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Abstract
Myoclonus-dystonia (M-D) is a very rare movement disorder, caused in ∼30–50% of cases by mutations in SGCE. The CACNA1B
variant c.4166G>A; (p.R1389H) was recently reported as the likely causative mutation in a single 3-generation Dutch pedigree
withfive subjects affected bya uniquedominantM-D syndromeand cardiac arrhythmias. In an attempt to replicate thisfinding,
we assessed by direct sequencing the frequency of CACNA1B c.4166G>A; (p.R1389H) in a cohort of 520M-D cases, in which SGCE
mutations had been previously excluded. A total of 146 cases (28%) had a positive family history of M-D. The frequency of the
variant was also assessed in 489 neurologically healthy controls and in publicly available data sets of genetic variation (1000
Genomes, Exome Variant Server and Exome Aggregation Consortium). The variant was detected in a single sporadic case with
M-D, but in none of the 146 probandswith familialM-D. Overall, the variantwas present at comparable frequencies inM-D cases
(1 out of 520; 0.19%) and healthy controls (1 out of 489; 0.2%). A similar frequency of the variant was also reported in all publicly
available databases. These results do not support a causal association between the CACNA1B c.4166G>A; (p.R1389H) variant
and M-D.
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Introduction
Myoclonus-dystonia [M-D (MIM 159900)] is a rare familial move-
ment disorder, which classically features a variable combination
of non-epileptic myoclonic jerks and dystonia (1). Heterozygous
loss-of-function mutations in the maternally imprinted ε-sarco-
glycan gene [SCGE, DYT11; (MIM 604149)] represent amajor cause
of autosomal dominant M-D (2). However, up to 50–70% of famil-
ial cases with M-D lack mutations in SGCE (3–5), suggesting that
disease-causing mutations in other genes are responsible for
this syndrome.

Recently, Groen et al. (6) identified the missense variant
c.4166G>A; (p.R1389H) (rs184841813) in CACNA1B [MIM 601012]
as the likely causativemutation in aDutch pedigreewithfive sub-
jects affected by autosomal dominant M-D lacking mutations in
SGCE. Unique features in the pedigreewere lower limb orthostatic
high-frequency myoclonus, attacks of limb painful cramps and
cardiac arrhythmias in three of the affected subjects (7). Sanger
sequencing of the CACNA1B exons coding for the protein portion
spanning from III-S5 to III-S6 failed to reveal othermutations in a
further 47 M-D cases.

CACNA1B encodes neuronal voltage-gated calcium channels
CaV2.2, which have a key role in controlling synaptic neurotrans-
mitter release (8). Furthermore, CACNA1A [MIM 601011] muta-
tions in the homologous region of the gene cause familial
hemiplegic migraine [MIM 141500] (9) and episodic ataxia type 2
[MIM 108500] (10).

The CACNA1B p.(R1389H) substitution represents therefore an
excellent candidate as a disease-causingmutation forM-D. How-
ever, in the absence of identification of CACNA1B mutations in
other unrelated pedigrees, the implication of mutations in this
gene as a cause for M-D is not confirmed.

In this study, we assessed the frequency of the CACNA1B
c.4166G>A; (p.R1389H) variant in a large multicentric cohort of
M-D cases without mutations in SGCE (both point mutations
and copy number variants).

Results
A total of 520M-D cases (28%were familial) were screened for the
presence of the c.4166G>A; (p.R1389H) variant. Additionally, we
assessed the frequency of the variant in whole-exome sequen-
cing data from 489 white healthy controls of UK and US origin
and in European cases listed in publicly available data sets of gen-
etic variation (1000 Genomes, Exome Variant Server and Exome
Aggregation Consortium).

None of the 146 probands with familial M-D carried the CAC-
NA1B c.4166G>A; (p.R1389H) variant. The variant was detected
only in a single female case of UK origin with sporadic M-D (see
chromatogram of the mutation in the Supplementary Material,
Fig. S1). This case presented in her mid-30s with tremulous cer-
vical dystonia and myoclonic jerks in the upper limbs. She had
no family history for M-D or any other movement disorder. No
other family members were available for segregation analysis
of the variant.

The total carrier frequency in ourM-D cohort, including famil-
ial and sporadic cases, is 0.19% (1/520 cases). The variant is pre-
sent at a similar frequency in our healthy controls (0.2%; 1 out
of 489 individuals). The control carrier of the variant is a 38-
year-oldmalewithout any neurological disease andwith no rele-
vant family history of movement disorders.

The CACNA1B c.4166G>A; (p.R1389H) variant is reported at
comparable frequencies in the 1000 genome project (0.26%;
1/379 individuals) and Exome Variant Server (0.28%; 12/4203

individuals) databases. In the Exome Aggregation Consortium
database, c.4166G>A; (p.R1389H) is present in 0.11% (38 out of
33 367) of the European subjects (difference to M-D cases not
significant; Fisher’s exact test P = 0.4).

Discussion
The advent of next generation sequencing has led to an extraor-
dinary acceleration in the discovery rate of rare genetic variants,
the majority of which are of uncertain clinical significance.
Hence, a close scrutiny is necessary before causally linking a
candidate variant to a disease. To avoid false assignment
of pathogenicity, MacArthur et al. (11) have recently proposed
guidelines for implicating causality of rare variants in human
disease.

In family-based studies, assessment of co-inheritance of a
candidate variantwith the disease statuswithin familymembers
represents the first requirement to prove causality.

The c.4166G>A; (p.R1389H) variant was identified by Groen
et al. through a combination of whole-exome sequencing and
linkage analysis (13 chromosomal regions identified, with amax-
imum LOD score of 1.2) in a single dominant M-D pedigree. Not-
ably, two other raremissense changes, c.10355A>G; (p.Q3452R) in
VPS13D [MIM 608 877] and c.5308C>T; (p.R1770C) in SPTAN1 [MIM
182810], were found to perfectly co-segregate with the disease in
the family. De novo mutations in SPTAN1 have been shown to
cause a neurological phenotype (West syndrome with severe
cerebral hypomyelination, spastic quadriplegia and developmen-
tal delay) (12) and more recently a microdeletion encompassing
SPTAN1 was detected in a child with epileptic encephalopathy
and severe dystonia (13).

Given the clinical presentation pointing towards a possible
channelopathy, the authors assumed that the causative variant
was the one in CACNA1B (6).

However, co-segregation of a variant with disease in a single
pedigree does not establish with certainty its pathogenic role, es-
pecially if other co-segregating coding variants and the possibil-
ity of a separate undetected pathogenic variant in linkage
disequilibrium cannot be convincingly ruled out.

In addition, a candidate variant responsible for a rare disease
should be found at a low frequency in population controls,
consistent with the proposed model of inheritance and disease
prevalence.

M-D is a very rare disorder with a suggested prevalence of
around two permillion in Europe (14). Wewould therefore antici-
pate highly penetrantmutations causing dominant forms ofM-D
to be absent or extremely rare in the general population. Yet, this
is not the case for p.(R1389H), which is present at a considerable
frequency in our healthy controls and all publicly available
databases (∼0.1–0.3%). According to the Exome Aggregation Con-
sortium database, the carrier frequency of this variant in
Europeans is ∼4 times higher than the TOR1A [MIM 605204]
c.904_906delGAG deletion (0.026%), which is by far themost com-
mon single mutation responsible for dystonia described to date
(15). Given this frequency, if c.4166G>A; (p.R1389H) were a patho-
genic variant, wewould expect it to be responsible for a large pro-
portion of familial M-D cases. However, in our cohort, not only
was the variant not identified in anyof the probandswith familial
M-D, but the overall frequency of the variant did not differ be-
tween M-D cases and healthy controls. This does not support a
pathogenic effect of the variant even assuming a reduced
penetrance.

In conclusion, our study suggests that the role of theCACNA1B
variant c.4166G>A; (p.R1389H) as a cause for M-D is questionable.
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Further genetic evidence is needed before designating CACNA1B
mutations as a cause for dominant M-D.

Materials and Methods
A total of 520M-D cases of British, German and Italian originwere
recruited in four tertiary movement disorders centers (London,
Lübeck, Tübingen and Milan). All selected cases fulfilled the pro-
posed diagnostic criteria forM-D (2). A total of 146 cases (28%) had
a positive family history ofM-D. All participants providedwritten
informed consent.

M-D cases were screened by direct Sanger sequencing formu-
tations in exon 28 of CACNA1B (RefSeq NM_000718.3), which con-
tains the c.4166G>A; (p.R1389H) variant. Each reaction was
performed in a 20 µl volume containing 10 µl of FastStart PCR
master mix (Roche), 5 µl of water, 2 µl of each primer (5pmol/µl)
and 30 ng of genomic DNA. After purification, PCR products were
sequenced in both forward and reverse directions using BigDye
Terminator v3.1 sequencing chemistry and then were loaded
on the ABI3730xl genetic analyser (Applied Biosystems, Foster
City, CA, USA). The sequences were analysed with Sequencher
software (version 4.9; Gene Codes).

Whole-exome sequencing data from 489 white healthy con-
trols of UK and US origin were provided by the International Par-
kinson’s Disease Genomic Consortium (IPDGC). In short, prior to
sequencing, DNA templates were bridge amplified to form clonal
clusters inside a flowcell via the cBot cluster generation process.
The flowcells were then loaded into the next-generation sequen-
cer Illumina HiSeq 2000. Paired end sequence reads were aligned
with Burrows-Wheeler Aligner (BWA) against the reference
human genome (UCSC hg19). Duplicate read removal, format
conversion and indexing were performed with Picard (http://
picard.sourceforge.net/). The Genome Analysis Toolkit (GATK)
was used to recalibrate base quality scores, perform local realign-
ments around possible indels and to call and filter the variants.

Web Resources
1000 Genomes project (URL: http://www.1000genomes.org/) [last
accessed: April 2015].

Exome Variant Server, NHLBI GO Exome Sequencing Project
(ESP), Seattle, WA, USA (URL: http://evs.gs.washington.edu/EVS/)
[last accessed: April 2015]

Exome Aggregation Consortium (ExAC), Cambridge, MA, USA
(URL: http://exac.broadinstitute.org) [last accessed: April 2015].

Supplementary material
Supplementary Material is available at HMG online.
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