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During metastasis, cancerous cells leave the primary tumour, pass into the circulatory system, and invade
into new tissues. To migrate through the wide variety of environments they encounter, the cells must be
able to remodel their cell shape efficiently to squeeze through small gaps in the extracellular matrix or
extravasate into the blood stream or lymphatic system. Several studies have shown that the nucleus is
the main limiting factor to migration through small gaps (Wolf et al., 2013; Harada et al., 2014; Mak
et al.,, 2013). To understand the physical limits of cancer cell translocation in confined environments,
we have fabricated a microfluidic device to study their ability to adapt their nuclear and cellular shape
when passing through small gaps. The device is open access for ease of use and enables examination
of the effect of different levels of spatial confinement on cell behaviour and morphology simultaneously.
The results show that increasing cell confinement decreases the ability of cells to translocate into small
gaps and that cells cannot penetrate into the microchannels below a threshold cross-section.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

Keywords:

Microfluidics

Cell deformation

Breast cancer cells
Multilayer photolithography

creativecommons.org/licenses/by/4.0/).

1. Introduction

Cell migration mediates a number of physiological and patho-
logical processes and is an essential feature of cancer metastasis.
During metastasis, cancer cells leave the primary tumour, extrava-
sate into the blood stream, intravasate into new tissues, and
migrate to form new colonies (Fig. 1). Throughout this process,
they encounter many different extracellular environments and
hence must show great plasticity in their migratory strategies. In
particular, cancer cells are known to adapt their migratory strate-
gies in response to extracellular cues in order to cross basement
membranes and connective tissues [4]. During these processes,
cells are confronted to different levels of physical confinement,
moving across pores with a cross section ranging from 10 to
600 pm? [5]. Being the largest and stiffest cellular organelle, nucle-
ar deformation is a critical step during migration in confined envi-
ronments [1,3]. Various microfluidic devices have been developed
to study metastatic cell responses to physical confinements, che-
mical stimuli, or both simultaneously [3,6,7]. It has been shown
that microfluidic channels with cross-sections smaller than the
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nuclear dimensions form effective barriers to prevent transmigra-
tion [8,9]. However, transmigration capabilities are cell-line speci-
fic and can be modulated by chemical treatments [3,6,7]. To study
the effects of physical confinement in a non-pliable and
non-degradable environment, we have developed microfluidic
devices with arrays of micro-channels of different cross-sectional
areas. MDA MB 231 human breast cancer cells were induced to
migrate through the channels while the cellular and nuclear mor-
phology was imaged. This allowed us to characterise the cells’ abil-
ity to adapt to different degrees of confinement and to study the
deformation of the cytoplasm and the nucleus in conditions where
proteolysis of the extracellular matrix can be disregarded. Fig. 2A
shows a schematic of the device used in this study: the cells are
loaded via an open access reservoir. A series of micro-channels
connects this reservoir to a channel containing chemoattractant.
Cellular and nuclear deformations are studied while cells translo-
cate from the reservoir into the micro-channels.

2. Material and methods
2.1. Device design and fabrication
The device consists of an open access reservoir connected to a

large channel by a series of transverse micro-channels. The
micro-channels connecting the reservoir to the channel are
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150 pum long, 5 um high, and are arranged in groups with widths
ranging from 2 to 20 pum (Fig. 2B). To ensure optimal bonding of
the PDMS to the glass substrate, the distance between each pair
of transversal micro-channels is ten times the width of the larger
micro-channel. The total width of a set of transversal channels is
1 mm enabling imaging of all channels simultaneously in one field
of view at 4x magnification.

Silicon wafer master moulds were manufactured using multi-
layer photolithography. The first layer consisted of transversal
micro-channels with a height of 5 um and was fabricated using a
chrome mask and SU-8 2005. This layer was then aligned with a
second transparency mask comprising the reservoir and the top
channel. A height of 80 um was chosen for the reservoir to allow
enough space for cells to migrate without confinement and this
was fabricated using SU8 2050. Because of the large overall dimen-
sions of the top channel and the reservoir, pillars were included in
this second layer to prevent the device from collapsing. PDMS was
mixed with curing agent in a ratio of 10:1 and poured onto the
mould. After curing at 65 °C, the device was peeled off from
the mould. Holes were punched to provide an inlet and outlet for
the top channel. The central part of reservoir was cut out with a
biopsy punch to provide open access to the reservoir. The PDMS
was subsequently bonded tightly onto glass bottom dishes using
air plasma.

2.2. Cell culture

MDA MB 231 human breast carcinoma cells (ATCC) were cul-
tured in high glucose DMEM supplemented with 10% Fetal
Bovine Serum and Glutamine. For the study of the nuclear mor-
phology, cells were transduced with lentiviruses to stably express
RFP-lifeact and GFP-H2B constructs (Kind gifts from Dr. Tim Scales
and Dr. James Monypenny, King’s College London, UK).

2.3. Experiments

Prior to the experiments, the chambers were coated with
10 pg/mL fibronectin in PBS injected through the top channel
and incubated for 1h at 37 °C. After coating, chambers were
washed with 3 volumes of serum-free DMEM injected through
the top channel. Cells were then trypsinised, re-suspended in
serum-free medium containing 20 mM Hepes at 5 x 106 cells/mL,
loaded into the reservoir chamber using a regular micropipette
and were left to spread for 3 h. To obtain a gradual delivery of
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Fig. 1. Early stages of metastasis formation and cancer cell invasion. During
migration and invasion, cells must undergo large morphological changes in order to
cross the basement membrane and move through connective tissue.
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Fig. 2. (A) Schematic of the microfluidic device. The area shown by the dashed-line
is perforated to provide open access. (B) SEM image of the SU8 master mould, taken
at an angle of 20° from the vertical to show the height difference between first and
second layer of SU8. The channel height is 5 pm and the channel widths are 2, 3, 4,
5, 7,10, 15 and 20 um from left to right. The scale bar represents 100 pm.

chemoattractants and stable gradient formation without flow,
15 um diameter polystyrene beads (Polysciences, Eppelheim,
Germany) were coated with Fetal Bovine Serum (FBS).
Serum-coated beads were injected into the chemoattractant chan-
nel, left to rest during 30 min to allow gradient formation and flow
stabilisation, and the chamber was placed on the microscope stage
for live cell imaging. During the experiments dishes, were filled
with sufficient culture medium to prevent evaporation. In some
experiments, to visualise gradient formation, beads were coated
with Rhodamine Isothiocyanate and FBS, washed several times,
and imaged immediately after bead injection into the upper
channel.

2.4. Live cell imaging

Live cell imaging was performed in an Olympus IX71 wide-field
epi-fluorescence microscope with an incubation chamber
(Olympus, Tokyo, Japan), attached to an Andor iXON EMCCD cam-
era (Belfast, UK). Images were acquired at 10 min intervals for 10 h,
using a 20x magnification 0.4 numerical aperture air objective. All
the image analysis was performed using Image] software (NIH,
Bethesda, USA).

2.5. Statistical analysis

Nuclear translocation was quantified as the percentage of cells
that inserted completely their nuclei inside the microchannel from
the total number of cells that were able to protrude their cyto-
plasm into it. Microchannel area was defined by phase contrast
image and nuclear area by the H2KB-GFP signal. Differences in
translocation for different channel widths were tested using a
one-way ANOVA and post hoc Least Significance Difference (LSD)
test using p<0.05 as a significance threshold with the SPSS
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software (IBM Corp., Armonk, NY, USA). Curve fit was performed
using Origin 9.0 software (OriginLab, MA, USA).

3. Result and discussion

To induce cancer cell directional migration and translocation
into the microchannels, a chemotactic gradient of FBS was generat-
ed by injecting polystyrene beads coated with FBS in the top chan-
nel. This allows a gradual delivery and stable gradient formation
without flow and gradients can be visualised by co-coating the
beads with fluorescent trackers [7]. Fig. S1 shows that the gradient
formation starts immediately after bead injection and that the gra-
dient stabilises after one hour, remaining stable for at least 8 h.
Over the duration of the experiments, MDA MB 231 cells were able
to insert their cell front inside the micro-channels in response to
the FBS gradient, irrespective of the micro-channel width (Movie
S1). Fig. 3A shows a representative snapshot of MDA MB 231 cells
migrating through the transversal channels, where each cell faces a
different level of spatial confinement. Confocal imaging of cells
migrating through the microchannels showed that the 5 pm height
of the channel limits itself the height of the cell, regardless of the
width, and that the nuclei occupies the whole height of the channel
(Fig. 3B).

In our system, cell protrusion rate can be monitored by phase
contrast microscopy and the cell profiles over time can be plotted
in a kymograph, as shown in Fig. S2A. This approach showed that
cell progression through the micro-channels is limited by their
cross-section, with widths smaller than 5 pm largely impeding cell
migration.

In confined environments, it is generally assumed that the
nucleus, being the biggest and stiffest organelle, is the rate limiting
factor to invasion [10]. Several studies have recently attracted
attention towards the role of the nucleus and its physical
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Fig. 3. (A) Representative phase contrast images of cells migrating through
channels with widths of 20-2 um. Cells are able to protrude into the channels
irrespective of their width. (B) Maximum intensity projections of a cell migrating
through a 10 pm-width microchannel. GFP-H2KB, RFP-lifeact, and reflection are
shown in green, red, and grayscale, respectively. Scale bar: 10 um. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 4. (A) Quantification of the ratio of cells trans-locating their nucleus inside a
channel to the cells protruding into the channels. n = number of events quantified in
each condition in three independent experiments. *p <0.05 (B) Kymographs of
representative single cells translocating their nuclei into channels of different
width. The upper panel shows cells expressing GFP-H2B (green) and RFP-lifeact
(red). The lower panel shows the outline of the nuclei. Dashed lines indicate the
entrance to the channels. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

properties in cell migration in three-dimensional, spatially con-
fined environments [1,2,11]. By using our microfluidic device
together with cells expressing nuclear and cytoskeletal markers,
we were able to study in real time the behaviour of cells during
the translocation of their nucleus into the microchannels.
Initially, we quantified the proportion of cells trans-locating their
nucleus into the microchannels. As shown in Fig. 4A, nuclear
translocation though pores with a cross-section below 7 x 5 pm?
was significantly impaired compared to wider channels. The rela-
tion between cells’ ability to translocate and spatial constriction,
fitted with a sigmoid curve presented an inflection point for a
8.3 x 5um cross-section (Fig. S2B). In our experiments, this
threshold was apparent for 7 pm width microchannels, probably
reflects MDA-MB-231e cells’ physical limit in a non-pliable and
non-degradable, confined environment. This was consistent with
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previously published results, which found that channels with cross
sections of 6 x 5 um? and 4 x 5 pm? considerably reduce transmi-
gration of MDA-MB-231 and MCF?7 cell lines respectively [1,8,9].

Our system also allows the study of cell protrusion and nuclear
area in real-time during nuclear translocation. In Fig. 4B, kymo-
graphs show the profile of the cell and nuclear outline as well as
the evolution of nuclear shape and area during this process. This
data can later be used to study how cell protrusion rates can corre-
late with nuclear displacement and nuclear area changes during
the translocation process, and how these ratios can change under
different levels of spatial challenge (Fig. S3). More in depth analysis
of this data could eventually help us understand the regulation of
cell cytoskeleton and nuclear morphology during cancer cell
translocation to confined environments.

4. Conclusion

Here we present a new, open access, microfluidic device for the
study of cell and nuclear deformation during translocation into
spatially confined environments. Our results show that adherent
cells can protrude their cytoplasm regardless of the channel width
in response to chemoattractant, while the nucleus acts as a limiting
factor in the whole cell displacement when the channel
cross-section is below 7 x 5 pm?, in agreement with previous stud-
ies. Additionally, our system allows real-time imaging of cell and
nuclear morphology during translocation, which makes it very
suitable for the study of cells’ ability to adapt to confined
environments.

Deeper analysis performed on the data acquired with this
device will provide us with new insights into the ability and

molecular mechanisms that cancer cells use in order to adapt to
their extracellular environment during migration.
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