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This letter discusses the use of micro-Doppler signatures experimentally 

collected by a multistatic radar system to recognize and classify 

different people walking. A suitable feature based on Singular Value 

Decomposition of the spectrograms is proposed and tested with different 

types of classifiers. It is shown that high accuracy between 97-99% can 
be achieved when multistatic data are used to perform the classification. 

 

Introduction: It is well known that moving humans present 

additional modulations on top of their main Doppler shift because of the 

motion of limbs and body known as micro-Doppler [1]. These micro-

Doppler signatures have been used to discriminate between human and 

non-human targets such as animals (dogs, horses) and vehicles [2], to 

distinguish between different activities such as running, crawling, or 

walking [3], and to characterize free or confined movement of arms 

related to carrying objects, potentially weapons [4-5]. It has been shown 

that the classification accuracy can be degraded when the aspect angle 

between the target velocity vector and the radar line-of-sight is higher 

than 30° and even more if close to 90°, and bistatic or multistatic 

systems have been proposed to mitigate this problem. [2, 6]. There is 

however little work in the literature to investigate the use of human 

micro-Doppler signatures for identification and recognition of different 

people performing the same activity. This is expected to be a 

challenging task as targets of the same type are not too dissimilar from 

one another, hence very robust features are required for successful 

classification. Features based on the Cadence Velocity Diagram of 

human micro-Doppler signatures have been proposed in [7] to 

discriminate between four different subjects walking and running using 

data recorded with a CW X-band monostatic radar. Classification 

accuracy above 90% were reported in this indoor controlled test, where 

the subjects were moving on a treadmill.  

In this letter we investigate the use of Singular Value Decomposition 

(SVD) to extract suitable features for recognition and classification of 

different subjects walking. The experimental data were recorded in an 

open field using a multistatic radar and the subjects were realistically 

walking forward towards the radar. The effect on recognition 

performance of different approaches in combining multistatic 

information is discussed, and different types of classifiers are tested. 

SVD-based features were already used in our previous work [8] to 

discriminate between armed and unarmed personnel, and they have 

been reported in the classification of different types of micro-drones [9]. 

The feature extraction approach proposed in this letter is different from 

the aforementioned references, as it assumes that the relevant 

information is not concentrated in only a few singular vectors, but in the 

whole matrices U and V derived from the SVD. High classification 

accuracy above 98% is achieved with the single SVD-based feature 

proposed in this letter. 

 

Experimental setup and radar system: The data presented in this 

paper were collected using the University College London multistatic 

radar system NetRAD [5]. NetRAD is a coherent pulsed radar 

consisting of three separate but identical nodes that operate at 2.4 GHz, 

S-band. The transmitted power was approximately +23 dBm, with 

vertically polarized antennas with 24 dBi gain and approximately 

10°×10° beam-width. The RF parameters chosen for the experiment 

described in this paper were linear up-chirp modulation with 45 MHz 

bandwidth and 0.6 μs duration, 5 kHz pulse repetition frequency (PRF) 

which allows the whole human micro-Doppler signature to be contained 

in the unambiguous Doppler region, and 5 s duration of each recording 

to collect multiple periods of the average human walking gate. The 

experiment took place in December 2014 in an open field at the UCL 

Sports Ground. Fig. 1 shows the geometry of the experiment with the 

three NetRAD nodes deployed along a linear baseline with 

approximately 40 m inter-node separation and the person at 

approximately 70 m from the linear baseline. Node 3 was used as 

monostatic transceiver, with Node 2 and Node 1 as bistatic receivers, 

with resulting bistatic angles equal to approximately 30° and 60°. Three 

different subjects took part in the experiment and walked towards the 

middle node, as shown in Fig. 1. The key body parameters of the three 

subjects were 1.87 m, 90 kg, average body type for person 1, 1.70 m, 69 

kg, average body type for person 2, and 1.77 m, 65 kg, slim body type 

for person 3. The total number of recorded datasets was therefore 45, 

assuming 3 subjects, 5 repetitions of the movement, and 3 nodes.  

  

 
Fig. 1 Geometry of the experimental setup 

 

Data analysis and classification: The recorded data were processed 

using Short Time Fourier Transform (STFT) to characterize the human 

micro-Doppler signatures. The STFTs were calculated using 0.3 s 

Hamming windows with 95% overlap. Fig. 2 shows examples of micro-

Doppler signatures, one for each of the three subjects, using data from 

the monostatic node. It can be seen that there are visible differences in 

the signatures from different subjects, in particular in the periodic peaks 

at higher and lower Doppler due to the movement of the limbs. These 

differences can be quantified in numerical features for automatic 

classification. The spectrograms were then divided in 1 s long blocks 

generating 225 blocks, i.e. five times the total number of recorded 

datasets. SVD decomposition was applied on each block to extract 

suitable features. As mentioned in the introduction, the whole matrices 

derived from SVD are considered for feature extraction rather than 

individual singular vectors. The sum of the intensity of the elements of 

the matrix U is found to be a particular effective feature, hence there are 

225 feature samples to be used as inputs to the classifiers. Fig. 3 shows 

feature samples for the three different subjects as extracted from data 

collected at the three radar nodes. A good inter-class separation can be 

seen, hence good classification performance is expected using this 

feature. 

Different types of classifiers have been tested with these data, 

namely linear discriminant analysis (LDA), quadratic discriminant 

analysis (QDA), diagonal-linear discriminant analysis (DLDA), 

diagonal-quadratic discriminant analysis (DQDA), naïve Bayes with 

kernel functions estimators (NB), nearest neighbours with 3 samples 

(NN3) and 5 samples (NN5), and a classification tree (CT). The aim is 

to investigate any difference in the classification performance with 

different classifiers, and their efficiency in terms of processing time 

when implemented in MATLAB. A more detailed description of the 

classifiers can be found in [10]. Each classifier was trained with 20% of 

the available feature samples, and the remaining samples were used to 

evaluate the performance and calculate the error as the total number of 

misclassification events over the total number of samples. Each 

classifier has been tested 100 times with random changes in the set of 

samples used for training to test the consistency of the classifiers’ 

behaviours, and the average error over these repetitions was calculated. 

The results reported here are expressed in terms of percentage accuracy 

calculated as 100% minus this error. 

Three different ways of combining multistatic data were tested and 

compared with the use of monostatic data only, as for a conventional 

radar. In the first approach feature samples from all radar nodes are 

processed by a centralized single classifier providing the final decision. 

In the second approach separate classifiers process the features samples 

at each radar node providing partial decisions, which are then combined 

in a final decision through a voting procedure, i.e. the final decision has 

to get a majority of two out of three nodes. The third approach takes 

into account the level of confidence of each partial decision with a 

threshold. If two nodes agree on a partial decision and both have higher 
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confidence than the threshold, then they will provide the final decision. 

However if one of these two nodes has lower confidence than the 

threshold, and if at the same time the third node has a higher level of 

confidence than the other two nodes, then the final decision will be 

provided by the third node. This approach aims at preventing that two 

nodes with low level of confidence may lead to a misclassification 

event. The threshold has been set at 65% as the value providing the best 

classification results after testing values in the interval 55-75% with the 

available data. In both the second and third approach, if there is no 

partial decision reached by at least two radar nodes, the final decision is 

simply taken by the node with the highest level of confidence. 

 

 
Fig. 2 Micro-Doppler signatures extracted from monostatic data for 

subject 1 (a), subject 2 (b), and subject 3 (c) 

 

 
 

Fig. 3 SVD-based feature samples for three subjects extracted from 

node 1 data (a), node 2 data (b), and node 3 data (c) 

 

Table 1 shows the classification accuracy for different classifiers 

and approaches in using multistatic data, as well as the required 

processing time for each classifier. The accuracy is consistently above 

95% using only monostatic data, and increases up to an average of 99% 

when multistatic data are used with the binary voting or threshold 

voting approach at separate classifiers. It is interesting to notice that the 

accuracy decreases when the multistatic data are used at a centralized 

classifier. This was already observed in our previous work in [5, 8]. The 

fastest classifiers appear to be the classification tree, the nearest-

neighbours, and the Naïve Bayes, whereas the discriminant analysis 

appears to be slower, even requiring twice the time in its quadratic 

variants. The memory usage for different classifiers was also 

investigated, but did not exhibit significant variations with different 

classifiers, as the values varied only between 1840-1860 MB. It should 

be noted that processing time and memory usage were tested on a 

desktop Windows workstation in the same conditions for each classifier, 

and the code had a basic implementation, not aiming at optimization. 

 

Conclusion: This letter has presented the use of micro-Doppler 

signatures recorded by a multistatic radar system to recognize and 

identify different people walking. A feature based on the whole matrix 

U derived from the SVD decomposition of the spectrograms has been 

proposed. It has been shown that high classification accuracy above 

98% can be achieved when multistatic data are combined using 

separated classifiers at each radar node. The proposed approach has 

been shown to be robust with different types of classifiers, hence the 

most computationally efficient ones can be used. Future work will aim 

at testing this feature for a wider number of subjects, activities, and 

deployment geometries of the multistatic radar. 

 

TABLE 1: Percentage classification accuracy for different types of 

classifiers and approaches in using multistatic data, and processing time 

in seconds 

 

Classifier 

Types 

Mono 

data 

only 

All 

multi 

data 

Binary 

voting 

Threshold 

voting 

Processing 

time [s] 

LDA 98.9 72.2 98.8 99.4 6.651 

QDA 97.6 72.2 98.9 98.9 8.630 

DLDA 98.9 72.2 98.8 99.4 6.665 

DQDA 97.6 72.2 98.9 98.9 8.648 

NB 95.4 72.1 97.9 97.5 4.308 

NN3 98.7 71.1 99.4 99.4 4.223 

NN5 98.7 70.9 99.1 99.4 4.254 

CT 98.8 71.3 99.6 99.6 4.137 
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