 

Medicsight PLC, Hammersmith, London, UK), and readers trained in its use. The CAD 

system had not been developed using any of the individual patient data used in the 

validation dataset but 116 other patient datasets from two of the contributing centers 

were used to develop the algorithm (USA center 1; 88 cases. USA center 2; 28 cases). 

Readers were unaware of the prevalence of abnormality and had no knowledge of 

standalone CAD performance characteristics. They were instructed that CAD might 

indicate polyps but might also make false-positive marks, and that the ultimate 

diagnosis should be based on their interpretation. Readers interpreted each of the 112 

cases on three separate occasions, temporally separated by at least one month. 

Readers used three reading paradigms: unassisted, second-read CAD, concurrent 

CAD(40). CAD was not used when unassisted. For the second-read paradigm, readers 

applied CAD only following a full, unassisted interpretation(40). For the concurrent 

paradigm, CAD assistance was available to readers from the outset of their 

interpretation(17). Case and paradigm ordering were randomised between readers by 

the study statistician (SM). Each batch of 112 cases was read in a hospital 

environment over at least one month, to simulate normal clinical workload and avoid a 

laboratory effect. Readers noted all polyps, irrespective of size, recording maximal 



	   43	  

transverse diameter, anatomical segment, CT co-ordinates, and interpretation time on 

a study report sheet that included a JPEG image-grab of any polyp detected. 

Statistical analysis 

Readers’ case-classifications for each reading paradigm were compared with the 

ground-truth for each case. Two data-monitors performed this procedure, aided by 

ground-truth records of diameter, segment, CT coordinates, and JPEG image-grabs. In 

this way, each patient classification by readers was graded as either true-positive, 

false-positive, true-negative, or false-negative. Individual polyps noted by readers were 

also classified as true-positive or false-positive. 

Our primary aim was to determine if the number of correctly classified patients 

increased significantly with CAD assistance without unacceptably diminished specificity. 

Our primary outcome was a comparison of accuracy for second-read CAD compared 

to unassisted interpretation. We anticipated CAD would increase detection of patients 

with polyps but also increase the number of normal patients categorized as false-

positive (i.e. decrease specificity). As outlined in Chapter 1, because the author and his 

collaborators believe ROC AUC analysis unsuitable for the present analysis, our 

primary outcome was based on a net benefit measure, again as outlined in Chapter 1. 

We defined the “net benefit of CAD” as the difference in sensitivity using CAD plus the 

difference in specificity, the latter weighted by two factors, (i) W, defined as the relative 

increase in value of an additional correctly identified true-positive patient compared to 

the reduction in value of an additional false-positive patient and, (ii) an adjustment for 

prevalence of abnormality (proportion of true-positives) in the dataset. i.e: 

Net effect of CAD = ∆sensitivity + ∆specificity*(1/W)*([1-prevalence]/prevalence) 

Because no value for W was available in the existing literature at the time the analysis 

was first performed (a deficiency addressed in the following Chapter of this thesis), the 

author settled on a value of 3 following face-to-face discussion between the research 

team, and considering expert opinion. Given equivalent values derived from the 

mammographic literature(12), we believed 3 to be a very conservative estimate indeed. 

The prevalence of abnormality in the dataset was 50% and at the time of this research, 

that was the value we used for the analysis. We defined a significant improvement with 

CAD as a net benefit measure that was positive and whose 95% confidence interval 

did not include zero.  

Average estimates were calculated from 1999 bootstrap samples generated by random 

sampling patients for each reader. Meta-analysis with equal weighting per reader was 

used to obtain an average across all readers. Confidence intervals were calculated by 
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taking the 2.5% and 97.5% percentiles of the cumulative distribution of the 1999 

estimates. 1999 bootstraps samples were used because that number allowed us to 

achieve one of the original values as the 2.5% and 97.5% (i.e. 5% of values summed 

between the low and high tails of the distribution) of values.  

Our primary analysis set a diagnostic threshold for the net benefit equation that 

investigated the change in sensitivity and specificity with CAD compared to baseline for 

patients with any size of polyp, since this is known to be an important clinical decision 

threshold (see Discussion). However, since larger polyps are known to be more at risk 

from malignant transformation than smaller polyps, we also calculated the CAD net 

benefit measure restricted to patients with polyps ≥6mm (i.e. the diameter that 

conventionally separates “small” from “medium” sized polyps). We also calculated per-

polyp sensitivity for all polyps, those ≥6mm, and those ≤5mm. 98.3% confidence 

intervals were used to adjust for multiple secondary outcomes. We additionally 

investigated the effect on interpretation time in 15 readers (one reader was excluded 

due to missing data) since there is evidence that concurrent CAD may be time-

efficient(17). Data were analysed by Dr Susan Mallett using STATA (StataCorp, 

College Station, TX). 

 

Results 

The stand-alone detection characteristics of CAD in the 112 patients were as follows: 

CAD correctly identified polyps in 40 of the 56 (71.4%) patients with polyps: Sixty nine 

of 132 polyps (52.3%) of all sizes were detected, 40 of 56 polyps ≥6mm (71.4%) and 

14 of 15 polyps ≥10mm (93.3%). There were an average of 13.6 false-positive prompts 

per positive patient (i.e. prone and supine studies combined) and 14.1 per negative 

patient. 

Per-patient analysis 

Per-patient sensitivity, specificity and CAD net effect for individual readers for detection 

by CT colonography of patients with polyps of all sizes when readers were unassisted 

compared to second-read and concurrent CAD are shown in Table 6. 
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Table 6: Per-patient sensitivity, specificity and CAD net effect for detection by CT colonography 
of patients with polyps of all sizes when readers were unassisted compared to second-read 
CAD and concurrent CAD. Data are shown for all 16 readers. 
 Sensitivity Specificity CAD 

effect 
CAD 
effect 

Reader Unaided Second 

read 

Concurrent 

read 

Unaided Second 

read 

Concurrent 

read 

Second 

Read* 

Concurrent 

read* 

1 68 59 57 93 89 86 -10.1 -13.1 

2 71 75 70 86 82 86 2.4 -1.8 

3 45 50 43 95 98 96 6.5 -1.2 

4 63 57 55 93 91 93 -5.9 -7.1 

5 75 71 66 84 86 79 -3.0 -10.1 

6 63 80 80 86 84 91 17.3 19.6 

7 48 63 50 98 98 100 14.3 2.4 

8 39 46 48 93 96 95 8.3 9.5 

9 75 68 64 93 89 86 -8.3 -13.1 

10 38 52 61 91 89 80 13.7 19.1 

11 55 68 77 80 71 68 9.6 17.3 

12 59 75 61 95 91 96 14.9 2.4 

13 54 64 66 96 96 96 10.7 12.5 

14 18 36 29 96 91 91 16.1 8.9 

15 80 84 80 91 88 86 2.4 -1.8 

16 71 84 86 70 59 75 9.0 16.1 

*The CAD effect is the net benefit achieved with CAD when used as both a second- and 

concurrent-reader, compared to baseline values without CAD. A positive value indicates a 

positive net benefit with CAD and a negative value a negative net benefit. 
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The net benefit for second-read CAD averaged across readers was 6.2% (95%CI 3.1% 

to 9.3%), indicating a significant increase. Average reader sensitivity increased 

significantly by 7% (95%CI 4.0% to 9.8%) whereas the average decrease in specificity 

was non significant; -2.5% (95%CI -5.2% to 0.1%); i.e. in a series of 200 patients (100 

with polyps) readers using CAD would correctly identify 7 additional patients with 

polyps at the cost of approximately 2 to 3 false-positives. 

The net benefit for concurrent CAD was 3.8% (95%CI -0.03% to 7.6%), indicating a 

non significant increase. Average reader sensitivity increased significantly by 4.5% 

(95%CI 0.8 to 8.2) with a non significant decrease in specificity of -2.2% (95%CI -4.6 to 

0.2); i.e. in a series of 200 patients (100 with polyps) readers using CAD would 

correctly identify 4 or 5 additional patients with polyps at the cost of approximately 2 

false-positives. 

A sensitivity analysis was performed to investigate how the primary outcome for 

second-read CAD varied with different weightings for the relative value of true-positive 

and false-positive patients (W), and polyp prevalence. The CAD net benefit measure 

remained significant with the primary outcome re-analysed with equal weightings for 

the relative value of true-positive and false-positive patients (i.e. W = 1), and polyp 

prevalence of 50%: 4.5% (95% CI, 0.45% to 8.6%). A significant net benefit of 4.5% 

(95%CI, 0.45% to 8.6%) also persisted at a prevalence of abnormality of 25% and our 

conservative relative weighting of 3 for the relative value of a true-positive patient 

versus a false-positive. A significant benefit for second-read CAD remained with the 

analysis restricted to patients with polyps ≥6mm; CAD net benefit measure 6.7% (95% 

CI 2.7% to 10.9%) (Table 3). There was no clear evidence that concurrent CAD 

increased correct categorisation for these patients (Table 7).    
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Table 7: CAD net benefit, per-patient sensitivity and specificity for detection by CT colonography 
of patients with polyps of all sizes and patients with polyps ≥6mm when readers were 
unassisted compared to second-read CAD and concurrent CAD. Data are averaged across 16 
readers. 
  Analysis Unassisted by 

CAD 

% (95% CI) 

Second read 

CAD 

% (95% CI) 

Concurrent CAD 

% (95% CI) 

Patients  
with  

all  

polyps 

Average sensitivity  57.6%  

(49.9 to 65.1) 

64.5%  

(56.5 to 72.2) 

62.2%  

(53.9 to 69.8) 

Increase in average 

sensitivity versus 

unassisted  

n/a 7.0%  

(4.0 to 9.8) 

4.5%  

(0.8 to 8.2) 

Average specificity 90.1%  

(86.2 to 93.3) 

87.6%  

(83.5 to 91.3) 

87.8%  

(84.2 to 91.2) 

Increase in average 

specificity versus 

unassisted  

n/a -2.5%  

(-5.2 to 0.1) 

-2.2%  

(-4.6 to 0.2) 

CAD net benefit  n/a 6.2%  

(3.1 to 9.3) 

3.8%  

(-0.03 to 7.6) 

Patients  

with  

polyps  

≥6mm 

Average sensitivity  65.8%  

(56.9 to 73.8) 

72.8%  

(63.7 to 80.9) 

70.1%  

(61.1 to 78.4) 

Increase in average 

sensitivity versus 

unassisted 

n/a 7.1  

(3.0 to 11.1) 

4.2  

(-0.5 to 8.9) 

Average specificity  93.0%  

(90.7 to 95.2) 

92.2%  

(89.5 to 94.7) 

92.3%  

(89.4 to 94.9) 

Increase in average 

specificity versus 

unassisted 

n/a 3.9  

(-2.3 to 9.0) 

-0.6 ( 

-2.3 to 0.9) 

CAD net benefit  n/a 6.7%  

(2.7 to 10.9) 

3.9%  

(-0.8 to 8.8) 

Per-polyp analysis 

Detection of polyps of all sizes increased significantly when using both paradigms: The 

average increase in sensitivity was 7.3% (98.3%CI 3.9% to 10.4%) for second-read 

CAD and 4.0% (98.3%CI 1.1% to 7.7%) for concurrent CAD. The benefit for second-

read CAD persisted with analysis restricted to polyps ≥6mm, increasing by an average 

sensitivity of 9.0% (98.3%CI 4.9% to 12.8%), but did not for concurrent CAD (average 

sensitivity increase 2.9% (98.3%CI -1.1% to 8.0%). Both paradigms conveyed a 

significant benefit with the analysis restricted to polyps ≤5mm, with mean increase in 
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sensitivity of 5.9% (98.3%CI 3.2% to 9.1%) and 4.8% (98.3%CI 2.2% to 7.9%) 

respectively (Table 8). 

      
Table 8: Per-polyp sensitivity for detection by CT colonography of polyps of all sizes, polyps 
≥6mm, and polyps ≤5mm when readers were unassisted compared to second-read CAD and 
concurrent CAD. Data are averaged across 16 readers. Confidence intervals are 98.3% to 
account for multiple testing. 
	  

Analysis Unassisted by CAD 

% (98.3% CI) 

  

Second read CAD 

% (98.3% CI) 

  

Concurrent CAD 

% (98.3% CI) 

  

Average sensitivity for all 

polyps 

30.5%  

(24.2 to 37.1) 

  

37.6%  

(29.3 to 45.1) 

  

34.5%  

(27.7 to 42.1) 

  

Increase in average 

sensitivity versus 

unassisted for all polyps 

n/a 7.3%  

(3.9 to 10.4) 

4.0%  

(1.1% to 7.7%) 

Average sensitivity for 

polyps ≥6mm 

50.8%  

(40.5 to 60.4)  

60.0%  

(48.3 to 69.7) 

  

53.9%  

(43.2 to 64.2) 

  

Increase in average 

sensitivity versus 

unassisted for polyps ≥6mm 

n/a 9.0%  

(4.9 to 12.8) 

2.9%  

(-1.1 to 8.0) 

Average sensitivity for 

polyps ≤5mm 

15.4%  

(10.9 to 20.6) 

  

21.4%  

(14.8 to 29.0) 

  

20.4%  

(14.2 to 27.8) 

  

Difference in average 

sensitivity for polyps ≤5mm 

versus unassisted 

n/a 5.9%  

(3.2 to 9.1) 

4.8%  

(2.2 to 7.9) 

Interpretation time 

Mean unassisted reading time was 7.8 minutes (95%CI 7.5 to 8.1). When using 

concurrent CAD and second-read CAD, readers on average took 0.93 minutes longer 

(95%CI 0.66 to 1.19) and 2.2 minutes longer (95%CI 1.87 to 2.66) respectively than 

when unassisted.         

 

Discussion 

While CAD for mammography has been available for many years, providing the 

opportunity for large multi-observer studies, reader studies of CAD for CT 
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colonography are relatively recent. Most studies have used relatively few readers and 

cases. Petrik and colleagues used four readers and 60 patient studies, finding that 

CAD increased sensitivity for polyps ≥6mm but with equally diminished specificity (24). 

Baker used seven less-experienced readers, but only 30 patient studies, also finding 

that CAD significantly improved sensitivity (22). So, larger studies are needed, as are 

those that address which CAD reading paradigm is preferred, in particular “second-

read” or “concurrent”? Second-read is the classic CAD paradigm, whereby the reader 

performs a full, unassisted interpretation before activating CAD (40). The CAD marks 

are then reviewed with the aim of identifying lesions missed initially. Readers are not 

supposed to alter their decision regarding lesions detected by them when unassisted; 

specifically, if CAD “fails” to annotate a lesion previously believed present by the reader, 

the lesion should be retained for the clinical report. Second-read CAD impairs workflow 

since CAD assistance is additional to usual interpretation. In normal practice it is also 

possible that readers may not pay due vigilance when unassisted, choosing to activate 

CAD prematurely (40). The “concurrent” paradigm is an attempt to address these 

issues by integrating the assisted and unassisted interpretations: CAD is activated from 

the outset and annotated and unannotated regions scrutinised simultaneously. In a 

previous study the author and co-workers compared concurrent and unassisted 

paradigms in 10 readers each interpreting 107 colonography studies, finding that CAD 

increased sensitivity without a significant drop in specificity (17). However, very little 

research has compared concurrent and second-read paradigms directly; Taylor and 

colleagues asked 10 radiologists to read 25 datasets using both paradigms, finding 

significantly improved odds of polyp detection for both, but highest for second-read 

CAD (37). However, benefit was defined by improvement relative to the initial 

unassisted component of the second-read paradigm, which does not truly reflect the 

unassisted situation. 

At the time of writing, the present study is the largest to date and has quantified the 

incremental benefit of CAD assistance for both second-read and concurrent paradigms 

via comparison to a temporally separated unassisted interpretation; The 16 readers 

were representative of the target audience for CAD and performed 5,376 individual 

interpretations in total. Furthermore, the study was performed in environments and 

over timescales generalisable to daily clinical practice. Via the net benefit analysis, we 

found that second-read CAD significantly improved reader detection of patients with 

polyps without a clinically unacceptable decrease in specificity. Furthermore, this effect 

persisted with sensitivity and specificity weighted equally, as is essentially the case for 

ROC AUC, but was even more convincing when we accounted for the fact that true-

positive detection is more clinically important than false-negatives by using a weighting 

factor of 3. In contrast, the benefit with concurrent CAD was not significant.  
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Although we found that concurrent CAD increased per-polyp detection significantly, this 

was due to enhanced detection of those measuring ≤5mm whereas second-read CAD 

also improved detection of polyps ≥6mm. The reasons as to why concurrent CAD is 

less effective is unclear. Since the CAD marks made during each paradigm read are 

identical, the effect cannot be a consequence of fewer true-positive marks during the 

concurrent read. Decreased vigilance paid to the unannotated endoluminal surface 

(including unannotated polyps) during concurrent reading may be an explanation. 

Alternatively, correctly annotated polyps may have been dismissed inappropriately by 

the reader although it is unclear why this should apply more to the concurrent paradigm. 

Further analysis of whether polyps missed during concurrent interpretation (vs. second 

read interpretation) were annotated correctly by CAD may help clarify. 

We chose a per-patient analysis for our primary outcome because the decision to 

subsequently refer for colonoscopy is usually based on the maximal diameter of any 

polyps detected rather than their absolute number. The location and number of polyps 

is therefore secondary to correct classification of a patient as an individual with or 

without polyps. Also, individual patients with multiple polyps will exert undue overall 

influence on a per-polyp analysis. The disadvantage is that a larger study is required to 

adequately power a per-patient analysis. We chose to include all polyp diameters in 

our primary analysis because while all opinion leaders that polyps ≥10mm should be 

removed, removal of smaller polyps is controversial. Current guidelines suggest that 

polyps 6-9mm are important and should be removed, and authors have highlighted the 

issue of measurement error for both colonography and colonoscopy (41). An analysis 

of all polyps will capture those polyps 6mm or larger that might fall below this threshold 

due to measurement error. We did however perform secondary analyses restricted to 

patients with polyps measuring ≥6mm, finding that second-read CAD remained 

significantly beneficial.  

This is the author’s first study to use the net benefit measure outlined previously in 

Chapter 1; net benefit was used as opposed to ROC AUC because the author and his 

collaborators found the latter unworkable in a prior multi-reader, multi-case study of CT 

colonography (17). Net benefit analysis is predicated by the difference in sensitivity 

using CAD plus the difference in specificity weighted by the perceived relative value of 

a true- and false-positive detection, adjusted for prevalence of abnormality. Our 

analysis used a multi-reader, multi-case design and combined two co-primary 

outcomes from two measures (i.e. change in sensitivity and change in specificity) that 

move in opposite directions. No extrapolation beyond the data was required and a 

range of relative weightings could be assigned and were explicit (unlike ROC AUC 

analysis). Weightings can be adjusted to reflect different patient preferences and also 
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to investigate uncertainties in relative weightings. The author believes the weighting 

used was very conservative; neither patients nor health-care providers are likely to 

regard a patient with a missed diagnosis as equivalent to a false-positive. For example, 

in breast screening a gain in sensitivity has been rated 150 to 500 times more highly 

than a corresponding loss in specificity (42). Nevertheless, the author and his 

collaborators arrived at a value for W of 3 after discussion between the research team; 

there was no precise value for W available in the current literature at the time the study 

was performed. Because of this, the following Chapter attempts to arrive at an 

evidence-based value for W for detection of colorectal cancer and polyps, established 

via discrete choice experiments. Later Chapters will extend this work beyond the colon 

to detection of extracolonic disease by CT colonography. 

It is also worth noting that we used a prevalence of 50% for the net benefit equation 

since that was the prevalence of abnormality in the dataset. For the reasons outlined in 

Chapter 1, our current thinking is that it may be more appropriate to use a prevalence 

of abnormality that reflects the target population rather than the study population (the 

latter is often enriched to increase power for positive subjects, as was the case in this 

study). Chapter 4 re-analyses the data using a prevalence more representative of the 

target population. 

In summary, second read CAD significantly improves per-patient and per-polyp 

detection by readers when interpreting CT colonography, without a clinically 

unacceptable drop in specificity. Concurrent CAD is less effective. In contrast to ROC 

AUC, we found it was possible to implement the net benefit analysis described in the 

previous chapters for analysis of a multi-reader multi-case study of CT colonography.  
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Chapter 3: Patients’ & healthcare professionals’ values 
regarding true-  & false-positive diagnosis when 
colorectal cancer screening by CT colonography: 
Discrete choice experiment. 

This Chapter has been published as:      

Boone D, Mallett S, Zhu S, Yao GL, Bell N, Ghanouni A, von Wagner C, Taylor SA, 

Altman DG, Lilford RJ, Halligan S. Patients’ and healthcare professionals values 

regarding true- and false-positive diagnosis when colorectal cancer screening by CT 

colonography: Discrete choice experiment. PLoS One 2013;8:e80767. 

Abstract  

Purpose: To establish the relative weighting given by patients and healthcare 

professionals to gains in diagnostic sensitivity versus loss of specificity when using CT 

colonography (CTC) for colorectal cancer screening.    

Materials and Methods: Following ethical approval and informed consent, 75 patients 

and 50 healthcare professionals undertook a discrete choice experiment in which they 

chose between “standard” CTC and “enhanced” CTC that raised diagnostic sensitivity 

10% for either cancer or polyps in exchange for varying levels of specificity. We 

established the relative increase in false-positive diagnoses participants traded for an 

increase in true-positive diagnoses.        

Results: Data from 122 participants were analysed. There were 30 (25%) non-traders 

for the cancer scenario and 20 (16%) for the polyp scenario. For cancer, the 10% gain 

in sensitivity was traded up to a median 45% (IQR 25 to >85) drop in specificity, 

equating to 2250 (IQR 1250 to >4250) additional false-positives per additional true-

positive cancer, at 0.2% prevalence. For polyps, the figure was 15% (IQR 7.5 to 55), 

equating to 6 (IQR 3 to 22) additional false-positives per additional true-positive polyp, 

at 25% prevalence. Tipping points were significantly higher for patients than 

professionals for both cancer (85 vs 25, p<0.001) and polyps (55 vs 15, p<0.001). 

Patients were willing to pay significantly more for increased sensitivity for cancer 

(p=0.021).                      

Conclusion: When screening for colorectal cancer, patients and professionals believe 

gains in true-positive diagnoses are worth much more than the negative consequences 

of a corresponding rise in false-positives. Evaluation of screening tests should account 

for this. 
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Introduction 

Understanding diagnostic test performance is essential for evidence-based practice (43, 

44), particularly for screening where risks and benefits are balanced finely. No 

screening test is 100% sensitive and the consequence is readily understood; false-

negative tests will delay or prevent cure. Specificity is important when screening 

because most people are disease-free. A false-positive test means healthy individuals 

may undergo invasive procedures causing anxiety, morbidity, and even mortality (45). 

Tests that increase the proportion of people with disease who test true-positive 

(increase sensitivity) usually simultaneously increase the proportion of people without 

disease who test false-positive (diminish specificity). For example, computer-aided-

detection (CAD)(46), digital imaging (47), and shorter screening intervals (48) all 

increase mammographic sensitivity for breast cancer but decrease specificity.  

 

When comparing two diagnostic tests, interpretation is sometimes difficult if one has 

high sensitivity and the other high specificity: which is best? A combined measure of 

sensitivity and specificity facilitates interpretation: As outlined in Chapter 1 of this thesis, 

examples include net benefit or the area under the receiver-operator characteristic 

curve (ROC AUC) (49-53). The author has suggested that an advantage of net benefit 

measures is that they can incorporate relative values for gains in true-positive 

diagnoses versus costs of false-negative diagnoses, whereas ROC AUC cannot. 

However, few studies have quantified these costs, and none have done so for CT 

colonography, with the result that the experiment in Chapter 2 of this thesis used a 

value of 3 for W based solely on a conservative estimate from expert opinion.  

 

Studies that have investigated similar misclassification costs suggest that they are 

valued very differently by patients; one study found women would accept 500 false-

positive mammograms to avoid a single missed cancer (12). While qualitative research 

suggests that attendees value sensitivity over specificity when screening for colorectal 

cancer (54, 55) this has not been quantified with precision. Ignoring these preferences 

may underestimate test benefit. For example, the Medicaid/Medicare decision to not 

reimburse CT colonography (CTC) did not consider that screenees may still value 

gains in sensitivity over and above diminished specificity (56). To clarify this issue we 

established the relative weighting given by patients and healthcare professionals to 

additional true-positive diagnoses compared to additional false-positive diagnoses (i.e. 

gains in sensitivity versus loss of specificity) when using CTC for colorectal cancer 

screening; i.e. this Chapter aims to determine the value of W for the net benefit 

equation described in Chapter 1 and used for analysis of the primary outcome in 

Chapter 2. 
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Methods 

Ethical statement 

Ethics committee approval was granted by the local institutional ethical review board of 

University College Hospitals London; all participants gave written informed consent. 

Design 

We designed and conducted a discrete choice experiment (DCE)(57-59), according to 

recent guidelines(59). In particular, patients may value sensitivity so highly that even 

small changes can mask the influence of other attributes (59). Also, specificity is 

conceptually challenging, and patients are often unaware that false-positive diagnoses 

can even occur (54). Therefore, to simplify decision-making we used a “probability 

equivalence” design to establish attitudes to sensitivity and specificity alone, without 

the influence of other attributes. We presented sensitivity and specificity in terms of 

differing numbers of true-positive and false-positive diagnoses by imaging. A 

hypothetical “enhanced” CTC screening test was presented against “standard” CTC 

and participants expressed their preference between the two. Sensitivity and specificity 

for cancer for “standard” CTC was 85% and 95% respectively and 80% and 85% for 

polyps ≥6mm. “Enhanced” CTC raised sensitivity for cancer to 95%, equivalent to 

detecting one additional cancer per 5000 screenees (cancer prevalence 0.2%)(60, 61). 

“Enhanced” CTC raised sensitivity for polyps to 90%, equivalent to detecting 125 

additional people with polyps per 5000 (polyp prevalence 25%)(62). We aimed to raise 

sensitivity by 10% while avoiding a perfect test (i.e. sensitivity 100%), which is 

unrealistic. Specificity of “enhanced” CTC was dropped in increments across the 

scenarios, to 10% for cancer and 20% for polyps (Table 9). Such extremely low 

specificity is unlikely in everyday practice but necessary to calculate “tipping points”, 

i.e. the level at which an individual is willing to “trade” one attribute for the other. In the 

present case, the tipping point was the maximum reduction in specificity that 

participants were prepared to trade for a 10% absolute (vs. relative) increase in 

sensitivity. 
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Table 9: Overview of attributes and levels presented in cancer (1A) and polyp (1B) discrete 
choice experiments. 
Table 9A; Cancer scenario. 

Cancer 
question 
number 

"standard" CTC "Enhanced" CTC    

 Sensitivity 
for cancer 
(%) 

Specificity 
for cancer 
(%) 

Sensitivity 
for cancer 
(%) 

Specificity 
for cancer 
(%) 

Additional 
true positive 
detections 
per 5000 
screening 
examinations 

Additional 
false positive 
detections 
per 5000 
screening 
examinations 

FP tipping 
point 
(specificity: 
Standard 
CTC 
minus 
enhanced 
CTC) (%) 

1c* 85 95 95 95 1 0 0 
2c* 85 95 95 95 1 0 0 
3c 85 95 95 90 1 250 5 
4c 85 95 95 80 1 750 15 
5c 85 95 95 70 1 1250 25 
6c 85 95 95 50 1 2250 45 
7c 85 95 95 40 1 2750 55 
8c 85 95 95 30 1 3250 65 
9c 85 95 95 20 1 3750 75 
10c*** 85 95 95 10 1 4250 85 

 
Table 9B; Polyp scenario. 

Polyp 
question 
number 

"standard" CTC "Enhanced" CTC    

 Sensitivity 
for polyps 
(%) 

Specificity 
for polyps 
(%) 

Sensitivity 
for polyps 
(%) 

Specificity 
for polyps 
(%) 

Additional 
true positive 
detections 
per 5000 
screening 
examinations 

Additional 
false positive 
detections 
per 5000 
screening 
examinations 

FP tipping 
point 
(specificity: 
standard 
CTC 
minus 
enhanced 
CTC) (%) 

1p* 80 85 90 90 125 -250 -5 
2p* 80 85 90 85 125 0 0 
3p** 80 85 90 80 125 250 5 
4p** 80 85 90 80 125 250 5 
5p 80 85 90 70 125 750 15 
6p 80 85 90 60 125 1250 25 
7p 80 85 90 50 125 1750 35 
8p 80 85 90 40 125 2250 45 
9p 80 85 90 30 125 2750 55 
10p*** 80 85 90 20 125 3250 65 
*Questions both favour enhanced CTC for both sensitivity and specificity. Respondents 
choosing standard CTC were considered to have misunderstood the task. 
**Questions are identical to test for internal consistency. 
***Participants choosing enhanced CTC in response to question 10 were considered potential 
non-traders; i.e.. they considered detection of a single additional cancer worth 4250 additional 
colonoscopies.  
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Because DCEs are difficult to comprehend, especially when administered via postal 

questionnaires (63), we used an interviewer-led design for patients, which clarifies 

understanding and permits qualitative exploration afterwards, especially with non-

traders (64) - a “non-trader” is a participant who will not trade their preferred attribute at 

any cost. With respect to the present study, this would usually represent an individual 

who would accept any value of diminished specificity in order to achieve 10% 

increased sensitivity. A multimedia laptop presentation of colorectal cancer screening 

by colonoscopy and CTC was given, including information on survival benefit, that 

early detection was not always curative (65), and that false-positive CTC caused 

unnecessary colonoscopy. For clarity, only the most serious colonoscopic complication 

was presented, i.e. perforation in 1:500 (66, 67). Because inconsistent framing may 

introduce bias (68), both absolute and relative risks were displayed textually and 

graphically. Participants were asked to assume they were average risk for 

cancer/polyps and that polypectomy would reduce lifetime disease-specific mortality by 

25% (69). 

 

A random scenario was repeated to test consistency. A scenario with one option 

unquestionably superior for both sensitivity and specificity identified “irrational” 

responders. Finally, we incorporated “willingness-to-pay” (WTP) assessment: Standard 

CTC was pitched against CTC with sensitivity raised by 10% but with identical 

specificity. Participants were asked how much, if anything, they would pay for this.  

Pilot 

10 volunteers were piloted to confirm comprehensibility and inform sample size (70). 

While understanding attributes and levels, some did not trade (i.e. they judged the 

lowest specificity presented as acceptable). We therefore reprogrammed additional 

“stress-slides” (automatically triggered by responses accepting the lowest specificity for 

enhanced CTC), reinforcing potential harms, to assess whether heuristic bias anchored 

their decision; Seemingly irrational responses declined on repeat piloting of the same 

volunteers. Also, we found that participants were confused by considering cancer and 

polyp scenarios simultaneously, so the final survey presented separate cancer and 

polyp DCEs sequentially, each consisting of 10 scenarios.  

Recruitment 

We recruited consecutive consenting patients of screening age (>55 years), scheduled 

for non-cancer outpatient ultrasound/plain-radiographic investigations at a teaching 

hospital, identified via booking systems. Information/consent forms were mailed and 

responders interviewed on their appointment day. To avoid bias we excluded 
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respondents with a personal history of, or being investigated for, bowel cancer (71). All 

participants were offered a £10 gift voucher. 

 

To investigate any attitudinal difference between patients and healthcare professionals, 

we recruited radiologists, gastroenterologists, surgeons, nurse-specialists, and 

radiographers who requested, performed, or interpreted colorectal imaging. To 

facilitate recruitment, healthcare professionals could complete the DCE online since we 

considered they were familiar with the concepts presented. Otherwise, a radiologist or 

clinical psychologist conducted DCEs, with scenarios presented in random order within 

the two DCEs. All participants were asked their age, ethnicity, education, and 

household income bracket.  

Statistical analysis 

Our primary outcome was the reduction in specificity participants were willing to “trade” 

for 10% absolute (vs relative) increase in sensitivity. We defined the “tipping-point” as 

the highest increase in false-positive rate (FPR; 1-specificity) above baseline at which 

participants perceived the benefits of increased sensitivity were outweighed by 

potential harms. In the pilot this was 45% for cancer (i.e. participants allowed specificity 

to fall from 95% to 50% on average). To determine the median tipping point ±5% at 

two-sided alpha 0.05 and 90% power required 96 participants: 

 

N= 4σ2 zcrit
2/D2 where D=0.10, p=0.45, zcrit=1.960, σ =0.25) (72).  

 

We pre-specified a secondary outcome comparing patients and professionals, for 

which 88 participants were required for 90% power to detect 15% difference. Because 

our pilot suggested data would be non-normal, we recruited a further 15% (72). The 

stress-slides were triggered by participants preferring “enhanced” CTC despite 

increasing FPR by 85% for cancer and 65% for polyps. The highest tipping-point was 

taken if they traded subsequently; others were deemed persistent non-traders. 

Because participants were presented simultaneously with sensitivity, specificity, 

pictorial descriptions of changes and numerical information on the absolute increase in 

false-positives compared to increase in true-positives (Figure 9), we framed our results 

in terms of false-positive vs true-positive diagnoses, as this is most easily understood. 

Some data rounding was used in the scenarios when events were rare. 
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Figure 9: Example question from the cancer detection scenario. Each tally mark represents one 
of 5000 potential outcomes for a patient undergoing screening: True positive (blue), false 
negative (yellow), true negative (white), or false positive (red). Participants were informed that if 
they were to undertake the test in question, their odds of receiving any of the outcomes were 
represented by the chance of picking any of these tally-marks at random “like roulette”. Data are 
also represented numerically using both relative and absolute percentages. This scenario 
corresponds to the ‘tipping point’ for patients and professional respondents: On average, 
participants favoured the enhanced test (test B) in view of its additional sensitivity up to, but not 
beyond, this level of additional false positives. 
  

 
 

The median tipping-point was calculated for cancer and polyps, for patients/healthcare 

professionals combined and separately. Because patient and professional numbers 

differed we used values from 1999 bootstrap estimates of median and IQRs, where 

samples included equal numbers (n=50) of each group, therefore weighting patients 

and professionals equally. At the tipping point, the change in specificity equivalent to a 

10% change in sensitivity was converted into a change in the absolute relative 

numbers of false-positive and true-positive diagnoses using the equation for net benefit 

described in Chapters 1 and 2 of this thesis (32, 53): 

net benefit = ∆ sens + [(1-prevalence)/prevalence] x (1/W) x ∆spec 

Where ∆ sens=10%, and ∆spec= median tipping point, and W is the relative weighting 

(the maximum number of additional false-positives traded per additional cancer or 

polyp detected). Prevalence was assigned 0.2% for cancer, 25% for polyps (60-62).  
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Tipping points were compared between patients interviewed by each researcher. 

Tipping points were highly non-normal so were summarised by medians and 

interquartile ranges (IQR 25% to 50%); the median can be interpreted as 

corresponding to an average participant. For tipping points and relative weighting of 

false-positive to true-positive, all non-traders were treated as requiring higher FP 

values than offered (Figure 10: grey values). The Mann-Whitney U test statistic and 

Wilcoxon signed rank sum test were used for unpaired and paired comparison, 

respectively. Statistical analysis was performed by Dr. Susan Mallett (using Stata 

V11.0, Stata Corporation, College Station, Texas). 

Figure 10: Cumulative graph of participants’ tipping points for trading absolute numbers of true-
positive versus false-positive diagnoses.  
The x-axis shows the absolute number of false-positive diagnoses exchanged for a true-positive 
diagnosis. The y-axis is the % of participants.  
Each yellow dot shows an individual participant’s trading point. Grey symbols indicate values 
assigned for participants who refused to trade. Brown dot shows median value representing “an 
average participant”. Orange dots show 25 and 75 percentage points.  Graphs are shown 
separately as follows: 
A; Patients, cancer scenario (n=72). 
B; Professionals, cancer scenario (n=50). 
C; Patients, polyp scenario (n=72). 
D; Professionals, polyp scenario (n=50). 
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Results 

112 consecutive patients and 62 professionals were invited. 75 patients and 50 

healthcare professionals participated, a response of 67% and 81% respectively (Table 

2). Three patients could not complete the DCE leaving 122 for analysis (two medical 

professionals gave partial responses). Dr. Darren Boone interviewed 53, Ms. Nichola 

Bell interviewed 48; 21 responses were online. Compared to professionals, patients 

were older, discontinued education earlier, and had lower household income (Table 10). 

 

Table 10: Demographic characteristics and household annual income of patient and 
professional participants, including non-traders (% have been rounded). 
	  

Characteristic Patients 
(n=72)* 

Professionals 
(n=50)** 

Total 
(n=122) 

 N (%) N (%) N (%) 
Gender    
Female 49 (68) 24 (48) 73 (60) 
Male 23 (32) 26 (52) 49 (40) 
Age (year)    
25-34 0 (0) 26 (52) 26 (21) 
35-54 0 (00) 23 (46) 26 (21) 
55-59 18 (25) 1 (2) 16 (13) 
60-69 40 (56) 0 (0) 40 (33) 
70-79 14 (19) 0 (0) 14 (12) 
Ethnicity    
White 49 (68) 33 (66) 82 (67) 
Other 23 (32) 17 (34) 40 (33) 
Household income/GBP/year    
< 10000 3 (4) 0 (0) 3 (3) 
10001-20000 14 (19) 0 (0) 14 (11) 
20001-30000 19 (26) 3 (6) 22 (18) 
30001-40000 10 (14) 9 (18) 19 (16) 
>40000 4 (6) 32 (64) 36 (30) 
Declined to answer 22 (31) 6 (12) 28 (23) 

 

Non-traders 

For cancer detection 30 (25%; 27 patients, 3 professionals) participants were non-

traders, 20 (16%; 18 patients, 2 professionals) of who were also non-traders for polyps. 

Non-traders were significantly more likely to be patients (27[38%] vs 3[6%]); p<0.001), 

were significantly older (median age 64.5 vs 44.5; p<0.001), and were less educated 
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than traders (15% vs 2% with no formal qualifications; p<0.001). There was no 

significant difference in gender (59% vs 61% female; p=0.56) or ethnicity (30% vs 33% 

non-white; p=0.57). Considering patients alone, non-traders (n=27) were older (median 

age 66.8 vs 60.1; p=0.001), less affluent (median household income GBP 10,001 to 

20,000 vs. GBP 20,001 to £30,000 per annum; p=0.03. GBP = Great British Pound, = 

1.2 Euros and 1.6 US Dollars at current exchange rates) and less qualified (median 

school-leaving age 16 vs. 18 yrs; p=0.02) than traders (n=45). For cancer and polyps 

respectively, 34% (16/47) and 35% (11/31) participants who were initially unwilling, 

subsequently traded following the stress-slides.  

Cancer 

Overall, the median tipping-point for cancer detection occurred at 45% drop in 

specificity (IQR 25 to >85%; Table 11). Thus, on average, a 45% drop in specificity was 

considered the maximal fall acceptable in exchange for 10% increased sensitivity. At 

population prevalence of 0.2%, this equates to 2250 (IQR 1250 to >4250) additional 

false-positive diagnoses per additional true-positive cancer. The average number of 

additional false-positives per additional true-positive detection was significantly higher 

for patients (median 4250 (IQR 2750 to >4250) than professionals (median 1250, IQR 

750 to 2250, p<0.001), i.e. the average patient perceived a greater number of false-

positives acceptable to gain an additional true-positive.  

 

Table 11: Tipping points and relative weighting for cancer and polyp detection scenarios 
calculated for patients, professionals, and all participants combined (FP = false-positive 
diagnosis, TP = true-positive diagnosis). 
	  

 Tipping point  
(FP tipping point: max change in 
specificity acceptable for a 10% 

gain in sensitivity) 

Relative weighting FP to TP  
(Average number of additional FP per 

additional TP detection) 

 Median IQR Median IQR 
Patients     
Polyp 55 15 to 65 22 6 to 26 
Cancer 85 55 to >85 4250 2750 to >4250 
Professionals     
Polyp 15 5 to 25 6 2 to 10 
Cancer 25 15 to 45 1250 750 to 2250 
Combined     
Polyp 15 7.5 to 55 6 3 to 22 
Cancer 45 25 to >85 2250 1250 to >4250 
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Polyps 

Overall, the median tipping-point for polyp detection was 15% (IQR 7.5 to 55; Table 11). 

Thus, on average, a 15% drop in specificity was considered the maximal fall 

acceptable in exchange for 10% increased sensitivity. At population prevalence of 25%, 

this equates to 6 (IQR 3 to 22) additional false-positive diagnoses per additional true-

positive polyp. Again, the median number of additional false-positives per additional 

true-positive was significantly higher for patients (55, IQR 15 to 65) than professionals 

(15, IQR 5 to 25, p<0.001). 

 

For patients and professionals combined, the average number of additional false-

positives traded per additional true-positive detection was significantly higher for 

cancer than polyps (45 vs. 15; p<0.001), indicating that larger falls in specificity were 

perceived acceptable when testing for cancer.  

 

There was no significant difference in overall median tipping point elicited by the 

radiologist or psychologist, (p=0.57) nor between medical professionals’ data obtained 

face-to-face vs. online (p=0.59). 

 

Willingness-to-pay  

Three quarters of participants were willing to give a price range they would be willing to 

pay for a test with sensitivity raised by 10% but no loss of specificity.  Median WTP was 

significantly higher for cancer than polyps: 201 to 500 GBP (IQR 101 to 200 GBP, to 

501 to 1000 GBP) vs. 101-200 GBP (IQR 51 to 100, to 201 to 500 GBP), p<0.001, 

indicating participants felt cancer detection was worth more than polyp detection. There 

was no significant difference in WTP for polyp detection when patients and 

professionals were compared (p=0.97) but patients’ WTP was significantly higher than 

professionals’ for cancer detection: median 201 to 500 GBP (IQR 101 to 200 GBP, to 

201 to 500GBP) vs. median 101 to 200 GBP (IQR 51 to 100 GBP, to 201 to 500 GBP, 

p=0.036). Moreover, median household income was significantly lower for patients than 

professionals (20,001 to 25,000 GBP vs. >40,000 GBP; p=0.021, Table 12), indicating 

that patient’s values were particularly strongly held from a relative perspective. Most 

participants (27 of 32 participants) who declined to answer WTP, declined to answer 

for both polyps and cancers. Participants who declined gave, on average, higher 

values of false-positives per additional true-positive diagnosis. 
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Table 12: Patient and professionals’ willingness to pay (WTP) for a 0.10 (10%) increase in test 
sensitivity without any reduction in specificity, for detection of cancer or clinically significant 
polyps.   
GBP = Great British Pounds. 
 
WTP/GBP POLYP DETECTION 
 Patients (72) Professionals (50) Total (122) 
 n % n % n % 
<50 9 12 8 16 17 14 
51-100 10 14 8 16 18 15 
101-200 15 21 14 28 29 24 
201-500 4 6 10 20 14 11 
501-1000 10 14 4 8 14 11 
>1000 0 0 0 0 0 0 
Declined to answer 24 33 6 12 30 25 
 CANCER DETECTION 
 Patients (72) Professionals (50) Total (122) 
 n % n % n % 
<50 5 7 5 10 10 8 
51-100 3 4 7 14 10 8 
101-200 10 14 12 24 22 18 
201-500 14 20 9 18 23 19 
501-1000 11 15 6 12 17 14 
>1000 8 11 3 6 11 9 
Declined to answer 21 29 8 16 29 24 

 

Discussion 

When screening for colorectal cancer and polyps, we found that patients and 

healthcare professionals both valued gains in diagnostic sensitivity over and above 

corresponding loss of specificity. On average, 2250 additional false-positives were 

considered worth trading for a single additional true-positive diagnosis of cancer and 6 

additional false-positives for an additional true-positive diagnosis of a polyp. These 

values are vastly in excess of the (admittedly conservative) value of 3 used for W in 

Chapter 2, and are more in line with those from a study of mammography that found 

women willing to trade 500 false-positive mammograms (and their consequences) in 

order to diagnose a single additional cancer that would otherwise have been missed 

(12).  

 

While it is known that patients value sensitivity over specificity for colorectal cancer 

screening (73, 74), we could find no data that quantified this for a radiological test, 

hence the necessity to use a conservative value for the analysis detailed in Chapter 2 

of this thesis. CAD for CTC will increases sensitivity but at the cost of reduced 
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specificity, sometimes significantly (17, 75-77). However, as detailed in Chapter 1, the 

potential clinical consequences of missed cancer (death) are not equivalent to those of 

false-positive diagnosis (unnecessary colonoscopy); our findings confirm that both 

patients and healthcare professionals believe this. It is therefore important that analysis 

of research studies of diagnostic tests take account of this asymmetry in 

misclassification costs. Such values can be incorporated into net benefit measures as 

described in Chapters 1 and 2 of this thesis, since they incorporate relative weightings 

for different clinical costs (53, 78). By contrast statistical measures such as ROC AUC 

cannot assign different utilities to gains in sensitivity versus falls in specificity and so 

could find a new test of no value when both patients and professionals might think 

otherwise.  

 

We used a discrete choice experiment, a relatively novel methodology for establishing 

preferences (79). Traditionally, preferences are elicited via ranking (80), with test 

attributes considered in isolation. Results are therefore predictable: Patients and 

professionals favour tests that are sensitive, specific, inexpensive, and non-invasive. 

However, this does not reflect the trade-offs demanded by everyday, real-life practice. 

DCEs are advocated increasingly by researchers because respondents indicate 

preferences between different test characteristics, which more accurately reflects real-

world choices (57-59, 80-82). Because DCEs are complex, we delivered most 

experiments face-to-face to facilitate understanding and participation, which can 

increase the generalisability of results. Accordingly, most participants gave complete, 

consistent, meaningful responses. While interviewer bias is possible, we found no 

significant difference between responses obtained from the psychologist or radiologist. 

Further, there was no significant difference in responses obtained face-to-face vs. 

online. 

 

To simplify and focus the cognitive task, we compared just two attributes, increase in 

true-positive and false-positive diagnoses by imaging (also expressed by sensitivity 

and specificity). In order to create an “enhanced” test that inflated sensitivity for cancer 

to 95% (perfect sensitivity would be unrealistic) we used a baseline sensitivity of 85% 

for standard CTC, which is likely an underestimate. However, in this type of experiment, 

the relative weighting given to attributes across different scenarios is key, not the 

absolute difference between them. Using this design we elicited the relative importance 

that participants placed on gains in sensitivity versus loss of specificity. 

 

Although both groups valued gains in sensitivity over and above corresponding loss of 

specificity, this finding was stronger for patients. Healthcare professionals, especially 
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those who are medically qualified, will have a deeper understanding of the pros and 

cons of diagnostic testing; as noted earlier, some patients do not understand that false-

positive diagnosis is even possible (54). Patients were older, discontinued education 

earlier, and had approximately half the annual household income of health 

professionals, yet patients ascribed a monetary value to enhanced sensitivity that was 

approximately twice that of professionals, demonstrating they consider sensitivity 

exceptionally important. Again, professionals may have been less willing to pay 

because they had a deeper understanding of the issues, for example that an earlier 

cancer diagnosis does not necessarily equate with cure, and knowledge that the large 

majority of polyps are destined never to become malignant. 

 

If statistical analyses must account for discrepant weightings for sensitivity and 

sensitivity, a particularly interesting question is whose weightings should be used? 

Some will argue that healthcare professionals are the best option, notably medically 

qualified clinicians because they request tests, have the deepest understanding of pros 

and cons, and thus have the broadest and most informed perspective overall. Others 

will argue that society ultimately undergoes and pays for diagnostic testing, and so 

patients’ perspectives are most appropriate. This issue warrants further research. 

 

Our study has limitations. As noted previously, DCEs are challenging for participants 

(83), requiring motivation, literacy, and numeracy, which may introduce selection bias 

(64). We attempted to reduce this effect by using an interviewer rather than a postal 

questionnaire. Although we had power for our primary endpoint, larger and/or different 

samples will better investigate differences between subcategories of patients and 

healthcare professionals. Because we believed that we should not ignore particularly 

strongly held beliefs, we included non-traders via calculating median values; our 

estimates are therefore an underestimate. WTP estimates are also likely 

underestimates because of reluctance to state income. We followed guidelines for best 

practice of DCE studies (59) but suggest that strategies for design and analysis need 

further investigation (84, 85). Common to all hypothetical scenarios, subjects’ actions in 

real life may not mirror those expressed in a DCE. Finally, the weightings we derived 

are specific to colorectal cancer screening. However, we believe they are likely to be 

similar to other scenarios that involve diagnosis of cancers with similar clinical 

consequences (12). 

 

In summary, via discrete choice experiment we found that both patients and healthcare 

professionals believe gains in diagnostic sensitivity are worth vastly more than the 

perceived negative consequences of a corresponding loss of specificity, when 
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considering colorectal cancer screening. Gains in sensitivity over loss of specificity 

were valued more highly for cancer detection (vs. polyps) and by patients rather than 

healthcare professionals. These findings should influence the evaluation of new 

screening tests. 
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Chapter 4: Assessment of the incremental benefit of 
computer-aided detection (CAD) for interpretation of CT 
colonography by experienced and inexperienced 
readers. 

Boone D, Mallett S, McQuillan J, Taylor SA, Altman DG, Halligan S. Assessment of the 

incremental benefit of computer-aided detection (CAD) for interpretation of CT 

colonography by experienced and inexperienced readers. PLoS ONE 2015;10: 
e0136624. 

 

Abstract  

Objectives: To quantify the incremental benefit of computer-assisted-detection (CAD) 

for inexperienced readers versus experienced readers of CT colonography. 

Methods: 10 inexperienced and 16 experienced radiologists interpreted 102 CT 

colonography studies using temporally separated unassisted and concurrent-CAD 

paradigms. Readers were asked to indicate any polyps detected. Interpretations were 

compared against a reference standard for each case: 46 studies were normal and 56 

had at least one polyp (132 polyps total). The primary outcome was the difference in 

CAD net benefit (a combination of sensitivity and specificity weighted in favour of 

sensitivity) between groups for detection of patients with any polyp. 

Results: For detection of patients with any polyp, inexperienced readers’ sensitivity 

rose from 39.1% to 53.2% with CAD and specificity fell from 94.1% to 88.0%, both 

statistically significant. Experienced readers’ sensitivity rose from 57.5% to 62.1% and 

specificity fell from 91.0% to 88.3%, both non-significant. These data gave a 

significantly beneficial net benefit with CAD of 11.2% (95%CI 3.1% to 18.9%) for 

inexperienced readers compared with a non-significant 3.2% (95%CI -1.9% to 8.3%) 

for experienced readers, a difference of 7.9% (95%CI -0.9% to 16.6%).  

Conclusions: Concurrent CAD resulted in a significant net benefit when used by 

inexperienced readers to identify patients with any polyp by CT colonography. The net 

benefit was nearly four times the magnitude of that observed in experienced readers. 

Experienced readers did not benefit significantly from concurrent CAD.  
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Introduction 

Chapter 1 of this thesis detailed the use of a net benefit analysis as an alternative to 

ROC AUC for assessment of diagnostic test accuracy. The net benefit analysis was 

implemented in Chapter 2 and a discrete choice experiment used to generate an 

evidence-based value for W in Chapter 3. In this Chapter I further refine the net benefit 

analysis by incorporating the value of W generated in Chapter 3 and by using a value 

for prevalence that is more representative of the target population in everyday clinical 

practice rather than the prevalence within the study dataset (which was the method 

used in Chapter 2). The net benefit equation is then used to compare the diagnostic 

performance of experienced and inexperienced radiologists when using CAD to 

interpret CTC. While it has been hypothesised frequently that CAD may diminish the 

need for prior experience (17), the two largest reader studies of CAD published at the 

time of writing have relied solely on experienced radiologists; 19 (Dachman) and 16 

readers (Halligan; Chapter 2) (75, 78). Few studies have compared experienced and 

inexperienced readers directly, and those that have done so are limited by their small 

size and low statistical power(86). For example, Mang and colleagues asked two 

“expert” and two “nonexpert” observers to interpret 52 patient datasets using CAD in a 

second-read paradigm, finding that CAD was only beneficial for the less experienced 

readers (87). The present study aimed to quantify the incremental benefit of CAD for 

inexperienced versus experienced readers by comparing data across two large multi-

reader, multi-case studies of CT colonography, via the net benefit analysis. 

 

Methods 

 

Data sources and readers 

We obtained original reader data acquired from two multi-reader, multi-case studies of 

CAD for CT colonography: the first was the study detailed in Chapter 2 (i.e. 

experienced readers) and the second was our prior study of CAD for CT colonography 

that first brought issues with ROC AUC to our attention (17). Both studies had full 

ethical committee approval for data sharing. The second study investigated 10 

radiologist readers with no prior experience of CT colonography who interpreted 107 

patient datasets both unaided and when using CAD in a concurrent paradigm (17).  
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Data characteristics 

118 discrete patient cases were used for the two studies with 102 patient cases 

common to both. We included reader data from these 102 cases to enable paired 

comparisons of experienced and inexperienced observers without the need for 

imputation to account for missing data. Thus, any differences could be attributed 

directly to differences in experience rather than due to confounding because of 

different case mix. We calculated the difference between novices and experienced 

readers on a per case basis so allowing data clustering to be included in the analysis, 

generating more appropriate 95% confidence intervals. Cases were a mix of 

symptomatic and asymptomatic subjects aggregated from three USA and two 

European centres. Prone and supine CT colonography had been performed in each 

case using multidetector-row machines and following full bowel purgation, adhering to 

contemporaneous published guidelines for data acquisition (38).  

A reference truth against which the CAD and reader output could be judged was 

established by three experienced readers (minimum 200 endoscopically validated 

cases) for each case as detailed in Chapter 2. None were readers in the studies. A pair 

read each case with the benefit of the original radiological report supplemented with 

colonoscopic and histologic data, and achieved consensus regarding the case 

classification and size and location of any polyp. Ultimately, of the 102 cases used for 

this study, 46 were judged normal and 56 had at least one polyp. There were 132 

polyps in total: 15 polyps ≥10mm, 41 polyps 6mm to 9mm, 76 polyps ≤5mm, with 12, 

25 and 19 cases where these were the largest polyps respectively. In 37 cases the 

largest polyp was at least 6mm.  

 

Reading environment and CAD paradigm 

In the study of inexperienced readers, readers interpreted all cases in a quiet 

environment without CAD over the course of one week and then repeated the 

interpretation two months later, this time using CAD in a concurrent paradigm(88). In 

the study of experienced readers, cases were read in three batches, each over one 

month, with a temporal separation of at least one month between batches, as noted in 

Chapter 2. All cases were read once in each batch, using one of three paradigms 

(unassisted, concurrent-CAD, second-read CAD), with paradigm and study sequence 

randomised between batches. Thus unassisted interpretation and concurrent-CAD 

interpretation of each individual case were common to both studies, with a temporal 

separation between reads of at least one month. For the concurrent paradigm, readers 

interpret CAD-annotated CT colonography data simultaneously with unannotated data 
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(37). The same CAD system was used for both studies, so that correctly annotated 

polyps and false-positive detections were the same (Colon CAD API 3.1, Medicsight, 

Hammersnith, UK). A proprietary CT colonography package was used to view CT 

colonography data for the study of inexperienced readers. For the study of experienced 

readers, CAD was implemented into commercially available workstations as explained 

in Chapter 2 (either Viatronix V3D, Stony Brook NY, USA, or Vital Images, Minnetonka, 

Minn, USA). None of the cases had been used previously to develop the CAD 

algorithm.  

Readers were asked to indicate for each case whether they believed a polyp was 

present or not, irrespective of size. If they believed the case was positive, they were 

asked to indicate the segmental location of all polyps detected and note the CT 

coordinates. They also estimated the maximum diameter of each polyp using software 

callipers. Responses were made on study datasheets collated subsequently by a study 

coordinator.  

 

Statistical analysis 

The collated datasheet responses were compared to the reference truth diagnosis for 

each case so that each reader’s response for each case could be classified as true-

positive, true-negative, false-positive, or false-negative. Each individual polyp detected 

by readers was also categorised as true-positive or false-positive. 

Our pre-specified primary outcome measure for the present study was the net benefit 

measure described in Chapter 1 and used in Chapter 2: a combination of sensitivity 

and specificity weighted in favour of sensitivity for detection of patients with any polyp, 

defined as: 

CAD net benefit = Δsensitivity + [Δspecificity x (1/W) x (1-p)/p] 

where Δsensitivity was the change in sensitivity, Δspecificity the change in specificity 

from baseline (i.e. assessment without CAD) for detection of patients with polyps of 

any diameter, achieved when using CAD assistance. For the present study, in contrast 

to Chapter 2, we used a value for p that reflected the proportion of patients with polyps 

in the population where the software was likely to be used (25%, i.e. asymptomatic 

screenees) rather than the prevalence of abnormality in the study dataset (50%). We 

also used a value of W that was derived from the discrete choice experiment 

performed in Chapter 3. Specifically, we used a value of 6, which was the tipping-point 

at which participants overall deemed the benefit of enhanced sensitivity to be 

outweighed by the negative consequences of diminished specificity; i.e. the present net 
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benefit analysis regarded one extra true-positive diagnosis as equivalent to 6 additional 

false-positives.  

As for Chapter 2, overall net benefit was calculated by meta-analysis, treating each 

reader as if they were an individual study. Average estimates were calculated from 

bootstrap samples generated by means of random sampling of patient cases for each 

reader, bootstrapping positive and negative patients separately. Confidence intervals 

(CI) were calculated by taking the 2.5% and 97.5% percentiles of the cumulative 

distribution of the bootstrap estimates. We defined a significant beneficial effect for 

CAD as a positive net benefit whose 95% confidence interval did not include zero.  

The following secondary outcomes were pre-specified for experienced and 

inexperienced readers, and the difference between them: 

• Per-patient sensitivity and specificity when unassisted, when using concurrent 

CAD, and the change when using CAD, both for patients with all polyps and 

also patients with polyps ≥6mm 

• Per-polyp sensitivity when unassisted, when using CAD, and the change when 

using CAD, for patients with all polyps, polyps ≥6mm, and polyps ≤5mm (6mm 

is the diameter threshold that conventionally separates “small” from ”medium” 

polyps; see Chapter 2). 

• The mean number of patients correctly classified as true-positive solely as a 

consequence of false-positive detections.  

• Mean reading time with and without CAD, and the difference between the two. 

We also wished to speculate on the potential gain for inexperienced readers using 

CAD in a second-read paradigm by quantifying the difference in accuracy between 

concurrent and second-read CAD paradigms for experienced readers via existing data.  

Average estimates were calculated from 2000 bootstrap samples generated by random 

sampling of patients and readers, retaining data clustering. Positive and negative 

patients were bootstrapped separately and the same bootstrap samples of cases used 

for both studies. Readers were bootstrapped separately for each study. Differences 

between inexperienced and experienced readers were calculated within each case 

prior to averaging across all cases. Meta-analysis with equal weighting per reader was 

used to obtain an average across all readers. For per-polyp sensitivity bootstrap 

analysis accounted for the clustering of multiple polyps per patient. Confidence 

intervals were calculated by taking the 2.5% and 97.5% percentiles of the cumulative 

distribution of the 2000 estimates. Although underpowered for analysis at the 1cm 

threshold, we calculated the median number of patients detected. Interpretation times 
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for experienced readers were based on 15 readers (one had missing data). Sensitivity 

and specificity, and changes in these are expressed as percentages. Results are 

reported with 95% confidence intervals (CI). Differences with confidence intervals not 

including zero were considered to be statistically significant.  

 

Results 

	  

Per-patient analysis 

For both inexperienced and experienced readers, using CAD changed the proportion of 

readers correctly identifying cases with polyps in 83% of cases; detection of patients 

with polyps increased in 70% and 57% of cases over 10 and 16 readers respectively. 

Per-patient sensitivity and specificity (with 95%CI) for readers when unassisted and 

when using CAD are shown in Table 13.  There was a statistically significant mean gain 

in sensitivity for all polyps of 14.1% for inexperienced readers when using CAD (rising 

from 39.1% to 53.2%). Sensitivity for patients with all polyps was higher for 

experienced readers but the mean gain of 4.6% with CAD was not significant (rising 

from 57.5% to 62.1%). Inexperienced readers benefitted by a mean gain in sensitivity 

approximately three times that for experienced readers, a significant difference of 9.6% 

(95%CI 1.2% to 17.7%). The mean change in specificity of -6.1% with CAD was 

significant for inexperienced readers (falling from 94.1% to 88.0%) whereas the mean 

change in specificity of -2.7% with CAD was nonsignificant for experienced readers 

(falling from 91.0% to 88.3%). Thus, in a series of 200 patients (100 with polyps) 

inexperienced readers using CAD would on average correctly identify 14 additional 

patients with polyps, at the cost of approximately 6 additional false-positives, whereas 

experienced readers would identify 4 or 5 additional patients with polyps at cost of 2 or 

3 additional false-positives. For our primary outcome, these data gave a mean CAD net 

benefit of 11.2% (95%CI 3.1% to 18.9%) for inexperienced readers versus 3.2% 

(95%CI -1.9% to 8.3%) for experienced, with a mean difference of 7.9% (95%CI -0.9% 

to 16.6%) between the two groups (Table 13).  
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Table 13: Per-patient results for net benefit of CAD assistance when used in concurrent mode 
for interpretation of CT colonography by inexperienced and experienced readers. For all 
comparisons differences are calculated as performance with CAD assistance minus 
performance when unassisted. All data are percentages. Using CAD changed the proportion of 
readers correctly identifying cases with polyps in 83% of cases for both inexperienced and 
experienced readers; detection of patients with polyps increased in 70% and 57% of cases over 
10 and 16 readers respectively. 
 
 Inexperienced 

readers 
[mean % (95%CI)] 

Experienced readers 
[mean % (95%CI)] 

Difference: 
Inexperienced – 
Experienced 

[mean % (95%CI)] 
CAD net benefit 

measure (all polyps) 
11.2 

(3.1 to 18.9) 
3.2 

(-1.9 to 8.3) 
7.9 

(-0.9 to 16.6) 
Unassisted 

sensitivity        (all 
polyps) 

39.1 
(30.9 to 47.0) 

57.5 
(49.6 to 65.2) 

-18.5 
(-25.3 to -11.9) 

Unassisted 
specificity        (all 

polyps) 

94.1 
(90.0 to 97.4) 

91.0 
(87.0 to 94.8) 

3.1 
(-1.7 to 7.9) 

Sensitivity with CAD           
(all polyps) 

53.2 
(43.9 to 61.4) 

62.1 
(54.1 to 70.3) 

-8.9 
(-16.6 to -1.9) 

Specificity with CAD           
(all polyps) 

88.0 
(82.2 to 93.3) 

88.3 
(83.8 to 92.4) 

-0.3 
(-5.6 to 5.0) 

Change in sensitivity 
with CAD (all 
polyps) 

14.1 
(6.8 to 21.4) 

4.6 
(-0.2 to 9.3) 

9.6 
(1.2 to 17.7) 

Change in specificity 
with CAD (all 
polyps) 

-6.1 
(-12.0 to -0.2) 

-2.7 
(-6.3 to 0.8) 

-3.4 
(-9.6 to 3.0) 

CAD net benefit 
measure (polyps 

≥6mm) 

9.9 
(0.1 to 19.2) 

3.7 
(-2.6 to 10.1) 

6.1 
(-4.0 to 15.6) 

Unassisted 
sensitivity (polyps 

≥6mm) 

49.5 
(40.0 to 58.9) 

65.9 
(56.4 to 74.7) 

-16.4 
(-24.0 to -8.3) 

Unassisted 
specificity (polyps 

≥6mm) 

92.6 
(89.0 to 95.5) 

93.5 
(90.5 to 95.9) 

-0.9 
(-4.4 to 2.5) 

Sensitivity with CAD           
(polyps ≥6mm) 

61.1 
(50.0 to 71.1) 

70.1 
(60.5 to 78.7) 

-9.0 
(-18.4 to -0.3) 

Specificity with CAD           
(polyps ≥6mm) 

89.2 
(84.7 to 92.8) 

92.7 
(89.0 to 95.5) 

-3.5 
(-7.4 to 0.2) 

Change in sensitivity 
with CAD (polyps 

≥6mm) 

11.6 
(1.9 to 20.5) 

4.2 
(-2.0 to 10.5) 

7.5 
(-2.6 to 16.8) 

Change in specificity 
with CAD (polyps 

≥6mm) 

-3.4 
(-8.0 to 0.8) 

-0.8 
(-3.4 to 1.7) 

-2.6 
(-7.5 to 2.0) 

 

With the analyses restricted to patients with polyps ≥6mm there was a significant mean 

rise in sensitivity with CAD of 11.6% for inexperienced readers (rising from 49.5% 

unassisted to 61.1%) compared with a mean rise of 4.2% for experienced readers 

(rising from 65.9% to 70.1%), which was not significant (Table 13). In this case, 

however, the fall in specificity with CAD was non-significant for both groups, with a 

mean fall of 3.4% for inexperienced readers and 0.8% for experienced readers. Thus, 
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in a series of 200 patients (100 with polyps) inexperienced readers using CAD would 

on average correctly identify 11 or 12 additional patients with polyps, at the cost of 

approximately 3 or 4 additional false-positives, whereas experienced readers would 

identify 4 or 5 additional patients with polyps at the cost of 1 additional false-positive. 

Net benefit was significant for inexperienced readers (9.9%, 95% CI 0.1% to 19.2%) 

but not experienced readers (3.7%, 95%CI -2.6 to 10.1) with a non-significant 

difference between groups (6.1%, 95%CI -4.0% to 15.6%) (Table 13). 

 

Per-polyp analysis 

Per-polyp sensitivity for readers when unassisted and when using CAD are shown in 

table 14. For all polyps there was a significant mean rise in sensitivity with CAD of 

9.0% for inexperienced readers (rising from 15.4% unassisted to 24.4%) compared 

with a mean rise of 4.1% for experienced readers (rising from 30.3% to 34.4%), which 

was also significant. Restricting analysis to polyps ≥6mm the mean rise of 10.0% 

(rising from 28.5% to 38.5%) for inexperienced readers was significant but the mean 

rise of 3.0% (rising from 51.0% to 54.0%) for experienced readers was not. When the 

analysis was restricted to polyps ≤5mm the mean rise in sensitivity with CAD was 

significant for both groups, 8.3% (rising from 5.9% to 14.2%) for inexperienced readers 

and 4.8% (15.3% rising to 20.1%) for experienced readers. The magnitude of benefit 

with CAD was not significantly different between the two groups. 
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Table 14: Per-polyp sensitivity for CAD assistance when used in concurrent mode for 
interpretation of CT colonography by inexperienced and experienced readers. For all 
comparisons differences are calculated as performance with CAD assistance minus 
performance when unassisted. All data are percentages. 

 

Second-read CAD  

Data for second-read CAD were only available for experienced readers and are shown 

in table 15 with 95%CI. There was a significant rise in mean sensitivity of 6.9% for 

patients with all polyps (rising from 57.5% to 64.4%), with a non-significant fall in mean 

specificity of -2.0% (falling from 91.0% to 89.0%). Thus in a series of 200 patients (100 

with polyps) experienced readers would identify 6 or 7 additional patients with polyps 

on average, at a cost of 2 additional false-positives. These data gave a significant CAD 

net benefit of 6.0 (95%CI 1.2 to 10.5). Mean per-patient sensitivity for patients with 

polyps ≥6mm rose significantly by 6.9% also, with a non-significant fall in specificity of -

0.9%. Per-polyp sensitivity rose significantly by a mean of 7.2% for all polyps, with 

 Novice readers 
[mean % (95%CI)] 

Experienced 
readers 

[mean % (95%CI)] 

Difference 
(Novice – 

Experienced) 

Unassisted sensitivity 

(all polyps) 

15.4 
(11.3 to 20.8) 

30.3 
(23.9 to 37.7) 

-14.9 
(-19.6 to -10.5) 

Sensitivity with CAD 

concurrent (all polyps) 

24.4 
(18.8 to 31.3) 

34.4 
(27.4 to 42.5) 

-10.0 
(-14.7 to -5.4) 

Change in sensitivity 

with CAD (all polyps) 

9.0 
(5.1 to 13.2) 

4.1 
(1.0 to 7.5) 

4.9 
(0.3 to 9.5) 

Unassisted sensitivity 

(polyps ≥6mm) 

28.5 
(20.2 to 36.9) 

51.0 
(40.4 to 60.9) 

-22.5 
(-29.9 to -14.7) 

Sensitivity with CAD 

(polyps ≥6mm) 

38.5 
(29.7 to 48.3) 

54.0 
(43.0 to 64.7) 

-15.5 
(-23.0 to -7.6) 

Change in sensitivity 

with CAD (polyps 

≥6mm) 

10.0 
(3.0 to 17.3) 

3.0 
(-2.1 to 8.7) 

7.0 
(-1.2 to 14.7) 

Unassisted sensitivity 

(polyps ≤5mm) 

5.9 
(3.0 to 10.0) 

15.3 
(10.4 to 21.2) 

-9.3 
(-14.3 to -5.6) 

Sensitivity with CAD 

(polyps ≤5mm) 

14.2 
(8.4 to 21.4) 

20.1 
(13.9 to 28.0) 

-5.9 
(-10.6 to -0.9) 

Change in sensitivity 

with CAD (polyps 

≤5mm) 

8.3 
(4.1 to 13.6) 

4.8 
(1.5 to 8.7) 

3.5 
(-1.2 to 8.9) 
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significant gains in mean sensitivity of 9.1% for polyps ≥6mm and 5.8% for polyps 

≤5mm. 

 

Table 15: Effect of CAD assistance when used in second-read mode for interpretation of CT 
colonography by experienced readers. For all comparisons differences are calculated as 
performance with CAD assistance minus performance when unassisted. All data are 
percentages. 
	  

 Per-Patient analysis 
[mean % (95%CI)] 

Per-polyp 
analysis 

[mean % 

(95%CI)]  

CAD net benefit measure 
(all polyps) 

6.0 
(1.2 to 10.5) 

n/a 

Unassisted sensitivity 
(all polyps) 

57.5 
(49.6 to 65.2) 

30.3 
(23.9 to 37.7) 

Unassisted specificity 
(all polyps) 

91.0 
(87.0 to 94.8) 

n/a 

Sensitivity with CAD 
(all polyps) 

64.4 
(56.6 to 72.3) 

37.5 
(29.5 to 46.1) 

Specificity with CAD 
(all polyps) 

89.0 
(84.1 to 93.3) 

n/a 

Change in sensitivity with 
CAD (all polyps) 

6.9 
(2.8 to 11.2) 

7.2 
(3.9 to 10.6) 

Change in specificity with 
CAD (all polyps) 

-2.0 
(-6.2 to 1.6) 

n/a 

CAD net benefit measure 
(polyps ≥6mm) 

6.6  
(1.2 to 11.9) 

n/a 

Unassisted sensitivity 
(polyps ≥6mm) 

65.9 
(56.4 to 74.7) 

51.0 
(40.4 to 60.9) 

Unassisted specificity 
(polyps ≥6mm) 

93.5 
(90.5 to 95.9) 

n/a 

Sensitivity with CAD           
(polyps ≥6mm) 

72.8 
(63.3 to 81.4) 

60.1 
(48.9 to 70.4) 

Specificity with CAD           
(polyps ≥6mm) 

92.6 
(89.0 to 95.6) 

n/a 

Change in sensitivity with 
CAD (polyps ≥6mm) 

6.9 
(1.9 to 12.5) 

9.1 
(3.8 to 13.8) 

Change in specificity with 
CAD (polyps ≥6mm) 

-0.9 
(-3.7 to 1.8) 

n/a 

Unassisted sensitivity 

(polyps ≤5mm) 

n/a 15.3 
(10.4 to 21.2) 

Sensitivity with CAD 

(polyps ≤5mm) 

n/a 21.1 

(14.3 to 29.7) 

Change in sensitivity with 

CAD (polyps ≤5mm) 

n/a 5.8 

(2.3 to 9.7) 
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Second-read CAD was not tested with inexperienced readers but we can expect at 

least a similar impact to that seen in experienced readers, with second-read CAD likely 

to confer increased net benefit. Using second-read CAD experienced readers achieved 

an average sensitivity 2.5% above that when using concurrent CAD (6.9% increase 

with second-read, 4.6% increase with concurrent read; tables 13 and 15. Specificity for 

experienced readers rose by 0.7% using second-read CAD compared to concurrent 

reading (-2.0% change for second-read versus -2.7% change for concurrent; table 13 

and 15). Conservative estimates suggest a significant rise in sensitivity for 

inexperienced readers of 16.6% (14.1% plus 2.5%; table 13) with a potentially 

significant fall in specificity of approximately -5.5% (-6.1% plus +0.7%; table 13).  

 

Other analyses 

It is possible to fortuitously achieve a true-positive diagnosis for a patient when 

assigning a false-positive polyp diagnosis while simultaneously failing to identify a true 

polyp. The mean number of such patients was 4.3 for both experienced and 

inexperienced readers when unassisted, falling with CAD to 3.9 for experienced 

readers and rising to 5.0 for inexperienced readers. Thus the proportion of such 

patients was small and the effect on the analyses overall was negligible; i.e. increased 

sensitivity with CAD was not due to false-positive detections in patients with true polyps 

elsewhere.  

When unassisted, mean reading time for inexperienced readers was 11.2 min (95%CI 

10.7 to 11.7) compared with 7.9 min (7.4 to 8.2) for experienced readers. When using 

CAD concurrently, this fell to 8.9 (8.3 to 9.4) for inexperienced readers but rose to 8.7 

(8.2 to 9.3) for experienced readers. 

 

Discussion 

This study aimed to quantify the incremental benefit of CAD for inexperienced versus 

experienced readers; both groups read the same CT colonography data using a 

concurrent CAD paradigm. Our primary outcome was a weighted combination of the 

change in sensitivity and specificity when using CAD to detect patients with polyps of 

any size. We found that inexperienced readers achieved a significant net benefit with 

CAD of 11.2% but experienced readers only achieved 3.2%; the net benefit for 

inexperienced readers was nearly four times that achieved by experienced readers. 

This occurred despite a significant fall in specificity with CAD for inexperienced readers 

(a phenomenon not seen with experienced readers), confirming that the rise in 

sensitivity outweighed correspondingly diminished specificity when using our weighted 
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analysis. For both groups the impact of CAD was spread across 83% of cases with 

polyps, indicating that benefit was not confined to a small number of pivotal cases and 

suggesting that our findings are generalisable. Analysis restricted to patients with 

polyps ≥6mm similarly found net benefit greatest for inexperienced readers Per-polyp 

analyses found that inexperienced readers achieved gains in sensitivity when CAD-

assisted for polyps of all sizes and also when restricted to polyps ≥6mm and ≤5mm. 

Experienced readers also achieved significant gains in sensitivity for the “all polyps” 

and “≤5mm” analyses but not polyps ≥6mm. 

Several studies have investigated the effect of CAD-assistance on inexperienced 

readers but direct comparisons with experienced readers are uncommon, possibly 

because experienced readers are difficult to recruit versus less experienced individuals 

who are often trainees and/or those who wishing to lean CT colonography. Mang and 

colleagues used a second-read paradigm (87), finding that CAD raised sensitivity for 

two inexperienced readers close to that achieved by two experienced readers. Our 

findings suggest that while CAD improves sensitivity for inexperienced readers, in 

isolation it cannot compensate for proper training and experience. For example, per-

polyp sensitivity with CAD at the 6mm threshold was 38.5% for inexperienced readers 

versus 54% for experienced readers. Supporting this, a study of 6 inexperienced 

readers who had participated in a prior CAD study found that a single day of clinical 

training significantly increased subsequent sensitivity (89). Researchers have also 

investigated the role of CAD for training inexperienced readers (90).  

Second-read CAD was restricted to experienced readers, as per Chapter 2, in whom 

we found a net benefit that was not seen for concurrent CAD, suggesting the second-

read paradigm is more accurate. To recap, because the CAD marks made during each 

paradigm read were identical, the effect cannot be a consequence of fewer true-

positive marks during concurrent reading. Decreased vigilance paid to the unannotated 

endoluminal surface (including unannotated polyps) during concurrent reading may be 

an explanation. Alternatively, correctly annotated polyps may have been dismissed 

inappropriately by the reader although it is unclear why this should apply more to the 

concurrent paradigm. 

Other researchers have also found second-read CAD beneficial for experienced 

readers, using ROC AUC as the primary analysis (75). We did not test second-read 

CAD on inexperienced readers but it is plausible to expect at least a similar benefit to 

that observed in experienced readers. A conservative estimate might assume a similar 

magnitude of difference between concurrent and second-read paradigms to that 

observed for experienced readers. In reality, a larger net benefit is likely for 

inexperienced readers given that they achieved more benefit from concurrent CAD 
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than did experienced readers. This assumption suggests that with the second-read 

paradigm sensitivity for patients with any polyp would increase by approximately 16.6% 

with a decrease in specificity of approximately -5.5%. 

Our primary outcome was based on detection of patients with any polyp because such 

patients are potential candidates for colonoscopy if a polyp reaches the diameter 

threshold for referral. We did not apply a threshold for our primary outcome because 

there is disagreement regarding which diameter should trigger referral (91). Moreover, 

3 or more diminutive polyps alone attracts a higher CRADS score, also prompting 

colonoscopy (92). Also, since smaller polyps are more difficult to detect than larger 

polyps, the a priori expectation is that CAD will have most impact here.  

We used the net benefit analysis outlined in Chapter 1 and used in Chapter 2, but with 

different values for W and p. For the present analysis our value of W was evidence-

based, having been obtained from the experiment detailed in Chapter 3 rather than the 

overly conservative value of 3 used in Chapter 2; i.e. the value of 6 used here is twice 

the value based in conservative expert opinion. As per our findings in Chapter 3, 

weighting to favour sensitivity becomes much more pronounced when cancer is 

considered, rising to 2250. These data are similar to those found for mammographic 

screening where women will trade 500 false-positive diagnoses for a single additional 

true-positive cancer (12). The higher the weighting factor, the more falls in specificity 

are regarded as increasingly clinically irrelevant. The present experiment considered 

detection of polyps alone but, in reality, any colorectal cancer screening programme 

using CTC will inevitably encounter cancers as well as polyps (although the latter will 

be far more numerous). I believe that analysis of the present data would likely be more 

representative if W also included the chance of encountering cancer but it is unclear 

exactly how the two weightings should be combined to provide a single value for W 

(and it should be borne in mind that while CAD does indeed detect cancers, it is 

generally not intended/designed to do so). Perhaps a weighting that is based on the 

relative prevalence of polyps and cancer in the general population would be most 

appropriate? Given a polyp prevalence of 25% and cancer prevalence of 0.2%, with 

values for W of 6 and 2250, the overall value of W would rise to 24; i.e. 6 + 18 since 

cancers are detected 125 times less frequently than polyps so 2250/125 = 18. This 

issue requires more research. 

Mean unassisted interpretation time was longer for inexperienced readers, by 

approximately three minutes. Although we might expect experienced readers to be 

quicker, it could be argued that accurate interpretation arises from slow, careful 

inspection. Concurrent CAD shortened interpretation time for inexperienced readers 

(by over two minutes) yet raised it for experienced readers (by just under a minute). It 
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is possible that when using CAD concurrently, inexperienced readers pay less attention 

to un-annotated endoluminal surface than when unassisted, suggesting an “over-

reliance” on CAD. Experienced readers may be more aware that CAD can be 

inaccurate, although both groups were told in advance that CAD made both true-

positive and false-positive marks, and may miss polyps. 

This study does have limitations. Inexperienced participants read under “laboratory” 

conditions over a week whereas experienced readers’ interpretations occurred over a 

month, at their workplace. The difference in reading environment may have exerted an 

influence. The CAD algorithm was identical for both groups, with identical true-positive 

and false-positive marks for cases shared between studies, but the reading platform 

was different: inexperienced readers used an in-house interface whereas experienced 

readers used commercially-available workstations with the CAD algorithm integrated. 

Our assumption that second-read CAD would benefit inexperienced readers is based 

on direct comparison between groups using the concurrent paradigm coupled with the 

incremental benefit of second-read over concurrent for experienced readers. Although 

statistically plausible, our estimate remains speculative. 

In summary, we found that concurrent CAD resulted in a significant beneficial net 

benefit when used by inexperienced readers to identify patients with any polyp by CT 

colonography. The net benefit was approximately three times the magnitude of that 

observed in experienced readers. Experienced readers derived more benefit from 

second-read CAD than concurrent CAD, suggesting that second-read CAD would also 

be more effective for inexperienced readers.    

  



	   81	  

Chapter 5: Detection of extracolonic pathology by CT 
colonography: A discrete choice experiment of 
perceived benefits versus harms. 

This Chapter has been published as: 

Plumb AA, Boone D, Fitzke H, Helbren E, Mallett S, Zhu S, Yao GL, Bell N, Ghanouni 
A, von Wagner C, Taylor SA, Altman DG, Lilford R, Halligan S. Detection of 
extracolonic pathologic findings with CT colonography: A discrete choice experiment of 
perceived benefits versus harms. Radiology 2014;273:144-152. 

 

Abstract  

Purpose: To determine the maximum rate of false-positive diagnoses that patients and 

healthcare professionals were willing to accept in exchange for detection of 

extracolonic malignancy when using CT colonography (CTC) for colorectal cancer 

screening. 

Materials and Methods: Following ethical approval and informed consent, 79 patients 

and 50 healthcare professionals undertook two discrete choice experiments where they 

chose between unrestricted CTC that examined intra- and extra-colonic organs or CTC 

restricted to the colon, across different scenarios. Test A detected one extracolonic 

malignancy per 600 cases with a false-positive rate varying across scenarios from 0% 

to 99.8%. One experiment examined radiological follow-up generated by false-positives 

while the other examined invasive follow-up. Intracolonic performance was identical for 

both tests. The median “tipping point” (maximum acceptable false-positive rate for 

extracolonic findings) was calculated overall and for both groups via bootstrapping. 

Results: The median tipping-point for radiological follow-up occurred at a false-positive 

rate of >99.8% (IQR 10 to >99.8%); i.e. participants would tolerate at least a 99.8% 

rate of unnecessary radiological tests in order to detect an additional extracolonic 

malignancy. The median tipping-point for invasive follow-up occurred at a false-positive 

rate of 10% (IQR 2 to >99.8%). Tipping-points were significantly higher for patients 

(>99.8 vs 40 and >99.8 vs 5 respectively for the two experiments, both p<0.001). 

Conclusion: Patients and healthcare professionals are willing to tolerate high rates of 

false-positives by CTC in exchange for diagnosis of extracolonic malignancy. The 

actual specificity of screening CTC for extracolonic findings in clinical practice is likely 

to be highly acceptable to both patients and healthcare professionals. 

  



	   82	  

Introduction 

Diagnostic tests used for cancer screening programmes usually target a specific organ. 

However, when screening for colorectal cancer (CRC) with CT colonography (CTC) 

extracolonic abdominal and pelvic tissues are imaged unavoidably, potentially 

detecting disease in organs other than the primary target. For example, a systematic 

review of 24 studies estimated that approximately 20% of indeterminate renal masses 

detected by CTC ultimately prove malignant (93). While some of these findings will be 

clinically important, the majority will not. For example, the same systematic review 

estimated false-positive diagnoses of extracolonic malignancy by CTC in 4.6% men 

and 6.8% women (93). Clarification often requires further investigations including 

biopsy and even surgery, which may be worrisome, costly and occasionally harmful, all 

for no ultimate benefit in most patients. Balancing benefit and harm is important 

because further tests precipitated by extracolonic findings are common, occurring in 7 

to 11% of all screenees following CTC (94-98). One series estimated average costs for 

additional tests at just under $100 per patient screened (98). However, evidence 

suggests that more asymptomatic cancers are detected beyond the colon than within it: 

A retrospective study of 10,286 screenees found that CTC detected extracolonic 

malignancies in 0.35% versus colorectal cancer in 0.21% (99). 

The benefits or otherwise of extracolonic imaging has been debated widely, and 

neither clinicians (100) nor policy-makers (101) are clear whether it is helpful or not for 

population screening. Furthermore, little research has investigated whether clinicians 

or their patients regard extracolonic imaging as desirable. Specifically, it is unclear how 

individual patients and healthcare professionals balance the possibility of detecting life-

threatening extracolonic pathology against the larger chance of fruitless (or even 

harmful) testing precipitated by extracolonic findings. While qualitative studies have 

found that screening-age patients generally view the ability of CTC to visualise 

extracolonic organs as advantageous (55), we do not know at what point (if at all) 

perceived benefit is outweighed by the inconvenience, worry and risks of unnecessary 

further investigation. This point is important and the discrete choice methodology used 

in Chapter 3 could be used to elicit the trade-offs between extracolonic detections and 

potential harms. We therefore aimed to determine the maximum rate of false-positive 

diagnoses that patients and healthcare professionals were willing to accept in 

exchange for detection of extracolonic malignancy when using CTC for colorectal 

cancer screening. 
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Methods 

Ethical committee approval was granted. All participants gave written informed consent. 

Opinions were elicited using a discrete choice experiment where participants chose 

between two alternatives, as per the methodology used in Chapter 3. Again, since 

discrete choice experiments are difficult to administer via postal questionnaires (63), 

we used face-to-face interviews primarily, providing background information for 

participants via an interactive laptop presentation.  

Recruitment 

Consecutive adults of CRC screening age (55 to 69 years), scheduled to attend for 

unrelated ultrasound investigations, were identified via the hospital booking system 

(UCLH). A research assistant mailed information and consent forms beforehand and 

responders were interviewed on their appointment day. Individuals with a history of 

CRC or undergoing investigations for suspected CRC were excluded to avoid 

bias(102). Additionally, radiologists, colorectal surgeons, gastroenterologists, specialist 

nurses and radiographers who requested, performed, or interpreted colorectal imaging 

were recruited via hospital e-mail. Participants were offered a £10 voucher. Because 

we had previously found no difference for healthcare professionals between online and 

face-to-face completion (Chapter 3), this group could complete the experiment online. 

All patient participants were interviewed face-to-face by either radiology research 

fellows (AP, DB, EH), or research assistants (HF, NB); see Acknowledgements for full 

names. 

Attributes 

The experiment focus was extracolonic false-positive diagnosis by CTC at CRC 

screening, described to participants as “false-alarms”. While some extracolonic findings 

are fully characterised via further imaging (e.g. ultrasound for indeterminate renal 

lesions), others require invasive tests (endoscopy, biopsy, even surgery). To address 

both situations, participants undertook two separate experiments. In the first (the 

“radiological testing” experiment), participants were told that false-positive extracolonic 

diagnosis would precipitate unnecessary further imaging. Participants were instructed 

to assume the rates of such imaging to be 50% ultrasound, 45% CT and 5% MRI, per 

published literature (98). Disadvantages of imaging were explained: Ultrasound and 

MRI were described as safe but carrying inconvenience and potentially anxiety. Noise 

and claustrophobia were described for MRI. CT was described as carrying a very small 

chance of cancer induction several years afterwards (103). In the second (the “invasive 

testing” experiment), false-positives led to biopsy/endoscopy/surgery. Participants were 
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instructed to assume that approximately 50% of “invasive tests” would be operative, 

25% needle biopsy (either FNA or core) and 25% endoscopy (98). Pain, bleeding, 

perforation and a small risk of death were mentioned as possible complications. 

Participants were told that tests for “false-alarms” were unnecessary, i.e. the screenee 

derived no benefit from the ultimate diagnosis; that the hypothetical population being 

tested was asymptomatic; and that the focus was purely on findings outside the colon. 

We presented two hypothetical tests: “Unrestricted CTC” evaluated both the colon and 

extracolonic organs whereas “restricted CTC” was confined to the colon. Participants 

were told that diagnostic accuracy for colonic neoplasia was identical for both tests (95). 

Unrestricted CTC was assumed to detect extracolonic malignancy at an early/curable 

stage in 1 in 600 cases (a conservative estimate derived from literature (99)), whereas 

restricted CTC did not. Participants were informed that the impact of early diagnosis on 

overall survival was unknown, and that even using unrestricted CTC, many 

extracolonic malignancies would remain undetected by a one-off screening 

examination; i.e. that detection did not necessarily result in cure. Across the scenarios 

presented, the specificity (false-positive rate) of unrestricted CTC was varied from 

100% to 0.17%, corresponding to a rate of additional testing ranging between 0 and 

599 extra tests to diagnose 1 extracolonic malignancy per 600 screenees (table 16). 

The “invasive testing” experiment included a scenario where the chance of death was 

directly equivalent to the chance of diagnosing extracolonic malignancy and carried the 

additional disadvantage of the near-certainty of an unnecessary invasive procedure.  
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Table 16: Attributes and levels presented in the “radiological testing” (1A) and “invasive testing” 
(1B) experiments. 
Table 16A: “Radiological testing” experiment 
	  

“Radiological 
testing” 
question 
number 

Unrestricted 
CTC – looks 
inside and 
outside the 
colon 

Restricted 
CTC – only 
looks inside 
the colon 

  

 False 
positive rate 

False 
positive rate 

Curable extracolonic 
cancers detected per 
600 screening 
examinations 

Additional false positive 
detections per 600 
screening examinations 

1r 0 0 1 0 
2r 0.17 0 1 1 
3r* 4 0 1 24 
4r* 4 0 1 24 
5r 10 0 1 60 
6r 20 0 1 120 
7r 40 0 1 240 
8r 60 0 1 360 
9r 80 0 1 480 
10r** 99.8 0 1 599 
*Questions are identical to test for internal consistency 

**Participants choosing unrestricted CTC in response to question 10 were considered 
non-traders 

Table 16B: “Invasive testing” experiment 
 

“Invasive 
testing” 
question 
number 

Unrestricted 
CTC – looks 
inside and 
outside the 
colon 

Restricted 
CTC – only 
looks inside 
the colon 

  

 False 
positive rate 

False 
positive rate 

Curable extracolonic 
cancers detected per 
600 screening 
examinations 

Additional false positive 
detections per 600 
screening examinations 

1i 0 0 1 0 
2i 0.17 0 1 1 
3i* 1 0 1 6 
4i* 1 0 1 6 
5i 2 0 1 12 
6i 4 0 1 24 
7i 10 0 1 60 
8i 20 0 1 120 
9i 40 0 1 240 
10i 60 0 1 360 
11i 80 0 1 480 
12i 99.8 0 1 599 
13i** 99.8 0 1 599 + 1 death 
*Questions are identical to test for internal consistency 

**Participants choosing unrestricted CTC in response to question 13 were considered 
non-traders 

 



	   86	  

Experiment format 

Background information regarding CRC, screening, CTC, and risk were presented via 

a multimedia presentation. Consequences of false-positive results were described in 

terms of need for additional imaging or biopsy (e.g. resection of indeterminate ovarian 

cysts). The nature of needle, endoscopic and surgical excision biopsy was explained. 

The chance of requiring an extra test was presented graphically and via text, using 

both absolute risks and natural frequencies to maximize understanding (104) (figure 

11). Patients were told to assume they were asymptomatic and at average risk of both 

intracolonic and extracolonic pathology, and to pick the test they would choose for 

themselves or a close friend or relative, with no opt-out. Healthcare professionals were 

asked to pick the test they felt was best suited to population screening (rather than for 

their own care). The “radiological testing” experiment was performed first, followed by 

the “invasive testing” experiment. For each experiment, the differing false-positive rates 

for unrestricted CTC were presented in a non-sequential order (i.e. the rate did not rise 

or fall incrementally). One choice was repeated to test consistency. If inconsistent, the 

response was clarified with the participant; the second response was used for online 

participants. Unrestricted CTC was also presented with a zero false-positive rate and 

those choosing restricted CTC in this scenario labelled as “irrational” responders. If this 

occurred, the reason for choosing restricted CTC was recorded after qualitative 

exploration, but the response was retained for the subsequent analysis. Participants 

who preferred unrestricted CTC despite a false-positive rate of 599/600 in the “invasive 

testing” scenarios were presented with additional information emphasising potential 

harms (including death) arising from this situation. The risk of death was stated as 1 in 

600 (105); participants were therefore choosing between a 1 in 600 chance of early 

extracolonic malignancy diagnosis versus an equivalent risk of death plus the near-

certainty of unnecessary additional invasive procedures. Some data rounding was 

used in the scenarios when events were rare. 
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Figure 11: Example question from the “invasive testing” experiment. A hypothetical screening 
population of 600 individuals were presented and participants invited to choose between a test 
generating a variable rate of false-positives (pink) but a 1 in 600 chance of finding an early 
stage extracolonic malignancy (green) or a test that generated no false-positives but no chance 
of finding an extracolonic malignancy (yellow). Participants were informed that their chance of 
receiving any particular result could not be predicted in advance and was essentially random. 
Relative and absolute percentages were presented. This image corresponds to the median 
“tipping point” for patients and professionals combined: On average, unrestricted CTC (Test A 
on the Figure) was preferred to this level of false-positive invasive tests, but not beyond. 
 

	  

Pilot testing 

To confirm comprehensibility, estimate completion time, and inform sample size, 15 

individuals (10 professionals, 5 patients) were piloted (data not included in the final 

analysis). This confirmed that attributes and levels, and the concept of choosing 

between two scenarios (“trading” test benefits versus harms) were comprehensible. 

However, simultaneous consideration of false-positives leading to both radiological 

follow-up and invasive testing was judged too confusing, explaining why these were 

presented ultimately as separate experiments. 

Statistical analysis  

The primary outcome measure was the maximum false-positive rate that the average 

participant was willing to accept in exchange for a 1 in 600 chance of diagnosing an 

extracolonic malignancy; the “tipping point”. The pilot suggested a mean acceptable 
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false-positive rate of 11% for invasive testing with a standard deviation of 0.23. To 

determine the median tipping point +/- 5% at two-sided alpha 0.05 and 90% power 

required 81 participants (N=4σ2(zcrit)2/D2 where D=0.10, σ =0.23 and zcrit=1.960) (72). 

Since pilot data were non-normal, we aimed to recruit a further 15%. A pre-specified 

secondary outcome to compare subgroups of patients versus healthcare professionals 

required 56 participants each for 90% power to detect a 20% difference in the 

maximum false-positive rate. 

Participants’ overall median tipping-point was calculated for each experiment, and for 

patients/professionals individually. Since numbers of patients and professionals 

differed, the overall tipping-point was calculated using 2000 bootstrap estimates of 

medians and interquartile ranges using equally sized samples from each group (n=50). 

Tipping-points were non-normal and were therefore summarised with medians and 

interquartile ranges. “Non-traders” were defined as participants who consistently chose 

one test over the alternative across all of the scenarios presented. Non-traders were 

therefore regarded as requiring higher tipping-points than were offered in the 

experiment but responses were still included. The Mann-Whitney U test and Wilcoxon 

signed rank sum test were used for unpaired and paired comparisons respectively. 

Data were collated using Microsoft Excel 2011 for Mac v14.3.4 (Microsoft Corp, 

Redmond, WA) and analysed with R version 2.15.1 (R Foundation for Statistical 

Computing, Wirtschaftsuniversität Wien, Welthandelsplatz 1, 1020 Vienna, Austria) by 

Drs. Susan Mallett and Andrew Plumb. 

 

Results 

318 patients and 96 healthcare professionals were invited. 79 patients (25%) 

responded positively but only 52 were interviewed due to scheduling conflicts. 50 

professionals participated, a response rate of 52%; 21 (42%) were interviewed face-to-

face and 29 (58%) responded online. On average, patients were older than 

professionals (median 64.5 vs. 29.5 years; p<0.001) and had discontinued education 

earlier (50% educated to degree level vs. 94%; p<0.001; Table 17). There were no 

significant differences in gender ratio (p=0.54) or ethnicity (p=0.14). 
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Table 17: Demographic characteristics of patient and professional participants. 
	  

Characteristic Patients (n=52) Professionals* 
(n=50) 

Total (n=102) 

 N (%) N (%) N (%) 
Gender    
Male 27 (52) 29 (58) 56 (55) 
Female 25 (48) 21 (42) 46 (45) 
    
Age (years)    
<25 0 (0) 1 (2) 1 (1) 
25-34 0 (0) 31 (62) 31 (30) 
35-54 0 (0) 18 (36) 18 (18) 
55-59 1 (2) 0 (0) 1 (1) 
60-69 51 (98) 0 (0) 51 (50) 
    
Ethnicity    
White 42 (81) 34 (68) 76 (75) 
Other 10 (19) 16 (32) 26 (25) 
    
Education    
Degree-level 26 (50) 47 (94) 73 (72) 
Other 26 (50) 3 (6)  29 (28) 
*Comprising 10 radiologists, 5 gastroenterologists, 4 surgeons, 19 registrars in these 
specialties, 2 specialist colorectal nurses and 10 radiographers. 

 

Non-traders 

For the “radiological testing” experiment, 61 participants of the 102 interviewed (60%; 

41 patients, 20 professionals) were deemed non-traders (i.e. they always chose 

unrestricted CTC), 24 of whom (24% overall; 23 patients, 1 professional) were also 

non-traders for the “invasive testing” experiment. These 24 non-traders felt unable to 

choose restricted CTC, despite one scenario for unrestricted CTC presenting a risk of 

death equivalent to the chance of detecting an extracolonic malignancy. Conversely, a 

single patient participant never chose unrestricted CTC (even for the zero false-positive 

scenario), stating a firm opinion that colorectal cancer screening should examine the 

colon alone. On average, non-traders were significantly older (median age 64.5 vs. 

29.5; p<0.001), significantly more likely to be patients (41 [79%] vs. 20 [40%];p<0.001), 

and were less educated than traders (38 [62%] degree-level education vs. 35 [85%]; 

p<0.01). There was no significant difference in gender (52% vs. 59% male; p=0.55) or 

ethnicity (79% vs. 68% white; p=0.24).  
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Radiological testing discrete choice experiment 

When the consequence of extracolonic findings was radiological testing, the median 

tipping-point occurred at a false-positive rate of >99.8% (IQR 10 to >99.8%; Table 18). 

Thus, the average participant was prepared to tolerate at least a 99.8% rate of 

unnecessary additional radiological tests in order to diagnose a single additional 

extracolonic malignancy. The median tipping point was significantly higher for patients 

than professionals at >99.8 (IQR >99.8 to >99.8) versus 40 (IQR 10 to >99.8, p<0.001; 

Table 18). Overall, at a prevalence of 1 in 600 for potentially curable extracolonic 

malignancy, this corresponds to >599 (IQR 60 to >599) unnecessary additional 

radiological tests to find one curable extracolonic malignancy. Patients were prepared 

to accept a significantly higher number of false-positives (median >599, IQR >599 to 

>599; Table 18, figure 12A) than professionals (median 240, IQR 60 to >599, p<0.001; 

Table 18, figure 12B). 

 

Table 18: Tipping points and number of FP deemed acceptable in each scenario, for patients, 
professionals, and the two groups combined. 
	  

 Tipping point (Maximum false 
positive rate acceptable to 
find one extracolonic cancer) 

Average number of 
additional FP tolerated per 
additional extracolonic 
cancer found 

 Median IQR Median IQR 
PATIENTS     
Scans >99.8 >99.8 to >99.8 >599 >599 to >599 
Invasive tests >99.8 20 to >99.8 >599 120 to >599 
PROFESSIONALS     
Scans 40 10 to >99.8 240 60 to >599 
Invasive tests 5 2 to 10 30 12 to 60 
COMBINED     
Scans >99.8 10 to >99.8 >599 60 to >599 
Invasive tests 10 2 to >99.8 60 12 to >599 
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Figure 12: Cumulative plot of tipping-points expressed as absolute numbers of additional 
unnecessary tests for patients (A) and professionals (B) in the “radiological testing” experiment. 
Each grey dot shows an individual’s tipping-point. Large red square shows the median value, 
corresponding to “an average participant”. Blue squares show 25 and 75 percentage points. 
	  

Figure 12A: 

	  

 

Figure 12B: 
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Invasive testing discrete choice experiment  

When the consequence of extracolonic findings was invasive, the median tipping-point 

occurred at a false-positive rate of 10% (IQR 2 to >99.8%). Thus, the average 

participant was prepared to tolerate a 10% rate of unnecessary additional invasive 

tests in exchange for diagnosis of a single extracolonic malignancy. The median tipping 

point was significantly higher for patients than professionals at >99.8 (IQR 20 to >99.8) 

versus 5 (IQR 2 to 10, p<0.001; Table 18). Overall, at population prevalence of 1 in 600, 

this corresponds to 60 (IQR 12 to >599) additional invasive tests per extracolonic 

malignancy. Again, patients were prepared to tolerate higher numbers of false-

positives (median >599, IQR 120 to >599 plus risk of death; Table 18, figure 13A) than 

professionals (median 30, IQR 12 to 60, p<0.001; Table 18, figure 13B).  

 
Figure 13: Cumulative plot of tipping-points expressed as numbers of additional unnecessary 
tests for (A) patients and (B) professionals in the “invasive testing” experiment: Color-codes are 
the same as in figure 12. 
	  

Figure 13A 
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Figure 13B 

 

 

The median number of false-positives tolerated per extracolonic malignancy was 

significantly higher for the “radiological testing” than the “invasive testing” experiment 

(p<0.001), demonstrating that additional imaging were deemed more acceptable than 

additional invasive tests. 

There was no significant difference in the median tipping-points for patients interviewed 

by either radiologists or research assistants (p=0.57), or between professionals who 

gave their responses online as opposed to face-to-face (p=0.81). 

 

Discussion 

Extracolonic findings at CTC present a clinical dilemma: Early diagnosis of important 

pathology might be curative but unnecessary investigation of ultimately irrelevant 

findings has physical, psychological and financial costs. How patients and healthcare 

professionals balance these costs is not known with precision, hence our decision to 

conduct these experiments. We found that patients were prepared to tolerate an 

extremely high rate (>99.8%) of unnecessary additional imaging or invasive tests 

subsequent to screening CTC in order to reap the potential benefits of finding early-

stage extracolonic malignancy. While healthcare professionals were less tolerant of 
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unnecessary follow-up testing than patients, nevertheless we were surprised by the 

very high rates they accepted; on average 40% was deemed acceptable for 

radiological follow-up. Invasive tests were deemed less acceptable by healthcare 

professionals, with the median “tipping point” at 5%. Nevertheless, these rates are 

substantially greater than occur in published series, where approximately 7-11% of 

individuals required further diagnostic testing following CTC with only 1-2% requiring 

an invasive test (98). Our data therefore suggest that the specificity of screening CTC 

for extracolonic malignancy in current clinical practice is likely to be highly acceptable 

to both patients and healthcare professionals.  

Previous studies quantifying patients’ perceptions of false-positives have shown an 

overwhelming preference for improved sensitivity despite the costs of diminished 

specificity. When considering breast cancer screening with mammography, one study 

(12) found that 63% of women were prepared to accept 500 or more additional false-

positive mammograms to save a single life by early breast cancer diagnosis. Similarly, 

in Chapter 3 we found patients would tolerate over 4000 false-positive diagnoses to 

avoid a single missed colorectal cancer. We found patients equally tolerant in the 

context of extracolonic malignancy, confirming that potentially lifesaving detection of 

pathology outweighs the perceived disadvantages of subsequent testing irrespective of 

the organ being evaluated.  

Our data, while framed in the context of colorectal cancer screening, potentially have 

wider implications for incidental findings discovered by other imaging modalities. Such 

“incidentalomas” are common in CT urography, CT coronary angiography, thoracic CT 

when screening for lung cancer, and abdominopelvic CT, provoking the American 

College of Radiology white paper for management guidance (106). Our results suggest 

that both patients and healthcare professionals are likely to tolerate additional work-up 

in these different clinical settings. We chose a prevalence of incidentally-detected 

extracolonic malignancy of 1 in 600, based on available data for CTC screening 

populations (99); we would expect tipping-points to differ if this prevalence changed. 

For example, our 10% invasive test rate deemed acceptable overall might be 

unacceptably high if the chance of uncovering an unexpected malignancy fell to 1 in 

2,000 (as was found in one large lung cancer screening trial (107). 

As explained in Chapter 3, when completing simple rank-order preferences, patients 

choose the most accurate, comfortable, convenient and cheapest test (80). In contrast, 

discrete choice experiments reflects “real-world” choices, where different attributes 

must be traded against each other (63, 80). Such experiments are complex to 

comprehend, so we interviewed patient participants face-to-face, provided extensive 

background information using laptops and graphical aids, and were available to answer 
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questions. Despite this, many patients made the (apparently irrational) decision to 

choose unrestricted CTC for the scenario where it was presented alongside a risk of 

death from unnecessary further investigations equal to the chance of detecting 

extracolonic malignancy, and the near-certainty of an unnecessary invasive procedure. 

Such counter-intuitive behavior may arise from prior belief (108); many patients could 

not deviate from their conviction that early cancer diagnosis is always preferable, 

irrespective of associated risks. Others stated an unwillingness to live with the 

uncertainty of not knowing whether an equivocal extracolonic lesion was significant or 

not, apparently overlooking the fact that such uncertainty could be avoided entirely by 

choosing restricted CTC, which was unable to image beyond the colon. 

Limitations of our study include the necessary simplifications required to render 

discrete choice experiments comprehensible, just as for the experiments detailed in 

Chapter 3. For example, attributes of intracolonic performance, bowel preparation, 

discomfort during the examination, and radiation dose were not included other than as 

background information; increasing the number of attributes and their levels renders 

the experiment impracticable in terms of both cognitive complexity and the number of 

individual scenarios required to achieve statistical power. Our piloting confirmed this, 

so we examined radiological and invasive follow-up via separate experiments whereas, 

in reality, a false-positive result might generate both. Also, participants’ responses may 

not reflect their real-life behavior, a limitation of all stated-preference methodologies. 

We could not estimate an upper boundary to patients’ tolerance of false-positives 

because the non-trade rate was so high; higher than suggested by the pilot. 

Consequently, estimates of the median tipping point had a broader IQR than 

anticipated.  

Future researchers should consider treating patients and professionals as separate 

groups from the outset, and power accordingly. For example, healthcare workers 

requesting screening tests will tend to be younger than the patients receiving them; 

Indeed, Table 17 shows that all professionals were aged 54 years or younger while all 

patients were older (because we wished to reflect screening age). It is possible that as 

professionals age and become more susceptible to cancer themselves, then their 

opinions might converge with those of patients. However, we believe the reason that 

professionals were less tolerant of false-positives was more influenced by their 

superior medical knowledge than by their younger age. Our current sample reflects the 

demographics of the two groups but it would be interesting in future to solicit the views 

of retired healthcare professionals who are themselves of screening age, to see if their 

opinion has changed. It may also be informative to test community physicians since our 

healthcare professionals were all hospital based. The response rate for patients was 



	   96	  

also lower than expected, perhaps because of cognitive complexity. Costs arising from 

additional testing were not investigated and it is possible that responses may have 

been different if patients were responsible for these costs; the experiments were 

carried out in the English National Health Service where patients do not bear costs 

directly. Finally, we studied outpatients attending hospital for unrelated investigations, 

who may not fully represent an unselected screening population. 

In summary, via discrete choice experiment we found that both patients and healthcare 

professionals believe diagnosis of extracolonic malignancy by screening CTC greatly 

outweighs the potential disadvantages of subsequent radiological or invasive 

investigation precipitated by false-positives. This belief was held more strongly by 

patients than healthcare professionals. The specificity of CTC for extracolonic 

malignancy in clinical practice is likely to be highly acceptable to both patients and 

healthcare professionals.  
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Chapter 6: Multi-reader multi-case studies using the 
area under the receiver operator characteristic curve as 
a measure of diagnostic accuracy: Systematic review 
with a focus on quality of data reporting. 

This Chapter has been published as:  

Dendumrongsup T, Plumb AA, Halligan S, Fanshawe TR, Altman DG, Mallett S. Multi-

reader multi-case studies using the area under the receiver operator characteristic 

curve as a measure of diagnostic accuracy: Systematic review with a focus on the 

quality of data reporting. PLoS One. 2014 Dec 26;9(12):e116018. 

Abstract  

Introduction: We examined the design, analysis and reporting in multi-reader multi-
case (MRMC) research studies using the area under the receiver-operating curve 
(ROC AUC) as a measure of diagnostic performance. 

Methods: We performed a systematic literature review from 2005 to 2013 inclusive to 
identify a minimum 50 studies. Articles of diagnostic test accuracy in humans were 
identified via their citation of key methodological articles dealing with MRMC ROC AUC. 
Two researchers in consensus then extracted information from primary articles relating 
to study characteristics and design, methods for reporting study outcomes, model 
fitting, model assumptions, presentation of results, and interpretation of findings. 
Results were summarized and presented with a descriptive analysis. 

Results: Sixty-four full papers were retrieved from 475 identified citations and 
ultimately 49 articles describing 51 studies were reviewed and extracted. Radiological 
imaging was the index test in all. Most studies focused on lesion detection vs. 
characterization and used less than 10 readers. Only 6 (12%) studies trained readers 
in advance to use the confidence scale used to build the ROC curve. Overall, 
description of confidence scores, the ROC curve and its analysis was often incomplete. 
For example, 21 (41%) studies presented no ROC curve and only 3 (6%) described the 
distribution of confidence scores. Of 30 studies presenting curves, only 4 (13%) 
presented the data points underlying the curve, thereby allowing assessment of 
extrapolation. The mean change in AUC was 0.05 (-0.05 to 0.28). Non-significant 
change in AUC was attributed to underpowering rather than the diagnostic test failing 
to improve diagnostic accuracy. 

Conclusions: Data reporting in MRMC studies using ROC AUC as an outcome 
measure is frequently incomplete, hampering understanding of methods and the 
reliability of results and study conclusions. Authors using this analysis should be 
encouraged to provide a full description of their methods and results.   
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Introduction 

Chapter 1 of this thesis describes the several difficulties we encountered when trying to 

implement ROC AUC as the primary outcome measure in a prior study of CT 

colonography. Many of these difficulties were related to issues implementing 

confidence scores in a transparent and reliable fashion, which led ultimately to a flawed 

analysis. We considered, therefore, that for ROC AUC to be a valid measure there are 

methodological components that need addressing in study design, data collection and 

analysis, and interpretation. Based on our attempts to implement the MRMC ROC AUC 

analysis, we were interested in whether other researchers have encountered similar 

hurdles and, if so, how they had tackled these. Therefore, in order to investigate how 

often other studies have addressed and reported on issues with ROC AUC, we 

performed a systematic review of MRMC studies using this analysis as an outcome 

measure. We searched and investigated the available literature to determine the 

statistical methods used, the completeness of data presentation, and whether any 

problems with analysis were encountered and reported.  

 

Methods 

Search strategy, inclusion and exclusion criteria 

This systematic review was performed guided by the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA), an evidence-based minimum set 

of items for reporting in systematic reviews and meta-analyses (109). We developed an 

extraction sheet for the systematic review, broken down into different sections (used as 

subheadings for the Results section of this report), with notes relating to each 

individual item extracted. In consensus we considered approximately 50 articles would 

provide a sufficiently representative overview of current reporting practice. Based on 

our prior experience of performing systematic reviews we believed that searching for 

additional articles beyond 50 would be unlikely to yield valuable additional data (i.e. we 

believed we would reach “saturation” by 50 articles) yet would present a very 

considerable extraction burden. 

In order to achieve this, potentially eligible primary articles published between 2005 

and February 2013 inclusive were identified by a radiologist researcher (TD) using 

PUBMED via their citation of one or more of 8 key methodological articles relating to 

MRMC ROC AUC analysis (110-117). To achieve this, the Authors’ names (combined 

using “AND”) were entered in the PUBMED search field and the specific article 

identified and clicked in the results list. The abstract was then accessed and the “Cited 
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By # PubMed Central Articles” link and “Related Citations” link used to identify those 

articles in the PubMed Central database that have cited the original article. There was 

no language restriction. Online abstracts were examined in reverse chronological order, 

the full text of potentially eligible papers then retrieved, and selection stopped once the 

threshold of 50 studies fulfilling inclusion criteria had been passed. 

To be eligible, primary studies had to be diagnostic test accuracy studies of human 

observers interpreting medical image data from real patients, and attempting to use a 

MRMC ROC AUC analysis as a study outcome, based on the following methodological 

approaches (110-117); Reviews, solely methodological papers, and those using 

simulated imaging data were excluded. 

 

Data extraction 

An initial pilot sample of 5 full-paper articles were extracted and the data checked by a 

subgroup of investigators in consensus, to both confirm the process was feasible and 

to identify potential problems. A further 10 full-papers were extracted by two radiologist 

researchers working independently (Thaworn Dendomrungsup, Andrew Plumb) to 

check agreement further. The remaining articles were extracted predominantly by TD, 

who discussed any concerns/uncertainty with AP. Any disagreement following their 

discussion was arbitrated by the author and/or Susan Mallett where necessary. 

The extraction covered the following broad topics: Study characteristics, methods to 

record study outcomes, model assumptions, model fitting, data presentation.  

We extracted data relating to the organ and disease studied, the nature of the 

diagnostic task (e.g. characterisation vs. localisation vs. presence/absence), test 

methods, patient source and characteristics, study design (e.g. 

prospective/retrospective, secondary analysis, single/multicenter) and reference 

standard. We extracted the number of readers, their prior experience, specific 

interpretation training for the study (e.g. use of CAD software), blinding to clinical data 

and/or reference results, the number of times they read each case and the presence of 

any washout period to diminish recall bias, case ordering, and whether all readers read 

all cases (i.e. a fully-crossed design). We extracted the unit of analysis (e.g. patient vs. 

organ vs. segment), and sample size for patients with and without pathology. 

We noted whether study imaging reflected normal daily clinical practice or was 

modified for study purposes (e.g. restricted to limited images). We noted the 

confidence scores used for the ROC curve and their scale, and whether training was 

provided for scoring. We noted if there were multiple lesions per unit of analysis. We 
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noted if scoring differed for positive and negative patient cases, whether score 

distribution was reported, and whether transformation to a normal distribution was 

performed. 

We extracted if ROC cures were presented in the published article and, if so, whether 

for individual readers, whether the curve was smoothed, and if underlying data points 

were shown. We defined unreasonable extrapolation as an absence of data in the 

right-hand 25% of the plot space. We noted the method for curve fitting and whether 

any problems with fitting were reported, and the method used to compare AUC or 

pAUC. We extracted the primary outcome, the accuracy measures reported, and 

whether these were overall or for individual readers. We noted the size of any change 

in AUC, whether this was significant, and made a subjective assessment of whether 

significance could be attributed to a single reader or case. We noted how the study 

authors interpreted change in AUC, if any, and whether any change was reported in 

terms of effect on individual patients. We also noted if a ROC researcher was named 

as an author or acknowledged, defined as an individual who had published indexed 

research papers dealing with ROC methodology. 

Analysis  

Data were summarised in an Excel worksheet (Excel For Mac 14.3.9, Microsoft 

Corporation) with additional cells for explanatory free text. The author then compiled 

the data and extracted frequencies, consulting the two radiologists who performed the 

extraction (TD and AP) for clarification when necessary. The investigator group 

discussed the implication of the data subsequently, to guide interpretation. 

 

Results 

Four-hundred and seventy-five citations of the 8 key methodological papers were 

identified and 64 full papers retrieved subsequently. Fifteen (118-132) of these were 

rejected after reading the full text (Table 19) leaving 49 (75, 133-180) for extraction and 

analysis. Two papers (161, 175) contributed two separate studies each, meaning that 

51 studies were extracted in total.  
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Table 19: Citations for the 49 papers (contributing 51 studies) included in the systematic review. 
Details are also provided for the 15 articles excluded from the systematic review after reading 
the full-text, along with primary reasons for their exclusion (multiple reasons for exclusion were 
possible). 
Included Articles (first author, year)  

Aoki, 2011 (133)  
Aoki, 2012 (134)  
Berg, 2012 (135)  
Bilello, 2010 (136)  
Choi, 2012 (137)  
Cole, 2012 (138)  
Collettini, 2012 (139)  
Dachman, 2010 (75)  
Dromain, 2012 (140)  
Gennaro, 2010 (141)  
Hupse, 2013 (142)  
Kelly, 2010 (143)  
Kim, 2012 (144)  
Kim, 2010 (145)  
Li, 2012 (146)  
Li, 2011a (147)  
Li, 2011b (148)  
Matsushima, 2010 (149)  
McNulty, 2012 (150)  
Medved, 2011 (151)  
Mermuys, 2010 (152)  
Moin, 2010 (153)  
Muramatsu, 2010 (154)  
Noroozian, 2012 (155)  
Ohgiya, 2012 (156)  
Otani, 2012 (157)  
Padilla, 2013 (158)  
Pollard, 2012 (159)  
Purysko, 2012 (160)  
Rafferty, 2013 (161) Contributed two studies 
Saade, 2013 (162)  
Salazar, 2011 (163)  
Shimauchi, 2011 (164)  
Shiraishi, 2010 (165)  
Subhas, 2011 (166)  
Sung, 2010 (167)  
Svahn, 2012 (168)  
Takahashi, 2010 (169)  
Tan, 2012 (170)  
Timp, 2010 (171)  
Toomey, 2010 (172)  
Uchiyama, 2012 (173)  
Visser, 2012 (174)  
Wallis, 2012 (175) Contributed two studies 
Wardlaw, 2010 (176)  
Way, 2010 (177)  
Yamada, 2011 (178)  
Yamada, 2012 (179)  
Yoshida, 2013 (180)  
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Excluded Articles (first author, year) Primary reason for exclusion 
Warren, 2012 (118) Simulated imaging 
Berbaum, 2012 (119) Simulated imaging 
Destounis, 2011 (120) No MRMC ROC analysis 
Jinzaki, 2011 (121) No MRMC ROC analysis 
Krupnski, 2012 (122) Simulated imaging 
Leong, 2012 (123) Simulated imaging 
Nishida, 2011 (124) No MRMC ROC analysis 
Obuchowski, 2010 (125) Non sequential design 
Okamoto, 2011 (126) No human readers 
Reed, 2011 (127) Simulated imaging 
Svane, 2011 (128) No MRMC ROC analysis 
Szucs-Farkas, 2010 (129) No MRMC ROC analysis 
Webb, 2011 (130) Simulated imaging 
Yakabe, 2010 (131) Simulated imaging 
Zanca, 2012 (132) Not a primary study with original data 
 

Study characteristics 

The index test was imaging in all studies. Breast was the commonest organ studied (20 

studies), followed by lung (11 studies) and brain (7 studies). Mammography (15 

studies) was the commonest individual modality investigated, followed by plain film (12 

studies), CT and MRI (11 studies each), tomosynthesis (six studies), ultrasound (two 

studies) and PET (one study); nine studies investigated multiple modalities. In most 

studies (28 studies) the prime interpretation task was lesion detection. Eleven studies 

focused on lesion characterisation and 12 combined detection and characterisation. 

Most studies compared 2 tests/conditions (i.e. a single test but implemented in different 

ways) to a reference standard (41 studies), with 2 studies comparing 1 test/condition, 7 

studies comparing 3 tests/conditions, and 1 study comparing 4 tests/conditions. 

Twenty-five studies combined data to create a reference standard while the reference 

was a single finding in 24 (14 imaging, 5 histology, 5 other – e.g. endoscopy). The 

reference method was unclear in 2 studies (154, 155). 

Twenty-four studies were single center, 12 multicenter, with the number of centers 

unclear in 15 (29%) studies. Nine studies recruited symptomatic patients, 8 

asymptomatic, and 7 a combination, but the majority (53%; 27 studies) did not state 

whether patients were symptomatic or not. 42 (82%) studies described the origin of 

patients with half of these stating a precise geographical region or hospital name. 

However, 9 (18%) studies did not sufficiently describe the source of patients and 21 

(41%) did not describe patients’ age and/or gender distribution. 
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Study design 

Extracted data relating to study design and readers are presented graphically in Figure 

14. Most studies (29; 57%) used patient data collected retrospectively. Fourteen (28%) 

were prospective while 2 used an existing database. Whether prospective/retrospective 

data was used was unstated/unclear in a further 6 (12%). While 13 studies (26%) used 

cases unselected other than for the disease in question, the majority (34; 67%) applied 

further criteria, for example to preselect “difficult” cases (11 studies), or to enrich 

disease prevalence (4 studies). How this selection bias was applied was stated 

explicitly in 18 (53%) of these 34. Whether selection bias was used was unclear in 4 

studies.  

 

Figure 14: Bar chart showing data extracted by the systematic review relating to study readers, 
design, and the confidence scales used to build ROC curves. 
	  

 

 

The number of readers per study ranged from 2 (156) to 258 (176). The mean number 

was 13, median 6. The large majority of studies (35; 69%) used fewer than 10 readers. 

Reader experience was described in 40 (78%) studies but not in 11. Specific reader 

training for image interpretation was described in 31 (61%) studies. Readers were not 

trained specifically in 14 studies and in 6 it was unclear whether readers were trained 
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specifically or not. Readers were blind to clinical information for individual patients in 37 

(73%) studies, unblind in 3, and this information was unrecorded or uncertain in 11 

(22%). Readers were blind to prevalence in the dataset in 21 (41%) studies, unblind in 

2, but this information was unsure/unrecorded or uncertain in the majority (28, 55%). 

Observers read the same patient case on more than one occasion in 50 studies; this 

information was unclear in the single further study (170). A fully crossed design (i.e. all 

readers read all patients with all modalities) was used in 47 (92%) studies, but not 

stated explicitly in 23 of these. A single study (172) did not use a fully crossed design 

and the design was unclear or unrecorded in 3 (135, 170, 176). Case ordering was 

randomised (either a different random order across all readers or a different random 

order for each individual reader) between consecutive readings in 31 (61%) studies, 

unchanged in 6, and unclear/unrecorded in 14 (27%). The ordering of the index test 

being compared varied between consecutive readings in 20 (39%) studies, was 

unchanged in 17 (33%), and was unclear/unrecorded in 14 (27%). 26 (51%) studies 

employed a temporal separation between readings that ranged from 3 hours(150) to 2 

months (163), with a median of 4 weeks. There was no separation (i.e. reading of 

cases in all conditions occurred at the same sitting) in 17 (33%) studies, and temporal 

separation was unclear/unrecorded in 8 (16%). 

 

Methods of reporting study outcomes 

The unit of analysis for the ROC AUC analysis was the patient in 23 (45%) studies, an 

organ in 5, an organ segment in 5, a lesion in 11 (22%), other in 2, and unclear or 

unrecorded in 6 (12%); one study (135) examined both organ and lesion so there were 

52 extractions for this item. Analysis was based on multiple images in 33 (65%) studies, 

a single image in 16 (31%), multiple modalities in a single study(140), and unclear in a 

single study (157); no study used videos. 

The number of disease positive patients per study ranged between 10 (179) and 100 

(153) (mean 42, median 48) in 46 studies, and was unclear/unrecorded in 5 studies. 

The number of disease positive units of outcome for the primary ROC AUC analysis 

ranged between 10 (179) and 240 (141) (mean 59, median 50) in 43 studies, and was 

unclear/unrecorded in 8 studies. The number of disease negative patients per study 

ranged between 3 (169) and 352 (135) (mean 66, median 38) in 44 studies, was zero 

in 1 study (180), and was unclear/unrecorded in 6 studies. The number of disease 

negative units of analysis for the primary outcome for the ROC AUC analysis ranged 

between 10 (151) and 535 (75) (mean 99, median 68) in 42 studies, and was 

unclear/unrecorded in the remaining 9 studies. The large majority of studies (41, 80%) 
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presented readers with an image or set of images reflecting normal clinical practice 

whereas 10 presented specific lesions or regions of interest to readers.  

Calculation of ROC AUC requires the use of confidence scores, where readers rate 

their confidence in the presence of a lesion or its characterisation. In our previous 

study (17) we identified the assignment of confidence scores to be potentially on 

separate scales for disease positive and negative cases (181). For rating scores used 

to calculate ROC AUC, 25 (49%) studies used a relatively small number of categories 

(defined as up to 10) and 25 (49%) used larger scales or a continuous measurement 

(e.g. visual analogue scale). One study did not specify the scale used (176). Only 6 

(12%) studies stated explicitly that readers were trained in advance to use the scoring 

system, for example being encouraged to use the full range available. In 15 (29%) 

studies there was the potential for multiple abnormalities in each unit of analysis 

(stated explicitly by 12 of these). This situation was dealt with by asking readers to 

assess the most advanced or largest lesion (e.g.(143)), by an analysis using the 

highest score attributed (e.g.(142)), or by adopting a per-lesion analysis (e.g.(152)). 

For 23 studies only a single abnormality per unit of analysis was possible, whereas this 

issue was unclear in 13 studies. 

 

Model assumptions 

The majority of studies (41, 80%) asked readers to ascribe the same scoring system to 

both disease-positive and disease-negative patients. Another 9 studies asked that 

different scoring systems be used, depending on whether the case was perceived as 

positive or negative (e.g.(161)), or depending on the nature of the lesion perceived 

(e.g.(166)). Scoring was unclear in a single study (176).  No study stated that two types 

of true-negative classifications were possible (i.e. where a lesion was seen but 

misclassified vs. not being seen at all), a situation that potentially applied to 22 (43%) 

of the 51 studies. Another concern occurs when more than one observation for each 

patient is included in the analysis, violating the assumption that data are independent. 

This could occur if multiple diseased segments were analysed for each patient without 

using a statistical method that treats these as clustered data. An even more flawed 

approach occurs when analysis includes one segment for patients without disease but 

multiple segments for patients with disease. 

When publically available MRMC software is used for ROC AUC modelling, this 

requires assumptions of normality for confidence scores or their transformations if the 

standard parametric ROC curve fitting methods are used. When scores are not 

normally distributed, even if non parametric approaches are used to estimate ROC 
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AUC, this lack of normality may indicate additional problems with obtaining reliable 

estimates of ROC AUC (19, 21-23, 26). While 17 studies stated explicitly that the data 

fulfilled the assumptions necessary for modelling, none described whether confidence 

scores were transformed to a normal distribution for analysis. Indeed, only 3 studies 

(154, 173, 176) described the distribution of confidence scores, which was non-normal 

in each case. 

Model fitting 

Thirty (59%) studies presented ROC curves based on confidence scores; i.e. 21 (41%) 

studies showed no ROC curve. Of the 30 with curves, only 5 presented a curve for 

each reader whereas 24 presented curves averaged over all readers; a further study 

presented both. Of the 30 studies presenting ROC curves, 26 (87%) showed only 

smoothed curves, with the data points underlying the ROC curve presented in only 4 

(13%) (143, 151, 163, 178). Thus, a ROC curve with underlying data points was 

presented in only 4 of 51 (8%) studies overall. The degree of extrapolation is critical in 

understanding the reliability of the ROC AUC result (181). However, extrapolation 

could only be assessed in these four articles, with unreasonable extrapolation, by our 

definition, occurring in two (143, 163).  

The majority of studies (31, 61%) did not specify the method used for curve fitting. Of 

the 20 that did, 7 used non-parametric methods (Trapezoidal/Wilcoxon), 8 used 

parametric methods (7 of which used Proproc), 3 used other methods, and 2 used a 

combination. Previous research (22, 181) has demonstrated considerable problems 

fitting ROC curves due to degenerate data where the fitted ROC curve corresponds to 

vertical and horizontal lines, e.g. there are no FP data. Only 2 articles described 

problems with curve fitting (155, 161). Two studies stated that data were degenerate: 

Subhas and co-workers (166) stated that, “data were not well dispersed over the five 

confidence level scores”. Moin and co-workers (153) stated that, “If we were to recode 

categories 1 and 2, and discard BI-RADS 0 in the ROC analysis, it would yield 

degenerative results because the total number of cases collected would not be 

adequate”. While all studies used MRMC AUC methods to compare AUC outcomes, 5 

studies also used other methods (e.g. t-testing) (138, 152, 160, 167, 177). Only 3 

studies described using a partial AUC (142, 155, 177). 44 studies reported additional 

non-AUC outcomes (e.g. McNemar’s test to compare test performance at a specified 

diagnostic threshold (158), Wilcoxon signed rank test to compare changes in patient 

management decisions (164)). Eight (16%) of the studies included a ROC researcher 

as an author (75, 147, 148, 154, 160, 165, 166, 172). 
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Presentation of results 

Extracted data relating to the presentation of individual study results is presented 

graphically in Figure 15. All studies presented ROC AUC as an accuracy measure with 

49 (96%) presenting the change in AUC for the conditions tested. Thirty-five (69%) 

studies presented additional measures such as change in sensitivity/specificity (24 

studies), positive/negative predictive values (5 studies), or other measures (e.g. 

changes in clinical management decisions (164), intraobserver agreement (137)). 

Change in AUC was the primary outcome in 45 (88%) studies. Others used sensitivity 

(135, 140), accuracy (136, 169), the absolute AUC (144) or JAFROC figure of merit 

(168). All studies presented an average of the primary outcome over all readers, with 

individual reader results presented in 38 (75%) studies but not in 13 (25%). The mean 

change/difference in AUC was 0.051 (range -0.052 to 0.280) across the extracted 

studies and was stated as “significant” in 31 and “non-significant” in the remaining 20. 

No study failed to comment on significance of the stated change/difference in AUC. In 

22 studies we considered that a significant change in AUC was unlikely to be due to 

results from a single reader/patient but we could not determine whether this was 

possible in 11 studies, and judged this not-applicable in a further 18 studies. One study 

appeared to report an advantage for a test when the AUC increased, but not 

significantly (165). There were 5 (10%) studies where there appeared to be 

discrepancies between the data presented in the abstract/text/ROC curve (137, 139, 

169, 177, 180). 
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Figure 15: Bar chart showing data extracted by the systematic review relating to the 
presentation of individual study results. 
	  

 

 

While the majority of studies (42, 82%) did not present an interpretation of their data 

framed in terms of changes to individual patient diagnoses, 9 (18%) did so, using 

outcomes in addition to ROC AUC: For example, as a false-positive to true-positive 

ratio(136) or the proportion of additional biopsies precipitated and disease 

detected(164), or effect on callback rate(143). The change in AUC was non-significant 

in 22 studies and in 12 of these the authors speculated why, for example stating that 

the number of cases was likely to be inadequate(165, 170), that the observer task was 

insufficiently taxing(137), or that the difference was too subtle to be resolved(145). For 

studies where a non-significant change in AUC was observed, authors sometimes 

framed this as demonstrating equivalence (16 studies, e.g.(155, 174)), stated that there 

were other benefits (3 studies), or adopted other interpretations. For example, one 

study stated that there were “beneficial” effects on many cases despite a non-

significant change in AUC(154) and one study stated that the intervention “improved 
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visibility” of microcalcifications noting that the lack of any statistically significant 

difference warranted further investigation (165). 

 

Discussion 

While many studies have used ROC AUC as an outcome measure, very little research 

has investigated how these studies are conducted, analysed and presented. We could 

find only a single existing systematic review that has investigated this question (182). 

The authors stated in their Introduction, “we are not aware of any attempt to provide an 

overview of the kinds of ROC analyses that have been most commonly published in 

radiologic research.” They investigated articles published in the journal “Radiology” 

between 1997 and 2006, identifying 295 studies (182). The authors concluded that 

“ROC analysis is widely used in radiologic research, confirming its fundamental role in 

assessing diagnostic performance”. For the present review, we wished to focus on 

MRMC studies specifically, since these are most complex and are often used as the 

basis for technology licensing. We also wished to broaden our search criteria beyond a 

single journal. Our systematic review found that the quality of data reporting was 

frequently incomplete in those MRMC studies using ROC AUC as an outcome 

measure. We would therefore agree with Shiraishi et al. who concluded from their 

review of articles in “Radiology” that studies, “were not always adequate to support 

clear and clinically relevant conclusions” (182).  

Many omissions we identified were those related to general study design and 

execution, and are well-covered by the STARD initiative (183) as factors that should be 

reported in studies of diagnostic test accuracy in general. For example, we found that 

the number of participating research centres was unclear in approximately one-third of 

studies, that most studies did not describe whether patients were symptomatic or 

asymptomatic, that criteria applied to case selection were sometimes unclear, and that 

observer blinding was not mentioned in one-fifth of studies. Regarding statistical 

methods, STARD states that studies should, “describe methods for calculating or 

comparing measures of diagnostic accuracy” (183); this systematic review aimed to 

focus on description of methods for MRMC studies using ROC AUC as an outcome 

measure. 

The large majority of studies used less than 10 observers, some did not describe 

reader experience, and the majority did not mention whether observers were aware of 

prevalence of abnormality, a factor that may influence diagnostic vigilance. Most 

studies required readers to detect lesions while a minority asked for characterisation, 

and others were a combination of the two. We believe it is important for readers to 
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understand the precise nature of the interpretative task since this will influence the 

rating scale used to build the ROC curve. A variety of units of analysis were adopted, 

with just under half being the patient case. We were surprised that some studies failed 

to record the number of disease-positive and disease-negative patients in their dataset. 

Concerning the confidence scales used to construct the ROC curve, only a small 

minority (12%) of studies stated that readers were trained to use these in advance of 

scoring. We believe such training is important so that readers can appreciate exactly 

how the interpretative task relates to the scale; there is evidence that radiologists score 

in different ways when asked to perform the same scoring task because of differences 

in how they interpret the task (16). For example, readers should appreciate how the 

scale reflects lesion detection and/or characterisation, especially if both are required, 

and how multiple abnormalities per unit of analysis are handled. Encouragement to use 

the full range of the scale is required for normal rating distributions. Whether readers 

must use the same scale for patients with and without pathology is also important to 

know. 

Despite their importance for understanding the validity of study results, we found that 

description of the confidence scores, the ROC curve, and its analysis was often 

incomplete. Strikingly, only three studies described the distribution of confidence 

scores and none stated whether transformation to a normal distribution was needed. 

When publically available DBM MRMC software (e.g. http://www-

radiology.uchicago.edu/krl/KRL_ROC/software_index6.htm) is used for ROC AUC 

modelling, this requires assumptions of normality for confidence scores or their 

transformations when ROC curve fitting methods are used. Where confidence scores 

are not normally distributed these software methods are not recommended (21-24). 

Although Hanley shows that ROC curves can be reasonable under some distributions 

of non normal data (25), concerns have been raised particularly for imaging detection 

studies measuring clinically useful tests with good performance to distinguish well 

defined abnormalities.  In tests with good performance two factors make estimation of 

ROC AUC unreliable. Firstly readers’ scores are by definition often at the ends of the 

confidence scale so that the confidence score distributions for normal and abnormal 

cases have very little overlap (19, 21-23, 26).  Secondly tests with good performance 

also have few false positives making ROC AUC estimation highly dependent on 

confidence scores assigned to possibly fewer than 5% to 10% of cases in the study 

(21). 

Most studies did not describe the method used for curve fitting. Over 40% of studies 

presented no ROC curve in the published article. When present, the large majority 

were smoothed and averaged over all readers. Only four articles presented data points 
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underlying the curve meaning that the degree of any extrapolation could not be 

assessed despite this being an important factor regarding interpretation of results(28). 

While, by definition, all studies used MRMC AUC methods, most reported additional 

non-AUC outcomes. Approximately one-quarter of studies did not present AUC data for 

individual readers. Because of this, variability between readers and/or the effect of 

individual readers on the ultimate statistical analysis could not be assessed.  

Interpretation of study results was variable. Notably, when no significant change in 

AUC was demonstrated, authors stated that the number of cases was either insufficient 

or that the difference could not be resolved by the study, appearing to claim that their 

studies were underpowered rather than conclude that the intervention was ineffective 

when required to improve diagnostic accuracy. Indeed some studies claimed an 

advantage for a new test in the face of a non-significant increase in AUC, or turned to 

other outcomes as proof of benefit. Some interpreted no significant difference in AUC 

as implying equivalence.  

Our review does have limitations. Indexing of the statistical methods used to analyse 

studies is not common so we used a proxy to identify studies; their citation of “key” 

references related to MRMC ROC methodology. While it is possible we missed some 

studies, our aim was not to identify all studies using such analyses. Rather, we aimed 

to gather a representative sample that would provide a generalisable picture of how 

such studies are reported. It is also possible that by their citation of methodological 

papers (and on occasion including a ROC researcher as an author), our review was 

biased towards papers likely to be of higher methodological quality than average. This 

systematic review was cross-disciplinary and two radiological researchers (TD and AP) 

performed the bulk of the extraction rather than statisticians. This proved challenging 

since the depth of statistical knowledge required was demanding, especially when 

details of the analysis was being considered. We anticipated this and piloted extraction 

on a sample of five papers to determine if the process was feasible, deciding that it 

was. Advice from experienced statisticians (SM, DGA and TF) was also available when 

uncertainty arose. 

In summary, via systematic review we found that MRMC studies using ROC AUC as 

the primary outcome measure often omit important information from both the study 

design and analysis, and presentation of results is frequently not comprehensive. 

Authors using MRMC ROC analyses should be encouraged to provide a full description 

of their methods and results so as to increase interpretability. The following Chapter of 

this thesis provides guidelines regarding how to do so. 
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Chapter 7: Guidelines for the reporting of multi-reader 
multi-case imaging studies using the area under the 
receiver operator characteristic curve as a measure of 
diagnostic accuracy. 

At the time of writing, this Chapter is in preparation for submission to an indexed 
journal. 

 

Abstract  

Introduction: Chapter 6 found that data reporting is frequently incomplete in multi-

reader multi-case studies of medical imaging that use the area under the receiver 

operator curve (ROC AUC) as an outcome measure. We aimed to develop guidelines 

to facilitate fuller reporting of such studies. 

Methods: The findings of the systematic review of 51 multi-reader multi-case studies 

of medical imaging that used ROC AUC as an outcome measure were consulted 

(Chapter 6). The lead author noted where studies were deficient in reporting individual 

items and drafted a set of reporting guidelines that were then considered by the 

investigator group as a whole, and modified subsequently in the light of these 

discussions. 

Results: We present guidelines for the reporting of studies grouped under 11 separate 

items that deal with the imaging test, study cases, study readers, their diagnostic task, 

confidence rating scales used to build the ROC curve, study design, units of analysis, 

confidence rating score distribution and curve fitting, data analysis, data presentation, 

and study interpretation. 

Conclusions: Authors reporting multi-reader multi-case studies using ROC AUC as an 

outcome measure are encouraged to follow the guidelines presented in this article so 

as to increase interpretability of their study results. 
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Introduction 

Because we were interested in the quality of their data reporting, the previous Chapter 

(Chapter 6) describes a systematic review of MRMC studies using ROC AUC as an 

outcome measure. Our review identified 49 primary research articles describing 51 

individual studies from which we extracted data regarding the quality of study reporting, 

with a particular emphasis on how ROC AUC was calculated and presented. In brief, 

we concluded that such studies often omit important information when describing both 

study design and analysis, and that presentation of results is frequently not 

comprehensive. We encourage authors using MRMC ROC analyses to provide a full 

description of their methods and results so as to increase interpretability. In order to 

facilitate this aim, in this Chapter we now present detailed guidelines suggesting how to 

report MRMC studies that use ROC AUC as a measure of diagnostic accuracy. 

 

Methods 

The guidelines presented here apply predominantly to studies of diagnostic test 

accuracy that use human observers to interpret medical image data from real patients, 

and that attempt to use a MRMC ROC AUC analysis as a study outcome. Although the 

guidelines could potentially apply to such studies of other technologies, the systematic 

review described in Chapter 6 identified no non-imaging studies. We developed the 

following guidelines by considering the results from Chapter 6, noting especially where 

studies were particularly deficient in reporting the individual items considered. For ease 

of comprehension, we grouped the guidelines into 11 individual “items”, each dealing 

with a specific aspect of study reporting. Under each item we also detail the rationale 

for the guideline where this is not clear from reading of the item. The guidelines were 

drafted by Steve Halligan, then considered by the investigator group as a whole, and 

modified by Steve Halligan subsequently in the light of these discussions.  
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Results: The guidelines. 

Item #1: The imaging test 

The test method(s) should be described in detail including the nature of the test (e.g. 

CT scan, MR imaging), the technical parameters used to acquire imaging data 

(including patient preparation if relevant), and the exact nature of any different 

conditions under which the test was assessed (e.g. with and without computer-assisted 

detection). Was the data presented to study readers representative of the test when 

used in daily clinical practice or not? For example, were only selected images, portions 

of the imaging data, or pre-specified regions of interest presented to readers? 

Deviations from daily clinical practice will impact on the generalisability of study 

findings.  

Item #2: Patients (cases) used for the study 

The source of patients (e.g. local hospital, online database, multi-centre or single-

centre) and their demographics (male/female proportion, age and range) should be 

stated. The organ being studied and the pathology/pathologies (and any subcategories 

of pathology, e.g. benign mass/malignant mass), if any, should be stated, as should 

whether patients were symptomatic and/or asymptomatic, and the exact proportions of 

each. The exact proportions of patients with and without lesions/pathology should be 

clear, as should the number of lesions per patient when multiple so that prevalence can 

be calculated. All of these data are necessary in order to assess whether study 

patients reflect those encountered in everyday clinical practice. For the same reason it 

is also necessary to describe any specific selection criteria that were applied to cases 

included in the study, for example whether only specific categories of pathology were 

included (e.g. more severe cases), or whether criteria were applied to select cases that 

are deemed particularly “difficult” to interpret. Whether patient data were obtained 

prospectively and specifically for the purposes of the study, whether the study is a 

prospective comparison of retrospectively acquired data, or whether the study was 

wholly retrospective (i.e. observational) should be clear. The nature of any reference 

test(s) and/or panels used to establish a ground-truth reference standard result for 

each case should be described along with how this was achieved.  

Item #3 Study readers 

The number and source of study readers should be described along with their 

profession, status, and prior experience (both in terms of number of similar clinical 

cases interpreted previously and the time-span over which this occurred). Whether 
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readers underwent specific training for the study (e.g. use of CAD software) should be 

noted and, if so, the nature and duration of this.  

Item #4 Readers’ diagnostic task(s) 

The exact nature of the diagnostic task for study readers should be described. For 

example, whether they were required to consider the presence or absence of lesions 

and/or lesion characterisation and/or lesion localisation. The exact instructions given to 

study readers should be available in the article or available as an appendix (e.g. online). 

The degree to which study readers are blind to clinical data, reference results, and their 

knowledge of prevalence of abnormality in the study dataset should be clear. 

Item #5 Confidence rating scales 

The exact nature of the confidence rating scale(s) completed by readers (and therefore 

used subsequently to build the ROC curve) should be clear, e.g. the exact number of 

categories, and exactly how these categories relate to the diagnostic task. In order to 

build a ROC curve, we would expect categories to be ordinal (i.e. to have a logical 

order), but this is sometimes not the case. For example, the BI-RADS scoring system 

has been used to create ROC curves but a rating of 2, defined as benign abnormality, 

does not imply a greater suspicion of cancer than a BI-RADS rating of 1, which is 

defined as no abnormality; both are confident diagnoses of non-malignancy (3). If an 

ordinal scale is used, it is also important to know whether the intervals between 

individual categories are constant. If not, then the scale may not be used equivalently 

by different readers in a multi-reader study. This is especially the case when a 

confidence rating score is actually a composite of assessments of different 

characteristics, for example size, shape, morphology and other visual information (16). 

For the same reason it must be stated whether different scales were used for disease-

positive and disease-negative cases (if any). Were study readers trained to use the 

rating categories correctly in advance of their interpretation? Were the study readers 

encouraged to use the full range of scoring categories available to them, a procedure 

that is sometimes recommended to facilitate subsequent ROC curve analysis (6, 40)? 

If so, how was this done and the effect assessed? 

Item #6 Study design 

A description of the number of times each reader interprets each individual case should 

be described so that the study design is clear. For example is the design fully-crossed, 

i.e. every reader interprets every case? Case-ordering should be described since this 

may introduce potential biases, e.g. is the order of case interpretation the same for all 

readers and is the ordering the same for consecutive interpretations of the same case 
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by each individual reader? How was case ordering arrived at and if this was changed 

between readers and/or interpretations, how was this achieved (e.g. by 

randomisation)? The presence of any washout period between interpretations to 

diminish recall bias should be stated as should the exact conditions under which the 

interpretation were made and their duration; for example, were interpretations 

performed in a situation representative of daily clinical practice or in a “laboratory” 

environment, with batches of consecutive cases reported rapidly? 

Item #7 Unit of analysis 

The unit of analysis to build the ROC curve (or multiple curves where present) should 

be apparent. For example, is the unit of analysis a single image, multiple images, or 

portion of an image? Is the unit a patient, an organ, or portion of an organ (e.g. liver 

segment, colonic segment)? It should be clear whether single or multiple lesions are 

possible per individual unit, as should whether it is possible for individual units to be 

negative for lesions. It should also be clear if two types of true-negative classifications 

were possible by readers, i.e. where a lesion was seen but misclassified by a study 

reader vs. not being seen at all. The total number of lesion-positive and lesion-negative 

units of analysis should be stated in the final article. If other study outcomes are used, 

then their unit of analysis should be stated also. 

Item #8 Distribution of rating scores and data fitting 

The distribution(s) of reader rating scores should be presented in the published article, 

both overall and for readers individually. It should be stated whether the distribution(s) 

is normal or not. The method used for curve fitting should be stated and referenced. 

Whether groups of scoring categories were collapsed/amalgamated to facilitate 

building the ROC curve should be clear. Whether the authors encountered any 

problems with fitting ROC curves to reader rating scores should be reported. In 

particular, whether the data distribution satisfied any assumptions of normality 

demanded by the fitting method or whether transformation of the data was necessary 

in order to achieve this. If so, then the method of transformation should be stated. This 

information is important so that readers can assess whether ROC analysis is likely to 

be appropriate. 

Item #9 Data analysis 

The primary study outcome should be stated clearly and unambiguously. For example, 

was improved test accuracy defined in advance by a significant increase in ROC AUC 

or by significantly improved sensitivity and specificity, the latter together or individually? 

If there are multiple outcomes, the distinction between primary and secondary should 
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be clear. In particular, it should be stated exactly which primary outcome was decided 

upon in advance of the analysis so that readers can balance knowledge of this against 

the emphasis attributed to other outcomes in the published manuscript. If the intention 

was to have co-primary outcomes (for example change in ROC AUC and 

sensitivity/specificity) then the authors should describe how they intended in advance 

to account for this statistically. Where ROC AUC and/or pAUC is compared between 

tests (or between the same test under different conditions), the statistical method used 

to compare AUC or pAUC should be stated. 

Item #10 Data presentation 

Each statistical measure should be reported both averaged over all readers and for 

each reader individually so that the impact of individual readers on the outcome overall 

can be assessed. Where ROC AUC is compared between tests (or between the same 

test under different conditions), the AUC and change in AUC should be clear, and its 

significance stated, again averaged over all readers and for each reader individually. 

ROC cures for each interpretation condition should be presented in the published 

article, both overall and individually for each reader, preferably unsmoothed. The data 

points underlying the ROC curve should be shown so that the influence of individual 

readers on the curve and its area can be assessed. Visible data points are also 

necessary so that the degree of curve extrapolation, if any, can be assessed by 

readers so that they can come to a decision as to whether extrapolation exerted a 

significant effect on the AUC (28). 

Item #11 Study interpretation 

Interpretation of study results should focus on the primary outcome and not be diverted 

towards other outcomes, especially where any change in the primary outcome was 

found to be non-significant. Because lack of statistical power was often blamed for a 

non-significant change in AUC, the authors should describe their rationale for powering 

and its calculation for sample size. To increase clinical interpretability of the study 

results, an attempt should also be made to frame any change in AUC in terms of its 

effect on individual patient diagnoses at relevant clinical thresholds. For example, when 

comparing two test conditions, the number of additional true-positive and false-positive 

patients per 100 patients at a clinically sensible diagnostic threshold could be stated. It 

will also be necessary to state the prevalence of abnormality since that will influence 

the numbers detected. The stated prevalence should reflect the prevalence 

encountered in daily clinical practice so that the interpretation is generalisable.    
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Discussion 

We have developed and presented a set of guidelines recommended by us for the 

reporting of MRMC research studies that use ROC AUC as an outcome measure. 

These guidelines arose from difficulties encountered by us when attempting to 

understand how authors had deployed this analysis in studies of CT colonography 

available in the published literature. These difficulties precipitated a systematic review, 

described in Chapter 6, and the present guidelines arose directly from the findings of 

that review. 

These guidelines focus on aspects of study reporting that deal with design and analysis, 

and presentation of results. These guidelines are not intended to replace the STARD 

guidelines for the reporting of studies of diagnostic test accuracy (183). The systematic 

review detailed in Chapter 6 found that many studies omitted information related to 

general study design and execution, which are well-covered by the STARD initiative 

(183). The present guideline is intended to complement STARD but necessarily 

duplicates some of the information that is necessary when attempting to understand 

how the primary research was performed, the origin of patients for example. With 

specific reference to statistical methods, STARD states that studies should, “describe 

methods for calculating or comparing measures of diagnostic accuracy” (183). The 

present guideline therefore builds on this recommendation and goes beyond STARD 

by requiring more detailed, specific information regarding the methods and analyses 

performed in MRMC studies using ROC AUC as an outcome measure. 

Our guideline comprises 11 separate headings, ranging from the imaging test being 

investigated through to interpretation of the study findings. A clear description of the 

test and the patients on which it is used is necessary so that readers can assess 

whether study findings are likely to be generalisable, i.e. do the test and patients reflect 

those encountered in daily clinical practice? A description of readers is also important 

since studies often recruit readers who do not reflect the majority likely to use the test 

in normal practice, for example using either inexperienced trainees (since they are 

easier to recruit) or highly expert radiologists working in a specialist centre (since these 

are more likely to undertake research).  

Our guidelines have taken a particularly detailed focus on the diagnostic task required 

of study readers and the confidence rating scale that they must complete in order for 

the ROC curve(s) to be built. Our personal experience of the literature has been that it 

is frequently very difficult to be clear regarding exactly what was required of readers 

and how the confidence rating scale related to the diagnostic task, especially when 

there is some confusion around the unit of analysis and whether this can be 
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positive/negative for disease. For example, it may be unclear how readers handle 

multiple abnormalities, or whether this is even possible. Our systematic review found 

that only 12% of studies stated that readers were trained to use the confidence rating 

scale in advance of scoring, despite the fact that this procedure is recommended(6).  

Our systematic review found that details relating to fitting the ROC curve, its 

presentation, and methods for comparing the AUC were often lacking, and so our 

guidelines have emphasised these aspects of study reporting. Because we found that 

curves were usually smoothed, averaged, and showed no underlying data points we 

have emphasised presentation of data points for individual readers so that their 

influence on the curve can be assessed along with the degree of any extrapolation. For 

example, our review found that a ROC curve with underlying data points was 

presented in only 4 (8%) of 51 studies and extrapolation could be determined in these 

4 only. Most studies did not specify the method used for curve fitting and only 3  

described the distribution of confidence scores and none stated whether transformation 

to a normal distribution was needed.  

Finally, because our review found that interpretation of studies in the literature often 

deviated from the primary outcome (usually change in ROC AUC), especially if this 

was found to be non-significant, we have asked that researchers focus their 

interpretation on their primary outcome, stated in advance. Because changes in 

diagnostic test accuracy are most comprehensible when presented in terms of gains 

and losses to individual patients (10), we suggest that authors frame their findings in 

this way.  

It occurred to us that publication of this set of guidelines might by inference indicate a 

tacit support for MRMC studies using ROC AUC as an outcome measure. While it is 

clear that we believe there are considerable issues regarding the correct application of 

ROC AUC to these studies, we do believe that the data described in the guidelines 

need to be presented when studies using this analysis are reported. It is also possible 

that with relatively little modification these guidelines could also apply to MRMC studies 

that use net benefit as the primary outcome measure. Doing so would offer the 

opportunity for us to combine proponents of both ROC AUC and net benefit as authors 

of the same guideline, which would likely serve to ameliorate fundamental differences 

of approach between the two. This would broaden the appeal of the guidelines which, 

at present, could be accused of bias since they have been drafted by workers 

perceived as opponents of ROC AUC. A combined approach would likely pre-empt 

criticism of the guidelines arising from perceptions that the guideline authors are biased 

towards one analysis or another. A combined approach would facilitate guideline 

generalisability. 
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In summary, we have developed guidelines for the reporting of MRMC research 

studies that use ROC AUC as an outcome measure. The guidelines are intended to 

provide clarity around the research methodology used and encourage a full description 

of both the analysis and presentation of findings so as to increase the interpretability of 

study results.  
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Chapter 8: Thesis summary and recommendations for 
future research 

 

The belief that ROC curve analysis is fundamental to understanding the diagnostic 

accuracy of an imaging test is deeply imbedded in radiological thinking. For example, 

the most highly cited paper in the entire clinical medical imaging literature is Hanley 

and McNeil’s 1982 article, “The meaning and use of the area under a receiver 

operating characteristic curve” (2). Accordingly, when designing a MRMC study in 

order to achieve licensing approval for CAD software for CT colonography, the USA 

FDA obliged us to use ROC AUC as our primary outcome measure (78). My statistical 

collaborators (Susan Mallet and Douglas Altman) soon realised that this approach was 

problematic. In particular, the primary study question turned on whether radiologists 

found it easier to detect polyps when using CAD software. Confidence scores used to 

build the ROC curve therefore reflected radiologists’ opinions regarding whether a 

polyp was present or not. We developed and wrote a study protocol that was accepted 

subsequently by the FDA. It was not until reader scores had been obtained and we 

were performing the intended analysis that we realised the data were far from normally 

distributed (see Chapter 1); we could not build ROC curves. We began to examine the 

reasons underpinning this, which, in turn, led us to unearth more and more problematic 

issues with ROC AUC as an outcome measure for studies of radiological technologies. 

This thesis gathers together our thinking on ROC AUC, the search for an alternative 

based on net benefit, and further research that was precipitated by both our discontent 

with ROC AUC and the need for additional data necessary to implement our proposed 

alternative. At the same time, this thesis also demonstrates that the development of an 

alternative method will present another set of problems, best exemplified here by the 

need to perform experiments in order to arrive at a value for W. 

This thesis details non-trivial issues related to the use of ROC AUC in MRMC studies 

and presents an alternative based on net benefit (Chapter 1). Chapter 2 uses the net 

benefit method to analyse a MRMC study of CAD for CT colonography. The analysis 

requires an estimate of relative misclassification costs for false-negative versus false-

positive diagnoses; “W”. This study used a conservative value for W, arrived at via 

consensus between the investigators; while we were confident that false-negative 

diagnoses “cost” more than false-positive diagnoses, we were concerned that by using 

too high a figure, we would lay ourselves open to claims that we were biasing the 

analysis to such an extent that CAD could not fail to be found beneficial. In any event, 

despite the conservative (to us) figure of 3 used originally, the FDA rejected the 

analysis as “unproven and unvalidated”, despite it being based on a combination of 
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sensitivity and specificity, two measures for which it would be hard to imagine better 

established validation. It is informative to note that when submitting the contents of 

Chapter 2 for peer-reviewed, indexed publication, the Editor of the journal Radiology 

asked that we change our primary outcome measure in retrospect: We were obliged to 

present the net benefit analysis in an online Appendix (78). Seeking to understand why 

the analysis was “unvalidated” we could only assume that this was because the value 

of W had been arrived at by consensus discussion, since the other components of the 

equation (namely change in sensitivity, change in specificity, and prevalence) are 

known with certainty. Chapter 3 therefore describes an experiment used to obtain a 

precise value for W. Exactly as we predicted, the value for W ascribed by our study 

participants was far higher than our overly conservative value of 3, being 2250 for 

cancers and 6 for polyps. It was natural, then, to re-analyse the study performed in 

Chapter 2, this time using the evidence-based values of 2250 and 6 for cancers and 

polyps respectively, for W. At the same time, we elected to compare the performance 

of experienced and inexperienced readers of CT colonography using the data from 

Chapter 2 and a prior study of CT colonography performed by us (17); these analyses 

are described in Chapter 4. We then decided to extend the work described in Chapter 

3, seeking to discover if the seemingly high value for W extended to other clinical 

scenarios, using as an example the detection of extra-colonic pathology by CT 

colonography. I believe this is a very germane situation since the ability of CT 

colonography to depict extracolonic pathology is often promulgated as a distinct 

advantage over other methods to examine the colon, yet false-positive diagnoses have 

considerable capacity to cause morbidity (both physical and psychological) and even 

mortality. Nevertheless, again we found that the value of W was relatively high; 599 for 

non-invasive follow-up testing and 60 for invasive testing.  

Given the problems we encountered when attempting to use ROC AUC as an outcome 

measure, it was natural to seek evidence that other researchers had come across 

similar hurdles. The systematic review described in Chapter 6 revealed that if other 

researchers have encountered similar problems, then they have not declared these in 

the literature in any substantial numbers. While we found a paucity of problems 

described, at the same time we found that comprehensive presentation of study 

methods, analysis, and data presentation was very unusual. Accordingly, the final 

Chapter describes a set of guidelines (i.e. a minimum dataset) that we believe 

researchers should adhere to when reporting such studies. As Noted in Chapter 7, this 

does not necessarily imply that we “approve” of the MRMC ROC AUC analysis but we 

do believe that these data need to be presented when such studies are reported.                          
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It is important to understand that we do not object to ROC AUC per se. I believe that 

the analysis is especially useful at the early stages of test development, when it is 

important to understand whether a diagnostic test (that uses different diagnostic 

thresholds) works at all. However, ROC AUC appears to be promulgated widely as the 

only analysis applicable when it is necessary to know the performance of a diagnostic 

imaging test. This seems, to me, to be the case irrespective of the context of the 

assessment and this is where my major objection lies. It is clear and undeniable that 

misclassification costs for false-negative and false-positive diagnoses may differ 

depending on the clinical context, and often differ very considerably. However ROC 

AUC almost always ignores these and also ignores the effect that prevalence might 

have on the result. It is also worth considering the fact that “good” diagnostic tests will 

be better able to sort patients into “diseased” and “not diseased” categories. Thus, 

true-positive and true-negative diagnoses tend to be confident with the result that 

readers’ scores are often at each end of the confidence scale. Accordingly, the 

confidence score distributions for normal and abnormal cases have very little overlap 

(19, 21-23, 26). Secondly, tests with good performance also have few false positives 

making ROC AUC estimation highly dependent on confidence scores assigned to 

possibly fewer than 5% or 10% of cases in the study (21). Thus, a wide range of 

confidence scores would be unexpected in a test that performed well, for example one 

that was ready for clinical implementation. However, a wide range of scores is 

necessary to build the ROC curve. Ultimately, ROC AUC also lacks clinical 

interpretability because it is not immediately obvious how an AUC translates into 

numbers of patients correctly and incorrectly diagnosed. This seems, to me, to be a 

major disadvantage because, in clinical radiology at least (where ROC AUC is the most 

dominant analysis), the clinical context is well-established in most studies. It seems 

illogical, then, to ignore this.  

ROC proponents state that it is possible to address these issues but the solution does 

not seem, to me, to be simple. For example, Zweig and Campbell (9) state that to use 

ROC AUC, “for patient management” two “major elements” of selecting the appropriate 

sensitivity/specificity pair threshold are required. These are, “the relative cost or 

undesirability of errors, i.e. false-positive and false-negative classifications; the value or 

benefits of correct classifications”, and the need to know, “the relative proportions of 

the two states of health that the test is intended to discriminate between. This is related 

to prevalence”. The authors therefore acknowledge explicitly that knowledge of both 

misclassification costs and disease prevalence is necessary to interpret ROC AUC in 

clinical practice. They then proceed to describe a method to incorporate these 

elements within ROC AUC that appears, to a non-statistician such as myself, to be 

complex and difficult to implement, at least when compared to net benefit. They derive 
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a slope, m, that is the product of false-positive costs divided by false-negative costs 

and one minus prevalence divided by prevalence (9). It is then necessary to calculate 

where a line with the slope m first contacts the ROC curve; this provides the 

appropriate operating point. Dwyer (5)proposes a similar method, again one that 

requires an estimate of relative misclassification costs. It is interesting to note that 

while our net benefit equation was criticised as being “unvalidated” because 

misclassification costs were unknown, the solution proposed by well-recognised ROC 

methodologists requires exactly the same data. 

Similarly, a paper from McClish (184) published subsequent to my starting work on this 

thesis recognises many of the issues that we raise. For example, McClish states, “One 

definition of the optimal threshold is the test value that minimises the Bayes cost or, 

equivalently, maximises the generalized Youden index (GYI). This definition 

incorporates both the cost or utility of misclassification and the prevalence of disease” 

(184)  (the more familiar Youden index [sensitivity + specificity – 1] maximises correct 

classification but does not account for prevalence and costs). However, while 

recognising these issues fully, the author then proceeds to describe a complex method 

to constrict the AUC into a region around the optimal point (184). Again, this seems to 

me to be an overly complex solution and implies a desire to stay wedded to ROC AUC 

when to discard the analysis altogether seems, to me, to be a simpler solution in many 

situations.  

So, should net benefit or similar indices replace ROC AUC? As already stated, I 

believe ROC AUC has particular value early in the assessment process, i.e. when 

deciding if a test should progress to clinical testing. Also, ROC AUC has particular 

validity when human interpretation is unnecessary, as is the case with many laboratory 

tests, since issues related to ascribing confidence scores do not apply. However, 

further research regarding net benefit is also required before it can be recommended 

with absolute confidence. For example, I am aware that statisticians arguing against 

ROC AUC do not regard indices similar to net benefit as an acceptable alternative. For 

example, Hilden objects to ROC AUC in general (185) but notes that there are some 

circumstances where it is preferable to other measures of maximisation of expected 

utility (MEU), specifically net reclassification index (NRI) and integrated discrimination 

improvement (IDI) (186-188). My reading of this is that the arguments against these 

analyses is in the context of prediction models where multiple measures are scored 

and considered simultaneously to generate a prediction index. The fact that several 

measures are combined serves to normalise the distributions of scores from 

normal/abnormal patients, which favours ROC AUC (here known as the c-index). 
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Taking an example from our own work, we were surprised by the results of the analysis 

described in Chapter 4. Specifically, the net benefit for experienced readers was non-

significant at 3.2% (95%CI -1.9% to 8.3%), and we did not expect this from our 

inspection of the raw sensitivity and specificity data. This set of circumstances arose 

because the prevalence of disease (polyps in this case) was relatively low and the 

value of W was far less than that obtained for diagnosis of cancer, i.e. 6 versus 2250. I 

believe we need to consider in greater detail the interaction between prevalence and 

W, and the effect they exert on the outcome (akin to a “sensitivity analysis”) to be 

confident that the equation truly provides the “right” result. As is obvious from the 

content of this thesis, while the value of W has been established in Chapters 3 and 5 

for specific clinical situations, more work is needed to define the precise value of W in 

other, multiple clinical situations. We found that patients and healthcare practitioners 

held different values of W, with the latter, as might be expected, holding more 

conservative views. Quoting Chapter 5, a very recent piece of work has found that 

“overdiagnosis” in several different contexts for cancer screening (i.e. detection of 

cancers that are destined not to harm the patient) is well tolerated by potential 

screenees (189). 

It must also be noted that while Chapters 3 and 5 used a DCE methodology to arrive at 

a value for W, this analysis has attracted criticism. As noted in the Discussion related 

to those Chapters, DCEs require considerable cognitive ability to complete, relative to 

some alternatives. Also, both Chapters considered the diagnosis of cancer, which is 

likely to elicit a fear response, particularly in patients versus healthcare professionals, 

which may result in irrational answers underpinned by a fear of cancer and death. DCE 

may also be difficult where the event being studied is rare, as is usually the case for 

screening. Patients in particular may have difficulty appreciating that the event is, on 

average, very unlikely to happen. This may mean that the trade-off being asked of 

participants is complex and involves the weighing-up of many different attributes 

simultaneously, all with different consequences and high levels of uncertainty. Decision 

tree analysis is an alternative to discrete choice analysis that allows multiple attributes 

to be considered via a series of binary yes/no decisions. Their disadvantage is that it is 

less easy to vary the balance between attributes.  

The question then arises, whose values for W should be used: Patients? Healthcare 

workers? Health economists? Politicians? A combination? In what proportions? I am 

inclined to suggest that medical doctors are most likely to provide the “correct” value of 

W for a given context since they have the broadest understanding of the clinical 

situation and consequences for the patient, and act on behalf of their patients’ best 

interests. However, it has been argued to me that, ultimately, patients are the most 
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appropriate group to provide W since they are both the consumers of the test, its 

consequences, and also, ultimately, pay for the test (whether indirectly via taxation or 

directly via insurance). I have some concerns around that approach, not least because 

of the issues around irrational and fearful responses noted in the preceding paragraph. 

It should also be noted that W is also likely to vary in the same group of patients, for 

example depending on their sex and social status. Indeed, W might change value in 

the same patient depending on their age since this will likely influence their perception 

of disease likelihood, and how consequences of the disease in question are perceived 

by the patient. Clearly, this issue requires more research as does the possibility of 

using a more complex net benefit equation to incorporate a multi-layered value for W 

that could be dependent on multiple factors such as age and prior probability of 

disease in an individual (for example, by accounting for family history). 

It is natural that further work flowing from this thesis should compare both ROC AUC 

and net benefit analyses when applied directly to datasets arising from the same study. 

Doing so would allow us to more closely examine the advantages and disadvantages 

inherent to both analyses. A range of studies should be investigated since the 

applicability of ROC AUC is likely to vary across these contingent on fluctuating 

difficulties with applying confidence scores reliably, as described in previous Chapters. 

Chapter 7 presents a set of guidelines for the comprehensive reporting of MRMC 

studies using ROC AUC as an outcome measure but it is probable that, with relatively 

little modification, these guidelines could also apply to the reporting of studies using net 

benefit measures. Future work should attempt to develop these guidelines further so 

that they are applicable to both types of analysis in MRMC studies, an approach that 

would also serve to ameliorate apparently fundamental differences between 

researchers who are advocates of one particular approach. 

In summary, in this thesis I have argued that there are considerable difficulties when 

using ROC AUC as an outcome measure for clinical studies of radiological 

technologies. These difficulties are non-trivial and are related in part to problems 

assigning confidence scores, non-normal score distributions and curve extrapolation, 

and an inability to easily ascribe misclassification costs. Further, the AUC lacks clinical 

interpretability. I have argued for an alternative analysis based on net benefit and have 

shown how this can be used to analyse clinical imaging study data. I have also shown 

how values for relative misclassification costs can be arrived at by discrete choice 

experiment and then incorporated into the net benefit analysis. I argue that an analysis 

based on net benefit is statistically transparent since it is based on changes in 

sensitivity and specificity, incorporates estimates of prevalence and misclassification 

costs, and is clinically interpretable since it reflects changes in correct and incorrect 
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patient diagnoses when using a new diagnostic test. Net benefit analyses do however 

require further consideration before they can be recommended unreservedly. In this 

respect the concept of “validation”, applied in the title of this thesis, is still in its infancy. 

The majority of this thesis has concentrated on the development of a net benefit 

alternative to ROC AUC. Future work should concentrate on further validation of the 

net benefit method. 
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Contribution and acknowledgements 

This PhD is unusual in that it was executed at a relatively late stage in my career. The 

experience has been quite different to that of my first thesis – an MD submitted in 1996 

– since I am now a team leader rather than a junior researcher. While for my MD I 

completed the bulk of the work at “grass-roots” level, i.e. recruiting patients, collecting 

data, and preparing first drafts of putative manuscripts for my supervisor, this time 

around (happily!) I have been living at the other end of the food chain and it is right that 

I acknowledge here my precise contribution and that of others. So, I would very much 

like to thank my own research fellows, especially those who did much of the “spade-

work” for this thesis: Darren Boone, Andrew Plumb, Emma Helbren, and Thaworn 

Dendumrongsup. Darren Boone deserves special mention as his was the original 

suggestion that I might assemble my work around ROC AUC/net benefit into a credible 

personal PhD thesis after I had mentioned that I wished I had completed a PhD “first 

time around”. Heather Fitzke (also my PA) and Nichola Bell are also due thanks for 

their help recruiting and interviewing subjects for the second discrete choice 

experiment. Heather also deserves further thanks for managing my NIHR Programme 

Grant for Applied Research, which funded most of the work described in this thesis.   

This thesis is an indisputable example of “other men’s flowers” (Lord Wavell). It is 

obvious that I am no statistician yet this thesis pivots on statistics. So, many, many 

thanks are due to my collaborators. I would particularly like to thank Douglas Altman 

and Susan Mallett, without whose statistical insights none of this work would have 

happened. So, what part did I play in this thesis? As Chief Investigator for the NIHR 

Programme Grant that forms a substantial part of this thesis, I was responsible for the 

overall strategy and coordination of the work, for supervising my research fellows, for 

redrafting and finalising their articles, and for final approval for submission (performing 

submission myself in the vast majority of cases) after my collaborators had due input. 

In particular, I had considerable intellectual input regarding research strategy, the 

methods used, their execution, data interpretation, and drafting of all final articles. To 

reflect this, I am corresponding author for all of the work presented in this thesis. In 

some cases I produced the initial article draft myself, with little input from my research 

fellows. My precise role for the work presented in this thesis was as follows: 

• I was first and corresponding author for the published work arising from 

Chapters 1, 2 and 7 (i.e. I produced the initial draft myself). 

• I was last and corresponding author for the published work arising from 

Chapters 3, 4, and 5 (i.e. I revised first drafts produced by my research fellows). 
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• I was third and corresponding author for Chapter 6. In this case I believed Dr. 

Susan Mallett should be placed last since she devised the extraction table for 

the systematic review. As Drs. Dendumrongsup and Plumb did the extraction, I 

believed they should go first and second respectively. However, I produced the 

first draft of the article and then revised it following input from my senior 

collaborators. 

Many thanks are also due to Medicsight PLC (sadly now long gone) who supported the 

studies of CAD for CT colonography that precipitated our concerns re analysis using 

ROC AUC. In particular Justine McQuillan, Gareth Beddoe, Mary Roddie, Leslie 

Honeyfield and Greg Slaubaugh should be singled out. Thanks are also due to: 

Professor Stuart Taylor (Professor of medical Imaging, UCL); Dr Christian von Wagner 

(Senior research associate, UCL), Mr Alex Ghanouni (health psychology research 

fellow), and Professor Jane Wardle (Professor of clinical psychology, UCL); Professor 

Richard Lilford (Professor of clinical epidemiology, University of Birmingham), Dr 

Shihua Zhu (postgraduate fellow) and Dr Lily Yao (University of Southampton); Dr. 

Tom Fanshawe (senior statistician, Oxford). Thanks are also due to Professor Wendy 

Atkin (Professor of gastrointestinal epidemiology, Imperial College) for facilitating my 

original introduction to Professor Altman – Professor Atkin has been a much-valued 

collaborator of mine for many years. 

UCLH/UCL is a great place to work, with an ethos aimed squarely at facilitating 

research. Thanks are due to them, notably Professor Raymond MacAllister and my 

clinical colleagues in radiology, for allowing me to undertake a sabbatical from January 

to June 2013 that afforded me time to work on many component articles of this thesis. 

Of course, I am very grateful to the NIHR who funded my Programme Grant for Applied 

Research (RP-PG-0407-10338), which funded the research. 

I must thank my “supervisors”, primary Professor Stuart Taylor and secondary, 

Professor David Hawkes. Thanks also to Dr Shonit Punwani for his help with my 

upgrade viva. 

Thanks to Jon Deeks (Professor of biostatistics, University of Birmingham) and Adoni 

Toms (Professor of radiology, University of East Anglia) who conducted my PhD viva in 

September 2015. Being examined is never easy but the professional manner with 

which they conducted the viva is appreciated and their comments have undoubtedly 

improved this thesis, and focussed my thoughts on this topic further.   
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Of course my family deserve thanks, Alison, Sarah and Julia, but while my wife was 

devastated at the thought I would attempt a second thesis, I hope my assertion that it 

would be “much easier the second time around” has proven true? 

Last but far from least, I would like to thank Professor Clive Bartram for recognising 

that my desire to pursue a research career was not entirely doomed to failure. His 

support was pivotal to my decision to become an academic radiologist and his 

mentoring meant that I had the right tools to do so: Thanks Clive - enjoy your well-

deserved retirement.   
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Appendix 1: Indexed, peer-reviewed journal articles 
arising from this thesis. 

1. Halligan S, Mallett S, Altman DG, McQuillan J, Proud M, Beddoe G, Honeyfield L, 

Taylor SA. Incremental benefit of computer-aided detection when used as a 

second and concurrent reader of CT colonographic data: Multiobserver study. 

Radiology 2011;258:469-76. 

2. Mallett S, Halligan S, Thompson M, Collins GS, Altman DG. Interpreting diagnostic 

accuracy studies for patient care. BMJ 2012 Jul 2;345:e3999.  

3. Boone D, Mallett S, Zhu S, Yao GL, Bell N, Ghanouni A, von Wagner C, Taylor SA, 

Altman DG, Lilford R, Halligan S. Patients’ & healthcare professionals’ values 

regarding true- & false-positive diagnosis when screening by CT colonography: 

Discrete choice experiment. PLoS One 2013 Dec 9;8:e80767.  

4. Plumb AA, Boone D, Fitzke H, Helbren E, Mallett S, Zhu S, Yao GL, Bell N, 

Ghanouni A, von Wagner C, Taylor SA, Altman DG, Lilford R, Halligan S. 

Detection of extracolonic pathologic findings with CT colonography: A discrete 

choice experiment of perceived benefits versus harms. Radiology 2014; 273:144-

152. 

5. Mallett S, Halligan S, Collins GS, Altman DG. Exploration of analysis methods for 

diagnostic imaging tests: Problems with ROC AUC and confidence scores in CT 

colonography. PLoS One. 2014 Oct 29;9(10):e107633.  

6. Dendumrongsup T, Plumb AA, Halligan S, Fanshawe TR, Altman DG, Mallett S. 

Multi-reader multi-case studies using the area under the receiver operator 

characteristic curve as a measure of diagnostic accuracy: Systematic review with a 

focus on the quality of data reporting. PLoS One. 2014 Dec 26;9(12):e116018. 

7. Halligan S, Altman DG, Mallett S. Disadvantages of using the area under the 

receiver operating characteristic curve to assess imaging tests: A discussion and 

proposal for an alternative approach. European Radiology 2015:25:932-9.   

Winner, Gold Medal for best GI paper published in European Radiology. 

8. Boone D, Mallett S, McQuillan J, Taylor SA, Altman DG, Halligan S. Assessment of 

the incremental benefit of computer-aided detection (CAD) for interpretation of CT 

colonography by experienced and inexperienced readers. PLoS ONE 2015;10: 
e0136624. 

Although arising directly from work presented in this thesis, articles nos. 2 and 5 above 

do not appear here as Chapters because they were chiefly the work of Dr. Susan 

Mallett, and drafted primarily by her.  
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