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Abstract
Rising sound intensity often signals an approaching sound source and can serve as a pow-

erful warning cue, eliciting phasic attention, perception biases and emotional responses.

How the evaluation of approaching sounds unfolds over time remains elusive. Here, we

capitalised on the temporal resolution of magnetoencephalograpy (MEG) to investigate in

humans a dynamic encoding of perceiving approaching and receding sounds. We com-

pared magnetic responses to intensity envelopes of complex sounds to those of white noise

sounds, in which intensity change is not perceived as approaching. Sustained magnetic

fields over temporal sensors tracked intensity change in complex sounds in an approxi-

mately linear fashion, an effect not seen for intensity change in white noise sounds, or for

overall intensity. Hence, these fields are likely to track approach/recession, but not the

apparent (instantaneous) distance of the sound source, or its intensity as such. As a likely

source of this activity, the bilateral inferior temporal gyrus and right temporo-parietal junction

emerged. Our results indicate that discrete temporal cortical areas parametrically encode

behavioural significance in moving sound sources where the signal unfolded in a manner

reminiscent of evidence accumulation. This may help an understanding of how acoustic

percepts are evaluated as behaviourally relevant, where our results highlight a crucial role

of cortical areas.

Introduction
Rising sound intensity is a potent warning cue for humans [1–3] and other primates [4], proba-
bly because it is the key motion cue signalling approach ("looming") of sound sources. Indeed,
orienting responses to rising intensity and to approaching sound sources are comparable [5].
Compared to falling intensity, rising intensity elicits a stronger orienting response in humans
[1, 5, 6], increased phasic alertness within and across modalities in humans and monkeys [1, 5,
7–9], as well as a perceptual bias towards intensity change [2, 5] and perceived sound source
distance [3, 10, 11] in humans. The behavioural significance of approaching sound sources (as
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compared to receding ones) is underlined by the fact that rising intensity and approaching
sounds are explicitly rated in humans as more negative, more activating, more intense, more
significant, more threatening, and elicit stronger feelings of unpleasantness and activation
compared to falling intensity or receding sounds [5, 6]. How this evaluation as behaviourally
significant is instantiated neurally, however, remains an open question.

Human functional resonance magnetic imaging [fMRI] studies have demonstrated hemo-
dynamic responses to rising versus falling intensity in auditory areas encompassing temporal
plane, superior temporal sulcus and middle temporal gyrus, and in the amygdala [1, 12]. These
responses are viewed as reflecting the perception of an approaching versus a receding sound
source, and its evaluation as behaviourally significant. The evolution of this percept, and of its
appraisal, is below the temporal resolution of fMRI. Neurophysiological studies in rhesus mon-
keys, on the other hand, have revealed that neural activity in lateral belt auditory cortex is
stronger for looming than for receding sounds [13], and that this activity synchronises with
visual cortex activity during perception of audio-visual looming sounds [14]. These findings
make the auditory cortex one prime candidate for generation of a percept that encodes the
behavioural significance of these sounds.

In the present study, we were interested in the temporal evolution of this percept. To this
end, we investigated in humans the time course of approaching sound perception with magne-
toencephalography [MEG]. As in previous studies, we used rising and falling intensity as cue
for approach/recession. The behavioural significance of rising and falling intensity in humans
and monkeys as well as neural responses in auditory belt area of monkeys relies on complex
(i. e. non white-noise) sounds [2, 3, 7, 13]. As a likely reason, it has been suggested that inten-
sity change in white noise sounds is not perceived as approach or recession [3]. In fact, for
physically approaching sound sources, the intensity change over time depends on the sound
frequency; a uniformly rising intensity in white noise sounds renders them impossible to reflect
an approaching sound source [15]. A behavioural asymmetry was found between white-noise
and different complex sounds, including a defined but limited frequency spectrum [13], trian-
gular waveforms [3, 7], or synthetic vowel sounds [2, 3] and hence does not rely on specific
properties of the complex sounds. By comparing intensity envelopes of complex and white
noise sounds in the present study, we were able to discard responses to rising intensity per se
(occuring to both types of sound) and focus on specific responses to approaching and receding
sound sources (occurring only to complex sound). Finally, to disambiguate responses to appar-
ent instantaneous distance (corresponding to instantaneous intensity in complex sounds) from
responses to behaviourally significant apparent distance change, we used two levels of overall
intensity, which differ, at each point in time, in terms of instantaneous intensity, but not inten-
sity change.

We hypothesised that auditory association areas would encode behavioural significance for
an approaching or receding sound, over and above encoding intensity change, or apparent dis-
tance. We term the sound on which the intensity envelope is imposed a carrier sound. Thus,
our focus was on an interaction of intensity change x carrier sound, which was not duplicated
in an interaction of overall intensity x carrier sound.

Materials and Methods

Design and participants
The study followed a 2 × 2 × 2 factorial design (Table 1) with the factors intensity change
(rising, falling), carrier sound (complex tone, white noise), and overall intensity (59 dB [50–68
dB], 77 dB [68–86 dB]). We recruited 23 healthy individuals (12 male, 11 female, mean
age ± standard deviation, 23.0 ± 3.7 years) from the general population via advertisements at
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University College London. Three participants had more than 20% artefact trials and were
excluded from analysis. All participants were adults who gave written informed consent, and
were fully informed about the aims of the study. The study protocol, including the form of tak-
ing written informed consent from participants, followed the principles expressed in the Decla-
ration of Helsinki, and was approved by the National Hospital for Neurology and
Neurosurgery and Institute of Neurology Joint Research Ethics Committee.

Independent variables and sound stimuli
Amplitude modulated carrier tones were presented dichotically, with sound amplitude
adjusted individually for each ear, via a pneumatic system and ear moulds (Etymotic Research,
Elk Grove Village IL, USA). Intensity was quantified as sound pressure level [SPL], expressed
in dB. After an initial 300 ms with constant amplitude, amplitude rose quadratically over 1000
ms to the terminal intensity, which was then maintained for another 300 ms in order to disam-
biguate responses to on/offset from responses to amplitude modulation. A quadratic amplitude
envelope was chosen in keeping with a previous study [13]. Over the amplitude region chosen,
the SPL envelope was close to linear (Fig 1A). Rising and falling sounds were identical, with
falling sounds being reversed in time. Carrier tones were 50% duty cycle square wave sounds
with 440 Hz fundamental frequency ("complex sounds"), and uniform broadband white noise
sounds ("white noise sounds") with spectral constraints imposed by stimulus duration and
sampling frequency (i. e. 0.6 Hz—22 kHz). Mean intensity was 59 dB [50–68 dB], and 77 dB
[68–86 dB] respectively, in line with a previous study [13]. SPL were established independently
for both earphones using a 2 cm3 ear simulator (Type 4157 with Two Channel Microphone
Power Supply Type 2807; Brüel & Kjær; Nærum; Denmark) and an online power analyzer
(Portable Dual Channel FFT Analyzer CF350Z; Ono Sokki; Yokohama; Japan); the simulator
was calibrated using a 250 Hz 124 dB sine wave (generated by Pistonphone Type 4220; Brüel &
Kjær; Nærum; Denmark). Since subjective loudness perception might not be completely
explained by objective SPL, we used a matching procedure after the main experiment to com-
pare complex sounds with white noise sounds, and to compare loudness perception between
left and right ear. Each of the two carrier sounds was presented dichotically with static SPL of
50 dB, 68 dB, and 86 dB for three times, summing up to 18 trials in randomised order. This
was the fixed sound, and participants were tasked to adjust the respective other carrier sound
to have the same subjective loudness, using a vertical lever without descriptions that repre-
sented SPL from 35 to 95 dB. Initial SPL for this adjustable sound was determined randomly
on each trial. Participants could hear the fixed and the adjustable sound as often as they
wanted, and had to press a confirm key to proceed to the next trial. Across participants, there
was no difference between adjusted SPL for complex and white noise sounds. Compared to
fixed white noise sounds with 68 dB average SPL, complex sounds were adjusted to 68.5 ± 0.4
dB. Compared to fixed complex sounds, white noise sounds were adjusted to 67.5 ± 0.3 dB
(paired t-test, t(19) = 1.6, p = .12). Following this, each of the two carrier sounds was presented

Table 1. Study design. Italics indicate the interaction of primary interest.

2x2x2 Factorial design Intensity change

Rising Falling

Carrier frequency Complex tone High Low High Low

50–68 dB 68–86 dB 68–50 dB 86–68 dB

White Noise High Low High Low

50–68 dB 68–86 dB 68–50 dB 86–68 dB

doi:10.1371/journal.pone.0134060.t001
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with each of three SPL (50 dB, 68 dB, 86 dB) on each ear separately for two times, summing up
to 24 trials in randomised order. Participants were tasked to adjust the same carrier sound on
the other ear to have the same subjective loudness, using the procedure described above. Across
the group, all sounds were perceived as louder on the left than on the right ear (adjusted SPL
left: 69.5 ± 0.7 dB; adjusted SPL right: 66.1 ± 0.8 dB; paired t-test, t(19) = 2.7, p< .01).

Procedure
Upon arrival at the laboratory, the procedure was explained to participants. Participants were
then positioned in the MEG and engaged in a practice without sound stimuli to habituate to
eye blink and key press tasks. The actual experiment then commenced, and was divided into 5
blocks of 120 trials (approximately 8 minutes), i. e. 600 trials overall. After finishing the MEG
recordings, the sound matching tasks were performed as described above.

Intra-trial procedure
During trials, a dark grey fixation disk (20% grey) was present in the lower half of the screen.
Participants were tasked to fixate and blink only during a designated eye blink period during

Fig 1. Experimental procedures. A: Illustration of the sound stimuli used in this experiment. After an initial constant sound pressure level [SPL] segment of
300 ms, SPL rises (or falls) over 1000 ms; the sound terminates with another segment of constant SPL. B: Intra-trial procedure. Our analysis focuses on
responses to the sound. Participants were instructed to blink only in designated periods between sounds. A visual task was introduced between sound
presentations to increase alertness and render the eye blink task plausible to the participant. C: Global sound responses to all sound stimuli, for all sensors.
The intensity change segment of the sound was between 300 and 1300 ms.

doi:10.1371/journal.pone.0134060.g001
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which the fixation disk disappeared. Each trial started with a baseline period of 500 ms (Fig
1B). A sound stimulus was then presented for 1600 ms, followed by a silent interval of at least
100 ms, possible visual target, and an eye blink period. The visual task was introduced similar
to previous studies [1, 5] as an active element to keep participants attentive in this passive lis-
tening task. After the eye blink period or the last visual target, there was a silent interval of at
least 800 ms before the next baseline period started.

For the between-trial time, there were 3 different types:

1. No visual target: For 440 trials (73%, or 11 per sound type per session), the sound stimulus
was followed with equal frequency by a silent interval of 100, 200, or 300 ms. During a sub-
sequent eye blink period of 200 ms, the fixation disk disappeared. Participants were
instructed to only blink during these periods, although they did not have to make use of
every eye blink period. After the eye blink period, another silent period followed that was, at
equal frequency, 900, 1100, or 1300 ms in length, minus the deviation of the pre-blink
period from 200 ms (that is, +100, 0, or -100 ms). Thus, the minimum post-blink period
was 800 ms before the next baseline period started.

2. One visual target: For 120 trials (20%, or 3 trials per sound type per session), the sound
stimulus was followed with equal frequency by a silent interval of 200, 400, or 600 ms, to
estimate the time course of visual phasic alertness. The fixation disk then turned red for
200 ms, and participants had to press a response key as quickly as possible. If they did not
respond within 800 ms, a warning message appeared for 1000 ms. The response period was
followed by a silent interval and eye blink period as described above.

3. Two visual targets: For 40 trials (7%, or 1 per sound stimulus per session), the sound stimu-
lus was followed by a silent interval of 200 ms. Then a visual target followed as described
above. After the response period of 800 ms, a silent interval of 400 ms was followed by an
eye blink period of 200 ms and another 200 ms silent interval. Then a second target
appeared for 200 ms, again followed by a response period of 800 ms, and a silent interval of,
at equal frequency, 900, 1100, or 1300 ms. This condition was introduced to make the eye
blink period plausible–if participants blinked too late, they would risk missing a second
visual target.

Responses to all targets were analysed in a 2 (intensity change) x 2 (carrier sound) x 2 (over-
all intensity) x 4 (target latency: 200 ms, 400 ms, 600 ms, second target) ANOVA.

MEG recordings
MEG recordings were made in a magnetically shielded room (MSR) by using a 275-channel
CTF system with SQUID-based axial third order gradiometers (VSMMedTech Ltd) with a
hardware anti-alias low pass filter of 300 Hz cut off frequency and sampling rate of 1200 Hz.
No high pass filtering was applied. Participants made responses with an MEG-compatible
response pad, held in the right hand. Visual stimuli were projected from outside the MSR onto
a screen in front of the participant. Fiducial measurements (nasion and 1 cm anterior of tragus
one each side) were made using the manufacturer's procedure. Eye blinks were monitored
using an EyeLink 1000 eye tracker (SR Research Ltd), and the analogue output was recorded
together with the MEG channels.

MEG analysis
MEG data was analysed using standard procedures in statistical parametric mapping (SPM 8;
Wellcome Trust Centre for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm). The
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time series was first subjected to an initial artefact correction to detect spikes and sudden
jumps due to squid resetting, defined by a signal change between two data points exceeding
3000 fT. For these artefacts we used a median filter over 20 data points to correct the derivative
of the signal, and then reconstructed the time series from the derivative. Trials were epoched
from 500 ms before sound stimulus onset until 1800 ms after sound onset, corresponding to
200 ms after sound offset. Eye blinks were identified from the eye tracker and defined as loss of
pupil size tracking. All epochs containing spikes, squid resettings, eye blinks or MEG channel
values exceeding a threshold of 3000 fT, were rejected as artefacts. Between 5.0% and 12.3% of
trials were excluded due to artifacts (mean: 6.7%). Data were then merged across blocks, aver-
aged within conditions, low-pass filtered with a first-order Butterworth filter and cut off fre-
quency of 80 Hz, and down sampled to 200 Hz. Analysis included two steps: (1) To account for
the multiple comparisons across sensors and time, we chose an imaging approach for analysis
of sustained fields on the sensor level. Data were interpolated across the scalp and written out
into 3-D image (scalp x time) volumes with 32x32 voxels in scalp space, each voxel correspond-
ing to 4.25x5.38 mm of surface space. This procedure accounts for the actual position of the
head within the dewar by using fiducial measurements. Thus, the same voxel in each dataset
corresponds to the same position of the head surface rather than to the same sensor. Images
were smoothed with a Gaussian filter with a full width at half maximum (FWHM) of 40 mm in
space, and 80 ms in time, to account for anatomical variability. Contrasts of interest were gen-
erated and tested for consistency on the group level using one-sample t-tests. P-values were
whole-volume corrected for family-wise error using Gaussian random field theory [16],
and are reported at a threshold of p< .05 corrected on the cluster level. (2) To localise the mag-
netic source activity generating the impact of intensity change in complex as opposed to white
noise sounds, we inverted the time series of the contrast (Rising> Falling)> (Complex>
White Noise) for each individual dataset, and in post-hoc tests the simple main effects
(Complex>White Noise) in Rising, and (Complex>White Noise) in Falling. To this end, we
used the imaging solution implemented in SPM. We employed a single shell forward head
model with canonical mesh (2 mm resolution), co-registered to the subject data. The model
was inverted with multiple sparse priors and group inversion [17]. To improve estimability,
sources were broadly restricted to auditory areas. This was achieved by placing spherical
regions of interest with 32 mm radius along the lateral fissure and superior temporal sulcus.
The outer spheres were located at MNI coordinates ±50/8/-30 and ±50/-48/3 for the STS and
±50/20/-13 and ±50/-44/23 for the lateral fissure; in-between we placed 3 more equidistant
spheres along each structure. The resulting region of interest encompassed the entire temporal
cortex and neighbouring frontal and parietal cortices, and thus all structures previously
described in fMRI studies to be involved in perception of looming sounds [1, 12]. Estimated
source power in the frequency band 0–1 Hz, reflecting slow changes of the sustained field, were
averaged over the time window of the intensity change (300–1300 ms) and written out into 3D
images. These were smoothed with an 8 mm FWHMGaussian filter, and tested for consistency
across the group using one-sample t-tests. To account for multiple comparisons, results were
cluster-level corrected for family wise error, and are reported at a voxel-selection threshold of
p< .001 and a corrected threshold of p< .05.

Results

Event-related fields
Sound onset evoked magnetic fields with separable components over the first ~300 ms (see Fig
1C). Sustained fields then showed an evolution over time during the ramp of intensity change
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which lasted until 1300 ms after sound onset. After 1600 ms, the sound ended, and an offset
response was observed.

ERFs were statistically analysed in a random field theory based approach that accounts for
multiple comparisons across space and time [16]. Across the group, we observed main effects
of intensity change (Rising vs. Falling), overall intensity (High vs. Low) and carrier frequency
(Complex vs. White Noise), both during the onset response, and during the sustained response;
these were not the main focus of this report and are not further analysed. Importantly, there
was a significant interaction of intensity change (Rising vs. Falling) with carrier frequency
(Complex vs. white noise) in sustained responses over bilateral temporal sensors, extending
between ~900 ms and ~1400 ms after sound onset (Table 2). As hypothesised, this indicates
responses to apparently approaching/receding sound sources.

Fig 2 illustrates the group (grand) average of the ERF interaction intensity change x carrier
frequency at its most significant time point during the ramp, i. e. 1215 ms after sound onset
and 915 ms into the ramp. Absolute field strength in temporal areas is higher for complex than
for white noise sounds, and there is not much difference between the two white noise sounds.
For complex sounds, absolute field strength is higher for the rising than for the falling sound at
this particular point in time. Fig 3 shows the field time course for the most significant point in
scalp space, and its contralateral counterpart. Averaged across the group, the closest sensors to
these points were MLT26/MRT16. The plots suggest that absolute field strength of rising and
falling complex sounds starts off approximately at the same level (despite different intensity at
this point in time) and, across the entire ramp, tracks intensity change of both rising and falling
sounds. This does not occur for white noise sounds. Post-hoc tests showed that field strength
was different between complex and white noise sounds both when intensity change was rising,
and when it was falling.

Formally, the interaction we observed might be due to different behavioural significance or
to a different gradient in apparent distance, but also to different instantaneous apparent dis-
tance. In other words, different responses to complex rising and falling sounds at a particular
point in time might be due to the fact that these appear to be at different distances at this point
in time. We used sounds with different overall intensity to exclude this possibility; these sounds
differ in apparent distance across the entire trial duration. An overall intensity x carrier sound
interaction would indicate responses that are specific to instantaneous apparent distance of
complex sounds. We did not observe any responses in this interaction at a significance level of

Table 2. Inference statistics for the interaction intensity change (rising vs. falling) with carrier fre-
quency (complex vs. white noise) of sustained fields (Figs 2 and 3), and for second-level t-tests on
source localisation results (Fig 4). All results are significant at a threshold of p < .05, corrected for family
wise error at the cluster level across the entire scalp and trial duration, across the scalp, or across the brain
volume, respectively. No other results survived whole-brain correction.

Peak t-value Location

Sustained
Fields

Sensor closest to local maxima across the
group

Time [ms after sound onset] of local
maxima

7.6 MLT26/MLT36/MLT16 1215/1015/1400

4.9 MRP23/MRO14 1475/1390

Inversion
results

Spatial location of local maxima Coordinates [x/y/z mm in MNI space] of
local maxima

9.84 Right middle temporal gyrus/temporo-
parietal junction

48/-68/2, 40/-66/0, 44/-68/-12

5.59 Right inferior temporal gyurs -42/-44/-20, -46/-18/-34, -44/-24/-28

4.08 Left inferior temporal gyrus 54/-22/-30, 56/-32/-26, 48/-16/-36

doi:10.1371/journal.pone.0134060.t002
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p< .05. This suggests that the interaction intensity change x carrier sound does not depend on
differences in instantaneous apparent distance but rather on difference in distance gradient, or
behavioural significance. This is also illustrated in Fig 3 which shows that sustained field
responses to rising and falling sounds have similar initial strength–despite different apparent
distance–which then diverges as the sound progresses.

Source reconstruction
Finally, we were interested in the source of the sustained fields that track intensity changes for
complex but not white noise sounds. The interaction contrast intensity change x carrier

Fig 3. Field time courses. All time courses are shown for the most significant point in sensor space of the
intensity change x carrier frequency interaction, and its contralateral counterpart, averaged across the group,
for the four different conditions in this interaction. Location of this point in space is plotted in Fig 2. Averaged
across the group, the closest sensors at these scalp points were MLT26/MRT16. Grey background:
significant time points at these points in space.

doi:10.1371/journal.pone.0134060.g003

Fig 2. Sustained fields across the scalp. Fields are shown for the most significant time point of the intensity
change x carrier frequency interaction (1215 ms after sound onset, 915 ms into the intensity change),
averaged across the group, for the four different conditions in this interaction. Dots: average sensor positions.
X: Most significant point in sensor space and its contralateral counterpart (see Fig 3). Black outline: location
of significant left hemispheric cluster at 1215 ms. Grey outline: location of significant right hemispheric cluster
at its most significant time point, 1390 ms after sound onset.

doi:10.1371/journal.pone.0134060.g002
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frequency was inverted, for each participant, for the frequencies between 0 and 1 Hz, and the
time window of the ramping sound (300–1300 ms after sound onset), using the MSP algorithm
engendered in SPM. Source power was extracted from the 0–1 Hz band using Morlet wavelet
projection, and written into individual 3D images. These were then tested for consistency on
the group level. This analysis revealed a significant cluster of source activity in right temporo-
occipito-parietal junction and two smaller clusters in bilateral inferior temporal gyrus (Table 2,
Fig 4).

In post-hoc tests, we then examined the localisation of sources pertaining to rising and fall-
ing complex sounds. Complex sounds, compared to white noise sounds, engaged sources in a
similar network for rising and falling intensity. This network comprised clusters in the bilateral
inferior/middle temporal gyrus, right superior temporal, and left fusiform gyrus. Additionally,
it extended into bilateral middle occipital and right inferior occipital gyrus for rising sounds,
and into right fusiform and inferior frontal gyrus, right insula, and left superior temporal
gyrus, for falling sounds. In other words, the bilateral inferior temporal cluster showing up in
the interaction was recruited by both rising and falling sounds, but to a different extent. In con-
trast, the activated sources extended further posterior into the left temporo-occipital-parietal
junction only for rising and not for falling sounds, thus explaining the interaction cluster in
this area.

Responses to visual targets
Reaction times, analysed in a 2 x 2 x 2 x 4 ANOVA, revealed a significant 4-way interaction
(F(3, 57) = 3.7; p< .05). Post hoc 2 (intensity change) x 2 (carrier frequency) ANOVAs for each
combination of overall intensity and response type showed that 400 ms after sound offset, RTs
to visual targets following low overall intensity rising sounds were faster than after low overall
intensity falling sounds, an effect seen only when carrier frequency was complex but not when
it was white noise (p< .05). No other significant effects emerged for other response types or
for high overall intensity sounds.

Discussion
Rising intensity in complex sounds is perceived as an approaching sound source with beha-
vioural significance. Here, we investigated sustained magnetic fields during perception of such
sounds. We show that absolute strength of sustained fields over bilateral temporal sensors line-
arly track intensity change in complex but not in white noise sounds. At the same time, overall
intensity is represented in a similar manner for complex and for white noise sounds. This

Fig 4. Source-level analysis. Putative sources of the observed intensity change x carrier frequency
interaction: significant clusters in a group-level t-test on source inversion results of the intensity change x
carrier frequency interaction (see Table 2).

doi:10.1371/journal.pone.0134060.g004
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suggests that sustained fields follow the behavioural significance of an approaching or receding
sound source: fields relating to both kind of sound sources have the same initial strength,
which then increases for approaching and decreases for receding sounds. These sustained fields
do not appear to track apparent distance of the complex sounds, and this is different from what
has been suggested for spiking frequency of sensory afferents in fish species which track appar-
ent distance [18].

These findings are in keeping with the spatial hypothesis that auditory cortex generates a
percept encoding the behavioural significance of looming sounds, based on previous monkey
[13, 14] and human studies [1, 12]. Using source localisation techniques, however, the bilateral
inferior temporal gyrus emerged as the most likely source for this sustained field. This area is
not considered part of the auditory cortex. On the other hand, both rising and falling complex
sounds in our study engaged sources across the entire temporal lobe, including auditory areas.
While there is some spatial uncertainty in MEG source reconstruction, possibly explaining
localisation differences between our and previous studies, it is also the case that sustained fields
in our study, and fMRI responses as well as direct neural recordings in previous work, relate to
different stages of processing. We observed that sustained fields track instantaneous beha-
vioural significance–both rising and falling sounds start with almost the same absolute field
strength which then linearly increased for rising and linearly decreases for falling sounds.
BOLD responses in previous studies [1, 12] sum neural activity over time and are more likely
to contain additional summary evaluations of these sounds. Similarly, direct neural recordings
from rhesus monkey auditory cortex shows no modulation of looming-induced signals over
time [7, 13]. Thus, a possible conclusion from our study that a behavioural significance evalua-
tion emerges outside the auditory cortex does not contradict previous work. The inferior tem-
poral gyrus is in close neighbourhood to other areas implicated in perception/evaluation of
approaching vs. receding object motion [1, 12, 19], namely the superior and middle temporal
sulcus, and middle frontal gyrus. It has also been implicated in visual perception within what is
referred to as the ventral visual pathway [20]. Given that approaching objects are commonly
characterised by a combination of auditory and visual cues [7, 21, 22], an involvement of
the visual system in providing a rich representation of the likely behavioural significance of
approaching sounds provides a plausible interpretation of our data, and links our findings to
previous cross-modal investigations [21–25]. This interpretation can also account for an addi-
tional and stronger magnetic source detected in the right temporo-parietal junction (TPJ).
BOLD signal in the right temporo-parietal junction has previously been observed to reflect
in looming sound perception [12]. Among other functions, the right-hemispheric temporo-
parietal junction in particular has been implicated in bottom-up (stimulus-driven) attention,
together with the inferior frontal cortex [26]. This would be consistent with the behavioural
propensity of looming sounds to increase phasic attention within and across modalities. Relat-
ing to this interpretation of temporo-parietal source activity, we observed an impact of sounds
on reaction times to a subsequent visual target, indicating that phasic alertness was increased
400 ms after the sound offset for rising vs. falling complex, but not white noise sounds. Phasic
alertness after rising vs. falling complex sounds has been reported previously for auditory tar-
gets [1, 5] 100 ms after sound offset, while these studies are inconsistent with respect to visual
targets–one reporting a decrease [1] and the other an increase in phasic alertness to visual tar-
gets [5]. The present study replicates the latter albeit with a different time course. A factor pos-
sibly important for cross-modal phasic alertness is the overall loudness of the sounds. We
found increased visual alertness only for the low-intensity sounds. This is similar to the fact
that lower unisensory stimulation often gives rise to stronger multisensory integration (i.e.
an inverse effectiveness) [27]. It would be interesting in future studies to investigate how
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cross-modal alertness relates to magnetic responses; the low number of visual response trials in
our study precluded such analysis.

Our findings bear on the more general question of how an evaluation of behavioural rele-
vance arises from sensory percepts. A previous literature has primarily linked subcortical struc-
tures, such as the amygdala, to evaluation of behavioural relevance [28, 29]. In these models,
subcortical inputs to the amygdala are of crucial importance [30]. Our MEG study was not
designed to demonstrate magnetic activity from deep sources. However, we demonstrate that
sensory cortical areas encode such evaluations, too. Crucially, this signal unfolds over time in
the second range, reminiscent of sensory evidence accumulation in parietal cortex [31] rather
than representing a summary evaluation. This may imply that the evaluation actually takes
place in cortical areas, where evidence of behavioural significance might be gathered. This find-
ing adds to a growing literature which puts the computational capacities of sensory cortices
centre stage for coordinating defensive responses. For example, contrary to a view that cortical
areas are not required for learning a prediction of proximal threat from auditory precursors
[30], more recent investigations have called this into question by demonstrating that primary
and higher auditory cortices are required if these auditory precursors are naturally occurring
sounds [32, 33]. Auditory looming is a model example for behaviourally significant sounds
encoding possible threat rather than proximal threat, and our results may suggest a similar
structure of the evaluation process.

Although there was no clear lateralization of responses in our initial sensor level analysis
(Fig 3), we note that there is some asymmetry in the source estimates with a predominantly
right hemisphere source at the TPJ. Such lateralisation has been previously observed in fMRI
responses in the TPJ [12].

Numerous neuroimaging studies have addressed the neural representation of intensity (see
for an overview, [34]), and have revealed that hemodynamic responses in auditory cortex
responses relate to intensity. We also observed overall intensity responses over temporal sen-
sors; however we did not analyse differences between intensity levels further as this was not the
focus of the present investigation.

Our paradigm crucially rests on an assumption that intensity change in white noise sounds
is not perceived as approaching or receding, and that instantaneous intensity in white noise
sounds is not informative about sound source distance. These assumptions are based on previ-
ous literature [3, 15] but were not established de novo in the present study. In fact, due to their
different frequency spectrum, complex and white noise sounds in our study are possibly distin-
guished by a different loudness time course even though SPL, and initial/terminal loudness,
were matched [15]. Also, perceived urgency (i.e. behavioural significance) of sounds depends
on their spectral characteristics [35], and this could possibly be independent from their pro-
pensity to generate the percept of an approaching/receding sound source. Investigating these
prossibilities, as well as establishing on-line measure of apparent sound distance, would be
desirable for future studies.

To summarise, our data suggest an encoding of changing sound source distance, and thus
behavioural relevance, is implemented within temporal cortical areas, with the inferior tempo-
ral gyrus as a likely candidate source for the observed bilateral signal, and an additional source
in temporo-parietal junction. The signal unfolds over time in a manner reminiscent of evidence
accumulation processes, and this may indicate a role of cortical areas in the relevance evalua-
tion of sounds.

Magnetic Responses to Looming Sounds

PLOS ONE | DOI:10.1371/journal.pone.0134060 July 30, 2015 11 / 13



Acknowledgments
The authors thank Steve Nevard at the UCL Department for Speech, Hearing and Phonetic sci-
ences for use of their ear simulator and help in calibrating our headphones, and Vladimir Lit-
vak and Guillaume Flandin for continuing SPM support.

Author Contributions
Conceived and designed the experiments: DRB NF RJD. Performed the experiments: DRB NF
GB. Analyzed the data: DRB NF GB. Wrote the paper: DRB NF GB RJD.

References
1. Bach DR, Schachinger H, Neuhoff JG, Esposito F, Salle FD, Lehmann C, et al. Rising sound intensity:

an intrinsic warning cue activating the amygdala. Cereb Cortex. 2008; 18(1):145–50. PMID: 17490992

2. Neuhoff JG. Perceptual bias for rising tones. Nature. 1998; 395(6698):123–4. PMID: 9744266

3. Neuhoff JG. An adaptive bias in the perception of looming auditory motion. Ecological Psychology.
2001; 132 87–110.

4. Ghazanfar AA, Neuhoff JG, Logothetis NK. Auditory looming perception in rhesus monkeys. P Natl
Acad Sci USA. 2002; 99(24):15755–7.

5. Bach DR, Neuhoff JG, Perrig W, Seifritz E. Looming sounds as warning signals: the function of motion
cues. International Journal of Psychophysiology. 2009; 74(1):28–33. doi: 10.1016/j.ijpsycho.2009.06.
004 PMID: 19615414

6. Tajadura-Jimenez A, Valjamae A, Asutay E, Vastfjall D. Embodied auditory perception: the emotional
impact of approaching and receding sound sources. Emotion. 2010; 10(2):216–29. Epub 2010/04/07.
doi: 10.1037/a0018422 PMID: 20364898.

7. Maier JX, Neuhoff JG, Logothetis NK, Ghazanfar AA. Multisensory integration of looming signals by
rhesus monkeys. Neuron. 2004; 43(2):177–81. PMID: 15260954

8. Leo F, Romei V, Freeman E, Ladavas E, Driver J. Looming sounds enhance orientation sensitivity for
visual stimuli on the same side as such sounds. Exp Brain Res. 2011; 213(2–3):193–201. Epub 2011/
06/07. doi: 10.1007/s00221-011-2742-8 PMID: 21643714; PubMed Central PMCID: PMC3155046.

9. Romei V, Murray MM, Cappe C, Thut G. Preperceptual and stimulus-selective enhancement of low-
level human visual cortex excitability by sounds. Current biology: CB. 2009; 19(21):1799–805. Epub
2009/10/20. doi: 10.1016/j.cub.2009.09.027 PMID: 19836243.

10. Neuhoff JG, Planisek R, Seifritz E. Adaptive sex differences in auditory motion perception: looming
sounds are special. Journal of Experimental Psychology: Human Perception and Performance. 2009;
35(1):225–34. doi: 10.1037/a0013159 PMID: 19170484

11. Schiff W, Oldak R. Accuracy of judging time to arrival: effects of modality, trajectory, and gender. Jour-
nal of Experimental Psychology: Human Perception and Performance. 1990; 16(2):303–16. PMID:
2142201

12. Seifritz E, Neuhoff JG, Bilecen D, Scheffler K, Mustovic H, Schachinger H, et al. Neural processing of
auditory looming in the human brain. Current Biology. 2002; 12(24):2147–51. PMID: 12498691

13. Maier JX, Ghazanfar AA. Looming biases in monkey auditory cortex. J Neurosci. 2007; 27(15):4093–
100. PMID: 17428987

14. Maier JX, Chandrasekaran C, Ghazanfar AA. Integration of bimodal looming signals through neuronal
coherence in the temporal lobe. Current Biology. 2008; 18(13):963–8. doi: 10.1016/j.cub.2008.05.043
PMID: 18585039

15. Gordon MS, Russo FA, MacDonald E. Spectral information for detection of acoustic time to arrival.
Atten Percept Psycho. 2013; 75(4):738–50. doi: 10.3758/s13414-013-0424-2 PMID:
WOS:000317924400012.

16. Worsley KJ, Marrett S, Neelin P, Vandal AC, Friston KJ, Evans AC. A unified statistical approach for
determining significant signals in images of cerebral activation. Human brain mapping. 1996; 4(1):58–
73. Epub 1996/01/01. doi: 10.1002/(SICI)1097-0193(1996)4:1&lt;58::AID-HBM4&gt;3.0.CO;2-O10.
1002/(SICI)1097-0193(1996)4:1<58::AID-HBM4>3.0.CO;2-O PMID: 20408186.

17. Friston K, Harrison L, Daunizeau J, Kiebel S, Phillips C, Trujillo-Barreto N, et al. Multiple sparse priors
for the M/EEG inverse problem. NeuroImage. 2008; 39(3):1104–20. Epub 2007/11/13. doi: 10.1016/j.
neuroimage.2007.09.048 PMID: 17997111.

Magnetic Responses to Looming Sounds

PLOS ONE | DOI:10.1371/journal.pone.0134060 July 30, 2015 12 / 13

http://www.ncbi.nlm.nih.gov/pubmed/17490992
http://www.ncbi.nlm.nih.gov/pubmed/9744266
http://dx.doi.org/10.1016/j.ijpsycho.2009.06.004
http://dx.doi.org/10.1016/j.ijpsycho.2009.06.004
http://www.ncbi.nlm.nih.gov/pubmed/19615414
http://dx.doi.org/10.1037/a0018422
http://www.ncbi.nlm.nih.gov/pubmed/20364898
http://www.ncbi.nlm.nih.gov/pubmed/15260954
http://dx.doi.org/10.1007/s00221-011-2742-8
http://www.ncbi.nlm.nih.gov/pubmed/21643714
http://dx.doi.org/10.1016/j.cub.2009.09.027
http://www.ncbi.nlm.nih.gov/pubmed/19836243
http://dx.doi.org/10.1037/a0013159
http://www.ncbi.nlm.nih.gov/pubmed/19170484
http://www.ncbi.nlm.nih.gov/pubmed/2142201
http://www.ncbi.nlm.nih.gov/pubmed/12498691
http://www.ncbi.nlm.nih.gov/pubmed/17428987
http://dx.doi.org/10.1016/j.cub.2008.05.043
http://www.ncbi.nlm.nih.gov/pubmed/18585039
http://dx.doi.org/10.3758/s13414-013-0424-2
http://www.ncbi.nlm.nih.gov/pubmed/WOS:000317924400012
http://dx.doi.org/10.1002/(SICI)1097-0193(1996)4:1&amp;lt;58::AID-HBM4&amp;gt;3.0.CO;2-O10.1002/(SICI)1097-0193(1996)4:1&lt;58::AID-HBM4&gt;3.0.CO;2-O
http://dx.doi.org/10.1002/(SICI)1097-0193(1996)4:1&amp;lt;58::AID-HBM4&amp;gt;3.0.CO;2-O10.1002/(SICI)1097-0193(1996)4:1&lt;58::AID-HBM4&gt;3.0.CO;2-O
http://www.ncbi.nlm.nih.gov/pubmed/20408186
http://dx.doi.org/10.1016/j.neuroimage.2007.09.048
http://dx.doi.org/10.1016/j.neuroimage.2007.09.048
http://www.ncbi.nlm.nih.gov/pubmed/17997111


18. Clarke SE, Naud R, Longtin A, Maler L. Speed-invariant encoding of looming object distance requires
power law spike rate adaptation. ProcNatlAcadSciUSA. 2013; 110(33):13624–9. Epub 2013/07/31.
doi: 10.1073/pnas.1306428110 PMID: 23898185; PubMed Central PMCID: PMC3746935.

19. Anderson KC, Siegel RM. Optic flow selectivity in the anterior superior temporal polysensory area,
STPa, of the behaving monkey. J Neurosci. 1999; 19(7):2681–92. PMID: 10087081

20. Goodale MA, Milner AD. Separate visual pathways for perception and action. Trends in neurosciences.
1992; 15(1):20–5. Epub 1992/01/01. PMID: 1374953.

21. Cappe C, Thut G, Romei V, Murray MM. Selective integration of auditory-visual looming cues by
humans. Neuropsychologia. 2009; 47(4):1045–52. doi: 10.1016/j.neuropsychologia.2008.11.003
PMID: 19041883

22. Gordon MS, Rosenblum LD. Effects of intrastimulus modality change on audiovisual time-to-arrival
judgments. Perception and Psychophysics. 2005; 67(4):580–94. PMID: 16134453

23. Sutherland CA, Thut G, Romei V. Hearing brighter: changing in-depth visual perception through loom-
ing sounds. Cognition. 2014; 132(3):312–23. doi: 10.1016/j.cognition.2014.04.011 PMID: 24858108.

24. Cappe C, Thelen A, Romei V, Thut G, Murray MM. Looming signals reveal synergistic principles of mul-
tisensory integration. J Neurosci. 2012; 32(4):1171–82. doi: 10.1523/JNEUROSCI.5517-11.2012
PMID: 22279203.

25. Tyll S, Bonath B, Schoenfeld MA, Heinze HJ, Ohl FW, Noesselt T. Neural basis of multisensory looming
signals. NeuroImage. 2013; 65:13–22. doi: 10.1016/j.neuroimage.2012.09.056 PMID: 23032489.

26. Corbetta M, Shulman GL. Control of goal-directed and stimulus-driven attention in the brain. Nat Rev
Neurosci. 2002; 3(3):201–15. Epub 2002/05/08. doi: 10.1038/nrn755 PMID: 11994752.

27. Stein BE, Stanford TR, Ramachandran R, Perrault TJ Jr., Rowland BA. Challenges in quantifying multi-
sensory integration: alternative criteria, models, and inverse effectiveness. Exp Brain Res. 2009; 198
(2–3):113–26. doi: 10.1007/s00221-009-1880-8 PMID: 19551377; PubMed Central PMCID:
PMC3056521.

28. Sander D, Grafman J, Zalla T. The human amygdala: An evolved system for relevance detection.
Reviews in the Neurosciences. 2003; 14 (4):303–16. PMID: 14640318

29. Zald DH. The human amygdala and the emotional evaluation of sensory stimuli. Brain Research
Reviews. 2003; 41 88–123. PMID: 12505650

30. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci. 2000; 23:155–84. PMID: 10845062

31. Kiani R, Shadlen MN. Representation of confidence associated with a decision by neurons in the parie-
tal cortex. Science. 2009; 324(5928):759–64. doi: 10.1126/science.1169405 PMID: 19423820

32. Letzkus JJ, Wolff SB, Meyer EM, Tovote P, Courtin J, Herry C, et al. A disinhibitory microcircuit for
associative fear learning in the auditory cortex. Nature. 2011; 480(7377):331–5. doi: 10.1038/
nature10674 PMID: 22158104

33. Sacco T, Sacchetti B. Role of Secondary Sensory Cortices in Emotional Memory Storage and Retrieval
in Rats. Science. 2010; 329(5992):649–56. doi: 10.1126/Science.1183165 PMID:
ISI:000280602700030.

34. Uppenkamp S, Rohl M. Human auditory neuroimaging of intensity and loudness. Hear Res. 2013.
Epub 2013/08/27. doi: 10.1016/j.heares.2013.08.005 PMID: 23973563.

35. Edworthy J, Loxley S, Dennis I. Improving Auditory Warning Design—Relationship betweenWarning
Sound Parameters and Perceived Urgency. Hum Factors. 1991; 33(2):205–31. PMID: WOS:
A1991FM89700006.

Magnetic Responses to Looming Sounds

PLOS ONE | DOI:10.1371/journal.pone.0134060 July 30, 2015 13 / 13

http://dx.doi.org/10.1073/pnas.1306428110
http://www.ncbi.nlm.nih.gov/pubmed/23898185
http://www.ncbi.nlm.nih.gov/pubmed/10087081
http://www.ncbi.nlm.nih.gov/pubmed/1374953
http://dx.doi.org/10.1016/j.neuropsychologia.2008.11.003
http://www.ncbi.nlm.nih.gov/pubmed/19041883
http://www.ncbi.nlm.nih.gov/pubmed/16134453
http://dx.doi.org/10.1016/j.cognition.2014.04.011
http://www.ncbi.nlm.nih.gov/pubmed/24858108
http://dx.doi.org/10.1523/JNEUROSCI.5517-11.2012
http://www.ncbi.nlm.nih.gov/pubmed/22279203
http://dx.doi.org/10.1016/j.neuroimage.2012.09.056
http://www.ncbi.nlm.nih.gov/pubmed/23032489
http://dx.doi.org/10.1038/nrn755
http://www.ncbi.nlm.nih.gov/pubmed/11994752
http://dx.doi.org/10.1007/s00221-009-1880-8
http://www.ncbi.nlm.nih.gov/pubmed/19551377
http://www.ncbi.nlm.nih.gov/pubmed/14640318
http://www.ncbi.nlm.nih.gov/pubmed/12505650
http://www.ncbi.nlm.nih.gov/pubmed/10845062
http://dx.doi.org/10.1126/science.1169405
http://www.ncbi.nlm.nih.gov/pubmed/19423820
http://dx.doi.org/10.1038/nature10674
http://dx.doi.org/10.1038/nature10674
http://www.ncbi.nlm.nih.gov/pubmed/22158104
http://dx.doi.org/10.1126/Science.1183165
http://www.ncbi.nlm.nih.gov/pubmed/ISI:000280602700030
http://dx.doi.org/10.1016/j.heares.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/23973563
http://www.ncbi.nlm.nih.gov/pubmed/WOS:A1991FM89700006
http://www.ncbi.nlm.nih.gov/pubmed/WOS:A1991FM89700006

