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  20 

Abstract 21 

We have analysed the Li and Mg isotope ratios of a suite of samples from the Horoman 22 

peridotite massif. Our results show that most Li and all Mg isotopic compositions of the 23 

Horoman peridotites are constant over 100 metres of continuous outcrop, yielding values for 24 

pristine mantle of δ7Li = 3.8 ± 1.4 ‰ (2SD, n = 9), δ25Mg = -0.12 ± 0.02 ‰ and δ26Mg = -25 
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0.23 ± 0.04 ‰ (2SD, n = 17), in keeping with values for undisturbed mantle xenoliths. 26 

However, there are also some anomalously low δ7Li values (-0.2 to 1.6 ‰), which coincide 27 

with locations that show enrichment of incompatible elements, indicative of the prior passage 28 

of small degree melts. We suggest Li diffused from the infiltrating melts with high [Li] into 29 

the low [Li] minerals and kinetically fractionated 7Li/6Li as a result. Continued diffusion after 30 

the melt flow had ceased would have resulted in the disappearance of this isotopically light 31 

signature in less than 15 Ma. In order to preserve this feature, the melt infiltration must have 32 

been a late stage event and the massif must have subsequently cooled over a maximum of 33 

~0.3 Ma from peak temperature (950°C, assuming the melts are hydrous) to Li closure 34 

temperature (700°C), likely during emplacement. The constant δ26Mg values of Horoman 35 

peridotites suggest that chemical potential gradients caused by melt infiltration were 36 

insufficient to drive associated δ26Mg fractionation greater than our external precision of 0.03 37 

‰. 38 

1. Introduction 39 

Li isotopes should have value as a diagnostic tracer of plate recycling processes (see 40 

Elliott et al., 2004; Tomascak, 2004) owing to the large isotopic fractionations that occur in 41 

the hydrosphere and which are imparted to mafic oceanic crust (e.g. Chan et al. 1992). The 42 

recycling of isotopically heavy oceanic crust into the mantle is thought to generate 43 

heterogeneities seen in some mid-ocean ridge basalts (MORB) (Elliott et al., 2006; Tomascak 44 

et al., 2008) and ocean island basalts (OIB) (Ryan and Kyle, 2004; Nishio et al., 2005; Chan 45 

et al., 2009; Krienitz et al., 2012).  46 

However, it has become clear that Li isotope ratios of mantle materials may have been 47 

perturbed by diffusive processes. The relative diffusivities of two isotopes of an element are 48 

mass-dependent according to a relationship commonly expressed in the form D2/D1 = 49 
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(m1/m2)β, where D1 and D2 are the diffusivities of isotopes of masses m1 and m1 and β is an 50 

experimentally derived exponent. Richter et al. (2003 and 2014) reported the value of beta to 51 

be 0.215 for Li diffusion in silicate melts and 0.27 in pyroxene, indicating that 6Li diffuses 52 

~3-4 % faster than 7Li. Experiments have shown that Li diffusion rates are very high in melts 53 

(Jambon and Semet, 1978; Lowry et al., 1981) and silicate minerals (Giletti and Shanahan, 54 

1997; Coogan et al., 2005; Dohmen et al., 2010) compared to other cations, so diffusion-55 

driven Li isotopic fractionation can occur over geologically short timescales. Variations in 56 

δ7Li of up to 20-50 ‰ (virtually the entire terrestrial range) have been observed within 57 

individual igneous crystal grains that can be clearly related to diffusive control (Beck et al., 58 

2006; Jeffcoate et al., 2007; Kaliwoda et al., 2008; Parkinson et al., 2007). Highly variable 59 

differences in δ7Li between different bulk mineral analyses from xenoliths indicate isotopic 60 

disequilibrium likely driven by differential rates of Li diffusion (Jeffcoate et al., 2007; 61 

Rudnick and Ionov, 2007; Tang et al., 2007). Systematic changes in δ7Li with macroscopic 62 

sampling position also implicate diffusional perturbation over a longer length-scale 63 

(Lundstrom et al., 2005; Teng et al., 2006). 64 

To help assess the possible role of diffusion in influencing the Li isotopic composition of 65 

bulk xenoliths, Pogge von Strandmann et al. (2011) further measured Mg isotopes on the 66 

same samples. Mantle Mg isotope ratios should be uninfluenced by addition of recycled 67 

components, which are much poorer in MgO than peridotite, but Mg isotope ratios are 68 

sensitive to diffusion. Chemical diffusion experiments showed as much as 7 ‰ fractionation 69 

of 26Mg/24Mg, which is the second largest effect for a metal cation, after Li (Richter et al., 70 

2003; Richter et al., 2008; Chopra et al., 2012). It has also been shown that Mg isotopic 71 

fractionation can result from thermal diffusion (Huang et al., 2010; Richter et al., 2008), 72 

although it has long been known that this process more significant in laboratory experiments 73 

than in nature (Bowen, 1921; Lesher and Walker, 1988; Walker et al., 1988). Recent work has 74 
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empirically suggested that such Soret diffusion of Mg is not an important geological 75 

phenomenon (Dauphas et al., 2010). Covariations of δ26Mg and δ7Li in some bulk xenoliths 76 

allowed Pogge von Strandmann et al. (2011) to identify the role of diffusion in perturbing the 77 

whole rock composition of these mantle samples. Such diffusive perturbation of bulk xenolith 78 

samples during entrainment and transport to the surface adds complexity to determining the 79 

appropriate δ7Li and δ26Mg for the mantle from small, lava-hosted xenoliths (Pogge von 80 

Strandmann et al. 2011).  81 

In order to avoid material that has potentially experienced such late-stage disturbance, we 82 

have studied samples from the Horoman peridotite massif. Not only do alpine-type 83 

peridotites, such as Horoman, provide samples of the mantle that have not been entrained in 84 

melt but they provide an opportunity to examine the spatial variability of isotopic ratios on an 85 

outcrop scale (100m) as opposed to the decimetre scale of xenoliths. A drawback is that some 86 

alpine peridotites have been exposed at the Earth’s surface for sufficient time to have 87 

experienced extensive weathering. The Horoman perdiotite is unusually fresh and thus 88 

provides an excellent opportunity to assess further the Li and Mg isotopic ratios of the upper 89 

mantle. 90 

2. Geological background and samples  91 

The Horoman peridotite massif has been emplaced at the southern end of the low-92 

pressure, high-temperature Hidaka metamorphic belt in Japan. The massif is dominantly 93 

composed of repeating layered sequences of plagioclase lherzolite, lherzolite and harzburgite 94 

(Niida, 1974, 1984). It has been proposed that the Horoman peridotites are residues formed 95 

after partial melting of MORB source mantle (Takazawa et al., 1996a; Yoshikawa and 96 

Nakamura, 2000), possibly beneath an ultraslow palaeo-Pacific spreading ridge (Shimizu et 97 

al., 2006). Bulk peridotites with depleted light rare earth element (LREE) and 143Nd/144Nd 98 
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characteristics yield a Sm-Nd isochron age of 833 ± 78 Ma (Yoshikawa et al., 2000). 99 

Positively correlated 187Re/188Os and 187Os/188Os ratios of peridotite samples could be 100 

interpreted as an ‘errorchron’ of 0.91 ± 0.35 Ga lherzolite and mafic layers define an apparent 101 

Re-Os ‘age’ of 1.12 ± 0.24 Ga (Saal et al., 2001). Although Re-Os data do not define an 102 

isochron, Saal et al. (2001) suggested the age has geological meaning and the mafic layers 103 

and peridotites are related based on the age consistency of Re-Os and Sm-Nd systems. 104 

Malaviarachchi et al. (2008) have further suggested that melt depletion of the peridotites 105 

occurred at ~1 Ga ago based on both their 143Nd/144Nd and 177Hf/176Hf compositions. Thus 106 

there is now consensus that the layered peridotites formed after partial melting of a MORB 107 

source mantle ~0.8 - 1 Ga.  108 

Some peridotites show evidence of later melt infiltration in the form of phlogopite 109 

bearing veins and cryptic metasomatism, which only results in LREE enrichment in 110 

clinopyroxenes (Takazawa et al., 1992). Takazawa et al. (1996b) proposed that host 111 

peridotites reacted with a LREE-enriched melt/fluid that had higher 87Sr/86Sr and lower 112 

143Nd/144Nd isotopic ratios at the harzburgite and lherzolite boundary of the Bozu section 113 

(Takazawa et al., 1996b), the location investigated in this study. Yoshikawa and Nakamura 114 

(2000) inferred that the LREE-enriched, metasomatic agent is a fluid, possibly derived from 115 

the dehydration of the subducting slab based on generally elevated B/Nb and Pb/Ce ratios, 116 

although the differences in B/Nb and Pb/Ce ratios between metasomatised and non-117 

metasomatised peridotites are not clear. Malaviarachchi et al. (2010) also proposed that the 118 

metasomatism agent for massive peridotites is fluid because of the enrichment in alkali 119 

elements (e.g. Rb). However, experimental results have demonstrated that both slab-derived 120 

fluid and melt could have high Rb concentrations, but only a melt could possibly have a high 121 

La concentration (Spandler et al., 2007). Hence, the metasomatic agent causing LREE (e,g. 122 

La) enrichment in the region is most likely to be melt. At the end of Miocene (~ 23 Ma), the 123 
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peridotites were metasomatised by fluid and formed phlogopite veins in the mantle wedge 124 

above the Hidaka subduction zone during emplacement based on Rb-Sr dating on samples 125 

with phlogopites (Yoshikawa et al., 1993; Yamamoto et al., 2010). During uplift and 126 

emplacement the peridotite was transformed from garnet- to spinel- to plagioclase-facies 127 

peridotites (Takazawa et al., 1996a; Ozawa, 2004).  128 

Fifteen samples were selected for Li and Mg isotopic analyses from the layered 140 m 129 

Bozu section (Fig. 1). The petrology, P-T trajectory and geochemistry (e.g. major and trace 130 

element abundances, Sr and Nd isotope compositions) of this Bozu section have been well 131 

studied (Takazawa et al. 1992, 1996a, 1999 and 2000; Yoshikawa et al., 2000; Obata and 132 

Takazawa, 2004). These samples represent residues from a significant degree of partial 133 

melting (4 - 25%) ranging from fertile lherzolites (3-4 % Al2O3 and CaO) to depleted 134 

harzburgites (~0.5 % Al2O3 and CaO). The peridotites originally resided in the garnet 135 

stability field (~950 °C, ~1.9 GPa) before the ascent. We focus on determining Li and Mg 136 

isotope compositions of the whole rocks to determine bulk mantle composition. However, Li 137 

and Mg isotopic analyses of mineral separates of two samples (BZ-216 and BZ-250) are 138 

undertaken to examine inter-mineral isotopic fractionation. Most samples in this study show 139 

no signatures of the metasomatism identified in previous work (Takazawa et al., 1992; 140 

Takazawa et al., 1996a), and these should provide the best constraints for pristine mantle Li 141 

and Mg isotope compositions. A few selected samples show LREE enrichment (Fig. 2c), 142 

especially for the samples at around 22-23 m location, where percolation of a high-LREE 143 

concentration-, high 87Sr/86Sr- and low 143Nd/144Nd-melt was inferred (Takazawa et al., 1996b 144 

and 2000).  145 

3. Methods 146 

3.1 Chemical preparation of Li and Mg isotopic analysis 147 
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Rock powders were dissolved using a HF-HNO3-HClO4-HCl mixture. Mineral separates 148 

were first sonicated in acetone and 18 Mohm.cm (Milli-Q) H2O before dissolution.  Li and 149 

Mg isotopes were measured on aliquots of the same sample dissolutions. A sample containing 150 

~10 ng Li was dried down and passed through Bio-Rad AG 50W - X12 (200-400 mesh) 151 

cation exchange resin using 0.2N HCl as an eluent to separate Li from matrix. Full details of 152 

the column procedures were reported in Marschall et al. (2007) and Pogge von Strandmann et 153 

al. (2011). Mg was separated from the matrix using the same resin and columns as for the Li 154 

chemistry described above, but using 2N HNO3 as an eluent. Aliquots containing ~1 µg Mg 155 

were dried down and taken up in 2N HNO3. Our two-step column procedure uses a first stage 156 

to separate Mg from the sample matrix, and a second column to further purify the Mg. Full 157 

details of the column procedures were reported in Pogge von Strandmann (2008) and further 158 

details about the combined Li and Mg techniques in Pogge von Strandmann et al. (2011). 159 

3.2 Mass spectrometry 160 

Li isotope ratios were measured on a Thermo Finnigan Neptune MC-ICP-MS (multi-161 

collector inductively coupled plasma mass spectrometry) at the Bristol Isotope Group. The 162 

measurements followed the analysis method from Jeffcoate et al. (2004) and Pogge von 163 

Strandmann et al. (2011). Individual Li analyses comprised 10 static isotope measurements 164 

(each integration lasting 4.194 s) of 6Li (L4) and 7Li (H4), where L4 and H4 refer to the 165 

movable low-mass (L) and high-mass (H) Faraday cups. Uptake rates of ~50 µl min-1 for a 10 166 

ng/g solution typically gave a total (6Li + 7Li) beam intensity of ~100 pA compared with an 167 

instrumental background of 0.4 pA. Each individual analysis comprises four measurements of 168 

each sample solution in the same session, with a typical precision of < 0.04 ‰ (2SD). In this 169 

study we made repeat analyses from different dissolutions and chemical purifications for 170 

most studies and the averages and 2SDs (standard deviation from the mean) of these 171 

duplicates are reported in Table 1 and 2. Li isotope values are reported in a δ7Li notation 172 
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(δ7Li = (7Li/6Lisample/ 7Li/6Listandard – 1) x 1000) as ‰ variations of the 7Li/6Li ratio of the 173 

sample from that of the average of the bracketing standard, NIST SRM 8545 (L-SVEC) 174 

(Flesch et al., 1973), which was diluted to within ± 10% of the concentration of the samples. 175 

The Geological Survey of Japan (GSJ) JP-1 peridotite rock standard was analysed numerous 176 

times over the course of this study as an assessment of external reproducibility. JP-1 is an 177 

especially useful datum, since it is a peridotite sample of the Horoman. These measurements 178 

yielded an average δ7L = +2.5 ± 0.5 ‰ (n = 14, 2SD), which is consistent with the values 179 

reported by Pogge von Strandmann et al. (2011) and Gao et al. (2012).  180 

Magnesium isotope ratios were also measured on a Thermo Finnigan Neptune MC-ICP-181 

MS at the University of Bristol coupled with an Apex Q introduction system. This suppresses 182 

CN+ formation on 26Mg, which is a problem using the Aridus desolvating introduction system, 183 

making it possible to analyse Mg isotopes at ‘low’ mass-resolution (~500M/∆M) (Pogge von 184 

Strandmann et al., 2011). Mg solutions of 50 ng/g typically yield a beam intensity of ~100 pA 185 

on 24Mg with a 50 μl/min uptake rate, compared to a background of 0.04 pA. A sample-186 

standard bracketing procedure was adopted, relative to the Mg standard DSM-3 (Galy et al., 187 

2003), which was diluted to within ± 10% of the concentration of the samples. All sample 188 

analyses are reported in the delta notation as ‰ deviations from this standard (δxMg = 189 

(xMg/24Mgsample/ xMg/24Mgstandard– 1) x 1000, where xMg is either 25Mg or 26Mg). Each 190 

sample was analysed three to five times during an analytical session, with each individual 191 

analysis separated by several hours. The averages and 2SDs of repeat analyses from different 192 

dissolutions and chemical purifications are listed in Table 1 and 2.  193 

Our long term precision was determined by the Mg standard CAM-1, which yield a value 194 

of -2.61 ± 0.03 ‰ on δ26Mg (2SD, n=24). We have previously documented the robustness of 195 

procedures against residual impurities after the separation chemistry and different methods of 196 

sample introduction (Pogge von Strandmann et al. 2011). We have further illustrated that an 197 
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intercept values obtained by a standard addition experiment between JP-1 and CAM-1 yield 198 

values within error of the individual measurements (Pogge von Strandmann et al 2011).  Over 199 

the course of this study we measured two international rock standards, GSJ JP-1 and United 200 

States Geological Survey (USGS) BHVO-2, as references and monitors of reproducibility for 201 

silicate samples. For JP-1 we obtain a mean δ26Mg = -0.23 ± 0.03 ‰  (2SD, n=17), which 202 

compares well with other studies (-0.23 ± 0.03 ‰, Handler et al., 2009; -0.24 ± 0.05 ‰, 203 

Pogge von Strandmann et al., 2011). Fewer repeat measurements of the basaltic standard, 204 

BHVO-2, gave a mean a value of -0.25 ± 0.04 ‰ (n=3), which provides a comparable but 205 

more precise measurement than reported in other studies (-0.16 ± 0.10 ‰, Bizzarro et al., 206 

2005; -0.14 ± 0.18 ‰, Weichert and Halliday, 2007; -0.24 ± 0.11 ‰, Pogge von Strandmann, 207 

2008; -0.19 ± 0.07 ‰, Bizzarro et al., 2011; -0.24 ± 0.05 ‰, Pogge von Strandmann et al., 208 

2011). 209 

3.3 Determination of Li concentration by isotope dilution  210 

Li concentrations of the samples were determined by isotope dilution (ID) using 95% 211 

enriched 6Li spike, LISB (Li Isotope Spike in Bristol). The Li carbonate spike powder was 212 

dissolved in Milli-Q H2O and HNO3 to make a stock solution in 2% HNO3. The Li isotope 213 

composition of the spike was determined by a double-filament technique using a Finnigan 214 

Triton thermal ionization mass spectrometer (TIMS) at the University of Bristol, following 215 

the method of Kasemann et al. (2005). The Li concentration of the spike was calibrated 216 

against a gravimetric solution of the NIST Li isotope standard, SRM 8545 (L-SVEC). 217 

Aliquots of rock powder containing about 15 ng of Li (about 10 mg of powder for 218 

peridotites) were weighed and dissolved using our regular dissolution method for Li isotope 219 

analysis (see 3.1). After complete dissolution, the sample was dried down and redissolved in 220 

1 ml of 2% HNO3. Then about 0.35 ml of the solution was transferred to another beaker and 221 
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spiked with 0.5 ml of 10 ng/g LISB to attain (7Li/6Li)mixture ratios of between 0.6 - 1.2. 222 

Solutions were diluted by a dilution factor (DF) >100 and measured on a Thermo Finnigan 223 

Element using wet plasma without Li separation chemistry. This simple methodology has 224 

been explored by Moriguti et al. (2004) who reported there is no matrix effect for solutions 225 

with DF > 97 using an ICP power setting >1.4 kW. However, we found the sampler cone 226 

became clogged using such matrix-rich solutions and caused the Li signal to drop quickly. 227 

Hence the ID samples were purified with a miniature version (0.25ml) of the Li separation 228 

procedure summarised above to remove most of the matrix.  229 

A Thermo Finnigan Element ICP-MS was used for analytical measurements for Li spiked 230 

samples. We used a nebuliser with an uptake rate of 50 μl/min together with a quartz spray 231 

chamber. Normally 10 ng/g of Li solution yielded an intensity of ~ 240,000 cps on total Li. 232 

Instrumental blank was < 400 cps. A typical sequence involved L-SVEC, L-SVEC-LISB 233 

mixtures and spiked samples. Mass bias and drift were corrected by bracketed L-SVEC-LISB 234 

mixtures. The true 7Li/6Li ratios of the spiked samples were attained in relation to measured 235 

L-SVEC. GSJ JB-2 was analysed as an unknown and yielded [Li] = 7.59 ± 0.1 µg/g. The Li 236 

concentrations of the samples obtained by isotope dilution are listed in Table 1, where they 237 

are also compared with the concentrations acquired by peak height analysis on the Neptune.  238 

4. Results  239 

4. 1. Whole-rock analyses 240 

Lithium and magnesium analyses are reported in Table 1. Li isotopic compositions and 241 

concentrations are presented in Fig. 2a, b with stratigraphic distance from the bottom of the 242 

sequence. The δ7Li values of the Horoman peridotites range from -0.2 to 4.8 ‰ and the Li 243 

concentrations vary between 0.86 to 1.64 μg/g. The lowest δ7Li values are evident at the 244 

harzburgite - lherzolite (~23 m) contact and within the plagioclase lherzolite (~90 m). These 245 
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δ7Li troughs are coincident with elemental enrichments of Li (Fig. 2a, b; Fig. 3) and highly 246 

incompatible elements (e.g. La, Sr; only La is shown in Fig. 2c), that mark metasomatic 247 

pathways. There is some complexity in δ7Li associated with [Li] gradients in the plagioclase 248 

lherzolite zone, but there is an anomalously low value of δ7Li associated with a spike in La 249 

concentration at ~90 m.  This feature is superimposed on an overall increase in Li, TiO2 and 250 

La concentrations away from the boundary with the spinel lherzolite (Fig. 2b-d), reflecting 251 

differences in the amount of ancient melt depletion (see Section 2). As with the La 252 

concentration spikes, δ7Li changes sharply and for the higher resolution sampling at the base 253 

of the section (~23 m),  it can be seen that anomalously light Li isotope values return to 254 

background over a 0.7 m scale (~23 m, see Fig 2a).  255 

The δ26Mg and Mg numbers of the bulk samples are presented in Fig. 4. The δ26Mg 256 

values vary from -0.19 to -0.27 ‰, which yield an average of -0.23 ± 0.04 ‰ (2SD). All 257 

samples are thus essentially within analytical error of each other and the mean yields a value 258 

consistent with assessments of primitive mantle and bulk silicate Earth values suggested by 259 

other studies (Handler et al., 2009; Yang et al., 2009; Young et al., 2009; Bourdon et al., 2010; 260 

Dauphas et al., 2010; Teng et al., 2010; Huang et al., 2011; Pogge von Strandmann et al., 261 

2011).  262 

4. 2. Mineral separates 263 

Lithium and magnesium isotope compositions of mineral separates from samples with 264 

low δ7Li samples (BZ-216 and BZ-250) were determined (Table 2 and Fig. 5). The olivine 265 

separates in both samples show lower values of δ7Li than in orthopyroxene separates. This 266 

observation is similar to that reported in previous literature (Jeffcoate et al., 2007). The lower 267 

δ7Li values in olivines relative to orthopyroxenes have been explained by high-temperature 268 

equilibrium isotope fractionation. It is worth noticing that the δ7Li values of olivine and 269 
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orthopyroxene separates in this study are lower compared to the values obtained from 270 

Jeffcoate et al. (2007), but seem in keeping with the lower bulk δ7Li values of BZ-216 and 271 

BZ-250 relative to fertile upper mantle values (~3.5 ‰, Jeffcoate et al., 2007; Pogge von 272 

Strandmann et al., 2011).    273 

The analysed orthopyroxenes and olivines have identical Mg isotope compositions. 274 

However, the Mg isotope compositions in clinopyroxenes are all heavier than coexisting 275 

orthopyroxenes and olivines, which is in agreement with notions of equilibrium fractionation 276 

from other studies (Young et al., 2002; Wiechert and Halliday, 2007; Young et al., 2009; 277 

Chakrabarti and Jacobsen, 2010; Liu et al., 2011; Pogge von Strandmann et al., 2011) and 278 

theoretical calculations (Schauble, 2011; Huang et al. 2013). The calculated bulk δ25Mg and 279 

δ26Mg values based on mineral mode are consistent with measured bulk δ25Mg and δ26Mg 280 

values (Table 2).  281 

5. Discussion 282 

5. 1. Li and Mg isotope compositions of the mantle 283 

5.1.1 Mg isotope composition of the upper mantle 284 

Our analyses show that there are no systematic differences in δ26Mg related to the 285 

variable degrees of partial melting (4 - 25 %) and local metasomatism experienced by the 286 

Horoman samples. The Bozu section represents a 0.4 – 0.9 km thick section with a modest 287 

palaeo thermal gradient of ~10 ± 8 ℃/km (Ozawa, 2004). Given such a minor temperature 288 

difference over a large diffusive length scale, the effects from thermally driven diffusion 289 

across the outcrop are not unsurprisingly insignificant. Moreover, there are also no obvious 290 

isotopic effects related to chemical differences at lithological boundaries that might be caused 291 

to diffusion driven by chemical potential gradients. 292 

The Horoman peridotites analysed in this study, with no evidence of kinetic Mg 293 
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redistribution, suggest that the δ26Mg value of the upper mantle is -0.23 ± 0.04 ‰ (2SD, n = 294 

17). The value is consistent with previous comprehensive studies (Handler et al., 2009; 295 

Huang et al., 2009; Yang et al., 2009; Young et al., 2009; Bourdon et al., 2010; Dauphas et al., 296 

2010; Teng et al., 2010; Bizzarro et al., 2011; Pogge von Strandmann et al., 2011) (Fig. 6), 297 

but inconsistent with two studies (Chakrabarti and Jacobsen, 2010; Wiechert and Halliday, 298 

2007). The Chakrabarti and Jacobsen (2010) dataset shows a systematic offset, although the 299 

reason for this is unclear. The Mg isotope value of the peridotite standard, JP-1, in Weichert 300 

and Halliday (2007) is much heavier than in other studies (Handler et al., 2009; Pogge von 301 

Standmann et al., 2011). Therefore, it is not surprising that the Mg isotope composition of the 302 

Earth estimated in their study is slightly heavier than our value. It is also worth noting that the 303 

direct mantle samples, analysed in previous studies were peridotite xenoliths, which may be 304 

altered by diffusion and kinetic isotope fractionation due to interaction with the host melt (e.g. 305 

Pogge von Strandmann et al., 2011). The Mg isotopic composition of the terrestrial mantle is 306 

thus now further constrained by samples from a tectonically emplaced peridotite massif.  307 

5.1.2 Li isotope composition of the upper mantle 308 

The grey band in Fig. 2a shows the literature δ7Li value (3.5 ± 0.5 ‰) of the fertile 309 

upper mantle as defined by Pogge von Strandmann et al. (2011) from mantle xenoliths. 310 

Except for the samples at the 22.2 - 22.9 m with high La concentrations and plagioclase 311 

lherzolite samples (see 5.2.1), the ‘normal’ samples have an average Li concentration of 1.1 ± 312 

0.3 μg/g and an average δ7Li of 3.8 ± 1.4 ‰, which is in agreement with Li concentration and 313 

δ7Li values of the fertile mantle ([Li] = 1.6 ± 0.7; δ7Li = 3.5 ± 0.5 ‰) given from xenolith 314 

samples (Pogge von Strandmann et al., 2011), reconstructions of the pristine mantle from 315 

peridotite mineral separates (δ7Li ~3.5 ‰) estimated by Jeffcoate et al. (2007), and N-MORB 316 

(δ7Li = 3.4 ± 1.4 ‰) given by (Tomascak et al., 2008). As for Mg, the very different 317 
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influences on the Li isotopic composition of the Horoman peridotite during its transport to the 318 

surface, relative to mantle xenoliths or mantle derived melts, makes the consistency of our 319 

new mantle measurements with previous values a reassuring indication of the reliability of 320 

estimates of mantle δ7Li.  321 

5. 2. Isotopically light Li in the Horoman peridotites 322 

Anomalously light Li isotope compositions are evident in some of the bulk peridotites 323 

and minerals of the Horoman massif. Light Li isotope signatures in some mineral phases can 324 

be explained as inter-mineral Li-redistribution during cooling (Jeffcoate et al., 2007; Ionov 325 

and Seitz, 2008; Kaliwoda et al., 2008). However, closed-system Li-redistribution itself 326 

would only cause transitory fractionations of Li isotopes between minerals and the bulk Li 327 

isotopic compositions should remain unchanged.  328 

The low δ7Li in some bulk peridotites have been argued to be generated by kinetic 329 

isotope fractionation due to Li diffusion from melt/host magma into entrained xenoliths 330 

( Jeffcoate et al., 2007; Rudnick and Ionov, 2007; Tang et al., 2007). In contrast to xenoliths, 331 

tectonically emplaced peridotites like the Horoman are much larger bodies and their 332 

temperatures during transport to the surface cooler, which limits pervasive diffusive ingress 333 

of Li into the peridotite during exhumation. However, in the metasomatised zones of the 334 

Horoman massif there clearly has been previous ingress of externally sourced melts, which 335 

can locally perturb Li isotopic compositions.  336 

In Fig. 7 we sketch a conceptual scenario for how the anomalously light Li isotope 337 

ratios in the metasomatised portions of the Horoman peridotite can be created. Existing 338 

evidence of the nature of the percolating melts through the Horoman rocks suggests that they 339 

were small degree melts, enriched in incompatible elements (e.g. light rare earth elements, 340 

Fig. 2c) (Takahashi, 1992; Takazawa et al., 2000), as well as Li (Fig. 2b). These percolating 341 

melts should thus generate a chemical potential gradient, particularly relative to the peridotite, 342 
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to drive diffusion of Li from melt into host peridotite (Fig. 7b). The light Li isotopic 343 

compositions preserved in the bulk samples such as BZ-216 indicate that the melt did not 344 

have enough time to isotopically equilibrate with the bulk rocks at this stage, as otherwise the 345 

bulk Li isotope composition of the peridotites should be the same Li isotopic composition as 346 

common mantle melts ~3.5 ‰. Thus the percolation of melt must have been short-lived. 347 

Admittedly, a percolating melt with an isotopically light Li isotopic composition might have 348 

been involved. Yet, a recent study of the δ7Li in samples that span the main radiogenic, 349 

isotopic endmember compositions of the mantle show that such lavas have δ7Li that varies 350 

little from an average value of ~3.4 ‰ and never lower than  2 ‰ (Krientiz et al 2012). 351 

 That the bulk rock affected by melt percolation (area 2h in Fig. 7c) retained its overall 352 

low δ7Li signature and did not equilibrate with the surrounding rocks on a longer length scale, 353 

implies that closure temperature was reached before the low δ7Li signature was dispersed 354 

across a greater volume of peridotite (Fig. 7c). In the following sections we examine 355 

quantitatively how Li isotope ratios and concentrations change at each stage (Fig. 7a-c), and 356 

the time scales required to account for the observations.   357 

5.2.1 Generation of light δ7Li and high Li concentrations by Li diffusion from melt veins 358 

to minerals in the host rock 359 

Locations previously traversed by melt are marked with light Li isotope compositions 360 

and elevated La concentrations (22.2 - 22.9 m and 89.3 - 94.7 m) (Fig. 2a, c). An inferred, 361 

prior melt pathway is especially well characterised around 22.2 – 22.9 m given the systematic 362 

variations of LREE enrichments in clinopyroxene, high 87Sr/86Sr and low 143Nd/144Nd ratios 363 

of peridotites sampled here (Takazawa et al., 2000). We concentrate on modelling this 364 

location because it provides the most straightforward example of Li diffusion from transient 365 

melt channels into the host minerals (Fig. 7b). In contrast, the melt pathway at 89.3 - 94.7 m 366 
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in the plagioclase lherzolite, is more complicated, because it is superimposed on a pre-367 

existing [Li] gradient. As discussed above, the gradual decrease of TiO2 contents and Li 368 

concentrations from the plagioclase lherzolite to spinel lherzolite boundary indicates the 369 

effects of variable prior melt depletion (Fig. 2b, d). These chemical gradients provide a 370 

driving force for Li to diffuse from the high [Li] plagioclase lherzolite towards the low [Li] 371 

spinel lherzolite. Over the ~ 1 Ga time since melt depletion (see section 2), this could lead to 372 

low δ7Li values along the boundary and higher δ7Li in the middle of the plagioclase lherzolite 373 

layer. Subsequently, the effects of melt-rock interaction as described above are superimposed 374 

on the section between 89.3 - 94.7 m (Takazawa et al., 2000), locally raising [La] and 375 

lowering δ7Li. Although we argue that similar processes are at work in this late-stage, melt 376 

percolation event in the plagioclase lherzolite field, the additional influences make it harder 377 

to model.     378 

To quantify how Li isotope ratios changed in the host rock with melt diffusion, we 379 

applied a model similar to that used by Parkinson et al. (2007). We assume a spherical 380 

geometry for the individual crystals with isotropic diffusion and the melt acting as an infinite 381 

reservoir. The latter assumption defines a fixed concentration at the crystal rim estimated 382 

from the Li content of a small degree mantle melt. Using degrees of melting from 0.1 – 2% 383 

and mineral-melt partition coefficients (see Table 3), we calculate plausible values from 384 

11.1 – 12.5 µg/g. The assumption of a constant melt [Li] may not be entirely valid for a 385 

moderately incompatible element like Li, if the melt fraction is small, but if the melt is 386 

continuously renewed during melt flow it may be a reasonable approximation. The melt-rock 387 

interaction must occur at a sufficiently high temperature to allow melt percolation. The 388 

temperature strongly controls the timescales calculated and so we model both a ‘dry’ melt at 389 

1200℃ and ‘wet’ melt at 950 ℃. We assume that temperature remains constant over the 390 

relatively short period of melt percolation. Assuming an initially homogenous crystal, the 391 
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appropriate equation (Crank, 1975) for the scenario is:  392 

 393 

 394 

Equation 1 was used to simulate the concentration distribution of both Li isotopes in 395 

olivine and clinopyroxene using slightly different diffusion coefficients as given by D7/D6 = 396 

(m6/m7)β (Richter et al. 2014). The resulting kinetic isotope fractionation depends dominantly 397 

on four variables: 1) D, the diffusion coefficient of Li in minerals; 2) C0, the constant Li 398 

concentration at the surface of the sphere; 3) C1, the initial Li concentration in the mineral of 399 

interest; 4) β, the kinetic isotope fractionation parameter. 6Li and 7Li concentrations are 400 

evaluated at different distances (from r = 0 to r = a) in a spherical grain with time (t) and δ7Li 401 

values are calculated based on the 6Li and 7Li. The concentration in the centre is given by the 402 

limit as r approaches 0, that is by    403 

 404 

 405 

 406 

Table 3 summarises the input parameters used for the sphere diffusion model. The 407 

average Li concentration and Li isotope composition of a mineral at any given time is 408 

evaluated by integration. Assuming the Li concentration in a bulk mineral is Cb and the 409 

volume in a mineral is V, the Li concentration (C) is integrated in a sphere as following 410 

equations.   411 

 412 

 413 

 414 

 415 

where C is the Li concentration in a sphere from equation (1), hence: 416 
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 417 

 418 

 419 

Fig. 8 shows the integrated results of the spherical model for olivine compared to the 420 

mineral separate analysis from BZ-216. The curves show the evolving, model [Li] and δ7Li 421 

of olivines as a function of time, for several different values of [Li] in the percolating melt 422 

resulting from different degrees of partial melting. Given the second stage, discussed below, 423 

will tend to increase δ7Li, this first stage needs to generate olivines with δ7Li at least as low 424 

as those observed.  This is satisfied by durations of melt percolation ~1.5 (wet melt) and ~140 425 

years (dry melt).   426 

Given the much faster diffusivity of Li in clinopyroxene (Coogan et al., 2005) the 427 

successful solutions for olivine will generate clinopyroxene compositions that will have fully 428 

re-equilibrated with the melt in this melt buffered scenario. However, clinopyroxenes in BZ-429 

216 have δ7Li much lower than the model melt, similar to the isotopically light olivines 430 

(Table 2; Figure 5). We thus infer that lithium redistribution occurred to generate these low 431 

δ7Li in clinopyroxene by exchange with olivine after the episode of melt percolation. We 432 

have not modelled this process, which is similar to that explored by Gao et al. (2011), but 433 

assume this mineral length scale process occurs rapidly during the out-crop scale diffusion of 434 

Li into the country rock, investigated below.  435 

5. 2. Diffusion of Li from enriched-zone into country rock  436 

The time necessary for Li diffusion from percolating melting into adjacent minerals and  437 

Li isotopic redistribution on the millimetre scale described above is geologically relatively 438 

short. However, the process of melt percolation leaves portions of mantle with elevated Li 439 

concentrations that will start to diffuse to surrounding peridotites with unperturbed 440 
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compositions while cooling (Fig 7c). We now examine how long this process will take and 441 

estimate the cooling duration of the Horoman peridotite. We define the thickness of the 442 

peridotite, that has been affected by melt percolation as 2h (cm) and assume this peridotite 443 

has an initial, uniform low δ7Li value (~ 0.13 ‰), taken from the previous model (see 5.2.1) 444 

and high Li concentration (C0, 1.44 μg/g from mass balance calculations based on Li 445 

compositions of olivine and clinopyroxene obtained from the model of the first stage and an 446 

estimate for Li composition of orthopyroxene). We can evaluate how the Li isotopic 447 

composition and concentration changes during diffusion from the enriched peridotite to its 448 

surroundings with time by using the diffusion model of a substance initially confined in the 449 

region 2h (Crank, 1975),  450 

 451 

  452 

 453 

Here we assume the initial thickness of the enriched peridotites is smaller than 70 cm, 454 

because the observed distance between the samples with the lowest δ7Li values and normal 455 

mantle values is 70 cm (distance between sample BZ-216, BZ-201 and BZ-203 in Table 1). In 456 

this case the diffusion coefficient, D, is a bulk diffusion coefficient, where the individual 457 

diffusion properties of the multi-phase system including fast diffusion paths like interface and 458 

grain boundaries are averaged in an appropriate way. Such an approach is only justified in a 459 

certain time regime (Type A diffusion regime, e.g., Dohmen and Milke, 2010), in which a 460 

representative volume of rock can be homogenized effectively by diffusion. As we have 461 

argued before, the individual minerals of a rock specimen seem to reflect elemental and 462 

isotopic equilibrium and hence this time regime has been reached at some point.  463 

Diffusion during geological cooling usually takes place over a wide range of 464 

temperatures, which change as a function of time, t. Thus, the diffusivity becomes a function 465 
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of time during cooling. This problem can be handled in a simple way by defining a new 466 

variable λ as dλ = D(t) dt (e.g. Ganguly, 2002). Using this definition, the diffusion equation 467 

(Fick’s 2nd law) can be transformed to the following partial differential equation:  468 

. 469 

The analytical solution of the given problem can be thus obtained by replacing in 470 

equation (6) the product Dt with λ, which is the only unknown for the fitting procedure. 471 

Based on the definition of λ , the thermal history of the rocks can be constrained by 472 

integration (Ganguly, 2002) 473 

 474 

 475 

 476 

The integration of D(t)dt over the postulated T-t path must equalλderived from 477 

modelling compositional gradient. Fig. 9 shows the modelling result from equation (6) with h 478 

= 35 cm (the modelling results cannot fit the data when h < 30 cm). The modelling curves 479 

provide the best fit for the data when λ is smaller than 1.39 x 1010 (µm2). From the estimated 480 

value for λ we can now infer the cooling rate assuming a certain type of thermal history. For 481 

conductive cooling a good representation of the initial cooling phase is reciprocal cooling 482 

from the peak temperature, T0 with a cooling rate constant, η, as follows:  483 

 484 

      485 

 486 

It can be shown with equation (10) that the cooling rate constant can be calculated from 487 

λ, as follows (Ganguly 2002): 488 
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Where, D(T0) is the diffusion coefficient at peak temperature, Q is activation energy of 490 

diffusion and R is ideal gas constant. If we assume T0 to be 1200℃ for Horoman peridotites 491 

in the Lower Zone (Ozawa, 2004), as might be appropriate if the percolating melts were 492 

anhydrous then the minimum cooling rate constant is inferred to be 1.51 x 10-15 K-1s-1, which 493 

for example implies that it takes maximum ~7300 years to cool from 1200 ℃ - 700 ℃. 700 494 

°C was estimated to be the Li closure temperature of olivine according to Gao et al. (2011). 495 

We suggest that the cooling time reflects the rate of emplacement of the Horoman massif 496 

from a prior back-arc setting. A value of 7300 years seems a rapid time for a tectonically 497 

emplaced peridotite and so we also consider a much initial lower temperature, which implies 498 

that the infiltrating melts were hydrous and so could percolate at much lower temperatures.  499 

This scenario is compatible with the hydrous (phlogopite bearing) late mineral veins in the 500 

Horoman massif (Yoshikawa et al., 1993; Yamamoto et al., 2010). In this case the minimum 501 

cooling time from melt percolation to olivine closure is ~0.3 Ma. 502 

5. 3. Comparison of Li diffusion model for a tectonically emplaced peridotite in the 503 

literature 504 

The only previous numerical model to explain Li isotope compositions in a tectonically 505 

emplaced peridotite was reported by Lundstrom et al. (2005) for the Trinity Ophiolite.  506 

Lundstrom et al. (2005) reported troughs in δ7Li in the harzburgitic margins of dunite 507 

channels though host lherzolites. Dunite channels have widely been inferred to record the 508 

prior paths of sub-ridge melt conduits paths of sub-ridge melt conduits and Lundtrom et al. 509 

(2005) suggested that the diffusion of Li from the higher [Li] melts to surrounding depleted 510 

mantle. In detail, melt extraction combined with diffusion was required to explain associated 511 

rare earth element and Li concentration profiles together with Li isotopic compositions.  512 

However, all these features were related to sub-ridge processes before the obduction of the 513 
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ophiolite. If we use the model described earlier (see 5.3) with recent diffusivity data in 514 

olivine and clinopyroxene (Coogan et al., 2005; Dohmen et al., 2010), the low δ7Li signature 515 

generated by magmatic process at the original ridge setting could be homogenised in the 70 516 

cm wide region studied by Lundstrom et al. (2005) within 0.3 Ma cooling duration (from 517 

1200 °C to 700 °C). We suggest that this timescale to erase any primary Li isotopic signature 518 

is shorter than the moving a portion of melted mantle off axis and cooled to a temperature of 519 

700°C. We therefore argue it is more likely that the systematic δ7Li variation in Trinity 520 

ophiolite was generated in later event (e.g. emplacement), maybe as a result of changing 521 

chemical potential gradients in different mantle mineral phases during cooling (cf Gao et al., 522 

2011).  523 

6. Conclusions  524 

The Li and Mg isotopes analysed in peridotites from the Horoman Peridotite Massif 525 

provide us with better constraints on the Mg and Li isotope compositions of the primitive 526 

mantle, and diffusion processes at high temperature. The identical Mg isotope compositions 527 

in the Horoman peridotites, which cover fertile plagioclase lherzolites to depleted 528 

harzburgites, suggests that the Mg isotope composition of the primitive upper mantle is 529 

δ25Mg = -0.12 ‰ ± 0.02 ‰ and δ26Mg = -0.23 ‰ ± 0.04 ‰ (2SD, n = 17). The average δ7Li 530 

values of the samples without Li and La enrichment in this study are consistent with the 531 

literature data and give an average Li concentration of 1.1 ± 0.3 μg/g and an average δ7Li of 532 

3.8 ± 1.4 ‰ (2SD, n = 9) 533 

The low δ7Li values in bulk peridotites and mineral separates indicate diffusion 534 

processes are involved in generating low δ7Li values in whole rocks. Results from diffusion 535 

in a sphere model show that it likely took 1.5 years and 140 years to drive the δ7Li value of 536 

olivine ~3 ‰ lower at 1200 °C and 950 °C respectively, once the melt was removed from 537 
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around the minerals, whereas the clinopyroxene had been in equilibrium with the melts given 538 

the much faster diffusivity of Li in clinopyroxene. The disequilibrium between olivine and 539 

clinopyroxene caused Li to redistribute itself between minerals. The low δ7Li values in melt-540 

influenced bulk peridotites was preserved implying maximum ~0.3 Ma for the cooling 541 

duration from peak temperature (950 °C) to Li closure temperature (700 °C). This combined 542 

analytical and modelling approach also demonstrates that it is possible to tease out multiple 543 

metasomatic processes from the Li isotope data, and that conceivably this method can be 544 

used to study emplacement and metasomatism processes in detail. Li provides a novel means 545 

of estimating the timing and duration of these events. It also reiterates that the previously 546 

heralded recycling tracer, Li, is complicated by diffusion. 547 

Acknowledgements 548 

Simon Kohn and Ian Parkinson are thanked for discussion and comments on early draft. 549 

Chris Coath is thanked for for the sweet running of the MC-ICP-MS and helping improve the 550 

technique for Mg isotope analysis. Simone Kasemann is thanked for demonstrating Li isotope 551 

measurement on TIMS. Y.-J. Lai was supported by ORSAS (Overseas Research Students 552 

Awards Scheme) from the British council and postgraduate scholarship from the School of 553 

Earth Sciences at the University of Bristol. PPvS and part of this work was supported by 554 

NERC grant NE/C510983/1. Paul Tomascak and two anonymous reviewers are thanked for 555 

their helpful comments. 556 



24 
 

References 

Beck P., Chaussidon M., Barrat J.A., Gillet P. and Bohn M. (2006) Diffusion induced Li 
isotopic fractionation during the cooling of magmatic rocks: The case of pyroxene 
phenocrysts from nakhlite meteorites. Geochim. Cosmochim. Acta 70, 4813-4825. 

Bizzarro M., Paton C., Larsen K., Schiller M., Trinquier A. and Ulfbeck D. (2011) High-
precision Mg-isotope measurements of terrestrial and extraterrestrial material by HR-MC-
ICPMS-implications for the relative and absolute Mg-isotope composition of the bulk silicate 
Earth. J. Anal Atom. Spectrom. 26, 565-577. 

Bourdon B., Tipper E.T., Fitoussi C. and Stracke A. (2010) Chondritic Mg isotope 
composition of the Earth. Geochim. Cosmochim. Acta 74, 5069-5083. 

Bowen N.L. (1921) Diffusion in silicate melts. J. Geol. 29(4), 295-317 

Brenan J.M., Neroda E., Lundstrom C.C., Shaw H.F., Ryerson F.J. and Phinney D.L. (1998) 
Behaviour of boron, beryllium, and lithium during melting and crystallization: Constraints 
from mineral-melt partitioning experiments. Geochim. Cosmochim. Acta  62, 2129-2141. 

Chakrabarti R. and Jacobsen S.B. (2010) The isotopic composition of magnesium in the inner 
Solar System. Earth Planet. Sc. Lett. 293, 349-358. 

Chan L.H., Lassiter J.C., Hauri E.H., Hart S.R. and Blusztajn J. (2009) Lithium isotope 
systematics of lavas from the Cook-Austral Islands: Constraints on the origin of HIMU 
mantle. Earth Planet. Sc. Lett. 277, 433-442. 

Chopra R., Richter F.M., Watson E.B. and Scullard C.R. (2012) Magnesium isotope 
fractionation by chemical diffusion in natural settings and in laboratory analogues. Geochim. 
Cosmochim. Acta 88, 1-18. 

Coogan L.A., Kasemann S.A. and Chakraborty S. (2005) Rates of hydrothermal cooling of 
new oceanic upper crust derived from lithium-geospeedometry. Earth Planet. Sc. Lett. 240, 
415-424. 

Dauphas N., Teng F.Z. and Arndt N.T. (2010) Magnesium and iron isotopes in 2.7 Ga Alexo 
komatiites: Mantle signatures, no evidence for Soret diffusion, and identification of diffusive 
transport in zoned olivine. Geochim. Cosmochim. Acta 74, 3274-3291. 

Dohmen R., Kasemann S.A., Coogan, L. and Chakraborty S. (2010) Diffusion of Li in olivine. 
Part I: Experimental observations and a multi species diffusion model. Geochim. Cosmochim. 
Acta 74, 274-292. 

Dohmen R. and Milke R. (2010) Diffusion in Polycrystalline Materials Grain Boundaries, 
Mathematical Models, and Experimental Data, in: Zhang, Y.X., Cherniak, D.J. (Eds.), 
Diffusion in Minerals and Melts 921-970. 

Elliott T., Jeffcoate A. and Bouman C. (2004) The terrestrial Li isotope cycle: light-weight 
constraints on mantle convection. Earth Planet. Sc. Lett. 220, 231-245. 

Elliott T., Thomas A., Jeffcoate A. and Niu Y.L. (2006) Lithium isotope evidence for 
subduction-enriched mantle in the source of mid-ocean-ridge basalts. Nature 443, 565-568. 



25 
 

Flesch G.D., Anderson Jr. A.R. and Svec H.J. (1973) A secondary isotopic standard for 6Li/7Li 
determinations. Int. J. Mass Ion Process. 12, 265-272. 

Gallagher K. and Elliott T. (2009) Fractionation of lithium isotopes in magmatic systems as a 
natural consequence of cooling. Earth Planet. Sc. Lett. 278, 286-296. 

Galy A., Yoffe O., Janney P.E., Williams R.W., Cloquet C., Alard O., Halicz L., Wadhwa M., 
Hutcheon I.D., Ramon E. and Carignan J. (2003) Magnesium isotope heterogeneity of the 
isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio 
measurements. J. Anal. Atom. Spectrom. 18, 1352-1356. 

Ganguly J. (2002) Diffusion kinetics in minerals: Principles and applications to tectono-
metamorphic processes. EMU Notes in Mineralogy 4, 271-309. 

Gao Y.J., Snow J.E., Casey J.F. and Yu J.B. (2011) Cooling-induced fractionation of mantle 
Li isotopes from the ultraslow-spreading Gakkel Ridge. Earth Planet. Sc. Lett. 301, 231-240. 

Giletti B.J. and Shanahan T.M. (1997) Alkali diffusion in plagioclase feldspar. Chem. Geol. 
139, 3-20. 

Handler M.R., Baker J.A., Schiller M., Bennett V.C. and Yaxley G.M. (2009) Magnesium 
stable isotope composition of Earth's upper mantle. Earth Planet. Sc. Lett. 282, 306-313. 

Huang F., Chakraborty P., Lundstrom C.C., Holmden C., Glessner J.J.G., Kieffer S.W. and 
Lesher C.E. (2010) Isotope fractionation in silicate melts by thermal diffusion. Nature 464, 
396-400. 

Huang F., Glessner J., Ianno A., Lundstrom C. and Zhang Z.F. (2009) Magnesium isotopic 
composition of igneous rock standards measured by MC-ICP-MS. Chem Geol 268, 15-23. 

Huang F., Zhang Z., Lundstrom C.C. and Zhi X. (2011) Iron and magnesium isotopic 
compositions of peridotite xenoliths from Eastern China. Geochim. Cosmochim. Acta 75, 
3318-3334. 

Huang F., Chen L., Wu Z., Wang W. (2013) First-principles calculations of equilibrium Mg 
isotope fractionations betwee garnet, clinopyroxene, orthopyroxene, and olivine: Implications 
for Mg isotope thermometry. Earth Planet. Sc. Lett. 367, 61-70. 

Ionov D.A. and Seitz H.M. (2008) Lithium abundances and isotopic compositions in mantle 
xenoliths from subduction and intra-plate settings: Mantle sources vs. eruption histories. 
Earth Planet. Sc. Lett. 266, 316-331. 

Jambon A. and Semet M.P. (1978) Lithium diffusion in silicate glasses of albite, orthoclase, 
and obsidian composition: an ion-microprobe determination. Earth Planet. Sc. Lett. 37, 445-
450. 

Jeffcoate A.B., Elliott T., Kasemann S.A., Ionov D., Cooper K. and Brooker R. (2007) Li 
isotope fractionation in peridotites and mafic melts. Geochim. Cosmochim. Acta 71, 202-218. 

Jeffcoate A.B., Elliott T., Thomas A. and Bouman C. (2004) Precise, small sample size 
determinations of lithium isotopic compositions of geological reference materials and modern 
seawater by MC-ICP-MS. Geostand. Geoanal. Res. 28, 161-172. 



26 
 

Kaliwoda M., Ludwig T. and Altherr R. (2008) A new SIMS study of Li, Be, B and δ7Li in 
mantle xenoliths from Harrat Uwayrid (Saudi Arabia). Lithos 106, 261-279. 

Kasemann S.A., Jeffcoate A.B. and Elliott T. (2005) Lithium isotope composition of basalt 
glass reference material. Anal. Chem. 77, 5251-5257. 

Kil Y. (2010) Lithium isotopic disequilibrium of minerals in the spinel lherzolite xenoliths 
from Boeun, Korea. J. of Geochem. Explor. 107, 56-62. 

Krienitz M.S., Garbe-Schonberg C.D., Romer R.L., Meixner A., Haase K.M. and Stroncik 
N.A. (2012) Lithium isotope variations in ocean island basalts - implications for the 
development of mantle heterogeneity. J. Petrol. 53, 2333-2347. 

Lesher C.E. and Walker D. (1988) Cumulate maturation and melt migration in a temperature-
gradient. J. Geophys. Res.-Solid. 93, 10295-10311. 

Li W.Y., Teng F.Z., Xiao Y.L. and Huang J.A. (2011) High-temperature inter-mineral 
magnesium isotope fractionation in eclogite from the Dabie orogen, China. Earth Planet. Sc. 
Lett. 304, 224-230. 

Liu S.A., Teng F.Z., Yang W., Wu F.Y. (2011) High-temperature inter-mineral magnesium 
isotope fractionation in mantle xenoliths from the North China craton. Earth Planet. Sc. Lett. 
308, 131-140. 

Lowry R.K., Reed S.J.B., Nolan J., Henderson P. and Long J.V.P. (1981) Lithium tracer-
diffusion in an alkali-basaltic melt - an ion-microprobe determination. Earth Planet. Sc. Lett. 
53, 36-40. 

Lundstrom C.C., Chaussidon M., Hsui A.T., Kelemen P. and Zimmerman M. (2005) 
Observations of Li isotopic variations in the Trinity Ophiolite: Evidence for isotopic 
fractionation by diffusion during mantle melting. Geochim. Cosmochim. Acta 69, 735-751. 

Magna T., Ionov D.A., Oberli F. and Wiechert U. (2008) Links between mantle 
metasomatism and lithium isotopes: Evidence from glass-bearing and cryptically 
metasomatized xenoliths from Mongolia. Earth Planet. Sc. Lett. 276, 214-222. 

Magna T., Wiechert U. and Halliday A.N. (2006) New constraints on the lithium isotope 
compositions of the Moon and terrestrial planets. Earth Planet. Sc. Lett. 243, 336-353. 

Malaviarachchi S.P.K., Makishima A. and Nakamura E. (2010) Melt-peridotite reactions and 
fluid metasomatism in the upper mantle, revealed from the geochemistry of peridotite and 
gabbro from the Horoman Peridotite Massif, Japan. J. of Petrol. 51, 1417-1445. 

Malaviarachchi S.P.K., Makishima A., Tanimoto M., Kuritani T. and Nakamura E. (2008) 
Highly unradiogenic lead isotope ratios from the Horoman peridotite in Japan. Nat. Geosci. 1, 
859-863. 

Marschall H.R., Pogge von Strandmann P.A.E., Seitz H.M., Elliott T. and Niu Y.L. (2007) 
The lithium isotopic composition of orogenic eclogites and deep subducted slabs. Earth 
Planet. Sc. Lett. 262, 563-580. 

McDonough W.F. and Sun S.S. (1995) The composition of the Earth. Chem. Geol. 120, 223-



27 
 

253. 

Niida K. (1974) Structure of the Horoman ultramafic massif of the Hidaka metamorphic belt 
in Hokkaido, Japan. J. Geol. Soc. Jpn. 80, 31-44. 

Niida K. (1984) Petrology of the Horoman ultramafic rocks in the Hidaka metamorphic belt, 
Hokkaido, Japan. J. Fac. Sci. Hokkaido Uni. IV 21, 197-250. 

Nishio Y., Nakai S., Kogiso T. and Barsczus H.G. (2005) Lithium, strontium, and neodymium 
isotopic compositions of oceanic island basalts in the Polynesian region: constraints on a 
Polynesian HIMU origin. Geochemical Journal 39, 91-103. 

Obata M. and Takazawa E. (2004) Compositional continuity and discontinuity in the 
Horoman peridotite, Japan, and its implication for melt extraction processes in partially 
molten upper mantle. J. Petrol. 45, 223-234. 

Ottolini L., Laporte D., Raffone N., Devidal J.-L. and Le Fevre B. (2009) New experimental 
determination of Li and B partition coefficients during upper mantle partial melting. Contrib. 
Mineral. and Petr. 157, 313-325. 

Ozawa K. (2004) Thermal history of the Horoman Peridotite Complex: A record of thermal 
perturbation in the lithospheric mantle. J. Petrol. 45, 253-273. 

Parkinson I.J., Hammond S.J., James R.H. and Rogers N.W. (2007) High-temperature lithium 
isotope fractionation: Insights from lithium isotope diffusion in magmatic systems. Earth 
Planet. Sc. Lett. 257, 609-621. 

Pearson D.G., Canil D. and Shirey S.B. (2004). Mantle samples included in volcanic rocks: 
xenoliths and diamonds. In: Treatise on Geochemistry. Holland, H.D. and Turrekian, K.K. 
(Editors), Elsevier, Amsterdam, The Netherlands. 2, 171-275. 

Pogge von Strandmann, P. A. E. (2008) Precise magnesium isotope measurements in core top 
planktic and benthic foraminifera. Geochem. Geophys. Geosyst. 9, Q12015. 
doi:10.1029/2008GC002209. 

Pogge von Strandmann P.A.E., Elliott T., Marschall H.R., Coath C., Lai Y.-J., Jeffcoate A.B. 
and Ionov D.A. (2011) Variations of Li and Mg isotope ratios in bulk chondrites and mantle 
xenoliths. Geochim. Cosmochim. Acta 75, 5247-5268. 

Richter F., Watson B., Chaussidon M., Mendybaev R. and Ruscitto D. (2014) Lithium isotope 
fractionation by diffusion in minerals. Part 1: Pyroxenes. Geochim. Cosmochim. Acta 126, 
352-370. 

Richter F.M., Davis A.M., DePaolo D.J. and Watson E.B. (2003) Isotope fractionation by 
chemical diffusion between molten basalt and rhyolite. Geochim. Cosmochim. Acta 67, 3905-
3923. 

Richter F.M., Liang Y. and Davis A.M. (1999) Isotope fractionation by diffusion in molten 
oxides. Geochim. Cosmochim. Acta 63, 2853-2861. 

Richter F.M., Watson E.B., Mendybaev R.A., Teng F.Z. and Janney P.E. (2008) Magnesium 
isotope fractionation in silicate melts by chemical and thermal diffusion. Geochim. 



28 
 

Cosmochim. Acta 72, 206-220. 

Rudnick R.L. and Ionov D.A. (2007) Lithium elemental and isotopic disequilibrium in 
minerals from peridotite xenoliths from far-east Russia: Product of recent melt/fluid-rock 
reaction. Earth Planet. Sc. Lett. 256, 278-293. 

Rudnick R.L., Tomascak P.B., Njo H.B. and Gardner L.R. (2004) Extreme lithium isotopic 
fractionation during continental weathering revealed in saprolites from South Carolina. Chem. 
Geol. 212, 45-57. 

Ryan J.G. and Kyle P.R. (2004) Lithium abundance and lithium isotope variations in mantle 
sources: insights from intraplate volcanic rocks from Ross Island and Marie Byrd Land 
(Antarctica) and other oceanic islands. Chem. Geol. 212, 125-142. 

Saal A.E., Takazawa E., Frey F.A., Shimizu N. and Hart S.R. (2001) Re-Os isotopes in the 
Horoman peridotite: Evidence for refertilization? J. Petrol. 42, 25-37. 

Schauble E.A. (2011) First-principles estimates of equilibrium magnesium isotope 
fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals. Geochim. 
Cosmochim. Acta 75, 844-869. 

Seitz H.M., Brey G.P., Lahaye Y., Durali S. and Weyer S. (2004) Lithium isotopic signatures 
of peridotite xenoliths and isotopic fractionation at high temperature between olivine and 
pyroxenes. Chem. Geol. 212, 163-177. 

Seitz H.M. and Woodland A.B. (2000) The distribution of lithium in peridotitic and 
pyroxenitic mantle lithologies - an indicator of magmatic and metasomatic processes. Chem. 
Geol. 166, 47-64. 

Shimizu N., Warren J.M., Frey F.A. and Takazawa E. (2006) The Horoman Peridotite Massif: 
an example of ancient ultraslow-spreading ridge abyssal peridotites? EOS Trans. 87, Amer. 
Geophys. Union, Fall Meeting 2006, abstract, V2012C2007S. 

Spandler C., Mavrogenes J. and Hermann J. (2007) Experimental constraints on element 
mobility from subducted sediments using high-P synthetic fluid/melt inclusions. Chem. Geol. 
239, 228-249. 

Su B.-X., Zhang H.-F., Deloule E., Sakyi P.A., Xiao Y., Tang Y.-J., Hu Y., Ying J.-F. and Liu 
P.-P. (2012) Extremely high Li and low δ7Li signatures in the lithospheric mantle. Chem. 
Geol. 292, 149-157. 

Takahashi N. (1992) Evidence for melt segregation towards fractures in the Horoman Mantle 
Peridotite Complex. Nature 359, 52-55. 

Takazawa E., Frey F.A., Shimizu N., Obata M. and Bodinier J.L. (1992) Geochemical 
Evidence for Melt Migration and Reaction in the Upper Mantle. Nature 359, 55-58. 

Takazawa E., Frey, F., Shimizu, N. and Obata, M. (1996a) Evolution of the Horoman 
Peridotite (Hokkaido, Japan): Implications from pyroxene compositions. Chem. Geol. 134, 3-
26. 



29 
 

Takazawa, E. (1996b) Geodynamic evolution of the Horoman peridotite, Japan: 
Geochemical study of asthenospheric and lithospheric processes. Ph.D. dissertstion, Mass. 
Inst. Tech. 
 
Takazawa E., Frey F.A., Shimizu N., Saal A. and Obata M. (1999) Polybaric petrogenesis of 
mafic layers in the Horoman peridotite complex, Japan. J. Petrol. 40, 1827-1851. 

Takazawa E., Frey F.A., Shimizu N. and Obata M. (2000) Whole rock compositional 
variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent 
with a partial melting process? Geochim. Cosmochim. Acta 64, 695-716. 

Tang Y.J., Zhang H.F., Nakamura E., Moriguti T., Kobayashi K. and Ying J.F. (2007) Lithium 
isotope systematics of peridotite xenoliths from Hannuoba, North China Craton: implications 
for melt-rock interaction in the considerably thinned lithospheric mantle. Geochim. 
Cosmchim. Acta. 71, 4327-4341. 

Teng F.Z., Li W.Y., Ke S., Marty B., Dauphas N., Huang S.C., Wu F.Y. and Pourmand, A. 
(2010) Magnesium isotopic composition of the Earth and chondrites. Geochim. Cosmochim. 
Acta 74, 4150-4166. 

Teng F.Z., McDonough W.F., Rudnick R.L. and Walker R.J. (2006) Diffusion-driven extreme 
lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite. Earth Planet. 
Sc. Lett. 243, 701-710. 

Tomascak P.B. (2004) Developments in the understanding and application of lithium isotopes 
in the earth and planetary sciences. Rev. Mineral Geochem. 55: 153-195. 

Tomascak P.B., Langmuir C.H., le Roux P.J. and Shirey S.B. (2008) Lithium isotopes in 
global mid-ocean ridge basalts. Geochim. Cosmochim. Acta 72, 1626-1637. 

Walker D., Jurewicz S. and Watson E.B. (1988) Adcumulus dunite growth in a laboratory 
thermal-gradient. Contrib. Mineral. and Petr. 99, 306-319. 

Wiechert U. and Halliday A.N. (2007) Non-chondritic magnesium and the origins of the inner 
terrestrial planets. Earth Planet. Sc. Lett. 256, 360-371. 

Xu R., Liu Y.S., Tong X.R., Hu Z.C., Zong K.Q. and Gao S. (2013) In-situ trace elements and 
Li and Sr isotopes in peridotite xenoliths from Kuandian, North China Craton: Insights into 
Pacific slab subduction-related mantle modification. Chem. Geol. 354, 107-123. 

Yakob J.L., Feineman M.D., Deane J.A., Jr. Eggler D.H. and Penniston-Dorland S.C. (2012) 
Lithium partitioning between olivine and diopside at upper mantle conditions: An 
experimental study. Earth Planet. Sc. Lett. 329, 11-21. 

Yamamoto H., Nakamori N., Terabayashi M., Rehman H.U., Ishikawa M., Kaneko Y. and 
Matsui T. (2010) Subhorizontal tectonic framework of the Horoman peridotite complex and 
enveloping crustal rocks, south-central Hokkaido, Japan. Isl. Arc 19, 458-469. 

Yang W., Teng F.Z. and Zhang H.F. (2009) Chondritic magnesium isotopic composition of 
the terrestrial mantle: A case study of peridotite xenoliths from the North China craton. Earth 
Planet. Sc. Lett. 288, 475-482. 



30 
 

Yoshikawa M. and Nakamura E. (2000) Geochemical evolution of the Horoman peridotite 
complex: Implications for melt extraction, metasomatism, and compositional layering in the 
mantle. J. Geophys. Res.-Solid 105, 2879-2901. 

Yoshikawa M., Nakamura E. and Takahashi N. (1993) Rb-Sr isotope systematics in a 
phlogopite-bearing spinel lherzolite and its implications for age and origin of metasomatism 
in the Horoman peridotite complex, Hokkaido, Japan. J. Mineral. Petrol. Econ. Geol. 88, 
121-130. 

Young E.D., Galy A. and Nagahara H. (2002) Kinetic and equilibrium mass-dependent 
isotope fractionation laws in nature and their geochemical and cosmochemical significance. 
Geochim. Cosmochim. Acta 66, 1095-1104. 

Young E.D., Tonui E., Manning C.E., Schauble E. and Macris C.A. (2009) Spinel-olivine 
magnesium isotope thermometry in the mantle and implications for the Mg isotopic 
composition of Earth. Earth Planet. Sc. Lett. 288, 524-533. 

Zhang H.F., Deloule E., Tang Y.J. and Ying J.F. (2010) Melt/rock interaction in remains of 
refertilized Archean lithospheric mantle in Jiaodong Peninsula, North China Craton: Li 
isotopic evidence. Contrib. Mineral. and Petr. 160, 261-277. 
 
 



31 
 

Figure Captions 

Figure 1. Sample localities along the Bozu straigraphic section in the Horoman peridotite 
modified from Takazawa et al. (1999, 2000). The Bozu section has a layered sequence 
typical of a peridotite mantle section and grades from plagioclase lherzolite through 
lherzolite to harzburgites. The N-type and E-type plagioclase lherzolites have 
different petrology and chemical composition. The N-type plagioclase lherzolites 
have relatively high CaO, Na2O3, Al2O3, TiO2, heavy rare earth element (HREE) 
contents and low Mg number. The E-type plagioclase lherzolite, on the other hand, is 
enriched in light rare earth element (LREE).     

 
Figure 2. (a) δ7Li (b) Li abundance (c) La concentration (Takazawa et al., 2000) normalised 

to CI chondrite (McDounough and Sun, 1995) (d) TiO2 contents normalised to the 
primitive mantle (Pearson et al., 2004) versus distances for the samples as a function 
of stratigraphic distances from the contact between mafic layer and dunite. The 
dashed lines represent the lithological boundaries. The 2SD represents external 
reproducibility of peridotite standard JP-1. The grey bend shows the range of δ7Li 
value in the fertile mantle based on peridotite xenoliths (Pogge von Strandmann et al., 
2011).  

 
Figure 3. Lithium isotope compositions versus lithium concentrations for peridotite samples 

from Horoman. The error bars represent 2SD. 
 
Figure 4. (a) The results of Mg isotopic compositions from this study and (b) Mg# (Takazawa 

et al., 2000) for the Horoman peridotite complex plotted as a function of stratigraphic 
distance. The 2SD represents external reproducibility of peridotite standard JP-1.  

 
Figure 5. Li and Mg isotopic compositions of minerals in sample BZ-216 and BZ-250. The  

error bars represent external reproducibility of peridotite standard JP-1. 
 
Figure 6. Comparison of the Mg isotope composition of the upper mantle obtained from this 

study and the literature. 
 
Figure 7. An illustration of the three-stage diffusion processes during/after melts percolate 

into the minerals (see text for details). (a) Initial condition of the mantle. (b) Li 
diffusion from a sealed percolating melt into minerals in the region of thickness 2h. (c) 
Li redistribution between minerals after the melt is gone. (d) Li diffuses from area 2h 
to surrounding peridotites. 

 
Figure 8. Modelled results of Li isotopic ratios and Li concentrations in olivine after different 

times and for different concentrations of percolating melts for diffusion at 950 ℃ and 
1200 ℃ in a sphere model. The initial composition of olivine is shown at t = 0, which 
are calculated based on equilibrium isotope fractionation in the minerals at high 
temperature (Jeffcoate et al., 2007; Seitz et al., 2004). The compositions of the olivine 
equilibrated with the infiltrating melts are shown at t = 25 and 1000 (years) at 1200℃ 
and 950℃ respectively. The Li concentrations of the melts are calculated based on 0.1, 
1 and 2 % degree of partial melting from a primitive mantle source respectively. Li 
diffusivities in olivine are from Dohmen et al. (2010) and Coogan et al. (2005). β is 
0.27 from Richter et al. (2014). The parameters used for diffusion in a sphere model 
are listed in Table 3. The Li composition of measured olivine in sample BZ-216 is 
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also shown to compare with the modelled results. 
 
Figure 9. Evaluation the second stage (a) Li isotopic ratios and (b) Li concentration variation 

using non-isothermal diffusion models using Equation (6) to estimate the best fit to 
measured data and to obtain λ. The area where melt infiltrated (enriched zone) is 
shown as “2h”. The initial bulk composition of the peridotites at the enriched zone is 
obtained from the first stage model (see Figure 8). The initial composition of the 
country rock is shown as the gray line, which is calculated by averaging the 
compositions of the country rocks on the left- and right-hand side of the enriched zone 
([Li] = 1.1 µg/g, δ7Li  = 3.6 ‰) excluding the plagioclase lherzolites. The modelled 
curves fit our measured data when the λ is smaller than 1.39 x 1010.    

 
 



Table 1 Lithium concentrations and Li and Mg isotopic compositions in mantle peridotites 
from Horoman, Japan. The numbers of analytical sessions is represented by “n”. Each 
analytical session contains 4 measurements. The 2SD represents the ‘external’ reproducibility 
instead of repeats measured in a single analytical session (4 measurements). The 2SD is not 
shown when the measurement of the sample was obtained from one single analytical session. 
 
Sample ID Height Rock type Dissolutions Chemistry n δ7Li 2SD [Li] a 2SD [Li] b 2SD Dissolutions Chemistry n δ26Mg 2SD δ25Mg 2SD MgO Mg # Lac

 (m) (‰) (μg/g)  (μg/g)  (‰)  (‰)  (wt %) (ng/g)
BZ-125L 4.1 Harzburgite 1 2 2 2.3 0.3 1.01 0.03 1.11 0.16 1 1 1 -0.22 -0.12 45.72 0.914        5.00
BZ-116 9.1 Harzburgite 2 3 3 4.2 0.3 1.15 0.02 1.18 0.68 2 5 6 -0.23 0.03 -0.12 0.02 46.21 0.914          5.40d

BZ-117L 13.5 Harzburgite 1 2 2 3.5 0.0 0.86 0.04 1.04 0.19 1 1 1 -0.21 -0.12 45.46 0.914      21.0
BZ-131L 19.2 Harzburgite 2 3 3 3.6 0.5 1.20 0.07 1.17 0.42 1 2 3 -0.19 0.04 -0.10 0.03 45.88 0.913        14.1d

BZ-216 23.2 Harzburgite 1 2 2 0.5 0.1 1.43 0.02 1.46 0.10 2 3 5 -0.21 0.04 -0.12 0.01 45.90 0.915      65.0
BZ-201L 23.5 Lherzolite 2 3 3 1.6 0.1 1.37 0.03 1.38 0.48 2 3 5 -0.25 0.02 -0.13 0.01 44.60 0.909      77.0
BZ-203L 23.9 Lherzolite 2 3 3 3.7 0.9 1.17 0.07 1.29 0.28 2 3 4 -0.24 0.09 -0.12 0.04 44.36 0.909      62.0
BZ-120 26.8 Lherzolite 4.5 1.12 0.03 1 2 2 -0.25 0.06 -0.14 0.03 42.65 0.906      35.0
BZ-134L 39.9 Lherzolite 1 1 1 3.7 0.0 1.15 0.07 1.02 3 3 5 -0.24 0.07 -0.13 0.04 44.43 0.913         5.00
BZ-143 72.3 Lherzolite 1 2 2 3.8 1.41 0.08 1.44 3 3 6 -0.20 0.10 -0.10 0.05 42.24 0.905         8.00
BZ-145 79.0 Lherzolite 4.8 1.09 0.03 1 2 2 -0.27 0.06 -0.14 0.01 41.97 0.904           8.48d

BZ-146 83.3 Plag Lher 2 2 2 1.5 0.2 1.35 0.05 1.19 0.43 2 4 5 -0.25 0.04 -0.13 0.02 41.60 0.905      16.0
BZ-250 84.3 Plag Lher 2 2 2 1.3 0.7 1.36 0.01 1.46 0.31 2 3 4 -0.25 0.08 -0.12 0.06 40.39 0.904      20.0
BZ-251 86.2 Plag Lher 1 2 2 3.6 0.1 1.39 0.05 1.46 0.20 3 3 5 -0.24 0.01 -0.12 0.01 39.43 0.899      35.0
BZ-252 87.9 Plag Lher 1 1 1 3.3 0.0 1.48 0.09 1.26 2 2 4 -0.25 0.04 -0.13 0.03 38.70 0.895      56.0
BZ-253 89.3 Plag Lher 2 2 2 -0.2 0.3 1.64 0.05 1.55 0.33 1 2 3 -0.21 0.03 -0.11 0.02 40.06 0.907 113
BZ-254 94.7 Plag Lher 1 1 1 2.0 0.0 1.56 0.07 1.48 0.34 1 3 5 -0.23 0.03 -0.12 0.03 40.18 0.900      70.0  
a The Li concentrations were determined by isotope dilution method. 
b The Li concentrations were obtained by peak height comparison with L-SVEC.  
c The La concentrations are from Takazawa et al. (2000). 
d From Takazawa et al. (unpublished data). 
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Table 2 Lithium and magnesium isotopic compositions of mineral separates in Horoman 
peridotite massif 

Sample ID Mineral mode δ26Mg 2SD δ25Mg 2SD δ7Li 2SD [Li]
(%) (‰)  (‰) (‰) (μg/g)

BZ-216 ol 77.2 -0.23 0.01 -0.12 0.02 0.4 1.48
BZ-216 cpx 3.0 -0.13 -0.07 0.6 1.30
BZ-216 opx 19.6 -0.24 0.04 -0.12 0.02 1.1 0.90
BZ-216 WRC -0.23 -0.12 0.5 1.36
BZ-216 WRM -0.21 0.04 -0.12 0.01 0.5 0.1 1.43

BZ-250 ol 62.1 -0.29 0.03 -0.15 0.00 0.7 1.60
BZ-250 cpx 8.0 -0.21 0.03 -0.10 0.03 2.1 1.85
BZ-250 opx 25.3 -0.28 0.04 -0.15 0.02 3.4 1.03
BZ-250 WRC -0.27 -0.14 1.5 1.40

BZ-250 WRM -0.25 -0.25 -0.12 0.06 1.3 0.7 1.36  

C: Calculated bulk δ26Mg based on mineral mode from Takazawa et al. (2000) 
M: Measured bulk δ26Mg 
 

Table 2



Table 3 Parameters for diffusion in a sphere model 

C 1  (μg/g)a Kd C 0  (μg/g)e D at 1200 ℃ (m2/s)f D at 950 ℃ (m2/s)f Grain Radius (mm)

melt 11.1 - 12.5b

ol 1.2 0.15c 1.67 - 1.88 2.9 x 10-15 3.8 x 10-17 1.5
cpx 0.7 0.09d 0.96 - 1.08 2.1 x 10-11 2.8 x 10-13 0.1  

a: the initial Li concentration in the melt or in mineral of interest, which is calculated by the 
Li concentration in bulk unmetasomatised peridotites and the inter-mineral partition 
coefficients (Brenan et al., 1998; Ottolini et al., 2009; Yakob et al., 2012) 

b: calculated by 0.1-2% batch melting from a primitive mantle source 
c: from Brenan et al. (1998) 
d: calculated based on Kdol/melt (Brenan et al., 1998) and Kdol/clinopyroxene (Ottolini et al., 2009; 
Yakob et al., 2012) 
e: calculated by the concentration of the melt and the Kd 
f: Li diffusivities in olivine and clinopyroxene at 1200 and 950 ℃  calculated by using 
equation (20) in Dohmen et al. (2010) and Coogan et al. (2005) 
 
In addition to those already described above, we assume the initial δ7Li value in melt is ~3.5 
‰ based on the pristine Li isotopic composition in the upper mantle (e.g. Pogge von 
Strandmann et al 2011).  Melts generated from the equilibrium mantle melting should have a 
similar δ7Li value to their source (Jeffcoate et al., 2007) and typically show little variability 
around this value (see Krienitz et al. 2012). The initial δ7Li value is set to be ~3.5 ‰ for 
olivine, as this dominates the bulk peridotite composition.  We further briefly consider 
diffusive exchange with clinopyroxene, which for convenience we assume has the same δ7Li 
as olivine. 
 

Table 3
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