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Abstract: Statement of the Problem. The colonization of micro-organisms 

on acrylic resin dentures may result in denture-induced stomatitis. No 

efficient coating has yet been proposed to address this issue. 

Purpose. The purpose of this in vitro study was to assess the effect of 

various initial surface finishes and different Parylene (P) coating 

thicknesses on the surface roughness (Ra) and surface free energy (SFE) 

of Parylene coated polymethyl methacrylate (PMMA). 

Material and Methods. One hundred and sixty PMMA specimens were produced 

and divided into 8 groups as follows: Group A: uncoated-1000grit finish; 

group Ap1: 10 μm P coated -1000grit finish; group B: uncoated - 1200grit 

finish; group Bp: 10 μm P coated - 1200grit finish; group C: uncoated - 

2400grit finish; group Cp: 10 μm P coated - 2400grit finish; group Ap2: 

20 μm P coated - 1000grit finish; group Ap3: 30 μm P coated - 1000grit 

finish. The Ra of all specimens was measured with a noncontact 

profilometer. To calculate the SFE, the Owens-Wendt approach was applied 

after measuring the contact angles with a goniometer. The topography of 

the specimens was observed by scanning electron microscope. 

Results. Groups Ap1 and Bp presented significantly lower Ra values 

compared with their respective uncoated groups A and B (P<.001). No 

statistical difference was found between the Ra values of groups C and 

Cp, between A and Ap3, and between Ap2 and Ap3. The SFE values of the 

coated groups were significantly higher than the SFE values of the 

uncoated groups with the same initial finish (P<.001).  

Conclusions. Coating with a 10-μm layer of Parylene C resulted in lower 

Ra values for the rougher groups and increased SFE values. Increasing the 

coating thickness resulted in an increase of the Ra.  

CLINICAL IMPLICATIONS.  

The coating of removable prostheses with Parylene C alters the surface 

properties in a way which may reduce microorganism colonization of the 

fitting surfaces. More experiments are needed to verify this approach. 
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The effect of different initial finishes and Parylene coating thickness on the surface properties of 

coated PMMA 

ABSTRACT 

Statement of the Problem. The colonization of micro-organisms on acrylic resin dentures may 

result in denture-induced stomatitis. No efficient coating has yet been proposed to address this 

issue. 

Purpose. The purpose of this in vitro study was to assess the effect of various initial surface 

finishes and different Parylene (P) coating thicknesses on the surface roughness (Ra) and surface 

free energy (SFE) of Parylene coated polymethyl methacrylate (PMMA). 

Material and Methods. One hundred and sixty PMMA specimens were produced and divided 

into 8 groups as follows: Group A: uncoated-1000grit finish; group Ap1: 10 μm P coated -

1000grit finish; group B: uncoated - 1200grit finish; group Bp: 10 μm P coated - 1200grit finish; 

group C: uncoated - 2400grit finish; group Cp: 10 μm P coated - 2400grit finish; group Ap2: 

20 μm P coated - 1000grit finish; group Ap3: 30 μm P coated - 1000grit finish. The Ra of all 

specimens was measured with a noncontact profilometer. To calculate the SFE, the Owens-

Wendt approach was applied after measuring the contact angles with a goniometer. The 

topography of the specimens was observed by scanning electron microscope. 

Results. Groups Ap1 and Bp presented significantly lower Ra values compared with their 

respective uncoated groups A and B (P<.001). No statistical difference was found between the 

Ra values of groups C and Cp, between A and Ap3, and between Ap2 and Ap3. The SFE values 

of the coated groups were significantly higher than the SFE values of the uncoated groups with 

the same initial finish (P<.001).  
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Conclusions. Coating with a 10-μm layer of Parylene C resulted in lower Ra values for the 

rougher groups and increased SFE values. Increasing the coating thickness resulted in an 

increase of the Ra.  

CLINICAL IMPLICATIONS.  

The coating of removable prostheses with Parylene C alters the surface properties in a way 

which may reduce microorganism colonization of the fitting surfaces. More experiments are 

needed to verify this approach.  

INTRODUCTION 

Although widely used in dentistry, polymethyl methacrylate (PMMA) possesses a 

number of shortcomings regarding its material properties that may manifest after long-term 

intraoral use.
1
 These include discoloration, wear, and surface adhesion and accumulation of 

microorganisms. The last is attributed to its porous surface and has been associated with oral 

infections such as denture-induced stomatitis.
2,3

 Candida species are dominant in this denture 

biofilm,
4
 but another pathogen, methicillin-resistant Staphylococcus aureus (MRSA) has also 

been isolated from the oral cavity of elderly or hospitalized patients, and its presence could have 

implications in regard to cross infection and systemic infection.
5,6

 

The initial adhesion of microorganisms on surfaces depends on their physical and 

chemical properties along with those of the substrates and environmental solutions.
7
 Two 

material properties that affect initial adhesion are surface roughness (Ra) and surface free energy 

(SFE).
8,9

 Restorative materials with increased surface roughness serve as a favorable substrate 

for the attachment of microorganisms,
10

 and a surface roughness of 0.2 μm has been established 

as the threshold for bacterial adhesion, above which the aggregation of bacteria increases 



dramatically.
9,11

 Surface free energy also plays a significant role in the initial phase of the 

adhesion of microorganisms
9,12

 and may be affected by some surface characteristics such as the 

surface charge, topography, and chemical composition.
13

 Bacteria with low free energy tend to 

attach to surfaces with low SFE, and the exact opposite applies to microbes with high SFE.
14,15

 

However, the SFE of a substrate is a weaker determinant of bacterial adhesion compared with its 

surface roughness,
16

 and these properties are also affected by the acquired salivary pellicle.
17,18 

Although various studies
19-21

 have shown that laboratory and chairside polishing 

techniques can achieve a surface roughness below the 0.2-μm threshold for the polishing 

surfaces of intraoral removable prostheses made of PMMA, this does not hold true for the fitting 

surfaces. Denture base materials processed under ideal laboratory conditions after wax pattern 

investment still show Ra measurements between 3.4 and 7.6 μm.
22

 That fitting surface is the one 

vulnerable to microbial colonization. In order to overcome this issue a number of researchers 

developed techniques and applied different coating materials, such as titanium dioxide, oils, 

monomers, or high polymerized glaze.
23-26

 All of these coatings presented issues such as 

discoloration of the denture material, limited short-term improvement of its mechanical 

properties, or questionable longevity in the oral environment, preventing them from becoming 

established.
23-26

  

Parylene, the trade name of poly para-xylylene, refers to a family of polymers used as 

coating materials because of their unique ability to create a protective layer on various surfaces.
27

 

Parylene is synthesized by vapor deposition polymerization
28,29

 and can form a film of uniform 

thickness, which is almost impermeable to moisture,
30-32

 biocompatible, chemically inert, and 

thermally stable. In addition, it possesses a high level of crystallinity and good mechanical 

properties.
28

 Parylene is used in the medical field,
30

 but the application in dentistry remains 



limited, although experimental work has shown a number of advantages,
33

 including a decrease 

of the microbial adhesion on coated acrylic resin and silicone specimens.
34

 Parylene-coated 

PMMA has also demonstrated a significantly higher abrasion resistance to mechanical wear 

(brushing with toothpaste and pumice) compared wth the uncoated specimens.
35

 Therefore, the 

potential use of Parylene as a coating material for PMMA intraoral prostheses warrants further 

investigation. 

The purpose of this study was to assess the effect of various initial PMMA surface 

finishes and different Parylene coating thicknesses on the surface properties (Ra and SFE) of 

PMMA. It is part of a series of experimental studies assessing the potential use of Parylene as a 

coating material for PMMA intraoral prostheses.  

MATERIAL AND METHODS 

Two different experiments were designed as part of this investigation; one evaluating the 

effect of the initial surface finishing, and the second examining the effect of different Parylene 

coating thicknesses on the surface properties of PMMA.  

Heat-polymerized PMMA (C&J De-luxe; Chaperlin & Jacobs Ltd) was used for the 

fabrication of the specimens in a ratio of 1:3 (30 mL monomer, 90 cc powder) according to the 

manufacturer’s instructions. A stone mold was fabricated in a large, rectangular custom-made 

metal flask, which enabled the production of identical rectangular PMMA specimens of 

15×15×3 mm in dimension. Wax (Associated Dental Products Ltd) was used to form the stone 

mold. The extended polymerization took place in a boiler unit (Acrydig 10, Manfredi). The 

temperature was first increased to 70°C within an hour and held at this temperature for 4 hours. It 

was then raised to 100°C over the next hour and maintained at this temperature for 4 more hours. 

After cooling, the acrylic resin pieces were removed from the mold, and their periphery was 



made smooth with an acrylic bur (Acrylic Trimmer Crosscut, Komet). Following this, the 

specimens were labeled on 1 surface and stored in airtight and moisture sealed containers. 

One hundred and sixty PMMA specimens were produced and divided to form the groups 

of the 2 experiments (Table 1). Groups A and Ap1 were common to both experiments. The 

sample size per group (20 specimens) was determined from data from previous publications
34,35 

and software (Sample Size Tables for Clinical Studies v1.0; National Cancer Center). All 160 

specimens produced were finished with abrasive paper (Waterproof silicon carbide paper; 

Struers) of different grits in a polishing machine (Laboforce-1, Labopol-5; Struers). All the 

groups of experiment 2 (A, Ap1, Ap2, Ap3) were finished with 1000 grit abrasive paper for 45 

seconds. Groups B and Bp were finished with 1200 grit abrasive paper for 60 seconds, and 

groups C and Cp were finished with 1200 grit abrasive paper for 60 seconds initially, followed 

by 2400 grit abrasive paper for 30 seconds. Only 1 surface of the specimens was polished. 

Finishing was carried out at 300 rpm under constant pressure and water irrigation. The abrasive 

paper was cleaned under running tap water after each cycle and was replaced after 5 polishing 

cycles (equivalent to 15 specimens polished).   

Of the total specimens prepared, 100 (groups Ap1, Bp, Cp, Ap2, and Ap3) were sent to 

Specialty Coating Systems Ltd. to be coated with Parylene C according to the following 

protocol: Groups Ap1, Bp, and Cp were coated with a thickness of 10 μm, group Ap2 with a 

thickness of 20 μm, and group Ap3 with a thickness of 30 μm. The specimens were initially 

rinsed with de-ionized water and isopropanol and underwent plasma treatment. An adhesion 

promoter, Silane A174 – (3-[Methacryloyloxy]propyl) trimethoxysilane - was subsequently 

applied as the specimens were suspended with special clips in the coating chamber for vapor 

deposition of Parylene C. After the coating procedure, the specimens were mailed back 



individually wrapped in vacuum sealed bags. The specimens were handled with nitrile gloves to 

avoid contamination of the surfaces before, during, and after testing. 

A laser noncontact profilometer (ProScan 1000; Scantron) was used to calculate the 

arithmetic average height (Ra) of the specimens.
36-38

 The program was set to operate at a height 

of 200 μm. The Ra value calculated for each scanned point was the average of 4 readings. Three 

areas measuring 2×2 mm and situated 3 mm apart from each other to avoid any overlap were 

scanned on each specimen. A total of 30 readings per specimen were obtained and the mean Ra 

value was calculated. 

For the SFE calculation, 3 liquids (deionized water, glycerol, and di-iodomethane) with 

well-established polar and dispersive components of surface tension were used with the sessile 

drop technique on the surface of the specimens. The contact angle measurements were obtained 

with a goniometer (Cam 200; KSV Instruments Ltd.) (Fig. 1).
39

 A droplet of 10 μL size was 

allowed to drop onto the specimens, and the camera was set to capture frames of 1 second 

intervals for 10 seconds. The Cam2008 software (KSV Instruments Ltd) calculated the right and 

left static contact angles of the droplet for all the 10 frames, producing 20 readings for the 

calculation of the mean value of each specimen. The same process was followed for all 3 liquids. 

After completion of the contact angle experiment, the data were transferred to the SFECam2008 

software (KSV Instruments Ltd), and the surface free energy of each specimen was calculated by 

applying the Owens-Wendt approach.
40 

A scanning electron microscope (SEM) (XL 30; Philips) was used to visualize the surface 

topography of 2 arbitrarily selected specimens from each group under ×500, ×1000 and ×2000 

magnification.   



The data obtained after calculating the Ra and the SFE of the specimens were analyzed 

with software (SPSS v20; IBM Corp). Two-way analysis of variance (ANOVA) was applied 

individually for the 2 variables (Ra and SFE) of the groups of the first experiment (α=.05).  For 

the groups of the second experiment, the statistical difference of the mean Ra values was 

investigated with a Kruskal-Wallis test, whereas a 1-way ANOVA was used to compare the 

mean SFE values. A post hoc Bonferonni test was carried out to compensate for the multiple 

comparisons.  

 

RESULTS 

Table 2 provides a synopsis of the mean surface roughness (Ra) values of all 

experimental groups. The average Ra values for the 10-μm coated groups with 1000 and 1200 

grit surface finish (groups Ap1 and Bp) were significantly lower (P<.001) than their uncoated 

counterparts (groups A and B), with a decrease of 55% and 49% . No statistically significant 

difference (P=.869) was found, however, between the mean Ra values of the coated and 

uncoated groups with 2400 grit initial finish (groups C and Cp) with an equal mean Ra of 

0.61 μm.  

Comparison of the data of the 4 groups with 1000 grit initial finish (A, Ap1, Ap2, and 

Ap3) revealed a significant decrease (P<.001) of the mean Ra after coating with 10 μm of 

Parylene (group Ap1, 55% reduction), which became less apparent as the coating increased to 20 

μm (group Ap2, 33% reduction) and 30 μm (group Ap3, 27% reduction). The difference between 

the groups A and Ap2 (P=.012) and between the groups Ap1 and Ap2 (P=.001) was statistically 

significant, whereas the groups Ap2 and Ap3 (P=1) and the groups A and Ap3 (P=.189) were 

not statistically different (Fig. 2). 



Tables 3 and 4 summarize the mean values of total SFE along with its dispersive and 

polar components in mN/m for the different groups. In the first experiment, the mean SFE values 

of the uncoated groups (A, B, C) were lower than the mean values of the respective coated 

groups (Ap1, Bp, Cp). Statistical analysis showed a statistically significant difference at the 1% 

level (P<.01).  

Comparing the groups of the second experiment revealed an increase of SFE as a result 

of the increase in the thickness of the coating. A statistically significant difference was found 

among all the sample groups (P=.001), except for between the Ap2 and Ap3 coated groups, 

where the difference in average SFE was not statistically significant (P=.6).  

The scans of the uncoated specimens with 1000 and 1200 grit finish (groups A and B) 

revealed a significant number of irregularities, with the group A displaying a greater proportion 

of these (Fig. 3, A), (Fig. 4, A). Parallel, unidirectional indentation grooves from the polishing 

procedure were visible in both specimens. Although still present, these imperfections have been 

filled with Parylene, leaving a more uniform appearance for the groups Ap1 and Bp (Fig. 3, B), 

(Fig. 4, B). The uncoated and coated 2400 grit finish groups (C and Cp) both illustrate a smooth 

surface with only shallow indentations present across the specimen surfaces (Fig. 4, C,D). 

Coating of the PMMA specimens with 20 and 30 μm of Parylene (groups Ap2 and Ap3) created 

a surface with more prominent areas of convexity compared with the 10 μm coated groups (Fig. 

3, C,D).  

DISCUSSION 

This study investigated how the different initial finishing and different Parylene C 

coating thicknesses of PMMA specimens would affect surface roughness and SFE. The results 



demonstrated a decrease in Ra after the coating for almost all the groups. This finding was 

similar to the results of a previous study
35

 with a similar experimental protocol in which lower 

Ra values were achieved as a result of the coating. Interestingly, the coating of specimens 

finished with 2400 grit initial finish had no effect on the surface roughness. A possible 

explanation could be that the beneficial smoothing effect of Parylene coating was limited on 

surfaces with already low roughness levels because of the lack of deep crevices and grooves on a 

micrometer scale that needed to be filled. Another finding was that the reduction in surface 

roughness after coating was not proportional to the initial Ra, even though the same thickness of 

coating was applied, a possible indication that Parylene C deposition was not of absolute 

consistent thickness and entirely uniform everywhere. A study on Parylene coated metallic 

substrates
32

 supported this finding but direct comparison is limited because of the difference in 

the substrates and in the instrumentation used for the Ra measurement. The results of this study 

also showed that the smoothest surfaces were produced when the coating thickness was 10 μm. 

The increase in the Ra values as the thickness of the Parylene coating increased is also supported 

by a study
41

 which demonstrated that the top surface was getting rougher with increasing 

thickness and the deposition of Parylene nuclei was getting denser and nanoparticles were 

visible. The results of the current study also showed that, even though Parylene C deposition 

resulted in smoother surfaces, it failed to produce surfaces with Ra values less than 0.2 μm, the 

threshold for microbial colonization.
11

 Parylene coating, it seems, cannot replace the traditional 

finishing and polishing procedure of PMMA
19-21

 in terms of initial surface roughness. However, 

as the fitting surface cannot be exposed to finishing treatment and constitutes the main area of 

bacterial accumulation and growth, Parylene coating can still be beneficial by producing 

smoother surfaces, which may also be more abrasion-resistant.
35

 



 The use of abrasive paper as the finishing medium allowed for standardization as a 

polishing machine was used to eliminate the potential errors of manual handling. The mean 

surface roughness (2.69 μm) achieved by the use of 1000 grit abrasive paper (Group A) 

represented more closely the expected roughness of a fitting surface of a removable dental 

prosthesis, which can vary between 3.4 and 7.6 μm.
22,35

 A noncontact laser profilometer was 

used to measure surface roughness, and the Ra, arithmetic average height was calculated. Ra is 

the most common amplitude parameter used to characterize surface roughness
10,19,35

 and was 

preferred over measuring the Rz (ten point height), which is more sensitive in cases of high 

peaks and deep valleys or the Rq (root mean square roughness), which is appropriate when a 

large deviation from the mean line is present.
36 

A noncontact profilometer was selected in 

contrast with a number of studies, in which measurement of the surface topography of acrylic 

resin specimens after different polishing procedures was performed by a contact stylus-type 

profilometer.
19-21

 The use of a diamond or ruby stylus is related to potential damage of the 

specimen while it is moving on its surface. In addition, the stylus usually measures the deviations 

in the vertical direction without taking into account the average gradient of the surface 

roughness
37

 and involves a more complicated procedure.
38

  

The values resulting from the SFE calculation indicated an increase of the surface free 

energy after coating with Parylene C for all the groups, which was statistically significant. The 

increase in SFE may be attributed to the change in roughness of the specimens, as altering the Ra 

can affect the contact angle and the SFE.
12,42 

 Another explanation could be that the baseline SFE 

of Parylene C itself was higher than that of PMMA and the overall chemical interactions on the 

Parylene surface layer brought about the change in SFE. To the authors’ best knowledge, the 

Zhou et al
34 

were the first to investigate the effect of Parylene coating on the SFE of acrylic resin. 



The approach used for the SFE calculation was the same as in the present experiment, but the 

specimens were coated with 5 μm of a different variety of Parylene N.
34

 The results
34

 showed no 

statistically significant change of the SFE after coating, although the values obtained were higher 

for the coated specimens, confirming the increasing trend after coating observed in the present 

experiment. 

The calculation of surface free energy (SFE) was carried out with the Owens-Wendt 

method, which is well supported in the literature.
25,34,43

 A limitation of most of the methods used 

for the SFE calculation though is that the Young equation assumes that the solid surface is rigid, 

chemically homogemous, and smooth on an atomic scale.
39

 The selection of the probe liquids 

was also based on the experimental protocols of relevant studies.
7,17,34

 A further limitation to this 

study was that all measurements were made under laboratory conditions. The presence of a 

salivary pellicle formed on the surface of the specimens might have simulated the oral 

environment to a certain degree, providing more accurate SFE values of these materials in situ.
17

 

However, this view is disputed by a number of studies in the literature
9,18 

which support the idea 

that the SFE properties of a material can be transferred through the salivary proteins and are not 

affected by them.  

The impact of SFE on bacterial adhesion is also an ambiguous issue. It appears that the 

SFE of the material is important at the initial stages of bacterial adhesion, whereas its influence 

decreases with prolonged biofilm formation.
12 

 Although surfaces with low SFE promote less 

microbial retention,
8
 bacteria also tend to adhere to surfaces that have a similar SFE.

14,17
 Taking 

into account these findings and the knowledge that the roughness of the material plays a 

substantial role in plaque formation, assessing the clinical significance of the increased SFE of 



the PMMA specimens after coating is difficult. Previous work,
34 

however, has demonstrated that 

the increased SFE of Parylene coated specimens results in lower Candida albicans adhesion. 

More studies are needed to explore how the surface properties of Parylene C can affect 

the microbial adhesion and also investigate the effect of Parylene C on the retentive, mechanical, 

and chemical properties as well as color stability of removable prostheses. Until clinical trials 

produce favorable results, its success as a coating material against biofilm formation can only be 

assumed. 

CONCLUSIONS   

Within the limitations of this in vitro study, the following conclusions can be drawn: 

1. Coating with a 10-μm layer of Parylene C had a smoothing effect on surfaces which 

resembles the fitting surface of denture (Ra>3.4 μm) but did not achieve Ra values below 

the 0.2-μm threshold of microbial colonization. 

2. The use of a 10-μm coating produced favorable results in comparison with the 20-μm and 

30-μm coating regarding the surface roughness of acrylic resin. 

3. Coating with Parylene C of all thicknesses resulted in specimens with statistically 

significantly higher SFE values than their uncoated counterparts. 
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Table 1. Description of experimental groups  

 

Experimental Groups Finishing Grit (μ) Parylene C Coating (μ) 

((μ(μm) 

E
x
p

er
im

en
t 

1
 

A 1000 - 

Ap1 1000 10 

B 1200 -  

Bp 1200 10 

C 2400 - 

 
Cp 2400 10 

E
x
p

er
im

en
t 

2
 A 1000 - 

Ap1 1000 10 

Ap2 1000 20 

Ap3 1000 30 

 

Group A: uncoated-1000grit finish 

Group Ap1: 10μm P coated-1000grit finish 

Group B: uncoated-1200grit finish 

Group Bp: 10μm P coated-1200grit finish 

Group C: uncoated-2400grit finish 

Group Cp: 10μm P coated-2400grit finish 

Group Ap2: 20μm P coated-1000grit finish 

Group Ap3: 30μm P coated-1000grit finish 

 

 

 

 

 

 

 

 

 



 

 

Table 2. Surface roughness values in experiments 1 and 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Group A: uncoated-1000-grit finish 

Group Ap1: 10μm P coated-1000-grit finish 

Group B: uncoated-1200-grit finish 

Group Bp: 10μm P coated-1200-grit finish 

Group C: uncoated-2400-grit finish 

Group Cp: 10μm P coated-2400-grit finish 

Group Ap2: 20μm P coated-1000grit finish 

Group Ap3: 30μm P coated-1000grit finish 

 

Experiment 1 Mean Ra 

(SD) 

Sig Experiment 2 Mean Ra (SD) 

  A 2.69μm 

(0.80) 

<0.001   A 2.69μm (0.80) 

  Ap1 1.21μm 

(0.20) 

  Ap1 1.21μm (0.20) 

  B 1.95μm 

(0.70) 

<0.001   Ap2 1.79μm (0.36) 

  Bp 1.00μm 

(0.22) 

  Ap3 1.97μm (0.40) 

  C 0.61μm 

(0.16) 

0.869   

  Cp 0.61μm 

(0.15) 

  



 

 

energy values in experiment 1 

Table 3. Surface free energy values in experiment 1 

 Surface 

free 

energy 

values in 

 

 

 

 

 

 

DSFE: Surface Free Energy – Dispersive Component 

PSFE: Surface Free Energy - Polar Component 

TSFE: Total Surface Free Energy 

SD: Standard Deviation 

Experimental 

Group 

Mean DSFE Mean PSFE Mean TSFE (SD) 

  A 29.86 mN/m 3.81 mN/m 33.27 mN/m (3.31) 

  Ap1   39.00 mN/m 2.02 mN/m 38.02 mN/m (3.07) 

  B 27.84 mN/m 2.25 mN/m 30.09 mN/m (2.87) 

  Bp 32.34 mN/m 1.31 mN/m 33.65 mN/m (1.99) 

  C 24.98 mN/m 3.90 mN/m 28.88 mN/m (1.66) 

  Cp 29.57 mN/m 1.75 mN/m 31.32 mN/m (1.61) 



 

Table 4. Surface free energy values in experiment 2Surface free energy values in experiment 2 

Experimental 

Group 

Mean DSFE Mean PSFE Mean TSFE (SD) 

  A 29.86 mN/m 3.81 mN/m 33.27 mN/m (3.31) 

  Ap1   39.00 mN/m 2.02 mN/m 38.02 mN/m (3.07) 

  Ap2 47.05 mN/m 2.39 mN/m 49.44 mN/m (2.27) 

  Ap3 45.28 mN/m 2.28 mN/m 47.56 mN/m (5.01) 

 

DSFE: Surface Free Energy – Dispersive Component 

PSFE: Surface Free Energy - Polar Component 

TSFE: Total Surface Free Energy 

SD: Standard Deviation 

 

 

 

 

 



 

LEGENDS 

 

Figure 1: Image of goniometer (Cam 200; KSV Instruments Ltd). 

 

Figure 2: Box-plots of Ra values of groups in experiment 2. 

*: statistically significant difference 

**: nonstatistically significant difference 

 

 

 

Figure 3: SEM images (×2000 magnification) of PMMA and Parylene-coated PMMA specimens. A, 

PMMA specimen with 1000 grit finishing. B, 10 μm Parylene-coated PMMA specimen with 1000 grit 

finishing. C, 20 μm Parylene-coated PMMA specimen with 1000 grit finishing. D, 30 μm Parylene-

coated PMMA specimen with 1000 grit finishing. 

 

 

 

 



 

 

Figure 4: SEM images (×2000 magnification) of PMMA and Parylene-coated PMMA specimens. A,  

PMMA specimen with 1200 grit finishing. B, 10 μm Parylene-coated PMMA specimen with 1200 grit 

finishing. C, PMMA specimen with 2400 grit finishing. D, 10 μm Parylene-coated PMMA specimen 

with 2400 grit finishing. 
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