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Abstract

G proteins and phospholipids are two major classes of signalling molecule. They are
each—independently and together—involved in diverse ‘signalling pathways’ – bio-
chemical networks through which cells maintain healthy responses to stimuli.
A unique ‘cross-talk motif’ is formed by regulation of the phospholipid-modifying

enzymes phospholipase D (PLD) and phosphatidylinositol 4-phosphate 5-kinase (PI4P5K)
by the Arf family of small G proteins and—curiously—each other’s product.

Here, understanding of this inherently complex motif has been strengthened by the
development and analysis of mathematical models, specifically systems of ordinary
differential equations (ODEs).

Construction of simple empirical models suggests asymmetry in the mechanisms of
regulation of the enzymes is responsible for production of two distinct outgoing signals
from a single input signal, one displaying threshold activation behaviour.

Additionally, well-defined quasi-steady-state (QSS)mechanistic models (à laMichaelis-
Menten) have been developed for each of: PLD; PI4P5K; and G protein/Arf regula-
tion. During this process—due to insufficient pre-existing descriptions—biochemically-
plausible assumptions were required for certain regulatory and catalytic interactions.
Analysis of the G protein regulation models establishes that—contrary to previous

representations—this regulation is best described by a balance/unbalance mechanism,
where observed activation absolutely requires the presence of the inactivator.

Together, the QSS models can be combined to form a complete model of the Arf/PLD/
PI4P5K motif suitable for computational simulation – preliminary parameters show
that this model is capable of displaying physiologically-plausible behaviours

These results give a better understanding of the signalling role of the Arf/PLD/PI4P5K
motif; lead to novel biological hypotheses amenable to later experimental validation;
highlight where our current biological understanding of the system is insufficient; and
suggest novel methods for the therapeutic control of G proteins.
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Enzymes are biological molecules that catalyse a reaction, converting one molecule (the
substrate) into another (the product), a process which may also require the presence of
further regulatory molecules. At each stage of the reaction the enzyme will be bound to a
different set of molecules. Each of these is called an ‘enzyme complex’ (the black circles).
When the transitions between the enzyme complexes are drawn (the white arrows)
we get ‘the graph on the enzyme complexes’. (This usage of ‘graph’ is synonymous
with ‘network’.) Different enzymes will have different behaviours and so have different
graphs. Here I have displayed the graphs of three highly inter-regulated enzymes (from
top-to-bottom): an Arf-GEF; PLD; and PI4P5K.

UCL Graduate School, Research as Art competition 2014 submission
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If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is. John von Neumann (Alt 1972)

If the difficulty of a physiological problem is mathematical in essence,
ten physiologists ignorant of mathematics will get precisely as far as one
physiologist ignorant of mathematics, and no further. If a physiologist
who knows no mathematics works together with a mathematician who
knows no physiology, the one will be unable to state his problem in terms
that the other can manipulate, and the second will be unable to put the
answers in any form that the first can understand.

Norbert Wiener (Wiener 1965)
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1 Introduction

In order to survive, a cell must be able to sense, transmit, and interpret information
about its own internal state and external environment. This information is intern-
ally transmitted through signalling pathways – complex machinery consisting of
networks of biochemical interactions. Signalling pathways work—independently
and together—to integrate multiple sources of information and relay messages to
appropriate intracellular locations. These pathways control behaviours not just
related to unforeseen and unexpected external changes but also those behaviours
that require a consistent presence, efficiently and reliably maintaining homeostasis.
Faults in signalling pathways can lead to abnormal, spontaneous, or dissipated

signals, and so cause inappropriate, unwanted, or non-existent responses. Diseases
that involve faults in signalling are some of the largest issues in 21st century medicine
including cancer, heart disease, and diabetes (Berridge 2014). An understanding of
how signals are processed in healthy and diseased states is a pressing requirement
for the development of novel therapeutic and pharmaceutical approaches in order
to correct these faults. This in turn requires an understanding of both individual
biochemical mechanisms, and their relationships within entire signalling pathways.
Signalling pathways can be thought of as connected systems of messages (in-

teractions) and messengers (the molecules or medium through which the message
propagates). Many different substances and properties are used by cells as messen-
gers including (but not limited to): proteins; elemental ions; small molecule second
messengers; and physical characteristics of the cell (e.g. membrane curvature). The
mechanisms by which the message is transmitted by interactions of the messengers
are also many and varied, including: activation of an enzyme’s catalytic activity;
localisation of a protein; and, generation of new second messenger molecules.
Signalling pathways are oftenmuchmore complex than a simple cascade of molecu-

lar interactions. More frequently they comprise networks of interactions, containing
divergent and convergent processes, and positive and negative feedback. This distinc-
tion is illustrated by figure 1.1. As the size of these complex, network-like signalling
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A Cascade signalling B Network signalling

Figure 1.1 Examples of alternative descriptions of intracellular signalling pathways described
by reactions ( ) and regulations ( ).

A Oligo-enzyme system B Poly-enzyme system

Figure 1.2 Two different scales for biochemical systems, and the terms I use to reference
these.
A An oligo-enzyme (few enzyme) system comprises only a few enzymes and the interactions
between them.
B A poly-enzyme (many enzyme) system contains many enzymes and interactions.
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pathways increases the number of interactions and regulations they contain increase
combinatorially. This is important because systems of many interacting components
are capable of displaying complex, emergent behaviour (Bhalla & Iyengar 1999),
which transcends the behaviour of any individual component. For an organism,
emergence is a powerful tool for processing intracellular signals; but as an observer,
it can confound our understanding of individual mechanisms and processes. There-
fore, as the size of a system increases it quickly becomes impractical, inappropriate,
or even impossible to continue our investigation using solely traditional biochemical
methods.

1.1 Models in biochemistry
A better approach for the exploration of complex intracellular signalling pathways
is supplementing traditional biochemical investigation with mathematical and/or
computational models. It is crucial to understand that the important words in the
last sentence are ‘mathematical’ and ‘computational’ not ‘model’ as we already need
to maintain mental models of the system of interest.
The primary role of these mathematical and computational models is to mean that

we are no longer solely reliant on human mental capacity to understand and predict
the outcome of complex systems of interactions.
Additionally, dissemination of mental models primarily occurs through written

description and illustration, the clarity of which often depends on the skills of the
original author. In comparison, a properly annotated mathematical or computational
model should be inherently less ambiguous and so, arguably, a better means of
communication.
The study of biochemistry has historically incorporated amathematical component—

for over a century and a half the law of mass-action (see section 3.2.2) has given a
rigorous method for the conversion of biochemical reaction schemes into systems of
ordinary differential equations (ODEs). Also just over 100 years old is the Michaelis-
Menten equation, a general model for irreversible enzymes (Michaelis & Menten
1913; Johnson & Goody 2011). With the later quasi-steady-state (QSS) derivation
of this equation by Briggs & Haldane (1925), we begin to have a complete toolbox
for deriving models of molecular and enzymatic interactions in a precise manner.
More recent methods make the derivation of QSS models from known biochemical
mechanisms even more standardised (Gunawardena 2012).
Mass-action and QSS models of molecular processes can be brought together as
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component parts of models of whole intracellular signalling pathways. In this way,
we begin to create models that may be able to predict a cell’s response to complex
stimuli, and explore how that response can be modulated for our benefit, for example,
to restore healthy behaviours. Usually, these models are sufficiently complex so that
computational—rather than mathematical—analysis and simulation is required, see
section 1.2.
Mathematical and computational modelling should never be used to completely

replace experiments as our primary source of information about the world, as the
validity of our predictions can only ultimately be determined through experimental
observation. Rather, the best outcome for a model is to suggest novel hypotheses
for later experimental validation, ideally identifying experiments that require only
simple, inexpensive, and reproducible procedures. In this way, we can move some
of the scientific process away from the expensive laboratory work towards the
(relatively) inexpensive mathematical/computational modelling. Models also al-
low us to pose hypotheses about the internal structures of biological systems that
otherwise—for many reasons—we may find difficult or impossible to probe.

1.2 Mathematical proof versus numerical simulation
Mathematical and computational models inherently contain a number of parameters,
values specific to the system of interest. Typically for biochemical models these
will be kinetic rates and (initial or basal) concentrations of reactants, products, and
enzymes.
With relevant and accurate experimental evidence it becomes possible to para-

meterise a model using statistical fitting methods to produce (what is often seen
as) a canonical set of parameters. Alternative, we can sometimes estimate these
parameters from related results or other data.
However, issues arise when referring to a single set of parameters as the canonical

set. This is because this set will be inherently specific to the experimental system that
was used to generate the originating data. Yet we know that even cells of the same
type will have different internal states depending on a large number of intrinsic and
extrinsic factors, for example: temperature, pH, and history. So unless its behaviour
is trivial it is unlikely that one set of parameters can capture the entire spectrum of
behaviours of the biological system under all circumstances.
A better approach—whenever possible—is to use mathematical analysis to prove

things about models. In this manner, we can attempt to explore all possible qualitative
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behaviours of the system for all possible sets of parameters. As always, experiments
must be designed for the validation or invalidation of the resulting hypotheses.

Unfortunately, as the complexity of the biological system increases or the accuracy
of the model increases, it can quickly become implausible or impossible to use
(existing, routine) mathematical methods to analyse a model. So the approach of
mathematical proof is generally only possible where the complexity of the model is
low, for example in small, uncoupled systems.

For larger, more complicated systems we must rely on computational techniques,
most commonly numerical simulation. In this case we must rely on specific sets of
parameters (for each simulation), and so additional caremust be taken against making
definitive statements about the behaviour of the system under all circumstances.
Still, there is much information we can obtain about a system in using this approach.
Additionally, simulation has a clear role in illustrative purposes, even for systems
we can mathematically analyse.

It is also possible to extend this numerical approach to explore arbitrarily more
of the behaviour ‘space’ of the model. Using Monte-Carlo methods and modern
Bayesian tools it is possible to find distributions of sets of parameters that map to
particular behaviours (Toni et al. 2009; Liepe et al. 2010).

In this thesis I will use a combination of mathematical analysis and computational
simulation when each is appropriate, to investigate the properties of models.

1.3 Empirical versus mechanistic models

There are two distinct approaches that we could use when constructing models of
biochemical systems.

An empirical approach allows for the construction of models based on the observed
behaviours/phenomena of the system. Given an appropriate evidence base (for
instance dose-response curves or observed causal responses), we choose appropriate
mathematical functions and expressions that replicate this behaviour in (at least)
a qualitative manner. This can be considered a top-down approach, where the
(emergent) behaviour of the system is directly modelled. This is appropriate when
we want to quickly build simple models for a system, and when we have little
understanding of the underlying molecular interactions. However, this approach
can lead to models that are biased towards the behaviours we expect to see, and so
which may not correctly describe the system under all circumstances – for instance
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in diseased states. These models are also, by design, implicitly arbitrary with respect
to the choices of the modeller.
A mechanistic approach allows for the construction of models by the application

of a translational framework (e.g. the law of mass-action) to a well-defined set of
individual molecular interactions. This is a bottom-up approach and results in a
model constructed from first-principles. The observed (emergent) behaviour of the
system should then be displayed by this model. If not, the model should be rejected,
and the underlying biological knowledge and assumptions reconsidered.
As a general rule, mechanistic models are preferable to empirical models as

they should be less subjective and implicitly include additional checks as to our
understanding of the modelled biochemical process. However, empirical models can
often be far simpler to construct, analyse, and simulate.
In this thesis I will consider models built under both paradigms, and attempt to

make use of their individual advantages.

1.4 The scale of models
The construction of models of whole signalling and regulatory pathways—and even
entire cells—has recently become a credible proposition, see for instance Karr et al.
(2012). Whole-pathway and whole-cell models combine the totality of our under-
standing of the individual components of the system into a larger structure, with
the aim of predicting higher-order emergent behaviours. However, we often lack
sufficiently well-investigated (mechanistic) models of the component parts of these
pathways and must often assume generic (empirical) models instead – for example,
assuming all enzymes follow the standard Michaelis-Menten mechanism (without
specific information that that is the case). In order to have faith in the results of
the model we must then assume that the system (both biological and theoretical) is
inherently robust to small differences (errors) in its internal interactions. It is entirely
possible that biological systems have evolved such robustness, as it is desirable that
small differences due to genotype, genetic mutation, and other biological sources of
noise do not change the fundamental signalling properties of a system.
Comparatively, it is not likely that this robustness (to small differences) will

hold when we consider diseased states, as any evolutionary pressure is more than
likely in the opposite direction, towards ensuring that the system does not display
this behaviour. This could suggest that models that are good at predicting healthy
behaviour, may not always be quite so useful in understanding diseased states.
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Altogether, this leaves plenty of scope for improving the predictions of these
large models (in health and disease) by improving the physiological-realism of the
component parts (e.g. models of individual enzymes).
We must also consider the relationship between the size of the system and our

need for accuracy. Consider the two illustrative systems in figure 1.2. One, which
could be termed an oligo-enzyme system (few enzymes) contains only three elements
and six interactions. The other, termed an poly-enzyme system (many enzymes)
contains 11 elements and 23 interactions. So each interaction is a larger proportion
of the oligo-enzyme system than the poly-enzyme system. Therefore, if any one of
the interactions is incorrectly modelled (or incorrectly described in the literature)
it is more likely to have a greater impact on our predictions in the smaller system.
This means that extra care should be taken in the investigation of small systems of
few interacting components, in terms of both the biological understanding, and the
assumptions made during the modelling process.
In this thesis I will be considering a system of (relatively) few interacting elements,

and so these considerations provide extra motivation for ensuring the models pro-
duced are particularly physiologically well-founded. The final mechanistic models
produced will be ideal for inclusion into larger models of signalling pathways.

1.5 Thesis outline
This thesis will focus on the consequences on the signal propagation of the structure
and internal mechanisms of a signalling motif that contains regulation of G proteins
and phospholipids – the Arf/PLD/PI4P5K motif. This motif is defined by the activa-
tion of the enzymes PLD and PI4P5K, by members of the Arf family of G proteins. I
will use a theoretical approach towards furthering the understanding of this motif,
leading to the construction of a series of mathematical models.
This thesis will continue as follows:

Chapter 2 contains a review of the current understanding of the biology of the
constituent parts of the Arf/PLD/PI4P5K motif; and discussion of related
pathways.

Chapter 3 contains a review of the mathematical methods that will be required
for the remainder of the thesis, including an introduction to the two major
references for the construction of models: the linear framework for time-scale
separation, used for the derivation of quasi-steady state (QSS) models; and
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a framework for the construction of models which include physiologically-
relevant cytosol-membrane translocations. This chapter will also include:
a note on the mathematical notation that I will use throughout the thesis;
the re-derivation of specific well-established models; and a description of
my own module for the Python programming language which allows the
semi-automation of the derivation of QSS models of enzymes.

Chapter 4 contains an expanded discussion of a previously described empirical
model for the Arf/PLD/PI4P5K phospholipid signalling motif; and continues
the development of further empirical models. Specifically, I discuss the idea
of investigating the properties of the original motif in the light of related but
theoretical motifs; and produce a series of models of increasing complexity.

Chapter 5 contains the development of physiologically-realistic, well-defined QSS
mechanistic models of the enzymes PLD and PI4P5K based (wherever possible)
on existing biochemical references.

Chapter 6 contains a exploration of the consequences of the specific manner in
which G proteins (of which Arf is a member) are controlled by guanine nucle-
otide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Mech-
anistic models are constructed for both of these regulators, and are used to
show that the current understanding of the regulation of G proteins is perhaps
often incorrect. Finally, a model of Arf is developed with the addition of the
differential localisation of the active and inactive forms.

Chapter 7 collects together the models from the previous two chapters and compiles
a preliminary set of parameters in order to finalise a biochemically-plausible,
well-defined mechanistic model of the entire Arf/PLD/PI4P5K motif. I demon-
strate that this is capable of producing physiologically plausible behaviour.

Chapter 8 concludes the thesis with a discussion of the material presented within;
and a discussion of related, but currently unexplored, ideas.

A brief note on style. Throughout the thesis I shall use ‘I’ whenever the text
discusses my own thoughts and decisions. I shall use ‘we’ to refer to either: the
scientific community, particularly during expository remarks; or the reader and I,
particularly during mathematical derivations.
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2 Signalling through G proteins and
phospholipids

A unique phospholipid signalling motif is comprised of the activation of the phos-
pholipid modifying enzymes phospholipase D (PLD) and phosphatidylinositol 4-
phosphate 5-kinase (PI4P5K) by members of the Arf family of G proteins, and their
mutual cross-regulation via their products.

Arf
PC

PLD

PA

PIP

PIPK

PIP2

In order to better understand the component process of this signalling motif, in
this chapter I will review the current understanding of

• Arfs, and their super-family of G proteins;

• GEFs and GAPs, the molecules which regulate G proteins;

• phospholipids, specifically phosphatidylcholine, phosphatidic acid, and the
phosphoinositides;

• phospholipase D (PLD);

• phosphatidylinositol 4-phosphate 5-kinase (PI4P5K);

• and related signalling pathways.

Throughout I will use consistent abbreviations and symbols, defined in the front
matter.
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Inactive
GDP-bound
G protein

Active
GTP-bound
G protein

GEF

GDP GTP

GAP

Pi

GTPase activity

Pi

Figure 2.1 G protein regulation. G proteins exist in one of two states depending on the bound
guanine nucleotide, traditionally referred to as active or inactive. The switch between states
is regulated by GTPase activity, both intrinsic and GAP-mediated; and (reversible) nucleotide
exchange catalysed by: GEFs for monomeric G proteins; GPCRs for heterotrimeric G
proteins.

GDP

GEF

GTP

Figure 2.2 GEFs and GPCRs are capable of activating (and inactivating) G proteins by
mediating a nucleotide exchange process. This is a sequential process: the GEF/GPCR acts
to open the guanine nucleotide binding pocket of the G protein; this allows the release of
the bound nucleotide and the formation of a stable nucleotide-free G protein:GEF complex;
subsequently another nucleotide (either GTP or GDP) can bind, and the GEF can disassociate.
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2.1 G proteins
G proteins (from guanine nucleotide-binding proteins, also sometimes known as
GTPases) are a major family of intracellular signalling proteins that have wide and
diverse roles. There are two major subcategories of G protein: the heterotrimeric
G proteins that consist of triples of α, β, and Ɣ subunits; and the small monomeric
G proteins of the Ras superfamily. In general both monomeric G proteins and the
α-subunit of heterotrimeric G proteins contain a highly conserved (both in sequence
and structure) nucleotide-binding pocket which is ordinarily filled by either GDP
(guanosine diphosphate) or GTP (guanosine triphosphate) (Simon, Strathmann, &
Gautam 1991; Valencia et al. 1991; Rojas et al. 2012).
Specific structural changes enforced by the bound nucleotide cause the GDP- and

GTP-bound forms of the G protein to have differential activities and be capable
of changing their subcellular localisation. In this way G proteins are commonly
referred to as molecular switches with the GDP-bound form typically referred to as
the inactive or off state; and the GTP-bound form as the active or on state. This
reflects that—in most systems—we are interested in the downstream signals that
result from the activity of the GTP-bound form (Vetter &Wittinghofer 2001; Oldham
& Hamm 2008).
Regulation of G protein activation state is primarily controlled through two

competing mechanisms: GTPase activity and nucleotide exchange, illustrated in
figure 2.1. The correct regulation of G proteins by these mechanisms is important.
Incorrect regulation is known to cause disease, for instance: cancer (Young et al.
2009; Vigil et al. 2010; O’Hayre et al. 2013); cardiovascular disease (Loirand, Sauzeau,
& Pacaud 2013); and genetic disorders (Seixas et al. 2013).
G proteins are inactivated by GTPase activity—the hydrolysis of the bound GTP

molecule to form GDP. This process can either be entirely intrinsic to the G protein
or catalysed in collaboration with external GTPase activating proteins (GAPs).

G•GTP

GAP

G•GDP

Pi

G proteins are also regulated by nucleotide exchange – the sequential disassociation
and association of guanine nucleotides from the G protein, illustrated in figure 2.2,
with the G protein passing through a intermediate, stable nucleotide-free state. This
process is known to be completely reversible, but allows for the activation of the
G protein if GDP is replaced by GTP. Nucleotide exchange is mediated by guanine
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Arf•GDP

Arf•GTPGEF GAP

Figure 2.3 The differential localisation of active and inactive Arf. Arf contains a myristoylated
N-terminus which is capable of insertion into lipid membranes, thus tethering the protein
to cytosol-facing membrane surfaces. This myristoyl group is largely hidden from the bulk
solvent when GDP is bound, and so inactive Arf is ordinarily cytosolic. Only when Arf
approaches the membrane, and becomes activated through nucleotide exchange by an Arf
GEF, does the myristoyl group become exposed. Subsequent hydrolysis of the bound GTP
causes the inactivation of the protein and so the loss of specific membrane-localisation.
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nucleotide exchange factors (GEFs) for the small G proteins, and G protein coupled
receptors (GPCRs) for the heterotrimeric G proteins.

G•GDP

GEF

G•GTP

GDP GTP

2.2 Arf family G proteins
Arf G proteins (from ADP ribosylation factor, the activity for which Arfs were first
identified) are members of the Ras superfamily of small monomeric G proteins
(Schleifer et al. 1982; Kahn & Gilman 1984). Arfs (in their many isoforms) are ubi-
quitously expressed, with amino-acid sequences that are well conserved throughout
eukaryotes (D’Souza-Schorey & Chavrier 2006).
There are six mammalian Arfs of three classes:

• class I contains Arf1, Arf2, and Arf3;

• class II contains Arf4, and Arf5;

• and class III contains Arf6 (Donaldson & Jackson 2011).

All Arfs contain a post-translational myristoylation on their N-terminus. This,
along with the adjacent N-terminal amphipathic α-subunit, is capable of insertion
into lipid membranes, and so acts to tether the rest of the protein to the surface of
the membrane (Liu, Kahn, & Prestegard 2009). This domain is only exposed when
GTP is bound to Arf (Antonny et al. 1997). Hence the activation of Arf is correlated
with specific changes in localisation: in general the inactive Arf is cytosolic and the
active Arf is membrane-tethered. This relationship is illustrated in figure 2.3.
The regulation of Arf is typical for its classification as amonomeric G protein. It has

no intrinsic GTPase activity, and so is reliant on inactivation via GAPs. Nucleotide
exchange—thus their activation—is mediated by GEFs, which contain a conserved
Sec7 domain, and which are themselves membrane-recruited (Kolanus 2007; Cas-
anova 2007; Donaldson & Jackson 2011). Thus Arf activation and deactivation is a
membrane associated process. Many different GAPs and GEFs exist, each more or
less specific to different members of the family of Arfs and located in different sub-
cellular compartments or expressed differentially in tissues. (Donaldson & Jackson
2011).
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Figure 2.4 Molecular structures of the discussed phospholipids. For illustration purposes, all
fatty acyl chains are shown as fully saturated forms.
A Phosphatidylcholine (PC).
B Phosphatidic acid (PA).
C Phosphatidylinositol (PI). PI can be phosphorylated at positions 3, 4, and 5 on its inositol
ring leading to eight combinatorial phosphatidylinositol phosphate derivatives, as shown in
figure 2.5.
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The incorrect regulation of Arfs has been implicated in a number of diseases,
including: genetic diseases (Seixas et al. 2013); and viral replication (Bui, Golinelli-
Cohen, & Jackson 2009).
In this thesis I will specifically refer to Arf1 and Arf6, structures for which are

shown in figures 2.7A and 2.7B. These two Arf isoforms are structurally similar when
GTP-bound but dissimilar when GDP-bound (Pasqualato et al. 2001). They are both
known to regulate PLD and PI4P5K, though each is possibly selective to different
isoforms of the enzymes (Perez-Mansilla et al. 2006).

2.3 Phospholipids
Phospholipids are a major subclass of lipid that are present as a large proportion of
all cellular membranes. The family includes phosphatidylethanolamine (PE), phos-
phatidylserine (PS), phosphatidylcholine (PC), phosphatidic acid (PA), and phospha-
tidylinositol (PI). Structurally, the hydrophobic portion of each of these molecules is
diaglycerol (DAG), however each has a distinct lipid headgroup. In this thesis I will
only need to consider PC, PA, and PI derivatives, the structures of which are shown
in figure 2.4.
Phospholipids have multiple signalling and regulatory roles. They are an integral

component of membranes and so contribute to the segregation of the cell interior
from its surrounding environment and the compartmentalisation of cellular functions
and activities within different organelles (van Meer, Voelker, & Feigenson 2008; van
Meer & de Kroon 2011).
Different phospholipids have different geometry, and so are able to affect the phys-

ical properties of the membrane including its curvature (McMahon & Gallop 2005).
In this way, phospholipids have an important role in the many crucial intracellular
processes such as endocytosis and exocytosis.
The composition of phospholipids varies between different cellular membranes

– they are dispersed inhomogeneously. As such, they are a major determinant of
membrane identity and so can be used by intracellular processes to positively identify
target membranes (Di Paolo & De Camilli 2006; van Meer, Voelker, & Feigenson
2008; van Meer & de Kroon 2011)
Many specific lipid binding domains have been observed within the structures of

proteins. Fluctuations in the concentrations of phospholipids can therefore control
the temporal regulation of the recruitment of proteins to membranes. Phospholipids
are also capable of acting in concert with other membrane-recruitment processes,
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increasing the affinity with which the target protein becomes membrane-associated.
As a result, phospholipids can play a part in coincidence detection, or the integration
of multiple signals from different sources (Di Paolo & De Camilli 2006).

A final—and critical—role for phospholipids is as mediators of signals in their
own right. Particularly, the production of cytosolic second-messengers from their
degradation, for instance inositol trisphosphate (IP3) from the degradation of phos-
phatidylinositol (4,5)-bisphosphate (PI(4,5)P2) by phospholipase C (PLC).

2.3.1 Phosphatidylcholine

Phosphatidylcholine (PC), shown in figure 2.4A, is themost abundant phospholipid in
all cellular membranes, in some reaching up to and above 50% of total phospholipids.
PC occupies an almost cylindrical volume as the dimensions of the choline headgroup
are similar to the DAG base, and so PC can spontaneously combine to form flat lipid
bilayers (van Meer, Voelker, & Feigenson 2008; van Meer & de Kroon 2011).

2.3.2 Phosphatidic acid

Phosphatidic acid (PA), shown in figure 2.4B, is the simplest phospholipid, but is
present in much smaller proportions than PC. It can be formed by several reactions,
including when the choline group is cleaved from PC (via the action of PLD, see
section 2.4), or alternatively from the phosphorylation of DAG (via diaglycerol
kinases, see section 2.7.2) (Cai et al. 2009). PA produced by diaglycerol kinases and
by PLD can be distinguished by their distinct fatty acid compositions (Pettitt et al.
1997).

PA has many varied and crucial signalling roles (Wang et al. 2006; Stace & Ktistakis
2006), however unlike other phospholipids there appears to be no general conserved
amino acid sequence that describes a binding domain for PA in proteins. However,
PA has the potential of carrying more negative charge than other phospholipids,
such as PI. It is likely therefore that electrostatic interactions have a major role in
the recruitment of proteins to membranes by PA (Kooijman & Burger 2009).

Physically the head group of PA is smaller than its tail and so it occupies a conical
volume providing an ability to form membranes with negative curvature (Wang et al.
2006).
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2.3.3 Phosphoinositides
The family of phosphoinositides are generated from the phosphorylation of phos-
phatidylinositol (PI), shown in figure 2.4C, on the 3, 4, and 5 positions of the inositol
ring on its head group. Every combination of phosphorylations is possible – leading
to seven derivative phospholipids:

• phosphatidylinositol 3-phosphate (PI3P),

• phosphatidylinositol 4-phosphate (PI4P),

• phosphatidylinositol 5-phosphate (PI5P),

• phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P2),

• phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P2),

• phosphatidylinositol (4,5)-bisphosphate (PI(4,5)P2),

• and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3).

PI constitutes approximately 15% of total phospholipids in the cell, the phos-
phorylated forms are generally less abundant by an order of magnitude, of which
PI4P and PI(4,5)P2 are the most abundant (Di Paolo & De Camilli 2006).
A variety of different kinases and phosphatases exist that interconvert the phos-

phoinositides, each adding or removing a single phosphate group (Sasaki et al. 2009;
Jean & Kiger 2012). Not all of the possible conversions have been observed in vivo,
only the subset shown in figure 2.5 appear to be physiologically relevant. Addi-
tionally, these are not all present in each intracellular compartment – only specific
interconversions will occur in each, as shown in figure 2.6.
Each of these phosphoinositides has distinct signalling properties (Cauvin &

Echard 2014). Many different conserved binding domains exist that correspond to
one or more of the phosphoinositides (Di Paolo & De Camilli 2006). For instance,
the pleckstrin homology (PH) domain, and the phox homology (PX) domain (Itoh &
Takenawa 2002; Narayan & Lemmon 2006). By providing binding sites for proteins
on the surface of the membrane (and so facilitating membrane-recruitment) the
phosphoinositides are major components in many intracellular signalling processes,
such as the regulation of the actin cytoskeleton (Yin & Janmey 2003), and membrane
trafficking (Martin 2001).
The phosphoinositides can also directly affect the curvature of the membrane

(Rusinova et al. 2013).
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Figure 2.5 There are eight possible phosphoinositides, formed by the combinatorial phos-
phorylation of phosphatidylinositol (PI) on the 3, 4, and 5 positions on the inositol head group.
Interconversion between the phosphoinositides occurs via kinases (drawn in magenta) and
phosphatases (drawn in black) which are capable of adding or removing a single phosphate
group, respectively. Not all of the possible interconversions are known to occur in vitro,
here I have plotted those kinases and phosphatases in the BRENDA database (Schomburg
et al. 2013) with their associated EC Numbers. Additionally, phosphatidylinositol (3,5)-
bisphosphate 5-phosphatase does not appear to be listed in the BRENDA database but is
known to exist (Kong et al. 2000; Duex et al. 2006; Cauvin & Echard 2014). Other sources
suggest slightly different allowable interconversions (Di Paolo & De Camilli 2006; Jean &
Kiger 2012).
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Figure 2.6 Subset of the routes for phosphorylation and dephosphorylation (from the full
graph in figure 2.5) that are present in each cellular membrane. Modified from Figure 1c in
Di Paolo & De Camilli (2006).
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A Arf1 B Arf6

C PLD2 D PI4P5K

Figure 2.7 Structures for:
A Myristoylated yeast Arf1-GDP, bound nucleotide drawn in grey; myristoylation drawn in
black, PDB ID: 2K5U (Liu, Kahn, & Prestegard 2009).
B Human Arf6-GTP, bound nucleotide drawn in grey, PDB ID: 2J5X (Pasqualato et al. 2001).
C Phospholipase D2 (Mahankali, Alter, & Gomez-Cambronero 2014; personal communita-
tion).
D Phosphatidylinositol 4-phosphate 5-kinase, predicted structure using SWISS-MODEL
(Arnold et al. 2006; Guex, Peitsch, & Schwede 2009; Kiefer et al. 2009; Biasini et al. 2014)
using a known structure of PI5P4Kβ, PDB ID: 1BO1 (Rao et al. 1998).
Protein database ID (Berman et al. 2000).
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2.4 Phospholipase D
Phospholipase D (PLD) is an enzyme which catalyses the hydrolysis of phospha-
tidylcholine (PC) to produce phosphatidic acid (PA) and choline (Cho) (Hanahan &
Chaikoff 1948).

PC

PLD

PA

Cho

Enzymes with phospholipase D activity (EC number 3.1.4.4) have been found in
eukaryotes, prokaryotes, and viruses. They can be divided into two classes: those
with one or more HKD domains, conserved amino acid sequence containing a well-
conserved histine (H), lysine (K), and aspartic acid (D) which are responsible for
their catalytic activity; and those with an alternative mechanism (Selvy et al. 2011).
PLDs are required for the healthymaintenance ofmembranes (Gomez-Cambronero

2014) and the regulation of the cytoskeleton (Rudge & Wakelam 2009). They have
also been implicated in disease (Peng & Frohman 2012), including: cancer (Su, Chen,
& Frohman 2009); fetal alcohol syndrome; Alzheimer’s disease (Klein 2005; Burkhardt
et al. 2014); and defective platelet aggregation (Elvers et al. 2012).
There are six known human PLDs: PLD1, PLD2, PLD3, PLD4, PLD5, and PLD6.

The best characterised are PLD1 (Hammond et al. 1995; Hammond et al. 1997; Sung
et al. 1999b) and PLD2 (Colley et al. 1997; Lopez, Arnold, & Lambeth 1998; Sung
et al. 1999a); the existence of PLDs 3–6 has only recently been discovered (Gomez-
Cambronero 2014). PLD1–5 contain two HKD domains, while PLD6 only contains a
single HKD domain (Gomez-Cambronero 2014). In this thesis I will only consider
PLD1 and PLD2, due to their observed regulation by Arfs.
PLD1 and PLD2 have approximately 50% sequence identity (Gomez-Cambronero

2014). They are the only isoforms to contain a PH (pleckstrin homology) domain, a
PX (phox homology) domain, and a phosphoinositide binding motif (Sciorra et al.
1999; Liscovitch et al. 2000; Hodgkin et al. 2000). These domains contribute to their
recruitment to lipid membranes, specifically: the Golgi apparatus (Freyberg et al.
2001; Freyberg 2002; Riebeling, Morris, & Shields 2009); and the plasma membrane
(during cellular stimulation for PLD1) (Colley et al. 1997; Morgan et al. 1997; Brown
et al. 1998).
There are known differences in the regulation of PLD1 and PLD2. First of all—

PLD2 has a greater basal activity than PLD1. This is known to be due to regulatory
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regions unique to each enzyme which decrease the activity of PLD1, and increase
the activity of PLD2 (Sung et al. 1999b; Sung et al. 1999a).
Both are activated by both Arf1 and Arf6. However PLD1 appears to be preferen-

tially activated by Arf1 (Hammond et al. 1995; Hammond et al. 1997; Perez-Mansilla
et al. 2006) and PLD2 by Arf6 (Hiroyama & Exton 2005). Additionally, the specific
mechanism by which this activation occurs is still unknown. This is possibly due to
the fact that a potential structure (for human PLD2) has only recently been reported
(Mahankali, Alter, & Gomez-Cambronero 2014), see figure 2.7C, and this computa-
tional model is the current limit of structural insight. However, a region on Arf1 is
known to be essential for its interaction with PLD1 (Liang et al. 1997).
It is known that the activation of PLD by Arf is absolutely dependent on the

presence of PI(4,5)P2– the product of PI4P5K (see section 2.5 below). That is, PI(4,5)P2
is a cofactor for the Arf-activation of PLD (Liscovitch et al. 1994; Pertile et al. 1995;
Divecha et al. 2000). PI(4,5)P2 is capable of interacting with both PLD1 and PLD2 via
their PH domain (Hodgkin et al. 2000). This interaction also appears to have a role
in the membrane localisation of PLD (Sciorra 2002; Du 2003).
Other activators of PLD are: protein kinase C (Chen & Exton 2004; Henage, Exton,

& Brown 2006); other monomeric G proteins (Malcolm, Elliott, & Exten 1996; Jiang
et al. 1995; Zhang & Du 2009); and (PLD2) by oleic acid (Sarri et al. 2003).
PLD has also recently been categorised as having GEF activity for the monomeric

G proteins Rac2 and RhoA (Mahankali et al. 2011; Jeon et al. 2011; Mahankali et al.
2012).

2.5 Phosphatidylinositol 4-phosphate 5-kinase
Phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) is an enzyme which phosphory-
lates PI4P to form PI(4,5)P2 (Van Dongen, Zwiers, & Gispen 1984; Cochet & Chambaz
1986; Ling, Schulz, & Cantley 1989).

PIP

PIPK

PIP2

ATP ADP

PI4P5Ks were previously categorised as either type I or type II, but the type IIs
are now known to be phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) (Rameh
et al. 1997). There are three mammalian PI4P5K isoforms: Iα, Iβ, and IƔ (Loijens
& Anderson 1996; Ishihara et al. 1996; Ishihara et al. 1998). The human and mouse
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terminology is reversed for Iα and Iβ. (I will use the mouse terminology.) No other
kinases are similar to PI4P5Ks and PI5P4Ks (Oude Weernink, Schmidt, & Jakobs
2004). No structure for PI4P5K has been reported, however it is possible to use
known structures of PI5P4Ks (based on their sequence similarity) as a template, see
figure 2.7D.
All three isoforms of PI4P5K have a conserved kinase core domain (Ishihara et al.

1998), and an activation loop that controls substrate specificity and localisation (Kunz
et al. 2000).
PI4P5Ks are ordinarily cytosolic, and are recruited by Arf to the plasma membrane

(Honda et al. 1999) and the Golgi (Godi et al. 1999). (This can be observed by the
presence of these reaction routes in figure 2.6.) Arf1 and Arf6 have both been
reported as activators of PI4P5K (Honda et al. 1999; Jones et al. 2000; Skippen et al.
2002), and it has been proposed that the mechanism of activation is via membrane-
recruitment (Perez-Mansilla et al. 2006). Phosphorylation of PI4P5K may also be
an important component in its regulation (Itoh 2000; Park, Itoh, & Takenawa 2001;
Funakoshi, Hasegawa, & Kanaho 2011).
PA, the product of PLDs (see section 2.4 above), is also able to activate PI4P5K

(Moritz et al. 1992; Jenkins, Fisette, & Anderson 1994; Ishihara et al. 1998; Cockcroft
2009). There is some evidence that suggests a strict requirement for the presence
PA for PI4P5K activity in some circumstances (Honda et al. 1999), but this does
not appear to be the majority view. No single region of PI4P5K is correlated with
the ability to bind PA. Instead this is likely due to electrostatic and hydrophobic
interactions on specific regions of the 3-dimensional surface of the enzyme (Jarquin-
Pardo et al. 2007; Stace et al. 2008).
Arf and PA appear to have at least an additive—and possibly synergistic—effect on

the activation of PI4P5K (Honda et al. 1999; Cockcroft 2009). Product inhibition by
PI(4,5)P2 has also been observed (Ling, Schulz, & Cantley 1989; Moritz et al. 1992).

2.6 The Arf/PLD/PI4P5K phospholipid signalling motif
Together, Arf, PLD, and PI4P5K form a triple of proteins connected in a signalling
motif that is known to be important in regulating many intracellular processes. This
motif is illustrated in figure 2.8.
From the above discussion it should be evident that each component of this motif

is complex in its own right, and that the behaviour and mechanism of each is distinct.
While there is some superficial symmetry in the illustration in figure 2.8 between PLD
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Figure 2.8 The complete Arf/PLD/PI4P5K phospholipid signalling motif. The motif comprises
of the activation of phospholipase D (PLD) and phosphatidylinositol 4-phosphate 5-kinase
(PI4P5K) by active Arf family G proteins, and the cross-talk of the enzymes’ products.
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Figure 2.9 The PI cycle formed by the breakdown of PI(4,5)P2 by phospholipase C (PLC)
and the re-synthesis of phosphatidylinositol (PI).
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and PI4P5K, this cannot be said to reflect biochemical reality. For instance PLD and
PI4P5K have different mechanisms of activation: PLD requires both PI(4,5)P2 and Arf;
PI4P5K is independently activated by PA and Arf. Therefore, distinct mathematical
models will be needed for each enzyme.
The motif appears to be present at both the Golgi and the plasma membrane,

though constructed from different triples of isoforms: Arf1, PLD1, PI4P5Kα at the
Golgi; and Arf6, PLD2, PI4P5KƔ at the plasma membrane (Perez-Mansilla et al. 2006).

2.7 Related pathways
A number of other important pathways interact with one or more of the components
of the Arf/PLD/PI4P5K phospholipid signalling motif. This section is not intended
to be an exhaustive list of these interactions—the complexity of intracellular sig-
nalling is such that this would be an almost impossible task—but to comprehensively
demonstrate that important interactions exist.

2.7.1 Regulation of Arf by phospholipids

There is evidence for regulation of ARF GAPs by PI(4,5)P2 and PA (Randazzo & Kahn
1994; Randazzo 1997) and ARF GEFs by PI(4,5)P2 (Terui, Kahn, & Randazzo 1994;
Paris et al. 1997). This would constitute a negative or positive feedback within the
system, but will not be included within the models in this thesis.

2.7.2 The PI cycle

Phosphoinositides are tightly regulated by the PI cycle. Phospholipase C (PLC)
cleaves PI(4,5)P2 into diaglycerol (DAG) and inositol (1,4,5) trisphosphate (IP3).

PIP2

PLC

DAG

IP3

IP3 is a cytosolic second messenger, and is capable of interacting with intracellular
IP3 receptors (IP3R) and so influence calcium signalling (Foskett et al. 2007). DAG
remains as part of the membrane, and is converted into PA by specific kinases. Both
DAG (GMHThomas and G Walsh, unpublished results) and this PA (Cockcroft 2009)
are capable of activating PI4P5K.
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Independently, the metabolites of DAG and IP3 are transported or diffuse (respect-
fully) to the endoplasmic reticulum where they can combine to reform PI. This PI
can then relocate to the plasma membrane giving rise to the PI cycle, illustrated in
full in figure 2.9.

2.7.3 The PI3K/AKT/mTOR pathway
PI(4,5)P2 is the substrate for phosphatidylinositol (4,5)-bisphosphate 3-kinase (PI3K),
a component part of the PI3K/AKT/mTOR pathway highly implicated in cancer
(Ocana et al. 2014).

2.8 Summary
In this chapter, I have summarised much of the current understanding regarding
the phospholipids (PC, PA, PIs) and the proteins (Arf, PLD, PI4P5K) that will be
discussed and investigated in the following chapters.
Together, these form the component parts of the Arf/PLD/PI4P5K phospholipid

signalling motif. Different triples of isoforms of the three proteins have been sug-
gested as operating at the Golgi and at the plasma membrane (Perez-Mansilla et al.
2006). To simplify discussion, I will in general consider the motif in an abstract
sense – one isoform each of Arf, PLD, and PI4P5K operating on a lipid membrane
containing PC, PA, PI4P, PI(4,5)P2, and other unspecified (non-interacting) lipids.
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3 Methods and derivations

Most biological systems, studied at most scales, are highly time-dependent. Such
systems—and their component parts—can be described in terms of rates of change
which can be written mathematically as differential equations. Here, I will consider
only ordinary differential equations (ODEs), rather than stochastic or partial differen-
tial equations. I will focus on ODEs largely because the law of mass-action—which
will be my base assumption for models in this thesis—generates systems of ODEs.
But also because ODE models are simple to simulate and analyse, using methods
that I will describe in this chapter.

In this chapter I will also discuss methods of reducing the complexity of models
that were built using the law of mass-action through application of time-scale
separation and the quasi-steady-state approximation. Furthermore, I will describe
the semi-automation of the derivation of these models using a new module written
for the Python programming language.

Finally, I will introduce a method for modelling species that undergo cytosol-
membrane transitions, as this will be crucial in being able to construct models of
PI4P5K and Arf.

The majority of code included in this thesis has been written and tested for version
3.5 of the Python programming language, where appropriate with the packages:

(version 1.10.1) (van der Walt, Colbert, & Varoquaux 2011), (version
0.16.1), (version 0.7.6.1), and (version 1.5.0) (Hunter 2007).

For additional background information I refer the reader to the following texts:
Strogatz (2014) for mathematical methods related to analysis of nonlinear systems of
ordinary differential equations; and Cornish-Bowden (2012) for in-depth discussion
of chemical kinetics.
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A B

C

Figure 3.1 Plots of the dynamics of the Van der Pol oscillator, equation 3.1.
A Simulation, and against time .
B A single trajectory, against . The initial condition has been marked with a circle. Time
is now implicit and progresses in the direction of the marked arrows.
C Phase plane, all trajectories of the system (in the plotted region). There is a single steady-
state at the origin.
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3.1 Methods for ordinary differential equations (ODEs)
There are several basic techniques I will use in the analysis of my mathematical
models, including: simulation; phase plane analysis; steady-state analysis; and
determination of the stability of steady-states. I will briefly recap these methods
here.

3.1.1 Simulation

Any system of ODEs can be numerically simulated in silico. For example, for illus-
trative purposes, the Van Der Pol oscillator is described by the equations

d
d
d
d

(3.1)

where , are variables; and is a parameter, which needs to be set to some value
for the duration of an individual simulation. Here I will choose .
This system of ODEs can be simulated in the Python programming language with

a script that uses the function. We also need to specify
the time-period (e.g. ), and the initial conditions (e.g. , at

).
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The output of this script can then be plotted, for example with and as a function
of time as in figure 3.1A.
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3.1.2 Phase plane analysis
An alternative plot of the dynamics of a system can be obtained by plotting the
dependent variables and against each other, rather than against time. For example,
the simulation of the Van der Pol equation, shown in figure 3.1A, can be plotted with
as a function of , to give figure 3.1B. This plot now describes a trajectory through

the phase plane of the system. Time is now implicit and increases as this trajectory
is followed.
For two dimensional systems it is possible to extend this idea further. If the value

of the differential equations (that describe the system of ODEs) are found at each
point on the plane, we can draw all of the possible trajectories of the system. (In
practical terms we find the values on a finite, discrete grid.) This results in the
phase plane portrait of the system, shown in figure 3.1C. Now we can follow the
time-evolution of all initial conditions (within the plotted region) just by following
their trajectory through the plane, and also can determine certain characteristics of
the dynamics of the system as a whole. For example, we can observe that the Van
der Pol oscillator displays a stable oscillation (for which it is named).

3.1.3 Steady-states
Many physiologically relevant models have the property that any initial condition
will eventually tend towards one of a finite number of steady-states – states where
the dynamics of the system will no longer change with respect to increasing time. If
x is a vector of our system variables, then the steady-states of the
system

dx
d

x

are the solutions to the equations

x

For the Van der Pol oscillator, setting equation 3.1 equal to zero gives a single
steady-state at the origin .

3.1.4 Stability of steady-states
Steady-states can be either stable or unstable, as illustrated in figure 3.2. A stable
steady-state is able to attract a region surrounding itself such that all trajectories in
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this region tend towards the steady-state. This does not hold for unstable steady-
states where, in general, a small perturbation will create a trajectory that tends
away from the steady-state. For this reason, unstable steady-states tend not to be
experimentally observable, and correspond to particularly non-robust states.
The stability of a steady-state can be determined by the sign of the eigenvalues of

the Jacobian at that point. Given a two-dimensional system

d
d
d
d

(3.2)

then the Jacobian matrix is given by

A (3.3)

and the two eigenvalues, , are the solutions to the equation

det A I (3.4)

where det is the determinant function and I is the identity matrix.
The steady-state is a stable node if both eigenvalues are negative, an unstable

node if both are positive, and a (unstable) saddle node if one is positive and one is
negative, illustrated in figure 3.2. If the sign of an eigenvalue changes as a function
of one or more of the parameters, then at the critical value the system is said to
undergo a bifurcation. These ideas extend to three or more dimensions, but only two
dimensional systems will be analysed in this thesis.

3.2 Mass-action models
Since the late 19th century there has been a well-accepted method for the translation
of biochemical mechanisms into mathematics called the law of mass-action.

3.2.1 Notation
Here, and where appropriate through the rest of the thesis, I will use the following
notation. The biochemical systems I will consider consist of:

• biochemical species ( );
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A Stable node B Unstable saddle C Unstable node

Figure 3.2 Stability classes of two dimensional steady-states, illustrated by the nearby
trajectories.

Reaction type Scheme ODEs Dim. of

conversion

d
d
d
d

s−1

formation

d
d
d
d

d
d

−1 s−1

degradation

d
d
d
d

d
d

s−1

constant source d
d

s−1

constant sink d
d

s−1

Table 3.1 ODEs generated by application of the law of mass-action for the five common
reaction schemes introduced in section 3.2.1. For each scheme the rate constant, , will
have a different dimension. Units: s, seconds; , molar concentration.
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• complexes ( ), where each complex is a subset of the species
including the trivial complexes consisting of a single species for
(I will not need to allow for complexes that contain multiples of the same
species);

• and, mono- or bi-molecular reactions ( ).

In general, a reaction can be described as a function converting one pair of
complexes (possibly including the empty complex, ) into another pair at some rate
. That is,

or written in standard chemical notation

Most commonly, reactions will be one of:

formation

degradation

conversion/catalysis

constant source

constant sink

For formation and degradation we have:

that is, the species on the left hand side equal the species on the right hand side of
the reaction.
Constant sources and sinks will be required when considering entry and exit

points of mass (respectively) into and out of the system.
Species will be denoted by either:

• a specific name (e.g. Arf);

• a single capital letter (e.g. );

• or, the graphical symbol listed in the list of abbreviations (e.g. Arf ).
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Complexes (e.g. ) will be denoted by either:

• a single capital letter (e.g. );

• the (dot) product of the component species (e.g. );

• or, the product omitting the dots (e.g. ).

For enzyme complexes, complexes that contain an enzyme, then the enzyme will tend
to be listed first. I will sometimes denote an enzyme-complex with the additional
notation:

• the enzyme (e.g. ) with the remainder of the species in the complex (
) as a lowercase subscript (e.g. if then ).

The notation gives the elements of the set A removing any elements in the set
B.
Specific notation will also be used for the rate constants for reactions forming or

degrading enzyme complexes by a single species:

where

where

Empty sets will be dropped, for example: , , and .
As per convention, the concentration per unit volume of a complex, , will be

denoted using square brackets, (this has units mol dm−3 mol l−1 m).

3.2.2 The law of mass-action

The law of mass-action is a proposition that states that the rate of a reaction is
proportional to the concentrations of the molecular species that participate in that
reaction. It is a continuous approximation of the discrete, stochastic dynamics that
occur at the scale of individual molecular interactions. For the five types of reaction
listed in section 3.2.1 the law of mass-action can be applied to give the systems of
ODE listed in table 3.1.
Equations for more complicated reaction schemes can be generated by the summa-

tion of the rates given by individual reactions. For example, the classical Michaelis-
Menten (Michaelis & Menten 1913; Johnson & Goody 2011) system describes an
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enzyme that converts a substrate into a product via the reaction scheme

cat

for which the law of mass-action gives the equations

d
d cat (3.5)

d
d cat (3.6)

d
d (3.7)

d
d (3.8)

Equations 3.5 to 3.8 are nonlinear as they contain multiples of variables of order at
least two. Given a set of parameters ( , , and cat) and a set of initial conditions
( , , , and at ), it is possible to simulate these. For example, with
the following script written in the Python programming language:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

The results of this simulation are plotted in figure 3.3.
The law of mass-action applied to a biochemical system will give an equation for

each species and complex in the system. Although it should be noted that some
of these equations may be linear combinations of others. Often, we would like
to simplify models generated by the law of mass-action, to reduce the number of
equations (possibly with a resulting complexity cost).
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Figure 3.3 Simulation of the Michaelis-Menten system with the ODEs in equations 3.5 to
3.8 with , , , and initial conditions , , ,

. Here is the free enzyme; is the enzyme-substrate complex; is the substrate;
and, is the product.

A B

Figure 3.4 Illustration of the concept of time-scale separation.
A The highlighted region and complexes are assumed to operate on a much faster time scale
than the rest of the system and so the transient dynamics of the fast system are assumed
to complete before the slow surrounding processes can react.
B Then if we are only interested in the behaviour of the system at the slower time-scale we
can simplify the model of the fast sub-system.
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3.2.3 Time-scale separation
The idea behind time-scale separation is that different biological processes—even those
involved within a single system—can operate at different time-scales, possibly across
multiple orders of magnitude. Assuming that we are interested in the dynamics of
the system at slow time-scales, then we are only really interested in the properties
of the fast components of the system that become evident over the long-term. Thus,
we can ignore any transient effects that arise from the fast components. We can
use this fact to simplify the system by—in some sense—reducing the complexity of
the fast component, as illustrated in figure 3.4. The use of time-scale separation is
not limited to systems where we have good evidence for slow and fast processes,
but also can act as a framework (with additional assumptions) for the derivation of
simplified models more generally (Gunawardena 2014).
Historically, two related assumptions have been made to reduce the complexity of

biochemical systems: the rapid equilibrium assumption; and the quasi-steady-state
assumption. Incidentally, the original derivation of the Michaelis-Menten equation
used the rapid equilibrium assumption (Michaelis & Menten 1913; Johnson & Goody
2011), but now more commonly an equivalent quasi-steady-state argument is used
(Briggs & Haldane 1925).

3.2.4 Rapid equilibrium
Under the rapid equilibrium (RE) assumption, we conclude that two complexes
related by reversible reactions are in instantaneous equilibrium. That is, the net flux
between those two complexes is zero. For example, if

(3.9)

which can be described by the system of ODEs
d
d
d
d

d
d

Then if complexes and are assumed to be in rapid equilibrium from the reaction
scheme we have
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and if the net flux between these species is zero, this means

Under the rapid equilibrium assumption we explicitly ignore fluxes originating to
and from complexes that we are not currently considering.

3.2.5 Quasi-steady-state
Under the quasi-steady-state (QSS) assumption, we assume that the rate of change of
the concentration of a specific set of complexes is zero. For example, again assuming
the reaction scheme in equation 3.9, then if species is assumed to follow the
quasi-steady-state assumption then setting the above equation for d

d equal to zero
gives

The quasi-steady-state assumption is arguably more biologically appropriate, as
we are not artificially segregating sets of reactions, but can give more mathematically
complicated solutions than the rapid equilibrium assumption.

3.3 Linear framework for time-scale separation
Throughout this thesis I will need to derive simplified models of enzyme-kinetic
mechanisms. I will assume that each of these mechanisms forms a component of an
eventual larger model, and that each is amenable to reduction in complexity (given
the above assumptions) via the approach of time-scale separation. For the derivation
of these models I will use the linear framework for time-scale separation provided
by Gunawardena (2012). (This procedure is equivalent to the King-Altman method.)
Here, I will restate the steps required in the derivation of such models, for further
discussion of the mathematical proof behind these steps see Gunawardena (2012) or
Gunawardena (2014). This framework consists of the sequential steps:

1. The graph on the enzyme complexes, henceforth , should be drawn from the
original biochemical mechanism. In this graph: the vertices are given by the
unique list of enzyme complexes (complexes that include the enzyme) involved
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in the mechanism; and the edges correspond to reactions that convert between
the relevant complexes. The edges should be labelled by the kinetic rates
multiplied by the concentration of any other species involved in the reaction,
so that every label has dimension s−1. Given a vector of concentrations of the
enzyme complexes, x, the original system of ODEs can be reconstituted as

dx
d x

where is the Laplacian matrix of .

2. All of the directed spanning trees should then be found from the graph on the
enzyme complexes, where: directed implies that arrow directions should be
retained; tree implies the directions should be consistent, so that following the
directions will always lead to a single root vertex; and spanning implies that
every vertex remains connected by at least one edge.

3. The kernel of describes all x such that

x

Elements of the kernel of are therefore steady-state solutions to the
original system of ODEs. A basis element of the kernel of , ker can
be directly constructed from the directed spanning trees, using what is known
as the Matrix Tree Theorem. Each component of the basis element, , is given
by the sum over the directed spanning trees rooted at vertex ( ), of
the product over the labels ( such that ).

4. If is strongly connected then we have dimker , and so we know
that the steady-state solutions must be of the form

x

where (i.e. x is a scalar multiple of the basis element). Therefore

and

and so we can write
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A

cat

B

cat

Figure 3.5 Graph and spanning trees for the Michaelis-Menten reaction scheme, equa-
tion 3.10.
A The graph on the enzyme complexes.
B The directed spanning trees of the graph on the enzyme complexes, each with the root
node highlighted.
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This gives the quasi-steady-state value of in terms of the basis element and
. Recall that the described the (steady-state) concentrations of the

enzyme complexes – now it only remains to substitute these values into the
relevant equations in the original system of ODEs.

The models generated by the linear framework do not take into consideration the
additional mass of substrate, product or regulator held in complex with the enzyme.
Therefore the dynamics are only a good approximation when the concentrations
of the intermediate complexes are small compared to the concentration of these
species – which tends to be true when the total concentration of enzyme is small,
and for enzymes with abundant small molecules substrates. This requirement is
typical for quasi-steady-state approximations of enzyme-kinetic models, and implies
a constraint on validity of the model in regards to experimental systems.

3.3.1 Example: the Michaelis-Menten equation

The best known example of a model that utilises the concept of time-scale separation
and the quasi-steady-state assumption is the derivation of the Michaelis-Menten
equation (Michaelis & Menten 1913; Johnson & Goody 2011) by Briggs & Haldane
(1925). A derivation using the linear framework for time-scale separation—though
not novel—is included here for illustrative purposes and later reference.
The Michaelis-Menten mechanism is described by the reaction scheme

cat (3.10)

where is an enzyme that converts a substrate, , into a product, , in an irreversible
fashion.
The graph on the enzyme complexes and the directed spanning trees of this graph

are given in figure 3.5. These spanning trees imply a basis element

cat

in the order , and so

cat

cat

cat
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A

cat

B

cat

cat cat

Figure 3.6 Graph and spanning trees for the Michaelis-Menten with product inhibition reaction
scheme, equation 3.11.
A The graph on the enzyme complexes.
B The directed spanning trees of the graph on the enzyme complexes, each with the root
node highlighted.
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where

The rate of production of product is given by the equation

d
d cat

Substituting in the quasi-steady-state value of gives

d
d

cat

cat

cat

where cat is known as the Michaelis constant.

3.3.2 Example: the Michaelis-Menten with product inhibition
equation

An extension to the Michaelis-Menten mechanism is given by the inclusion of
product inhibition. Again, a derivation using the linear framework for time-scale
separation—though not novel—is included here for illustrative purposes and later
reference.
This mechanism is described by the reaction scheme

cat (3.11)

The graph on the enzyme complexes and the directed spanning trees of this graph
are given in figure 3.6. These spanning trees imply a basis element

cat

cat cat

in the order . It is possible to generate an equivalent basis element by
multiplying each row by a scalar factor. By choosing an appropriate scalar factor we
can simplify the final solution.
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Dividing by cat gives

cat

ic

cat

where

cat

cat
is the apparent Michaelis constant

ic is known as the constant of inhibition

cat
cat

cat

From we obtain

ic

(3.12)

cat

ic

(3.13)

ic

cat

ic

(3.14)

where

The rate of production of product is given by the equation

d
d

Substituting in the quasi-steady-state values of and gives

d
d

ic cat

cat (3.15)
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This is the standard textbook definition of the quasi-steady-state equation for the
Michaelis-Menten mechanism with product inhibition. This demonstrates that the
generalised method of the linear framework is able to produce equations consistent
with previous derivations.

3.4 Python module: enzymegraph
In order to simplify and semi-automate the derivation of quasi-steady-state models
of enzymes using the linear framework for time-scale separation, I have written a
module for the Python programming language. The source code for this module has
been included in appendix A.

3.4.1 Algorithm for enumeration of spanning trees
In order to enumerate the directed spanning trees of a given graph I have modified
an algorithm from Gabow & Myers (1978), such that:

• Rather than maintaining a single graph object and growing a tree object in
place, these are copied and modified appropriately on each recursion.

• Rather than maintaining a single list of inward edges for the growing tree,
these are calculated newly on each recursion.

• The direction of the growing tree is inverted, so that all directions point towards,
rather than away from, the root vertex.

• So that all spanning trees rooted at all vertices are returned, rather than those
corresponding to a specified vertex.

This modified algorithm can be described by the pseudo-code:

procedure # G = graph
procedure # T = tree
if spans then

output

else

all edges , and # inward edges
for each edge do
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6

1

10

7

4

2

11

9

8

5

3

Figure 3.7 Application of the algorithm to find all of the directed
spanning trees (here rooted at a single vertex) of an example graph, . Each numbered
(thick) arrow denotes a sequential, iterated recursion of the algorithm, each generating a new
partial tree, . For each partial tree, the chosen edges are drawn in black, and the inward
egeds, , are drawn in grey The algorithm outputs each when the vertices of have been
spanned. Within each level of recursion, the edge that is added to is removed from ,
dashed (thick) lines denote duplicated trees that would be possible without this step.
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# disallow choosing this edge again
end for

end if

end procedure

for each vertex in do # main procedure loop
vertex

end for

end procedure

The algorithm is illustrated by application, starting at a vertex of an arbitrary
graph, in figure 3.7.

3.4.2 Using the enzymegraph module

The module is imported as a standard Python module. A graph object
can be created from a dictionary of edges of the form , which represents
an edge from vertex to vertex with label . Alternatively it can be created from a
list of edges, where each edge is assumed to have label equal to ; or from a
matrix representing the Laplacian matrix of the graph with a list of vertex labels. The

object can then be queried to return: the system of ODEs; the directed
spanning trees (as objects); the basis element; and, the steady-state
solution. For example, the complete derivation of the Michaelis-Menten with product
inhibition mathematical model (previously derived manually in section 3.3.2) can be
automated as:

1

2

3

4

5

6

7

8

9

10

11

12

13
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14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

This gives the output:
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These results are identical to those in section 3.3.2.

3.5 Cytosol-membrane transitions
In the models in this thesis I will need to consider the adsorption of species and com-
plexes onto membranes, and be able to represent intrinsic (e.g. lipids) and transient
(e.g. proteins) membrane-associated species. I require a careful mathematical/phys-
ical description of species that can move between the 3-dimensional cytosol and
2-dimensional membranes. Among these species are surface-active enzymes – en-
zymes that are ordinarily cytosolic but which have membrane-associated substrates.

3.5.1 Notation
In addition to the notation described in section 3.2.1, specific notation relates to
volume-surface interactions. Concentrations per unit area (as opposed to per unit
volume) will be denoted by angular brackets (units mol dm−2). Membrane-
associated species will be pre- or post-labelled with an asterisk, , such that intrinsic
components of the membrane (e.g. lipids) have a pre-labelling, , and extrinsic com-
ponents of the membrane (e.g. membrane-tethered proteins) have a post-labelling,

(Kartal & Ebenhöh 2013). Reaction rules on labelled species are:

• Two intrinsic species combine to give an intrinsic complex,

• Two extrinsic species combine to produce an extrinsic complex,

• An intrinsic and an extrinsic species combine to produce a mixed complex,

For shorthand, membrane-associated enzyme complexes will be denoted as previ-
ously described but with a superscript asterisk (e.g. ).
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on

off

Figure 3.8 Simple reversible surface adsorption of an enzyme, , binding to a membrane.

A

unit volume
B

unit surface area

Figure 3.9 Illustrations of the physical meaning of:
A , the concentration of surface area per unit volume. Given a unit volume, and knowing
the (membrane) surface area contained within, we can calculate .
B , the concentration of available elementary spaces per unit surface area. Given a unit
surface area, and knowing the total number of particles that can fit within, we can calculate

.

Figure 3.10 Example jammed coverages for the RSA model on a (bounded) surface with
different radiuses of adsorbate.
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3.5.2 Surface adsorption

A simple adsorption process consists of a single species or complex which can bind or
unbind from a membrane, as illustrated in figure 3.8. In this section I will reproduce
the derivation by Kartal & Ebenhöh (2013) of a mathematical model of this process.
Adsorption is modelled as a bimolecular reaction between the adsorbate (e.g. an

enzyme), , and an elementary space, , on a membrane

on

off

where on is a second-order rate constant. In terms of volume concentrations, using
the law of mass-action we can write

d
d on off (3.16)

where is the concentration of elementary spaces available (on membranes) per
unit volume.
The value of is not immediately self-evident, but we can calculate it from

where is the surface area per unit volume; and is the concentration of
available elementary spaces per unit surface area. These two variables are illustrated
in figure 3.9. In most systems can be assumed to be constant. Now equation 3.16
can be written as

d
d on off

We need to calculate a value for , in general we can write

where is the available area function, the proportion of surface that is still
available for adsorbate to bind; and is the maximum surface concentration of the
adsorbate. Now equation 3.16 can be written as

d
d on off (3.17)

where on on. This equation describes the mathematical model for simple
surface adsorption.
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A B

Figure 3.11 Langmuir’s model.
A Adsorption sites are assumed to be discrete and independent. Each site is only inaccessible
if a molecule is currently bound in that specific site.
B The available area function.

A B

Figure 3.12 Random sequential adsorption (RSA) model.
A Occluded area includes any point less than two times the radius from the centre of any
existing discs.
B The available area function, approximated by equation 3.20.
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It remains to determine a form for . First we need to introduce the theoretical
inverse, the fractional surface coverage or coverage, . This can be described
by the equation

(3.18)

In general the available area function, , may not be a linear function of the
coverage, . Instead, this relation, while monotonically decreasing, will depend on
the physical model assumed for the adsorption process. In this thesis, following
Kartal & Ebenhöh (2013), this will be assumed to be either Langmuir’s model or the
Random sequential adsorption (RSA) model.

3.5.3 Langmuir’s model

Langmuir’s model (Langmuir 1918) is the simplest model for the available area
function. It assumes that the adsorption sites are discrete and independent and that
adsorbed molecules do not interact, see figure 3.11. It is described by the (linear)
relation

(3.19)

3.5.4 Random sequential adsorption model

Random sequential adsorption (RSA) (Feder 1980) is a more complex model for the
available area function. It describes a continuous physical model, where all positions
are equally likely for an adsorbate to bind, unless already covered or partially covered
by a previous adsorbate, see figure 3.12. Under this model, jamming can occur where
enough total available area could exist for another molecule to bind, but where
this area is not contiguous, shown in figure 3.10. (Jamming is a well established
phenomena exhibited in general in other particle systems (van Hecke 2010).)
The RSA model can be approximated by the equation

(3.20)

with , , , , and (Manciu
& Ruckenstein 2004). This equation is only valid for . ( for

.)



82 Methods and derivations

3.6 Summary
In this chapter I have summarised the mathematical modelling and analysis tech-
niques that I will require for the remainder of this thesis.
The analytical techniques for steady-state analysis of systems of ODEs will be

required in chapter 4 to determine the possible behaviours for whole classes of
(two-dimensional, qualitative, empirical) models of the Arf/PLD/PI4P5K motif and
other related (theoretical) motifs.
Also, I have introduced two major techniques in this chapter: time-scale separ-

ation using the quasi-steady-state approximation, via a new Python module that
implements the framework of Gunawardena (2014); and, a framework for modelling
cytosol-membrane transitions. These will be used to construct mechanistic models
of PLD and PI4P5K in chapter 5, and Arf in chapter 6.
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4 Empirical models

Consider again the Arf/PLD/PI4P5K signalling motif. This can be drawn as follows,
described by reactions ( ) and (positive, activating) regulations ( ).

Arf

PC

PLD

PA

PIP

PIPK

PIP2

As a first approach I would like to construct empirical models of this system
– models based on coarse-grained qualitative descriptions of the regulatory and
catalytic processes of PLD and PI4P5K. My intention is to develop small, simple,
and fully analysable models which are sufficient to allow some exploration of the
response to stimuli of the Arf/PLD/PI4P5K motif caused by the cross-talk between
the products.

These empirical models will be simplified representations of the signalling motif,
where I will choose suitable mathematical functions to reproduce the observed beha-
viours of the cross-talk and other processes within the motif. The main advantage
of this approach is that I can construct small models (of two variables), which I hope
to be able to mathematically analyse using the techniques listed in section 3.1. This
would provide a complete characterisation of the responses to stimuli (for a model)
of the system.

Empirical models are inherently biased and incomplete compared to mechanistic
models – see the previous discussion in section 1.3. The main advantages of these
empirical models will lie in their simplicity and their mathematical analysability. If
an empirical model becomes too complicated to analyse easily then it has lost much
of its advantage over a mechanistic model. Therefore, one measure of success for
the following empirical models is whether they are easily analysable.
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To build empirical models I will need to relax some of the mathematical rules intro-
duced in chapter 3. While I will still consider rates as proportional to concentrations,
I will no longer use a strict application of the law of mass-action. For this reason I
will refer to these empirical models as pseudo-mass-action models. In general, I will
choose suitable mathematical functions to reproduce the experimentally observed
regulation of the two enzymes.
First, I will re-introduce an empirical model of the Arf/PLD/PI4P5K motif taken

from earlier work, and expand significantly on those results. This model is simple
enough that its qualitative behaviours can be completely characterised using the
techniques introduced in section 3.1.2. However, this model displays physiologically-
unrealistic behaviour – given sufficient stimulation, the concentration of the products
are unbounded and increase exponentially. This behaviour is physically impossible,
as an (absolute) upper bound for the amount of PA and PI(4,5)P2 is given by the
(finite) total mass of a cell!
Here, I will make two attempts to modify this first model in order to bound its

growth, either:

• replacement of the linear cross-talk activation by a non-linear Hill function,
widely used in modelling biochemical systems;

• or, adding conservation of mass to the system.

I will show that both of these approaches add sufficiently to the complexity of the
models, such that they are less amenable to mathematical characterisation.
I will also introduce a complementary comparative approach which will help me

explore the effect of the asymmetry in the structure of Arf/PLD/PI4P5K motif. This
involves the construction of models of theoretical motifs that are—in some way–
related to the original biological motif. If each of these models is constructed in the
same manner, we can expect each of them to have roughly similar advantages and
disadvantages (in terms of their mathematical complexity and physiological realism).
The point of this approach is that it allows us to ask questions such as: given that all
of the motifs are equally plausible (in some evolutionary sense), are there any specific
advantages of the biologically observed motif? In this way, we can ignore some
of the specific issues of the models of the biological system, instead focusing on a
comparison with models of the theoretical motifs. Here, these alternative motifs will
be generated by mirroring the regulatory description of either one of the enzymes
(PLD and PI4P5K).
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This chapter will make use of a small custom Python module
which defines a function which can calculate symbolic functions
or numerical values for the steady-states and eigenvalues of a system:
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4.1 Arf/PLD/PI4P5K: pseudo-mass-action model
As part of earlier work, I constructed a simple empirical model that attempted to
describe the behaviour of the Arf/PLD/PI4P5K motif (Stanley 2011). The important
derivations have been included here in appendix B. I will (continue) to refer to this
as the pseudo-mass-action model for the Arf/PLD/PI4P5K motif. The model is given
by the 2-dimensional system of ODEs

d
d (4.1)

d
d (4.2)



86 Empirical models

A

y

x

B

y

x

Figure 4.1 Cartoon phase planes. The stability and location of the single steady-state (blue
dot) in the pseudo-mass-action model depends on the choice of parameters and the value
of (the activation by Arf). Example trajectories are drawn in blue.
A Stable steady-state in positive quadrant when Arf activation ( ) is small.
B Unstable steady-state in negative quadrant when Arf activation ( ) is large.
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where PA , PI(4,5)P2 , and Arf . These equations describe the net
rate of change of the products of PLD and PI4P5K, PA and PI(4,5)P2 respectively.
The positive terms in these equations describe the catalytic activity of PLD and
PI4P5K, which will be described shortly; and the negative terns describe first-order
degradation ( , ). I have not included regulation of Arf by Arf-GEFs and Arf-
GAPs, so the system is perturbed by varying the parameter manually.
Both equations include a basal rate of production ( , ). However, they differ in

the description of their regulation by Arf and the other product:

• In equation 4.1, PLD is assumed to require both Arf and PI(4,5)P2 to be active,
and so this is modelled usingmultiplication of the two regulator concentrations,
scaled by a rate constant ( ).

• In equation 4.2, PI4P5K is assumed to be activated independently by Arf and
PA, and so this is modelled using addition of the two regulator concentrations,
each scaled by a rate constant ( ).

It is possible to use mathematical analysis to completely categorise all of the pos-
sible behaviours of this pseudo-mass-action model. This analysis has been included
in appendix B. The system can be shown to have a single steady-state, the stability
and location of which is determined by the system’s parameters, but the behaviour
of which is always consistent, following the form illustrated in figure 4.1. This
behaviour, under control by , is switch-like – a small increase in past a threshold
value (a point of bifurcation) massively changes the qualitative dynamics of the
system; and decreasing past this threshold switches the system back to the original
behaviour.
When is small, the system has a positive, stable steady-state that will attract all

(physiologically-relevant) initial conditions,

lim ss

lim ss

where ss ss is the coordinate of the steady-state. When is large enough, the
system has a negative, unstable steady-state, which means that all (physiologically-
relevant) initial conditions will give trajectories that increase without bound,

lim

lim

I will call systems of the former type bounded and the latter type unbounded.
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4.1.1 Implicit solution for the pseudo-mass-action model
I will now extend my previous analysis of the pseudo-mass-action model of the
Arf/PLD/PI4P5K motif by finding an implicit solution for equations 4.1 and 4.2. This
will give an implicit equation for each of and .
I will start by finding a solution to the homogenous system (without constant part)

formed from the change of variables,

ss

ss

where ss ss is the coordinate of the steady-state. This system can be written as

d
d (4.3)

d
d (4.4)

In general, a 2-dimensional homogenous linear system of ODEswill have a solution
of the form

e e (4.5)

e e (4.6)

where are the eigenvalues of the system.
We want to find a value for each of the constants , in terms of the parameters of

the system. From equations 4.5 and 4.6 we know that at

We can also differentiate equations 4.5 and 4.6, and again substitute , to get

d
d
d
d

However, we have alternative descriptions for these initial rates from equations 4.3
and 4.4,

d
d
d
d
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Setting values for d
d equal, substituting , and rearranging gives

and (using )

Similarly, setting values for d
d equal, substituting , and rearranging

gives

From appendix B we already know the form of the eigenvalues, which are

which we can substitute into the to obtain

where

The values for the constants , together with equations 4.5 and 4.6 give an implicit
solution for the system of ODEs given by equations 4.3 and 4.4, and we can now
follow any trajectory of the system without requiring numerical integration of the
original ODEs.
As the homogeneous system is just a linear shift of the non-homogeneous

system, we can use this solution to derive a solution to the original pseudo-
mass-action model of the Arf/PLD/PI4P5K motif,

e e

e e

where the , are defined above, and and are given in appendix B.
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4.1.2 Implicit solution for the pseudo-mass-action model: behaviour
when
It is possible to use the implicit solution for the pseudo-mass-action model of the
Arf/PLD/PI4P5K motif to verify the behaviour of the system under the constraint
that is large – specifically when

which corresponds to the unstable, negative steady-state illustrated in figure 4.1B,
see appendix B.
The equations for and in equations 4.5 and 4.6 are the sums of two exponential

terms. We know that

lim e

lim e

as is always negative, and is always positive under the above constraint. So
when the positive exponential term dominates, and we have

e

e

where and are strictly positive as

So we confirm that with a large enough value of both and (and so and )
increase exponentially, and are unbounded.

4.2 Theoretical motifs
The unbounded growth which characterises the highly stimulated state of the pseudo-
mass-actionmodel of the Arf/PLD/PI4P5Kmotif, limits its applicability as a predictive
tool because this corresponds to a physically impossible behaviour. However, the
analytic solution to this model remains an attractive result, so for the moment I
would like to continue to discuss linear models of approximately this complexity.
From previous description, we know that PLD and PI4P5K are regulated distinctly:

PLD is only activated when both Arf and PI(4,5)P2 are present; whereas PI4P5K
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is activated by the presence of either Arf or PA. So the motif is not symmetric in
regards to the regulation of the enzymes.
But what about a hypothetical motif that was symmetric? What behaviours would

this motif display, that would distinguish it from the Arf/PLD/PI4P5K motif? More
broadly, given a set of equally plausible motifs: does the Arf/PLD/PI4P5K motif have
any particular advantages over the others in terms of signal propagation? This could
also be considered through an evolutionary perspective: are there any advantages
that may have led to the evolution of the structure of this specific motif?
The remainder of this chapters will be driven by these questions. A natural way to

generate two new theoretical motifs is by mirroring the regulatory behaviour of each
of PLD and PI4P5K. I will attempt to answer the above questions by constructing a
series of models of all three motifs (the original motif and the two symmetric motifs).

4.2.1 Logical biochemistry

The names that I will give to the theoretical models that I will discuss in this chapter
are derived from my observation that the regulation of the enzymes PLD and PI4P5K
are analogous to the inputs and outputs of specific logic gates. Logic gates are
mathematical constructs that when given two inputs ( and ), both of which can
be either on or off, give an associated output.
We can describe the activation requirements for PLD and PI4P5K using the tables

shown in figure 4.2, and I note these appear identical to the logic gates shown in
figure 4.3. Therefore, I will consider the activation of PLD to be analogous to an AND
gate, and the activation of PI4P5K to be analogous to an OR gate. For this reason,
in this chapter, I will henceforth refer to the Arf/PLD/PI4P5K motif as the AND-OR
motif.
I can then define two theoretical motifs by mirroring each enzyme in the AND-OR

motif. These are:

• an AND-AND motif, where both enzymes are regulated like PLD – the activa-
tion of the enzymes requires the presence of both of their regulators;

• and, an OR-OR motif where both enzymes are regulated like PI4P5K – the
enzymes are independently activated by their two regulators.

Together, the three motifs are illustrated in figure 4.4.
Themodels I will develop will expect inputs and outputs in terms of concentrations

(real, positive numbers) and so logic gates, which are binary functions, are not
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A PLD

Presence of Activation
Arf PI(4,5)P2 of PLD

no no no
yes no no
no yes no
yes yes yes

B PI4P5K

Presence of Activation
Arf PA of PI4P5K

no no no
yes no yes
no yes yes
yes yes yes

Figure 4.2 Requirements for the activation of PLD and PI4P5K in respect to the presence of
two regulatory molecules.

A AND gate

Input Output
A B A AND B

0 0 0
1 0 0
0 1 0
1 1 1

B OR gate

Input Output
A B A OR B

0 0 0
1 0 1
0 1 1
1 1 1

Figure 4.3 Logic gates and their inputs (A, B) and outputs. Here 1 corresponds to a on
signal, and 0 to an off signal.

A AND-AND

AN
D

AN
D

B AND-OR

AN
D

O
R

C OR-OR

O
R

O
R

Figure 4.4 Three theoretically possible signalling motifs, in analogy to the Arf/PLD/PI4P5K
signalling motif.
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technically appropriate. Instead, corresponding to the previous description of the
pseudo-mass-action model, qualitatively similar, continuous behaviour is attained
by using multiplication instead of an AND gate, and addition instead of an OR gate.

4.2.2 Pseudo-mass-action models: construction
I will construct a first set of models of the theoretical motifs in direct analogy to the
pseudo-mass-action model of the Arf/PLD/PI4P5K motif described by equations 4.1
and 4.2. Each model will consist of a two dimensional system of ODEs, describing
the net rate of change in the products of two enzymes ( and ), controlled by the
parameter . For the AND-OR (the Arf/PLD/PI4P5K) motif, we will continue to
have PA , PI(4,5)P2 , and Arf . Otherwise these variables should
be understood to represent arbitrary species. Other assumptions in the following
models (unless otherwise specified) are:

• Substrates are well buffered, and are continuously available from a constant
source.

• Products are removed via a sink.

• There is a (possibly zero) rate of basal activity for each enzyme.

Table 4.1 lists the pseudo-mass-action models of the three motifs: one is equivalent
to the previously discussed model of the Arf/PLD/PI4P5K motif; and an equival-
ent model each for the AND-AND and OR-OR motifs, formed by duplicating the
corresponding equation.

4.2.3 Pseudo-mass-action models: analysis
The steady-state solutions and eigenvalues for the pseudo-mass-action models given
in table 4.1 can be validated using the Python script:

1

2

3

4

5

6

7

8

9

10
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11

12

13

14

15

This gives the output:

All three have a single steady-state, and eigenvalues of a comparable form,

where for the model of the AND-AND motif; for the model of the
AND-OR motif; and for the model of the OR-OR motif.
One eigenvalue, , is always negative as it is the sum of negative components.

So the stability of the steady-state depends on the sign of . This is negative if
and only if
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Additionally, we can see by the denominator of the steady-state that, for all three
models, the steady-state is stable if and only if the steady-state is positive (in both
and ), meaning that positive initial conditions will give trajectories that always

remain positive. (Recall that this was illustrated for the AND-OR motif in figure 4.1.)
The values of and as a function of (recall—which denotes the relative state

of activation of the system) have been plotted for the three models with arbitrary
parameters in figure 4.5. The AND-AND and AND-OR models, but not the OR-OR
model, undergo a bifurcation (manifesting as a discontinuity in figure 4.5) when is
increased or decreased causing the qualitative behaviour of the system to change.
This occurs at

for the AND-AND model;

for the AND-OR model.

The relationship between the sign of the eigenvalues and the value of are illus-
trated for the same arbitrary parameters in figure 4.6.
All three models are capable of the unbounded growth caused by a negative,

unstable steady-state – this was previously discussed as a major limitation of the
original pseudo-mass-action model for the Arf/PLD/PI4P5K motif (the AND-OR
motif). For the models of the AND-AND and AND-OR motifs this behaviour is
accessible whenever the value of is sufficiently large. For the model of the OR-OR
motif this behaviour is only accessible if . Otherwise, all three models
are capable of behaviour that is effectively bounded at large time, with a stable,
positive steady-state which will attract all trajectories. It should be noted that while
an attractive steady-state implies that the system is bounded, in practice we can
choose such that the steady-state is as far from the origin as we like.
Due to the bifurcation, the behaviour of the models of the AND-AND and AND-OR

motifs, but not that of the OR-OR motif, could be described as switch-like, as the
former are capable of qualitatively different behaviours depending on the relative
strength of activation. (Note, however, that this behaviour is qualitatively distinct
from hysteresis or bistability, which is also often described as ‘switch-like’.)
In the extreme case when there is no basal rate of production of either enzyme,

then the steady-state for the pseudo-mass-action model of the AND-
AND motif remains at the origin for all values of . Furthermore, a trajectory that
begins at the steady-state will remain there for all time, even if later increases
such that the stability of the steady-state changes. So the system can (at least
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theoretically) get stuck in an unresponsive off state – a state that is not possible
for the pseudo-mass-action models of the AND-OR and OR-OR motif. It should be
understood that this state is not likely to be particularly physiologically relevant,
as in a biological system there are likely always other sources of the product from
other intracellular processes. But it does serve to highlight that while figure 4.6
suggests that AND-AND motif is the better (more tightly controlled) switch, it may
have disadvantages that mean the AND-OR motif is more appropriate for a robust
signal propagation.
Of course, these conclusions are based on very simple models, which all display

unbounded behaviours. However, these results begin to suggest that the AND-OR
motif may capture positive, useful characteristics of both of the two symmetric
motifs. Next I would like to continue to use this comparative approach while altering
the assumptions behind the construction of the models so as to attempt to develop
empirical models that are inherently incapable of unbounded growth, and so remain
physiologically plausible under variable stimulation.

4.3 Bounding growth using the Hill equation
One option for bounding growth is to replace the cross-regulation of each enzyme by
some function that has a bounded output. Commonly used in biochemical modelling
is the Hill function,

Hill

where is a new parameter. This function is shown in figure 4.7 for different values
of . Observe that the Hill function is bounded as Hill for all values of .

4.3.1 Hill models: construction
Models using the Hill function, one for each of the AND-AND, AND-OR, and OR-OR
motifs illustrated in figure 4.4, are listed in table 4.2. These models were generated
from the systems of ODEs listed in table 4.1 by:

• for d
d , replacing by Hill ;

• for d
d , replacing by Hill .

(It is unnecessary to replace by Hill , as this remains the parameter by which the
system can be manually stimulated.)
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Figure 4.7 The Hill function, Hill , for different values of , with .

Motif ODEs

A AND-AND

AN
D

AN
D

d
d
d
d

B AND-OR

AN
D

O
R

d
d
d
d

C OR-OR O
R

O
R

d
d
d
d

Table 4.2 Hill models for the three motifs (AND-AND; AND-OR; OR-OR). The variables and
represent the concentrations of the two products (PA and PI(4,5)P2, respectively, for the

AND-OR model). The variable represents the concentration of active Arf.
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In order to analyse this system we must choose values for and . Here I will
only discuss the system with for which analytical solutions can be found.
Analytical solutions for larger and may not exist, due to the greater nonlinearity
of the system.

4.3.2 Hill models: analysis
The steady-states of the Hill model of the AND-OR motif are given by values of
and that satisfy the equations

where

The steady-state solutions of the Hill models of the AND-AND and OR-OR motifs
can each be described by equivalent equations: as a function of ; and as the
solutions to a quadratic equation with coefficients that are complicated functions
of the parameters. So each of the models listed in table 4.2 have two steady-states,
and so we can already see that these systems are qualitatively distinct from the
previous iteration of the models. Due to the complexity of the coefficients, the full
steady-state solutions to the Hill models are long and complicated functions of the
parameters which are impractical to include in print, and which have limited math-
ematical tractability. Therefore, in general these systems will require a numerical
investigation.
Numerical solutions for the steady-states of the models incorporating the Hill

functions are illustrated with arbitrary parameters in figure 4.8. Note that for each
model one of the two steady-states is always positive and one is always negative. To
check the stability of these steady-states, we need to calculate the eigenvalues of the
system – these are also complicated functions of the parameters. The steady-states
of the system can be characterised numerically using the Python script:

1

2
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3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

This gives the output:

The negative steady-state is unstable and the positive steady-state is stable in all
three models when . As there are no bifurcations shown in figure 4.8, these
stabilities remain for . As the steady-states appear to be either bounded
by the lines and or diverge to infinity these stabilities also likely hold
for all . With my previous definition, a positive stable steady-state gives dynamics
which are bounded at large time. So we see it is possible to choose parameters so
that these models are incapable of unbounded growth.
I would like to again consider whether the two theoretical motifs can help me to

understand the real Arf/PLD/PI4P5K motif. First—considering the AND-AND motif.
In figure 4.8A, the positive steady-state has a nonlinear response to increases in the
value of : it is relatively insensitive to changes in the value of , if remains small;
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Figure 4.9 Transcritical bifurcation in the Hill model of the AND-AND motif, with ,
, , , , and . The unstable steady-state is

drawn in black, the stable steady-state in blue.
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and sensitive (a near linear response) to changes in the value of , if takes larger
values.
It is possible to show this nonlinearity more clearly for the system with zero basal

activity, . In this case the steady-states take a relatively simple form,

and

Depending on the parameters, the second steady-state can be positive or negative.
It is positive whenever

(Note that this has some similarity with the point of bifurcation of the pseudo-mass-
action model of the AND-AND motif.)
The eigenvalues associated with the zero steady-state are given by

The eigenvalue is always negative. The eigenvalue is positive whenever

So the zero steady-state switches between stability and instability as it passes
through a point of bifurcation. This also corresponds to the point at which the non-
zero steady-state becomes positive. This is characteristic of a transcritical bifurcation,
and implies that the non-zero steady-state also changes stability at this point (in the
other direction). So, depending on the value of , the system either has a zero or a
positive stable steady-state. This can be observed in figure 4.9.
Thus this model suggests that the AND-AND motif can be characterised by a

mechanism that is insensitive to small concentrations of the activator, while re-
maining sensitive to high concentrations. This mechanism implies a system which
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Figure 4.10 Transcritical bifurcation in the Hill model of the AND-OR motif, with
, , , , , and . The unstable

steady-state is drawn in black, the stable steady-state in blue or magenta. Grey lines show
the positive steady-state under increasing values of in the direction shown.
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requires sufficient stimulation before it will propagate the signal – the system can
either be in an ‘off’ state or, if the activation is above a threshold value, in a (graded)
‘on’ state. This could be useful for filtering low levels of noise arising upstream in
the signalling pathway.
Unfortunately, the Hill model of the OR-OR motif retains a complicated solution

even with . So instead I will only comment on numerical results shown
in figure 4.8C, where the values of both and have a near linear response to an
increase in . This could be explained by the OR-OR motif acting to propagate an
upstream signal with little or no modulation, though possibly with an increase or
decrease in amplitude.
I note that the numerical solutions for the Hill model of the AND-OR motif, as

shown in figure 4.8B, has characteristics of both theoretical motifs. The variable ,
corresponding to the ‘OR’ enzyme, certainly has a similar, linear response to changes
in the value of as displayed by both variables in the OR-OR model. The variable
, corresponding to the ‘AND’ enzyme, has a less of a clear-cut resemblance to the
variables in the AND-AND model, but some nonlinearity can still be observed.
The Hill model of the AND-OR motif can be mathematically analysed under the

constraints of no basal activation, , and no activation of the rate of
production of by , so . The steady-states of this system are

and

The eigenvalues associated with the zero steady-state are

one of which ( ) is always negative, the other ( ) is negative whenever

which corresponds exactly to the requirement for the non-zero steady-state to be
negative. So this system is also able to undergo a transcritical bifurcation. This is
shown in figure 4.10.
Recall that this bifurcation occurs when , yet I remain primarily interested

in the case when , and so in figure 4.10 I have illustrated the effect of increasing
. Recall (from table 4.2) that the term describes the effect of the concentration



108 Empirical models

of activator on the rate of change of the variable . So as increases, this linear
response to increasing begins to dominate, over the nonlinear response to the
value of . This can be seen in the lower plot in figure 4.10. Comparatively, as it is
not directly reliant on this parameter, increasing the value of has a smaller effect
on the magnitude and qualitative behaviour of , which maintains at least part of
the nonlinear response distinctive of the bifurcation occurring when .
So we can begin to see evidence for two distinct responses to stimulation in

the behaviour of the two enzyme, hence concentration of the two products, of the
Arf/PLD/PI4P5K signalling motif. Next, I will show that equivalent results can be
observed when a different mechanism of bounding the growth of the system is
assumed.

4.4 Bounding growth using conservation of mass
A second, alternative approach to bounding the growth of the system is to limit the
total amount of substrate and product that can be present, using conservation of
mass terms. I introduce new variables and corresponding to the substrates of
the two modelled enzymes. Consider either or both of the forward reactions to be
paired with a reverse reaction.

? ?

4.4.1 Conservation of mass models: construction

The equations that describe the systems with added conservation of mass, are in
general

d
d (4.7)

d
d (4.8)

where

when corresponds to an ‘AND’ enzyme

when corresponds to an ‘OR’ enzyme
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when corresponds to an ‘AND’ enzyme

when corresponds to an ‘OR’ enzyme

Equations 4.7 and 4.8 reduce to the original pseudo-mass-action models in table 4.1
when and ,

d
d (4.9)

d
d (4.10)

To introduce conservation of mass, we set

Using these to replace and in equations 4.7 and 4.8 gives

d
d (4.11)

d
d (4.12)

I will consider systems in which either one or both of the enzymes are restricted
by conservation of mass: one or two of equations 4.11 and 4.12, the remainder
from equations 4.9 and 4.10. With the choice of ‘AND’ (PLD-like) and ‘OR’ (PI4P5K-
like) behaviours for each enzyme—and ignoring duplicate (symmetric, with )
motifs—we can generate the seven motifs shown in table 4.3.

4.4.2 Conservation of mass models: analysis
It is possible to find analytical solutions for the steady-states and eigenvalues of the
systems in table 4.3, however these are once more long and complicated functions
of the parameters, and difficult to analyse mathematically. Figure 4.11 shows nu-
merical solutions for these steady-states (with arbitrary parameters), which can be
characterised with the Python script:

1

2

3

4

5

6
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Motif ODEs Example phase plane ( vs. )

A AND-AND-X

AN
D

AN
D

d
d
d
d

B AND-AND-XY
AN

D

AN
D

d
d
d
d

C AND-OR-X

AN
D

O
R

d
d
d
d

D AND-OR-Y

AN
D

O
R

d
d
d
d

E AND-OR-XY

AN
D

O
R

d
d
d
d

F OR-OR-X O
R

O
R

d
d
d
d

G OR-OR-XY O
R

O
R

d
d
d
d

Table 4.3 Models of the motifs with one or more reverse reactions. Phase portraits drawn
using the parameters , , , , ,

, and whenever applicable. Note that the maximum values and
only constrain systems in which they are present. The variables and represents the
concentrations of the two enzymes (PA and PI(4,5)P2, respectfully, for the AND-OR models).
The variable represents the concentration of active Arf.
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This gives the output:
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So—exactly as for the Hill models—we have a series of models which display a
negative, unstable steady-state and a positive, stable steady-state, which (as we do
not observe any bifurcations in figure 4.11) appear to maintain this stability as
varies (given these parameters).
By construction, we know that the steady-state solution will be bounded for a

variable whenever we subject that variable to conservation of mass, as then
and/or . These constraints can be observed (where included) for the numerical
solutions in figure 4.11. Increasing : ‘AND’ enzymes show an approximately
sigmoidal response; ‘OR’ enzymes show an approximately hyperbolic response.
Again from figure 4.11, variables not subjected to conservation of mass display

similar behaviours to those displayed for the Hill models. Increasing :

• ‘AND’ enzymes show the nonlinear response to an increasing signal, insensit-
ive to small concentrators of the activator, and remaining sensitive to high
concentrations.

• ’OR’ enzymes show a near linear response.

So I have evidence that both of the methods I have used to bound the growth of the
systems can result in similar (steady-state) characteristics. This implies I may be
able to make hypotheses about the underlying biochemistry of the cross-talk motif
that are somewhat robust to the choice of model.
From the simulations in figure 4.11, we can again observe that the models of

the AND-OR motif display behaviours consistent with the symmetric models, both
when conservation of mass is present and when it is absent. I have already noted
that the complexity of the steady-state solutions means that they are in general
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not amenable to mathematical analysis, but I would like to replicate the analysis
performed on the Hill model of the AND-OR motif on the conservation of mass
model of the AND-OR-Y motif.
I have chosen to focus on this model as I believe that this best represents the

biochemistry of the Arf/PLD/PI4P5K motif. This motif has an additional reversible
reaction on the variable , corresponding to the concentration of PI(4,5)P2 in the
system. From chapter 1we know that this reverse reaction does exist: eithermediated
by PI(4,5)P2 5-phosphatases (figure 2.5), or through the slower multiple steps involved
in the PI cycle (figure 2.9). Comparatively, PC concentrations are known to be high in
all cellular membranes (van Meer, Voelker, & Feigenson 2008; van Meer & de Kroon
2011), and so PC is less likely to be rate limiting.
From table 4.3, this motif is described by the equations

d
d (4.13)

d
d (4.14)

At steady-state equation 4.13 implies

(4.15)

which can be substituted into equation 4.14, and rearranged, to give a quadratic
equation. Without loss of generality (as it is only a scaling factor, in arbitrary units)
we can assume . So the component of two steady-states are described by
solutions to

Solutions to this quadratic remain complicated functions of the parameters. How-
ever, exactly as for the Hill model, it is possible to mathematically characterise the
system with no basal rate of production of either product, , and no
activation of the rate of production of by , . In this case the steady-states
are

and

The eigenvalues associated with the zero steady-state are given by
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Figure 4.12 Transcritical bifurcation in the conservation of mass model of the AND-OR-Y
motif, with , , , and . The unstable
steady-state is drawn in black, the stable steady-state in blue or magenta. Grey lines show
the positive steady-state under increasing values of in the direction shown.
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which are identical to the eigenvalues for the original pseudo-mass-action model of
the AND-OR motif, so the zero steady-state is stable for small , unstable for large ,
and has a point of bifurcation at

This point of bifurcation corresponds to the point at which the non-zero steady-state
changes stability, and so again we observe a transcritical bifurcation, as shown in
figure 4.12.
The effect of increasing is demonstrated in figure 4.12. Whenever there

is no bifurcation, but rather a stable steady-state that remains positive and a negative
unstable steady-state (that has not been drawn). This figure is equivalent to that for
the Hill model in figure 4.10, however note that now respects conservation of mass
( ). The behaviours shown in figure 4.12 can be categorised as follows:

• For the variable : when is small it maintains much of the behaviour
characteristic of the bifurcation (insensitive to small, sensitive to large values of
); and when is large the original signal is propagated with little modulation.
In this model there is no limit to the size we can make the component of the
steady-state.

• For the variable : for moderate values of the original signal is propagated
with little modulation; and when is large, changes in small values of are
amplified, before reaching a maximum defined by conservation of mass.

So I hypothesise that this motif acts to propagate two distinct signals from a single
initial input signal:

• The concentration of PA ( ) only increases significantly (and so propagates a
signal) once a threshold concentration of Arf ( ) is reached. Thus PLD would
be able to filter noise resulting from fluctuations in small concentrations of
Arf.

• The concentration of PI(4,5)P2 ( ) is sensitive to the signal originating from
Arf ( ). Thus PI4P5K is sensitive to even small changes in the strength of the
upstream signal.

It would be possible to analyse the other models in table 4.3 in a similar way to
this model, but these would require individual consideration, and this will not be
attempted here. Finally, note once more that these conclusions are currently based
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on a single parameterisation of the system, and so it remains possible that given
other parameterisations the model will display alternative behaviours. However,
this provides sufficient evidence to suggest the hypothesis of differential signal
propagation by the two products of the Arf/PLD/PI4P5K motif.

4.5 Discussion
I have constructed a series of empirical models of the Arf/PLD/PI4P5K signalling
motif, and related theoretical motifs, in order to begin to explore behaviours which
result from the differential mechanisms of regulation of the two enzymes, and cross-
talk from the products. Furthermore, I have suggested novel hypotheses concerning
the signalling properties of the system.
Themodels were based on qualitative descriptions of the regulation of the enzymes

PLD and PI4P5K, and my observation that these have relation to logic gates: ‘AND’
for PLD; and ‘OR’ for PI4P5K. Three motifs were considered: the Arf/PLD/PI4P5K
motif, also termed the AND-OR motif; an AND-AND motif, where both enzymes
were regulated like PLD; and an OR-OR motif, where both enzymes were regulated
like PI4P5K. Eachmodel consists of two equations describing the net rate of change of
the two products (PA and PI(4,5)P2; or arbitrary species). Production of the products
is due to the catalytic rate of the enzymes, in part specified by the concentration of
the activators, and removal of the products is via a sink.
A first series of models was termed the pseudo-mass-action models (section 4.2.2).

These were based on a previously described model of the Arf/PLD/PI4P5K signalling
motif (Stanley 2011), which here I have used an alternative approach to showing
that it is capable of unbounded growth. Here:

• The catalytic rate of PLD, and equivalent hypothetical enzymes, was modelled
using multiplication of the two regulator concentrations, scaled by a rate
constant.

• The catalytic rate of PI4P5K, and equivalent hypothetical enzymes, was mod-
elled using addition of the two regulator concentrations, each scaled by a rate
constant.

Subsequent series of models were constructed in an attempt to ensure the system
remained bounded:

• The Hill models (section 4.3.1), where the concentration of the products regu-
lating the enzymes was replaced by a suitable Hill function.
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• The conservation of mass models (section 4.4.1), where the catalytic rates of
the enzymes are bounded by the total amount of product and substrate in the
system – due to non-symmetric conservation of mass this generated seven
models.

Where possible mathematical analysis (as per section 3.1) was used to investigate
these models.
With consideration of the hypothetical motifs, plausible hypotheses of the sig-

nalling behaviour of the Arf/PLD/PI4P5K motif were discussed. These hypothetical
motifs have allowed me to utilise an additional perspective and so comment on
plausible advantages for the asymmetry in the Arf/PLD/PI4P5K motif. Together,
this has led to novel hypotheses about the signalling properties of the motif using
simple empirical models that are sometimes amenable to complete mathematical
characterisation.
The pseudo-mass-action model of the AND-AND and AND-ORmotifs—but not the

model of the OR-OR motif—were found to undergo a bifurcation as the concentration
of the activator is varied. Thus these models suggest switch-like behaviour for these
two motifs, controlled in relation to a critical threshold value: above which the
system is turned on; and below which the system is turned off. While the model
of the AND-AND motif is the better (more precise) switch there is evidence that it
could get stuck in an unresponsive off state. This gives evidence for a hypothesis that
the AND-OR motif is a compromise – displaying less precise switch-like behaviour
than the model of the AND-AND motif, but more robust.
A different story—suggesting an alternative hypothesis for the signalling proper-

ties of the system—arises from the analysis of the Hill models and the conservation
of mass models. (The difference between these results is likely indicative of the
relatively arbitrary nature of the empirical modelling approach.) In these models,
all ‘AND’ (PLD-like) enzymes have similar characteristics, and all ‘OR’ (PI4PK-like)
enzymes have similar characteristic. These behaviours appear to mostly hold for both
symmetric and asymmetric models. In moderate and non-zero parameterisations,
these models imply the following behaviour for these motifs.
PLD and other ‘AND’ enzymes seem to be characterised by an ability to produce a

nonlinear response to the concentration of the activator – initially relatively insens-
itive to changes in the concentration of activator until sufficient activator is present.
In the most extreme case, the signal is only propagated once a threshold concen-
tration is reached. This behaviour has noise-reduction properties – fluctuations
in the concentration of the activator at low activation levels are not propagated
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Arf concentration zero low high

PA production no no yes
PI(4,5)P2 production no yes yes

Table 4.4 Inputs, in the form of concentrations of Arf, and associated outputs, in the form
of PA and PI(4,5)P2 production rates, as implied by the Hill and conservation of mass
models of the Arf/PLD/PI4P5K motif (the AND-OR) motif. Thus a single input signal (the Arf
concentration) will give two distinct output signals (the concentrations of PA and PI(4,5)P2).
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downstream.

PI4P5K and other ‘OR’ enzymes seem to be characterised by an ability to propagate
signals as-is, with little or no modulation. Though it should be noted that modulation
of a signal can still occur in extremes (for example, no activation of the enzyme
by the activator), or when conservation of mass is present – in which case the
concentration of the product has a strict upper bound.

The Arf/PLD/PI4P5K motif (as the AND-OR motif) therefore has an asymmetry in
the outgoing signals resulting from the production of PA and PI(4,5)P2. The system
can take a single input and propagate two distinct signals: PI(4,5)P2 reports the signal
with little modulation; and PA reports only whenever the signal is sufficiently large.
This behaviour is illustrated in table 4.4. So downstream processes could rely on
either of these signals, with their distinct advantages. In comparison, the symmetric
AND-AND and OR-OR motifs effectively only output a single signal via their two
products.

From the steady-state solutions of the models, it is apparent that the pseudo-mass-
action models are close to an upper limit of complexity, above which much of the
mathematical tractability is lost. The addition of Hill functions or conservation
of mass give models where the steady-state solutions can be found analytically
(computationally), but where these solutions are long and complicated functions of
the parameters that are difficult to investigate through algebraic manipulation.

If I must rely on numerical solutions in order to discuss the behaviours of the
system, then a major advantage of empirical models, above mechanistic models,
has been lost. Also, empirical models are inherently biased towards behaviours
that have been previously classified, and so may well be biased towards our (my)
expectations. (See the discussion in section 1.3.) So I consider that a better approach
for the continuing investigation of the Arf/PLD/PI4P5K motif is the development
of mechanistic models from first principles, based on the application of the law of
mass-action to well researched biochemical reaction schemes. This approach is what
will follow in the subsequent chapters for each of PLD, PI4P5K, and Arf.

In total, I have constructed a series of simple empirical models which have been
sufficient to suggest novel hypotheses about the Arf/PLD/PI4P5K motif. Attempts to
improve the realism of the initial pseudo-mass-action model caused an increase in
complexity, meaning that the resulting models are no longer amenable to mathem-
atical analysis. This led to the decision that a further, more rigorous, investigation
into these models was less important than developing more carefully constructed
mechanistic models – for which there is the possibility of later returning to similar
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analysis. Additionally, the introduced method by which a system is compared to
related but theoretical motifs shows promise as an additional tool for understanding
biochemical systems.
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5 PLD & PI4P5K: mechanisms and
models

To construct a well-defined mechanistic model of an enzyme-catalysed reaction,
or other biochemical process, it is crucial that the biochemistry that underlies the
process is itself well-defined. This does not preclude the development of models
based on theoretical mechanisms, so long as it is understood that these models are
reliant on a specific set of biochemical assumptions. In fact, for many processes for
which only a coarse-grained description is currently available, it will be essential
to supplement an ill-defined biochemical process with a series of assumptions and
hypotheses. We should also prefer that the majority of assumptions are described
as part of the biochemical mechanism, rather than as part of the mathematical
derivation. This, perhaps, will let us more easily develop experiments that could
validate or invalidate our chosen assumptions and hypotheses.
In this chapter, I intend to construct new, suitably physiologically-realistic models

of PLD and PI4P5K. This will require the consideration of the biochemical mech-
anisms and the specific molecular interactions that occur in the regulatory and
catalytic activities of the two enzymes. Wherever possible, these interactions will be
supported by primary sources. However, for some (mainly regulatory) interactions,
the pre-existing descriptions are insufficient for the immediate construction of math-
ematical models. In these cases, sensible assumptions will have to be taken, either
within the broader context of physical constraints on the regulatory and catalytic
interactions of enzymes in general, or using specific alternative arguments relying
on information that is present in alternative primary or secondary sources. I will
generally consider only processes which can be said to form the main functional
processes of the enzymes.
From these—now well-defined—mechanisms I will develop quasi-steady-state

mathematical models of both PLD and PI4P5K using the linear framework of Gun-
awardena (2012), described in section 3.3. These models will later—in chapter 7—be
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substrate binding site

Figure 5.1 The di-allosteric mechanism, where a generic 3-site enzyme has two allosteric
binding sites for regulatory molecules, in addition to its substrate binding site; and unrestricted
order of binding.
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brought together to form models of the complete Arf/PLD/PI4P5K motif.
I previously noted, in chapter 4, that PLD and PI4P5K appear to have fundamentally

distinct regulatory and catalytic mechanisms. The mechanisms and models that I
will develop in this chapter will later allow me to explore these differences further.
However, later in this chapter I will find that—under a specific set of assumptions—it
is possible that the regulation of both enzymes can be described using the same
mechanism. This mechanism arises from an assumption which I will call the 3-site
assumption where the enzyme is assumed to have two independent allosteric binding
sites – sites distinct from the catalytic site which allow regulation of the enzyme
by an effector molecule. I will refer to this as the di-allosteric mechanism. I will
pre-empt the requirement for the quasi-steady-state solution of this mechanism by
deriving it here first. This solution will not consider other regulatory processes such
as localisation, substrate binding, nor the catalytic mechanism itself – these will be
dealt with independently in complete models of both PLD and PI4P5K.
Additionally, I will also develop a 2-site model for PI4P5K which does not follow

this di-allosteric mechanism, but which relies on an alternative description for the
regulation of PI4P5K by PA.

5.1 Di-allosteric mechanism: QSS model
Consider an enzyme with two independent, allosteric binding sites for two distinct
regulatory molecules – subsequently referred to as the regulators. If the order of
binding of the regulators is unrestricted, then this mechanism can be described
by the diagram in figure 5.1. The quasi-steady-state solutions for the di-allosteric
mechanism will be required during the construction of models for both PLD and
PI4P5K.
In the following mathematics I will use the shorthand:

Enzyme Enzyme

Arf Arf

PA or PI(4,5)P2 PA or PI(4,5)P2

( and will correspond to PI(4,5)P2 in discussion of PLD and PA in discussion of
PI4P5K.) I will also use the notation for rates and complexes defined in section 3.2.1.
The di-allosteric mechanism can be described using the reaction scheme:
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Figure 5.2 The graph on the enzyme complexes for the di-allosteric mechanism shown in
figure 5.1 – an enzyme with two allosteric regulators and .
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Using the law of mass-action, the corresponding system of ODEs is

d
d (5.1)

d
d (5.2)

d
d (5.3)

d
d (5.4)

d
d (5.5)

d
d (5.6)

To obtain the quasi-steady-state solutions for , , , and I will use the linear
framework of Gunawardena (2012), described in section 3.3. The graph on the enzyme
complexes for the di-allosteric mechanism is shown in figure 5.2. The spanning
trees of this graph are shown in figure 5.3. These can then be used to derive a basis
element

in the order .
It is possible to produce an equivalent, alternative basis element by multiplying

or dividing each row by a scalar factor. Dividing by gives

where I have introduced equilibrium constants, defined as
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Rooted at :

Rooted at :

Rooted at :

Rooted at :

Figure 5.3 The 16 spanning trees of the graph on the enzyme complexes for the di-allosteric
mechanism, shown in figure 5.2. The highlighted nodes denote the root of each spanning
tree.
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To simplify this basis element further, I will assume that the cyclical graph shown
in figure 5.2 is in thermodynamic equilibrium and so the principle of microscopic
reversibility will hold (Colquhoun et al. 2004). This means that the product of the
rates clockwise around the cycle will equal the product of the rates anticlockwise
around the cycle,

Dividing by the forward rate constants gives

This is equivalent to the statement that the free energy of the complex must be
the same whether is added then , or is added then . (This result was used in
the derivation of the general modifier mechanism by Botts & Morales (1953).)
Using this substitution gives

Then, dividing by gives

We know that the steady-state solutions are of the form . So from
the basis vector we can write down the quasi-steady-state concentrations of the
intermediate enzymes

(5.7)

(5.8)
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(5.9)

(5.10)

where is the total concentration of enzyme

I will use the derived values for , , , and later in this chapter.

5.2 PLD: mechanism
Recall that phospholipase D (PLD) is an enzyme that hydrolyses phosphatidylcholine
(PC) to produce phosphatidic acid (PA) and choline. Also recall that PLD is regulated
by Arf and PI(4,5)P2.

PC

PLD

PA

Cho

Arf PIP2

To construct a physiologically-realistic model of PLD I require a better under-
standing of the molecular interactions that determine its regulatory and catalytic
activities. I require well-defined (at best based on primary literature; at worst based
on assumptions) descriptions for:

• the mechanism of regulation by Arf;

• the mechanism of regulation by PI(4,5)P2;

• the localisation of PLD;

• the method of catalytic action;

• and, possible competition for binding-sites (within the considered species).

I will explicitly ignore any effects or interactions that might arise due to other species,
complexes, or intracellular processes.
There is limited published literature that discusses the enzyme in sufficient detail

to allow the immediate construction of a mechanistic model. So I will have to
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supplement those descriptions that do exist with arguments from other, indirect
sources.
First—regulation. We know that PLD is activated by Arf only in the presence

of PI(4,5)P2. I have been unable to find a published description of the mechanism
for this regulation. Therefore, in the absence of contradictory (or confirmatory)
evidence, I will need to make sensible assumptions in order to progress to a plausible
model. I will assume that PLD has three independent, distinct binding sites. One for
each of: active Arf; PI(4,5)P2; and substrate PC. Thus Arf and PI(4,5)P2 will behave
as allosteric activators. This is illustrated in figure 5.4. There is evidence that there
are as many as three distinct binding sites for PI(4,5)P2 on PLD (Mahankali, Alter,
& Gomez-Cambronero 2014) – for simplicity I will assume that (at any one time)
only one of these is important for the dynamics of this regulation. (I will discuss
the idea of multisite binding mechanisms further in section 8.3.3.) I will assume
any other protein or lipid binding sites are inconsequential in the context of the
Arf/PLD/PI4P5K motif, and so I can refer to this as the 3-site assumption for PLD.
In text and diagrams, I will illustrate the 3-site assumption using the (compound)

symbol:

PLD

where the grey rectangles denote empty binding sites. Correspondingly, I will
illustrate the complete quaternary complex—with substrate and both regulators
bound—using the symbol:

PLD • PLD Arf PIP2 PC

Intermediate complexes will be illustrated equivalently and appropriately.
I will assume that binding of the regulatory molecules, Arf and PI(4,5)P2, to PLD

will follow the di-allosteric mechanism, shown in figure 5.1. Principally, because
this is a generally plausible hypothesis for an otherwise unknown regulatory system
containing two distinct regulatory molecules. I also know of no contradictory evid-
ence for this hypothesis. So I will assume a fully reversible scheme with unrestricted
order for PLD binding to Arf and PI(4,5)P2.

PLD

PLD

PLD

PLD

Arf

PIP2

PIP2

Arf
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Arf binding site
PI(4,5)P2 binding site

PC substrate binding site

Figure 5.4 The 3-site assumption for PLD, with a substrate binding pocket and distinct,
allosteric binding sites for the two regulators, Arf and PI(4,5)P2.

PLD

PLD

PLD •

PLD •

PLD

PLD

PLD •

PLD •

Figure 5.5 The 3-site mechanism for PLD including regulation by Arf and PI(4,5)P2, and
catalytic action (blue arrows). For clarity, added species have not been drawn.
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Before I can complete the discussion of the regulatory mechanism I need to
consider substrate binding. There are (at least) two plausible mechanisms for the
binding of PC to PLD:

1. substrate may bind to any intermediate complex so long as the substrate-
binding site is free, PLD , PLD , PLD , or PLD ;

2. or, substrate may only bind to the complex with both Arf and PI(4,5)P2 already
bound, PLD .

The second hypothesis immediately suggests a plausible mechanism of activation
– a restriction on substrate binding, explicitly requiring the two regulators to be
present. This would be true if the regulators operate to modulate the structure of
the enzyme so that the substrate binding site becomes exposed.
However, by restricting substrate binding we also restrict catalysis, and so the

second hypothesis disallows a basal rate of catalysis in the absence of the regulators.
This appears to be false in at least one set of experimental results – see for instance
figure 11 in Perez-Mansilla et al. (2006). This shows a small—but non-zero—basal rate
of PLD activity in the absence of Arf. Therefore I will assume the first hypothesis to
be true.
With PC able to bind to any intermediate complex, I will also assume that Arf

and PI(4,5)P2 themselves can also bind to any intermediate complex (so long as the
correct binding site is free). This implies an equivalent application of the di-allosteric
mechanism, now in respects to the enzyme-substrate complex.

PLD •

PLD •

PLD •

PLD •

Arf

PIP2

PIP2

Arf

Within the framework of this regulatory scheme, it remains to state exactly how
Arf and PI(4,5)P2 regulate PLD. Activation could be due to either:

• an increase in the rate of substrate binding;

• a decrease in the rate of substrate unbinding;

• or, an increase in the total catalytic rate of the quaternary complex.
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In the full model that will first be derived, any of these hypotheses could be investig-
ated. However, for simplicity I will assume that the last of these is true, and that
substrate binding/unbinding is completely independent of the bound regulators.
Next I will investigate the catalytic mechanism of PLD – for which a proposed

mechanism is available (Mahankali, Alter, & Gomez-Cambronero 2014). This mech-
anism is described as irreversible and is characterised by the ordered release of the
products of the reaction – first choline, then PA.

PLD • PLD PLD

Cho

PA

As we are only interested in the production of PA—and not choline—the final
model would be simplified if it is sensible to assume that the products are released
in a single catalytic step. Effectively, we need to assume that the PLD PA

complex is only very short-lived. Additionally, this mechanism can be modelled as
irreversible only in the absence of product inhibition by either PA or choline.
Inhibition by choline would likely be the less impactful inhibition as soluble

and so that produced by PLD will be free to diffuse away from the membrane. So
the surface concentration of the (produced) choline will be lower than the surface
concentration of the (produced) PA. In fact, there is no evidence for inhibition of
PLD by choline listed in the BRENDA database (Schomburg et al. 2013). Nor is there
any evidence in the BRENDA database for inhibition by other lipids which contain
choline-headgroups such as sphingomyelin.
From a review of the existing literature and a search on the BRENDA database

(Schomburg et al. 2013) I have found only two references to the existence or non-
existence of inhibition of PLD by PA.

• Okamura & Yamashita (1994) states:

… lyso-PC, PE, PI, PA, and DAG were inhibitory to the enzyme …

• Hirano et al. (2012) states:

… typical bacterial PLD from Streptomyces sp. was found to hy-
drolyze all the PC molecules at the outer surface of LUVs [large
unilamellar vesicles] suggesting that this enzyme is free fromproduct
inhibition.
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Also:

Compared with PLD from S. chromofuscus, PLD from Streptomyces
sp. showed no product inhibition.

Note that the PLD from Streptomyces sp. catalyses the reaction via a HKD do-
main, as per mammalian PLDs, while the PLD from Streptomyces chromofuscus
lacks a HKD group and so catalyses the reaction using an alternative mechan-
ism. (It is perhaps interesting to note that the PLD from S. chromofuscus does
hydrolyse sphingomyelin (Imamura & Horiuti 1979).)

Neither description is particularly satisfying, and neither article includes any further
evidence supporting these statements.
I have chosen to contradict the first, older report, and so will assume that PLD is

not inhibited by PA (specifically mammalian isoforms that operate through HKD
domains). Primarily, I make this choice because it will result in a simpler (biochem-
ical) model of the regulation of the enzyme. But also, the lack of further reporting of
inhibition of PLD by PA suggests that it is not a significant modifier to the activity
of the enzyme in most systems.
In total, I will assume that PLD does not display product inhibition by either PA or

choline. Additionally, I will assume that there is no long-lived PLD-PA complex and
so hydrolysis of PC and release of PA/choline will occur in a single irreversible step.

PLD • PLD

Cho

PA

As I have mentioned above, I would like to allow for the possibility of a basal rate
of catalysis in the absence of the regulators. So I will (initially) assume that this
catalytic reaction can occur for any PLD complex so long as substrate is bound.
Together, the mechanisms of regulation, substrate binding/unbinding, and sub-

strate catalysis are illustrated in figure 5.5.
Finally, I will assume that all PLD is constitutively membrane-associated, and that

the membrane-association is independent of the concentration of Arf and PI(4,5)P2
(otherwise, I will leave this particular mechanism unspecified). This is possibly an
over-simplification – as stated in section 2.4 the phospholipid-binding domains of
PLD have been characterised as having a role in membrane-recruitment. However,
numerous reports do characterise PLD as having predominantly membrane-localised
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Figure 5.6 Graph on the enzyme complexes for the 3-site model for PLD. The highlighted re-
gions correspond to pools of complexes that are connected by substrate binding, unbinding,
and catalysis.
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distributions (PLD1 to the Golgi and PLD2 to the plasma membrane) – see the
introduction and results of Hiroyama & Exton (2005).

5.3 PLD: QSS model
Now that I have described a plausible mechanism for PLD I am able to construct a
suitable quasi-steady-state model based on this mechanism.
In this section I will use the shorthand:

PLD PLD

PC PC

PA PA

Arf Arf

PI(4,5)P2 PI(4,5)P2

I will also use the notation for rates and complexes defined in section 3.2.1. As PLD
operates on the membrane, and is itself membrane-associated, all species/complexes
have been pre/appended by an asterisk ( ) according to the rules in section 3.5.1.
The 3-site mechanism for PLD was illustrated in figure 5.5. This can be drawn as

the graph on the enzyme complexes shown in figure 5.6. The corresponding system
of ODEs is

d
d cat

d
d cat

d
d cat

d
d cat

d
d cat

d
d cat

d
d cat

d
d cat

d
d
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Figure 5.7 A small proportion of the 3072 spanning trees of the 3 site PLD graph shown in
figure 5.6.
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d
d
d
d
d
d cat cat cat cat

This is a system of 12 variables and 28 parameters.

I would like to use the linear framework of Gunawardena (2012), described in
section 3.3, to construct a reduced model from this system. The number of spanning
trees was found—using the algorithm in section 3.4.1—with the following Python
code:
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Figure 5.8 Subgraphs of the 3-site PLD graph, the highlighted regions in figure 5.6 corres-
ponding to pools of complexes that have interconversions comprising of only substrate
binding, unbinding, and catalysis.
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Thus the graph on the enzyme complexes can be shown to have 3072 distinct
spanning trees. This is clearly too many to sensibly enumerate or manipulate. A
small proportion of these have been been drawn in figure 5.7.
I need to amend my approach so as to introduce sufficient simplification, so that I

can sensibly develop a reduced model. For this reason I will assume that dynamics
related to interactions with the substrate/product can—in some sense—be separated
from dynamics related to interactions with the regulators. I will assume that the
time scales of these two sets of interactions are such that they can be uncoupled.
Specifically, I will assume that substrate binding, unbinding, and catalysis follow the
rapid equilibrium assumption, as specified in section 3.2.4. This is supported by the
following quote from Hammes (1978):

The rates of regulatory conformational changes are generally somewhat
slower than those associated with catalysis and in some cases are extremely
slow (min and hr).

These interactions have been highlighted on the graph in figure 5.6, defining pools
of related complexes.
I intend to introduce new variables which correspond to total concentrations of

these pools of complexes. By making additional assumptions on the rate constants of
the system, I will be able to generate a new system. This system can be described by
an associated graph where the vertices corresponding to the pools. In a (very loose)
sense I will be collapsing the graph in figure 5.6 along the highlighted, substrate-
interaction, dimension.
The four independent (sub-)graphs shown in figure 5.8 correspond to the high-

lighted regions in the graph in figure 5.6. To each of these I can apply the rapid
equilibrium assumption, or equivalently the linear framework of Gunawardena
(2012) – in which case the general basis element is

cat

in the order , where (including the empty set).
Therefore, the general forms of the rapid equilibrium solutions for each complex

are

(5.11)

(5.12)
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where

cat

and

The are the new variables mentioned previously, which correspond to the total
concentration of the pools of complexes (which are partial total concentrations of
the whole system).
We can now also write down the rates of change of each . For example

d
d

d
d

d
d

In order to simplify this further I need to assume that the rates of binding and
unbinding of Arf and PI(4,5)P2 are independent of whether substrate is bound. That
is,

Then the rate of change of can be written as

d
d

Similarly, for the other variables,

d
d
d
d

d
d

Excluding the variable names, the equations for the rate of change between the
pools of complexes exactly match those that describe the di-allosteric mechanism,
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equations 5.1 to 5.6. So this system has been reduced to the di-allosteric mechanism,
and can also be described using the graph in figure 5.2 by appropriate relabelling
of the vertices. From the original derivation I can immediately write down the
quasi-steady-state values of the . These were originally given as equations 5.7 to
5.10, and so

(5.13)

(5.14)

(5.15)

(5.16)

where

I now have enough information to construct a model for the 3-site mechanism for
PLD. From the original system of ODEs, we know that

d
d cat cat cat cat

cat

Substituting in the value of from equation 5.12 gives

d
d cat

Substituting in the values of from equations 5.13 to 5.16, and rearranging, gives

d
d

cat cat cat cat (5.17)

Equation 5.17 describes the most general version of the model, which has 3
variables and 12 parameters. This equation is useful if we wish to investigate the
effect on substrate binding/unbinding rates of different combinations of bound
regulators. This full form of the model is very verbose, and—given that the PLD
model will comprise part of a model of the Arf/PLD/PI4P5K motif, which itself is
intended to be included in still larger models—a simplified form is desirable. So I
will make the following additional assumptions:
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1. That the catalytic rates for the three non-quaternary complexes are equal,
there is no partial activation by either regulator,

cat cat cat

2. That the equilibrium constants for the three non-quaternary complexes are
equal,

3. That the equilibrium constant for PI(4,5)P2 binding/unbinding is independent
of whether Arf is bound,

With these assumptions, the model reduces to

d
d

act cat (5.18)

where

act
cat

cat

is the fold-change in the catalytic rate due to the presence of both Arf and PI(4,5)P2.
The model can be simplified further by assuming that there is no basal rate of

catalysis (in the absence of either regulator). Given the previous evidence this is
probably not true, but depending on the relative rates of activated and unactivated
enzymes it may be an appropriate approximation. That is cat ( cat ), in
which case

d
d

cat (5.19)

I will analyse the behaviour of the model given by equation 5.19 in chapter 7.

5.4 PI4P5K: mechanism
Recall that phosphatidylinositol 4-phosphate 5-kinase (PI4P5K) is an enzyme that
phosphorylates PI4P to produce PI(4,5)P2. The additional phosphate group is obtained
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from ATP. Also recall that PI4P5K is activated by Arf and PA.

PIP

PIPK

PIP2

ADPATP

Arf PA

As for PLD, to construct a physiologically-realistic model of PI4P5K I require a
better understanding of the molecular interactions that determine its catalytic action
and mechanism of activation. Based on arguments from primary and secondary
sources and additional sensible assumptions I require well-defined descriptions for:

• the mechanism of regulation by Arf;

• the mechanism of regulation by PA;

• the localisation of PI4P5K;

• the method of catalytic action;

• and, possible competition for binding-sites (within the considered species).

I will explicitly ignore any interactions with species outside the limits of the
model I intend to construct. In particular, I will ignore any dynamics associated with
the binding and unbinding of ATP and ADP – I assume that the interaction with
ATP/ADP is inconsequential and the requirement for ATP is never rate limiting. (I
will discuss the idea of modelling interactions with ATP/ADP in section 8.3.2.)
First—for the catalytic action of PI4P5K—I will assume that catalysis of PIP to

PI(4,5)P2 proceeds as follows:

PIPK PIPK • PIPK PIPK

PIP ATP ADP PIP2

(Only the substrate binding site has been considered in this diagram.) This reaction
scheme specifies a reversible binding of substrate; followed by irreversible catalysis;
followed by a reversible unbinding of product. The reaction scheme includes product
inhibition as this has been experimentally observed (Ling, Schulz, & Cantley 1989;
Moritz et al. 1992). Product inhibition may result from the structural similarity
between the substrate and product, and the fact that the substrate plus the additional
phosphate group must fit inside the catalytic site.
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on

off

Figure 5.9 Simple reversible surface adsorption of an enzyme binding to a membrane.

A 3-site

Arf binding site
PA binding site

PIP substrate binding site

B 2-site

Arf binding site
PA binding site

PIP substrate binding site

Figure 5.10 The 3-site and 2-site hypotheses for PI4P5K. A a substrate binding pocket
and distinct, allosteric binding sites for the two regulators, Arf and PI(4,5)P2; B a substrate
binding pocket which overlaps a binding site for PI(4,5)P2 and a distinct, allosteric binding
site for Arf.
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Not all PI4P5K is located near to its substrate – it must first localise to the lipid
membrane by diffusion or some other process. Once membrane-localised it is plaus-
ible that small inter-molecular forces will keep an individual molecule of PI4P5K near
the membrane for short periods of time. Mathematically, I will consider PI4P5K to act
as a surface-active enzyme, illustrated in figure 5.9, as was described in section 3.5.
Regulation (activation) by Arf and PA has been reported to be at least additive, and

perhaps synergistic (Honda et al. 1999; Cockcroft 2009). I will consider regulation
by each to be independent processes. Two different hypotheses for the mechanism
of regulation by PA will lead to two models: a 3 site hypothesis, equivalent to the
derived model for PLD; and a 2 site hypothesis. I will illustrate the 3-site hypothesis
using the (compound) symbols:

PIPK PIPK • PIPK Arf PA PIP

I will illustrate the 2-site hypothesis using the symbols:

PIPK PIPK • PIPK Arf PIP

PIPK PIPK Arf PA

For both the 3-site and 2-site hypotheses, I will assume the same mechanism of
regulation by Arf – via an allosteric binding site. If binding and unbinding can occur
at any stage of the catalytic process, this can be described using the reaction scheme:

PIPK PIPK • PIPK PIPK

PIPK PIPK • PIPK PIPK

Arf Arf Arf Arf

(Illustrated for the 3-site hypothesis.)
Within this framework, there are two plausible mechanisms of activation:

1. PI4P5K has a conformational change when bound to Arf that in some way
improves its total catalytic activity, either by:

• an increase in the rate of substrate binding;

• a decrease in the rate of substrate unbinding;

• or, an increase in the total catalytic rate of the complete complex.
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This can be described as activation via improving the efficacy of an individual
molecule of PI4P5K. These mechanisms correspond to those regulatory pro-
cesses considered for PLD.

2. When bound to active Arf (itself membrane bound) PI4P5K has a stronger
membrane association – it must first unbind Arf before it can leave the mem-
brane. This is activation via increasing the effective surface concentration of
PI4P5K, or activation by membrane-tethering/-recruitment.

These two mechanisms are not contradictory – it is entirely possible that action of
PI4P5K by Arf is by a combination of both. However, the second is arguably more
compelling and raises an additional question as to whether this membrane-tethering
is sufficient to explain observed levels of activation. Therefore, I choose to primarily
investigate this hypothesis. However, a complete non-simplified model, that will be
an intermediate step in the model derivation, could be used to investigate any of
these hypotheses.
The 3-site hypothesis for PI4P5K is then generated by the assumption that there

is a second, independent, allosteric binding site in which PA operates in a manner
equivalently to Arf, as illustrated in figure 5.10A. I will assume that PA can bind to
any intermediate complex.

PIPK PIPK • PIPK PIPK

PIPK PIPK • PIPK PIPK

PA PA PA PA

(Equivalently for the PI4P5K-Arf complex.) In this case, either or both of two
mechanisms of activation described for Arf could also hold for PA. This does not
necessarily have to be the same mechanism, but here I will again assume the second
hypothesis. In total, the reaction scheme for the 3-site mechanism is illustrated in
figure 5.11A.
The 2-site hypothesis for PI4P5K derives from an alternative mechanism proposed

by Stace et al. (2008):

We hypothesize a mechanism whereby binding to PA may allow the sub-
strate binding site to exist in optimal conformation, ready for substrate
binding. Once substrate is available, it could replace PA—due to higher
affinity—and be phosphorylated to PI(4,5)P2. This model is consistent with
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very recent work from Jarquin-Pardo et al. (2007) who suggested that PA
stimulates PIP5K by increasing its affinity for the substrate.

This is illustrated in figure 5.10B. The description of this mechanism specifically
argues against the formation of a quaternary complex. It can be represented altern-
atively using the reaction scheme:

PIPK PIPK • PIPK PIPK

PIPK

PA

PIP

PA

(Equivalently for the PI4P5K-Arf complex.) This mechanism is supported by results
which state that in the presence of strong product inhibition, activation by PA is
completely suppressed (Moritz et al. 1992) – suggesting that PI(4,5)P2 and PA are in
some way competitive.
Regarding the drawn irreversibility of the exchange reaction – briefly consider

the thermodynamically-complete system:

Here is enzyme (PI4P5K), is substrate (PIP), and is regulator (PA). This system
is equivalent to the sub-system formed by the substrate-binding and PA-regulatory
dynamics of the 2-site PI4P5K mechanism, with the addition of a reverse reaction
opposite to the exchange mechanism ( ).
At thermodynamic equilibrium, the product of the clockwise rates around this

cyclical graph will equal the product of the anticlockwise rates, so
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where . This means that the change in total free energy (for the creation
of the enzyme-substrate complex) must be the same via the direct route as via the
enzyme-regulator complex.
This also implies a constraint on the parameters of the system. For example, to

approximate the 2-site mechanism for PI4P5K we would like to be (very) small.
But then the following combination of parameters must be equally small:

Hence this completely reversible system, as stated, is incompatible with (steady-
state) activation. Although this system could instead mediate transient activation
(plausibly by the initial absence of substrate and a build up of the enzyme-regulator
complex) this is not consistent with previous description of the regulation of PI4P5K
by PA. Effectively, this could be seen as a thermodynamic counter-argument against
the mechanism of regulation suggested by Stace et al. (2008).
So to continue with this model I will have to make the (thermodynamically

questionable) assumption that the exchange reaction is strictly irreversible. (Note
that this is a common assumption for catalytic reactions, and so is not completely
implausible.) Under this scheme, to observe activation, the rate of formation of
the PI4P5K-substrate complex must be greater via the PI4P5K-PA complex than the
direct route. That is, the total rate of the two reactions:

PIPK PIPK •PIPK

PA PIP PA

must be faster than the single reaction:

PIPK PIPK •

PIP

I will confirm that this mechanism leads to (steady-state) activation in section 7.4.6.
In total, the reaction scheme for the 2-site mechanism is drawn as figure 5.11B.

5.5 PI4P5K: QSS models
Now that I have described two plausible mechanisms for PI4P5K, I am able to
construct suitable quasi-steady-state models based on these mechanisms.
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cat

ca
t

cat

cat

Figure 5.12 Graph on the enzyme complexes for the 3-site model of PI4P5K. The highlighted
regions correspond to pools of complexes that have interconversions comprising of only
substrate/product binding, unbinding, and catalysis. The adsorption process ( ) has
been indicated on this graph, however this has not been included in the derivation of the
quasi-steady-state models, and is considered separately.



PI4P5K: QSS models 153

In this section I will use the shorthand:

PI4P5K PI4P5K

PIP PIP

PI(4,5)P2 PI(4,5)P2
Arf Arf

PI(4,5)P2 PI(4,5)P2

I will also use the notation for rates and complexes defined in section 3.2.1. Spe-
cies/complexes will be pre/appended by an asterisk ( ) according to the rules in
section 3.5.1.
I will assume that PI4P5K follows an adsorption process as discussed in section 3.5.

This process will be ignored in the derivations of quasi-steady-state models for the
enzyme, and instead will be modelled separately using the equation

adsorp on off

where is the available area function, and is the surface area per unit volume. (I
cannot continue to use the notation as this would conflict with the notation for
Arf.)

5.5.1 3-site QSS model
The 3-site mechanism for PI4P5K is illustrated in figure 5.11A. This can be drawn as
the graph on the enzyme complexes shown in figure 5.12. The corresponding system
of ODEs is

d
d adsorp

d
d adsorp

d
d cat

d
d cat

d
d

d
d cat
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d
d cat

d
d

d
d cat

d
d cat

d
d

d
d cat

d
d cat

d
d

d
d

d
d

d
d

I would like to use the linear framework of Gunawardena (2012), described in
section 3.3, to construct a reduced model based on this system (ignoring the adsorp-
tion process). The number of spanning trees was found—using the algorithm in
section 3.4.1—with the following Python code:

1

2

3

4

5

6

7

8

9

10

11

12
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Thus this graph can be shown to have 1,612,800 distinct spanning trees. This
is many hundreds of times the number of spanning trees obtained for the PLD
mechanism, which I already determined was too many to sensibly enumerate or
manipulate. A (very) small proportion of these have been drawn in figure 5.13.

Again, I need to amend my approach so as to introduce sufficient simplification,
so that I can sensibly develop a reduced model. I will take the same approach as
I took for the PLD model. That is, I assume that dynamics related to interactions
with the substrate, and now also product, can—in some sense—be separated from
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Figure 5.13 A small proportion of the 1,612,800 spanning trees of the graph on the enzyme
complexes for the mechanism shown in figure 5.12.
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dynamics related to interactions with the regulators. Specifically, I will assume that
substrate/product binding, unbinding, and catalysis follow the rapid equilibrium
assumption, as specified in section 3.2.4. These interactions have been highlighted
on the graph in figure 5.12. These again define pools of related complexes, for which
I intend to introduce new variables corresponding to the total concentrations of
the complexes in these pools. With additional assumptions on the rate constants of
the system, I will again be able to collapse the graph in figure 5.12 and produce a
simplified system with a smaller graph.
The four independent (sub-)graphs shown in figure 5.14 correspond to the high-

lighted regions in the graph in figure 5.12. Each of these is equivalent to theMichaelis-
Menten mechanism with product inhibition, as was described in section 3.3.2. There-
fore, we can immediately write down the quasi-steady-state solutions for the enzyme
complexes from equations 3.12 to 3.14. In general—for —these are

ic

(5.20)

cat

ic

(5.21)

ic

cat

ic

(5.22)

where

The are again variables which correspond to the total concentrations in the pool
of complexes.
We can also write down the rates of change of each , for example

d
d

d
d

d
d

d
d

adsorp

adsorp

where

adsorp on off



158 PLD & PI4P5K: mechanisms and models

A

cat

B

cat

C

cat

D

cat

Figure 5.14 Subgraphs of the 3-site PI4P5K graph, the highlighted regions in figure 5.12
corresponding to pools of complexes that have interconversions comprising of only sub-
strate/product binding, unbinding, and catalysis.
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and

ic

cat

ic

cat

cat

ic

cat

cat

ic

cat

This can be simplified in the same manner as the PLD model, by assuming that
the rates of binding and unbinding of Arf and PA are independent of whether
substrate/product is bound,

Using these replacements gives

and so the above equation simplifies to

d
d adsorp

Similarly,

d
d
d
d

d
d

Ignoring the adsorption process described by adsorp , these equations again
match the equations that describe the di-allosteric mechanism, equations 5.1 to 5.6.
So the membrane-associated part of the system has been reduced to the di-allosteric
mechanism, and can also be described using the graph in figure 5.2 by appropriate
relabelling of the vertices. From the original derivation I can immediately write down
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the quasi-steady-state values of the . These were originally given as equations 5.7
to 5.10. We now need to allow for the mass of enzyme which remains cytosolic,
which is not included in the di-allosteric mechanism, and so replace by .
This means

(5.23)

(5.24)

(5.25)

(5.26)

where

We now have enough information to construct a model for the 3-site mechanism
for PI4P5K. We need to start with the net rate of production of free PI(4,5)P2 by
the system. In this case, this is given by the difference between the forwards and
reverse reactions between the complexes and for each . From
the original system of ODEs we know that

d
d

Substituting in values of and from equations 5.20 to 5.22 gives

d
d

ic

cat

ic

cat

ic

Substituting in the values of from equations 5.23 to 5.26, and rearranging, gives

d
d

cat

ic

cat

ic

cat

ic

cat

ic

(5.27)
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Equation 5.27 describes the most general version of this model, with 4 variables
and 17 parameters. This equation would be useful if we wanted to investigate the
effects of substrate/product binding or catalytic rates that depended on the presence
of either or both regulator. However, this full form is verbose, and a simplified form
of this model is desirable to comprise part of a model of the the Arf/PLD/PI4P5K
motif.
I will make the following additional assumptions:

1. That catalytic rates are equal,

cat cat cat cat

2. That the equilibrium constants for substrate binding/unbinding are equal,

3. That the (product) inhibition constants are equal,

ic ic ic ic

With these assumptions the model reduces to

d
d

cat

ic

(5.28)

This is in the form of the original equation for Michaelis-Menten with product
inhibition given by equation 3.15, except with the total concentration is now given
by . Perhaps surprisingly, this equation has no reliance on the concentrations
of the regulators, and . Instead the concentrations of the regulators affect
the maximum rate ( max) by influencing the amount of enzyme present (on the
membrane). So how do the Arf and PA effect PI4P5K? We still require an additional
equation for the concentration cytosolic PI4P5K, . From the original system of
ODEs we know that

d
d adsorp

on off

Substituting in the value of from equation 5.20 gives

d
d on off

ic
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exc cat

exc
cat

Figure 5.15 Graph on the enzyme complexes for the 2-site model of PI4P5K. The adsorption
process ( ) has been indicated on this graph, however this has not been included in
the derivation of the quasi-steady-state models, and is considered separately.

A B

Figure 5.16 Possible approaches for the simplication of the graph shown in figure 5.15. The
highlighted regions correspond to pools of complexes that can be separated out of the full
graph.
A PA is considered part of the (independent) regulatory processes.
B PA is considered part of the catalytic process.



PI4P5K: QSS models 163

Substituting in the value of from equation 5.23 gives

d
d on off

off

ic

To simplify this I will introduce one further assumption:

4. That the equilibrium constant for PA binding/unbinding is independent of
whether Arf is bound,

With this, the equation reduces to

d
d on

off

ic

(5.29)

Together, equations 5.28 and 5.29 constitute what I will call the 3-site model of
PI4P5K. In this model, Arf and PA only contribute to the amount of enzyme on
the membrane and do not contribute to the actual kinetic rate of catalysis. We can
see that as the concentration of either Arf ( ) or PA ( ) increases, the amount of
cytosolic enzyme ( ) decreases. I will analyse the behaviours of this model further
in chapter 7.

5.5.2 2-site QSS model

The 2-site mechanism for PI4P5K is illustrated in figure 5.11B. This can be drawn as
the graph on the enzyme complexes shown in figure 5.15. The corresponding system
of ODEs is

d
d
d
d exc

d
d cat exc

d
d cat

d
d

d
d exc
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d
d cat exc

d
d cat

d
d
d
d exc exc

d
d exc exc

d
d

This is a system of 12 variables and 24 parameters.
Of particular interest are the exchange reactions, which are

exc exc

These model the release of PA and the binding of PI(4,5)P2 in a single reaction step.
(Therefore, free PA is generated at the same rate.)
Once more, I would like to use the linear framework of Gunawardena (2012),

described in section 3.3, to construct a reduced model based on this system (again
minus the adsorption process). The number of spanning trees was found—using the
algorithm in section 3.4.1—with the following Python code:

1

2

3

4

5
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21
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35

This shows we again have too many (2240) spanning trees to sensibly enumerate
andmanipulate. So I will take the same approach as before, and separate the dynamics
related to each of catalysis and regulation into distinct components. However, I now
have a choice:

• If I include PA in the regulation component, then this is equivalent to the choice
made for the previous 3-site models. This choice is illustrated in figure 5.16A.
We already know the rapid equilibrium values of the pools of complexes:

; ; and the others are defined by the quasi-steady-state solutions
for Michelis-Menten with product inhibition as per the 3-site model, given
by equations 5.20 to 5.22. However, we cannot directly use the results of
the di-allosteric mechanism, due to a loss of symmetry between the pools of
complexes. In this system, the rates of exchange between the pools will not
match those of the di-allosteric mechanism. For example

d
d

d
d exc

exc
ic

which, even with similar equality constraints on the rate constants as before,
does not simplify to the relevant equation for the di-allosteric mechanism. So
the labels on the reduced graph would be different, and so the di-allosteric
mechanism would have to be re-derived using these new (complicated, frac-
tional) rates as edge labels.

• If I include PA in the catalytic component, then I will need to derive newmodels
for both components. This choice is illustrated in figure 5.16B. However,
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A

exc
cat

B

exc cat

Figure 5.17 The catalytic components, subgraphs of the 2-site PI4P5K graph, the highlighted
regions in figure 5.16B, corresponding to pools of complexes that have interconversions
comprising of substrate/product binding, unbinding, and catalysis; and PA binding, unbinding,
and exchange.
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this is arguably more satisfactory as it means that all dynamics related to
the substrate binding site are considered together and, as we shall see, the
regulatory component is described by a simple reversible binding process. In
this case it then only remains to derive a newmodel of the catalytic component.

I will choose the second of these assumptions, and include the PA interactions
within the catalytic component. This gives the two independent (sub-)graphs in
figure 5.17 which correspond to the highlighted regions of the graph in figure 5.16B.
I will consider the general graph where (so or ). The 16
spanning trees for this graph are shown in figure 5.18. This gives the basis element

cat exc

cat

exc exc

exc cat cat cat exc

in the order .
It will be helpful to simplify this basis element further. We can first do this in

analogy with the method in which the quasi-steady-state equation for Michaelis-
Menten was derived in section 3.3.2. Dividing by cat gives

exc

cat exc
exc

exc ic

cat exc cat

where I have used the relation

cat

cat

cat

cat

and where (as before)

cat

cat
ic cat

cat

cat

Next I desire to simplify the components related to PA ( ) addition/removal. Note
that this portion of the mechanism is similar to the catalysis/product inhibition
portion of the mechanism, this may suggest the division by a similar factor to the
last step. This would be dividing by exc . However, now the total rate
of exchange is given by the parameter exc multiplied by (compared with the
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Rooted at :

exc cat

exc cat

Rooted at :

cat

Rooted at :

exc exc

Rooted at :

cat exc cat cat

exc cat exc cat

exc

Figure 5.18 The 16 spanning trees of the graph on the enzyme complexes for the catalytic
component of the 2 site mechanism, shown in figure 5.17. The highlighted nodes denote
the root of each spanning tree.
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total rate of catalysis which is just given by the rate cat). So the system can not be
simplified in the same way, as I would like to keep the variable accessible.
Instead, dividing by gives

exc

cat
rel exc

exc ic

cat
rel

cat

where

exc
exc

rel
exc

Therefore, the quasi-steady-state solutions are

exc

exc ic rel

(5.30)

exc ic rel

(5.31)
cat

rel exc

exc ic rel

(5.32)

exc ic

cat
rel

cat

exc ic rel

(5.33)

where

These solutions are relatively complex, however the numerators will simplify
during the derivation of the rate of production of product. Note that the denominator
of the equation for the Michaelis-Menten mechanism with product inhibition,

ic
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is also found in the denominator of these solutions. Then with the assumptions

and given the original system of ODEs, we have

d
d

d
d

d
d

d
d

d
d

adsorp

d
d

d
d

d
d

d
d

d
d

where

adsorp on off

Ignoring the adsorption process, applying the rapid equilibrium assumption to
the reactions between between and gives

(5.34)

(5.35)

where and

We now have enough information to construct a model for the 2-site mechanism
for PI4P5K. Again, the net rate of production of free PI(4,5)P2 is

d
d

Substituting in values of and from equations 5.30 to 5.33 gives

d
d

exc ic

cat
rel

cat

exc ic rel

exc

exc ic rel
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cat exc rel

exc ic rel

Substituting in the values of from equations 5.34 to 5.35, and rearranging, gives

d
d

cat exc rel

exc ic rel
(5.36)

cat exc rel

exc ic rel

Equation 5.36 describes the most general version of this model, with 4 variables
and 15 parameters. In order to reduce the complexity of the model, I will again make
the additional assumptions that the following rates are equal

ic ic

cat cat exc exc rel rel

With these assumptions the model reduces to

d
d

cat exc rel

exc ic rel
(5.37)

This is more complex than the model for the 3-site mechanism for PI4P5K. Note
that again we lose any dependence of this equation of the concentration of Arf
( ). However now, due to the inclusion of PA within the substrate dynamics, the
PA-dependence is retained.
It remains to write down an equation for the rate of change of , the concentration

of cytosolic enzyme. From the original system of ODEs we know that

d
d adsorp on off

Substituting in the value of from equation 5.30 gives

d
d on

off exc

exc ic rel

Substituting in the value of from equation 5.34 gives

d
d on

off exc

exc ic rel

(5.38)
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Together, equations 5.37 and 5.38 constitute what I will call the 2-site model of
PI4P5K. In this model, Arf only contributes to the amount of enzyme on the mem-
brane, and does not contribute to the actual kinetic rate of catalysis. In comparison
with the 3-site model, PA is now involved in the catalytic mechanism and as such
appears in the function describing the catalytic rate. I will analyse the behaviours of
this model further in chapter 7.

5.6 Discussion
So as to develop more realistic models than the empirical models described in
chapter 4 I have now constructed quasi-steady-state mechanistic models for the
enzymes PLD and PI4P5K. These were based on newly proposed well-defined (com-
plete and with all assumptions listed) molecular mechanisms describing the catalysis
and regulation of the enzymes by Arf, and PI(4,5)P2 or PA.
The molecular mechanisms were determined—wherever possible—based on the

current understanding of the enzymes as specified by pre-existing published sources,
including both from direct descriptions of molecular interactions and from arguments
made via indirect evidence, for example evidence concerning binding sites. (The
individual sections should be consulted for the full details and usage of these sources.)
This was supplemented where necessary by sensible assumptions based on likely
enzymatic activities.
Here, a ‘well-defined’ mechanism can be understood to be one that contains

enough information such that it can be directly translated into a mathematical
model using the law of mass-action without the immediate requirement for further
mathematical assumptions. In this way, most of the primary model assumptions are
clearly phrased in terms of biochemical interactions and as such could later (at least
hypothetically) be investigated directly experimentally.
The application of the law of mass-action to the derived reactions schemes gen-

erates systems of ODEs. These could be directly simulated, but the requirement
for many first and second order rate constants—most of which we could not easily
measure—mean that this is not ideal.
Alternatively, these reaction schemes can be used to form ‘graphs on the enzyme

complexes’, which describe the routes for the formation and destruction of enzyme-
containing complexes. This allows the derivation of quasi-steady-state models via
application of the linear framework of Gunawardena (2012) as described in section 3.3.
However, in all cases, a naïve, direct application of the framework to the graphs on
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the enzyme complexes generated from thesemechanisms resulted in large (thousands
to millions) numbers of spanning trees – which means that further, exact, derivation
of mathematical models is a non-tractable problem.
An alternative approach was therefore taken, (again) using the idea of time-scale

separation, now in order to separate dynamics related to substrate binding, unbind-
ing and catalysis, from dynamics related to regulation. This required additional
mathematical assumptions—the equality of certain rates—in order to generate sens-
ible models. Further assumptions were used to simplify these to final, proposed
models with fewer numbers of parameters, befitting an intent to use these as compon-
ent models within a model of the Arf/PLD/PI4P5K motif. It remains to investigate
whether the simplifying assumptions are valid.
This process was applied to three mechanisms:

• a 3-site mechanism for PLD, in section 5.3;

• a 3-site mechanism for PI4P5K, in section 5.5.1;

• and a 2-site mechanism for PI4P5K, in section 5.5.2.

The PI4P5K models also required the inclusion of cytosol-membrane interactions for
which I have used the model of Kartal & Ebenhöh (2013) described in section 3.5.
Each model is more complicated than the equivalent empirical model discussed

previously. Recall that these were already becoming too complex for complete
mathematical analysis, and so the steady-state solutions for the mechanistic models
of PLD and PI4P5K are very unlikely to be mathematical tractable. Most likely,
investigation of these models will have to rely on numerical simulation. However,
these new mechanistic models should be less dependent on arbitrary (mathematical)
decisions and biases towards expected behaviours – and those assumptions that had
to be taken are well-documented.
Analysis and exploration of the function and behaviours of the mechanistic models

will be continued in chapter 7.
Through the development of the complete reactions schemes I have discovered

that the mechanisms of regulation of PLD and PI4P5K by Arf, and PI(4,5)P2 or
PA, respectfully, are not particularly well understood at the scale of molecular
interactions. As described in the primary literature—there remain large gaps in
the understanding of both of the enzymes. This has required me to make many
assumptions in the process of outlining complete, well-defined reaction schemes.
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For the evidence that exists, its veracity is often uncertain. Particularly, the
evidence for the 2-site model of PI4P5K—with overlapping PA- and PIP-binding
sites—is based on a computational structure (Stace & Ktistakis 2006).
I have had to make unsupported assumptions in order to simplify the final models.

Most importantly: that the PA (3 site model) and Arf (2/3 site models) activation of
PI4P5K is solely via membrane recruitment and that there is no basal activation of
PLD without the presence of both PI(4,5)P2 and Arf.
Thus, I conclude that further biochemical research regarding the structure and

interactions behind the catalytic and regulatory mechanisms of both PLD and PI4P5K
is essential, to ensure a proper understanding of the mechanisms controlling the
two enzymes.
Under the 3-site hypothesis—two independent binding sites, one for each regulator—

the asymmetry in the behaviours of the two enzymes, conceals an apparently equi-
valent regulatory mechanism. Differences in the regulation then arise primarily via
which complexes are catalytically-active and the different membrane-localisation
behaviour of the two enzymes.
The complexity of the proposed reactions schemes, measured in terms of the

number of enzyme complexes and reactions, is relatively large. This is the cause of the
large numbers of spanning trees generated from the complete graphs on the enzyme
complexes. The symmetry within these reaction schemes is then highly beneficial, as
it permits a vast reduction in the complexity of the models by allowing the separation
of the substrate and regulatory dynamics to be performed in a relatively simple
manner.
The final models still contain including a sizeable number of parameters – particu-

larly the 2-site model for PI4P5K. A reduction in complexity might be considered
necessary for their inclusion into models of much larger systems, and it is plaus-
ible that these models could be simplified further with more stringent assumptions.
However, choosing which additional assumptions to make will require a better
understanding of the effects of each parameter on the behaviour of the system.
In total, I have derived suitable, sufficient mechanistic models of PLD and PI4P5K

which I can use for my continuing investigation into the behaviour of the Arf/PLD/
PI4P5K signalling motif. Combination of these models to explore this motif will
occur in chapter 7. Additionally, these novel mechanistic models of the catalytic
activity and regulation of PLD and PI4P5K, will be suitable for use—individually or
together—in future models of signalling pathways and other intracellular processes.
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6 Arf family G proteins: mechanisms
and models

So far I have not considered control of the activation of Arf by its regulators in any of
the earlier models of the Arf/PLD/PI4P5K signalling motif. Instead, the system could
be stimulated by manually changing the concentration of active Arf. Yet—as I will
demonstrate in this chapter—the regulation of Arf, controlled by GEFs and GAPs, is
complex. Therefore, in order to make physiologically-sound statements about the
complete Arf/PLD/PI4P5K motif I consider it important to properly investigate and
understand the dynamics of this regulation.
In this chapter I intend to provide the final component of a complete model

of the Arf/PLD/PI4P5K motif by introducing a mechanistic model that describes
the regulation of Arf by its GEFs and GAPs. With this model, the point at which
the system can be manually stimulated will move upstream to the intracellular
concentrations of these regulators of Arf. This will have three major advantages:

• In developing the model, I will have the opportunity to investigate the regula-
tion of G proteins by GEFs and GAPs in a general sense.

• Incorporating this model into the complete model of the motif will give more
realistic activation and inactivation profiles for Arf – which may have an
important effect on the downstream signalling.

• It sets up the opportunity to investigate the effect of proposed feedback – the
regulation of GEFs and GAPs by phospholipids, as discussed in section 2.7.1.
While I will not attempt this in this thesis, I will discuss positive and negative
feedback further in section 8.3.1.

Recall that G proteins—of which Arf is a member—are largely controlled by
two mechanisms, illustrated in figure 6.1: GTPase activity; and guanine nucleotide
exchange. I will briefly recap and expand on these mechanisms here. These will also
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Inactive
GDP-bound
G protein

Active
GTP-bound
G protein

GEF

GDP GTP

GAP

Pi

GTPase activity

Pi

Figure 6.1 G protein regulation. G proteins exist in one of two states depending on the
bound guanine nucleotide – commonly referred to as active (GTP-bound) or inactive (GDP-
bound). For monomeric G proteins, the switch between states is regulated by GTPase
activity mediated by GAPs; and (reversible) guanine nucleotide exchange catalysed by GEFs.
Additionally, intrinsic GTPase activity—while not present in monomeric G proteins—is present
in heterotrimeric G proteins. Intrinsic activity will also be discussed in the text, as the result
is catalytically equivalent, but has a mechanism that is simpler to model. The red circle
highlights the fact that the GEF mechanism is completely reversible. This is often overlooked
in discussions of the ‘activation/inactivation’ cycle of G proteins.



177

be discussed further in the following sections. Also recall that we tend to refer to
GTP-bound G protein as active, and GDP-bound G protein as inactive.
GTPase activity inactivates active G proteins through the hydrolysis of the cur-

rently bound molecule of GTP to form GDP. The nucleotide remains bound in the
nucleotide binding pocket of the G protein at all times throughout this process. For
Arf—as a monomeric G protein—GTPase activity is catalysed by GTPase-activating
proteins (GAPs).

G•GTP

GAP

G•GDP

Pi

Heterotrimeric G proteins are capable of intrinsic GTPase activity, and so do not
require an additional enzyme to mediate this process.
Guanine nucleotide exchange is catalysed by enzymes known as guanine nucleotide

exchange factors (GEFs) for monomeric G proteins. These are capable of exchanging
the bound GDP for GTP, and so activating the G protein.

G•GDP

GEF

G•GTP

GDP GTP

In more detail: a GEF binds to an inactive G protein causing a conformational change
which opens the G protein’s guanine nucleotide binding pocket. This allows the
sequential release of GDP, and the binding of GTP, into this binding pocket. Finally
the GEF can disassociate from the now active G protein (Vetter & Wittinghofer 2001;
Bos, Rehmann, &Wittinghofer 2007). For heterotrimeric G proteins, the role of GEFs
is taken by the G protein coupled receptors (GPCRs).
While GEFs are certainly capable of mediating the activation of G proteins via

this forward catalytic process, they are also known to have a completely reversible
reaction mechanism (Bos, Rehmann, & Wittinghofer 2007; Goody 2014). So GEFs
are also able to mediate the inactivation of G proteins by mediating this process in
reverse – the release of GTP and binding of GDP.
I have noticed that the reversibility of GEFs is often overlooked when discussing

the regulation of many different G proteins. In illustrations of systems including of
G proteins, the arrow corresponding to GEF-mediated regulation is often drawn as
unidirectional – missing the reverse arrowhead highlighted in figure 6.1. Examples
of representations where this reversibility has apparently not been considered can
be found as:
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• figure 1 in Cherfils & Zeghouf (2013);

• figure 1a in Ahearn et al. (2012);

• and figure 1c in Donaldson & Jackson (2011).

The distinction between reversible and irreversible mechanisms is an important
one. In this chapter I will show that this difference leads to crucial quantitative
and qualitative differences upon the stimulation of the system. Furthermore, I
will conclude that the assumption of an irreversible mechanism may have led to a
historic misapprehension about the role of both GEFs and GAPs in the regulation of
G proteins.
Note that an excess of GTP over GDP—as is biologically observed—means that the

nucleotide-free complex is more likely to encounter GTP. However, the extent to
which this drives the activation of the system is dependent on the individual kinetic
rates.
Recent reports have stressed that a better understanding of the enzyme kinetics

of GEFs is needed. These reports have particularly investigated GEFs in terms of
initial velocity studies – therefore concerning themselves with transitory dynamics
(Northup, Jian, & Randazzo 2012; Randazzo et al. 2013). I am more interested in the
steady-states reached by the G protein:GEF system, as it is under this regime that
stable, consistent signalling will take place. Furthermore, these steady-states can be
analysed using the standard analytical techniques that I described in chapter 3. I will
again stress the importance of basing these mathematical models on well-defined,
and physiologically-sound, explanations of the molecular interactions. Otherwise I
am not investigating the correct system, which will lead to erroneous conclusions.
In this chapter I will derive quasi-steady-state mathematical models for the regu-

lation of a generic G protein by the action of GAPs and GEFs using the framework
of Gunawardena (2012). These will allow me to make statements that should be true
for G proteins in general. Following from this, I will use these models and results to
derive further models and results specific to the regulation of Arf.
Throughout this chapter I will use the following notation:

GEF

GAP

G protein without nucleotide bound

G protein with GDP bound ( GDP)

and, G protein with GTP bound ( GTP)
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GT
PGDP

Figure 6.3 Graph on the enzyme complexes for the GEF mechanism – a GEF ( ) acting on a
G protein (GDP-bound, ; GTP-bound, ; nucleotide-free, ). Edges are first-order kinetic
rates, and include partner species where applicable.
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6.1 GEFs: mechanism and QSS model
A complete, and well-accepted (Bos, Rehmann, & Wittinghofer 2007), molecular
mechanism for a generic GEF is shown in figure 6.2. Alternatively, this mechanism
can be written as the reaction scheme

GDP

GTP

(6.1)

labelled with the first- and second-order kinetic rates ( ).
The concentrations of the molecular species and complexes will be denoted with

the shorthand: ; ; ; ; ; ; and
. Note that throughout the following analysis the concentrations of GDP

and GTP have been assumed to be well buffered, so that they do not measurably
vary.
Using the law of mass-action, the above reaction scheme implies the following

ODEs.
d
d (6.2)

d
d (6.3)

d
d (6.4)

d
d GDP (6.5)

d
d GTP (6.6)

d
d GDP GTP (6.7)

I will further analyse a modified form of these ODEs in section 6.3.
I will now apply the framework of Gunawardena (2012), as described in section 3.3,

in order to produce a reduced QSS model of this mechanism – under the assumption
that the dynamics of nucleotide exchange are—in some sense—fast. The reaction
scheme can be redrawn as the graph on the enzyme complexes, shown as figure 6.3,
which gives 16 directed spanning trees, shown in figure 6.4. Note that though this
graph and the spanning trees appear the same as those discussed for the di-allosteric
mechanism in chapter 5 they have distinct labels and so will result in a different
basis element.
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Rooted at :

GTP GTP GDP GDP

Rooted at :

GDP

GDP

GDP

GDP

GTP

GDP

GDP

GTP

Rooted at :

GDP GDP GTP GTP

Rooted at :

GTP

GTP

GTP

GTP

GDP

GTP

GTP

GDP

Figure 6.4 The 16 spanning trees of the graph on the enzyme complexes for the GEF
mechanism, shown as figure 6.3. The orange nodes denote the root of each spanning tree.
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The basis element, in the order ( , , , and ), is given by

with summary constants defined as

GTP GDP

GDP

GTP

GTP GDP

GTP GDP

This then gives the steady-state concentrations of each of the GEF complexes

(6.8)

(6.9)

(6.10)

(6.11)

where the total mass of enzyme is given by

The rate of change of the concentration of active G protein was given in equa-
tion 6.3, this is

d
d
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Substituting the steady-state concentrations for , , and from equations 6.8 to
6.11 into this equation gives

d
d

and as

GTP GDP

GTP GDP

GDP

then

d
d

cat (6.12)

where

cat GTP
GDP
GTP

Similarly,

d
d

cat (6.13)

Note that equation 6.12 effectively reduces to the Michaelis-Menten equation
when , and is equivalent to the equation previously used for initial velocity
studies of GEFs (Randazzo et al. 2013) if the concentration of GTP is extracted from
the summary constants.
From equation 6.12 we can see that

d
d

GDP
GTP

The constant is related to constraints on thermodynamic equilibrium around the
cyclical graph shown in figure 6.3 – I will discuss this further in section 6.4.1.
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6.2 GAPs: mechanism and QSS model
I will assume that GAPs follow a Michaelis-Menten type mechanism with product
inhibition: Michaelis-Menten as GAPs act to hydrolyse GTP to GDP, which is not an
atypical enzymatic activity; and product inhibition, as GDP and GTP are structurally
similar.
Recall from section 3.3.2 that the Michaelis-Menten mechanism with product

inhibition is described by the reaction scheme

and by the equation

d
d

ase

ic

(6.14)

where is the total concentration of GAP; ase is the catalytic rate ( cat renamed
to avoid conflict with the GEF model); is the Michaelis constant; and ic is the
constant of inhibition.

6.3 Simulations of G protein regulation
Before continuing with the investigation of the QSS models of GEFs and GAPs, I
want to backtrack slightly to the ODE model for the GEF mechanism, described
by equations 6.2 to 6.7. Unlike the QSS model these equations account for the
concentrations of the intermediate G protein-GEF complexes, and so will allow me
to investigate changes in the concentrations of these in addition to the concentrations
of the free active and inactive forms. I will modify the equations to incorporate
different forms of GTPase activity. When simulated, this systems of ODEs will begin
to help me understand the roles of both GEFs and GAPs in the regulation of G
proteins.
I want to control the system by varying the total concentration of GEF, described

by the parameter . Recall that the conservation of mass equation for GEF is given
by the equation

Therefore, by fixing we lose one degree of freedom among , , , and . So I
will choose to set

(6.15)
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Rate Ran:RCC1 (Klebe et al. 1995) Irreversible Unit

−1 s−1

s−1

s−1
−1 s−1
−1 s−1

s−1

s−1
−1 s−1

cat

Table 6.1 Kinetic rate parameters ( ) and summary rate constants for the mass-
action and QSS GEF models, used for illustrative purposes. Two sets of parameters have
been used: those measured for the Ran:RCC1 G protein:GEF system (Klebe et al. 1995); and
those same rates except , which has the effect of making the complete mechanism
irreversible.
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The remainder of the system is given by the equations

d
d ase (6.16)

d
d ase (6.17)

d
d GDP (6.18)

d
d GTP (6.19)

d
d GDP GTP (6.20)

where ase describes the GTPase activity, either:

• none, ase ;

• intrinsic, modelled by first-order (exponential) decay ase ase ;

• or, GAP-mediated, modelled by equation 6.14.

These ODEs can be numerically integrated given a complete set of parameters.
In this section I have chosen—for illustrative purposes—the measured parameters
for the Ran:RCC1 G protein:GEF system (Klebe et al. 1995), reproduced in table 6.1.
Additionally: for the GTPase activity the arbitrary parameters ase , ,

ic , and have been used; and—for a sensible physiologically plausible
ratio— GTP and GDP , in arbitrary units.
The following simulations will be stimulated by varying the total concentration

of enzyme :

• during , ;

• during , (a 4-fold increase);

• and during , available free GEF ( ) was removed from the simulation
until .

All simulations were started from steady-state initial conditions, specific to each
model. The Python function for the system of ODEs is as follows:

1

2

3

4

5
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A

X Y

GEF

B

X Y

GEF

GTPase

C

X Y

GEF

GAP

D

X Y

E

X Y
GTPase

F

X Y

GAP

Figure 6.5 Simulation of the system described by equations 6.15 to 6.20, with different
GTPase activity, and using either the Ran:RCC1 rates or the irreversible rates, listed in
table 6.1. The darker shading denotes the time period wherein the model was stimulated by
a 4-fold increase in the total concentration of GEF.
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Which can be simulated using a Python script, for example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Simulations for the G protein:GEF system are shown in figure 6.5: with no GTPase
activity in figure 6.5A; with intrinsic GTPase activity in figure 6.5B; and with GAP-



190 Arf family G proteins: mechanisms and models

mediated GTPase activity in figure 6.5C.
Additionally, a irreversible model was generated from the GEF model by setting

the rate of release of GTP from the active G protein:GEF complex ( ) equal to zero,
as shown in table 6.1. This is equivalent to the reaction scheme

GDP

GTP

This would describe the situation where the enzyme can recognise both of the active
and inactive forms (GDP- and GTP-bound) of the G protein, but where it is not
able to catalyse the release of the bound GTP. We should expect to observe product
inhibition for this model. An alternative irreversible model could be generated by
setting any one or more of the reverse reaction rates ( , , , ) to zero. Note that
setting any of these constants to zero defines a mechanism that is thermodynamically
distinct from the reversible mechanism (to keep thermodynamic equivalence we
could instead assume that any of these constants is arbitrarily close to zero).
Simulations for the irreversible system are also shown in figure 6.5: with no

GTPase activity in figure 6.5D; with intrinsic GTPase activity in figure 6.5E; and
with GAP-mediated GTPase activity in figure 6.5F.
From these simulations—which will be discussed further in the following sections—

I make the following preliminary observations:

Figure 6.5A The reversible model in the absence of GTPase activity shows a re-
duction in the concentrations of both active and inactive G protein upon
stimulation by an increase in GEF. This can be explained by an equivalent
increase in the concentrations of the intermediate enzyme complexes.

Figure 6.5D An irreversible mechanism will always convert its entire substrate into
product. Product inhibition can be observed, and is a result of the location at
which the mechanism was made irreversible. If, for example, the binding of
active G protein to GEF ( ) was instead made to be zero, then there would
be no response to the increase in GEF. This is the only simulation where the
concentration of active G protein is greater than the concentration of inactive
G protein.

Figures 6.5B, 6.5C, 6.5E and 6.5F Both the reversible and irreversible models dis-
play similar profiles upon increase and decrease in GEF, with only a larger
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magnitude change for the irreversible model. This suggests that distinguishing
these twomechanisms experimentally may be difficult. Small transitory effects
can also be observed upon addition and removal of enzyme – these are small
with respect to the long-term behaviours of the system, and discussion of
these effects is outside the scope of the current analysis, and would require
additional mathematical tools.

6.4 Notes on the regulation of G proteins by GEFs and
GAPs
Returning to the QSS models introduced in sections 6.1 and 6.2 there are multiple
mathematical results that can now be derived.

6.4.1 GEFs act to attain an equilibrium between active and inactive
G protein

Recall that the QSS model for GEFs in equation 6.12 was derived under the quasi-
steady-state assumption. If we now also assume that the active G protein concentra-
tion is at steady-state then

d
d

cat

(6.21)

Alternatively this same result can be derived from the equation for d
d , equation 6.13.

Equivalently, equation 6.21 can also be derived by assuming that the cyclical
graph shown in figure 6.3 is in thermodynamic equilibrium, and so the principle
of microscopic reversibility will hold (Colquhoun et al. 2004). Directly, equating
clockwise and anticlockwise rates, we obtain

GDP
GTP

Either way, this result means that the steady-state concentration of active and
inactive G proteins are always in ratio, given by the summary constant . Notably,
the value of is independent of the total concentration of the enzyme – it depends
only on the rate parameters of the specific GEF, and the ratio of GDP to GTP.



192 Arf family G proteins: mechanisms and models

Figure 6.6 Enlargement of figure 6.5A with the total concentration of GEF complexes also
drawn. The darker shading denotes the time period wherein the model was stimulated by a
4-fold increase in the total concentration of GEF.
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For the Ran:RCC1 parameters listed in table 6.1, . Figure 6.5A, which
shows a simulation of the G protein:GEF system without GTPase activity, is enlarged
in figure 6.6. In these figures, this ratio value can be observed for the steady-states
for both the unstimulated and stimulated time periods in the simulation.
For the G protein:GEF system a second conservation holds, which describes the

total concentration of G protein

In the extreme, when then we can say that , , and . (Note
that this assumption also applies to the derivation of the QSS model.) This means
we can approximate the total concentration of G protein by

This means we can calculate the proportion of G protein which is active (still
under the assumption that ),

(6.22)

As I will show, this is the maximum possible steady-state proportion of active G
protein for systems with or without GTPase activity. For the Ran:RCC1 parameters

.

6.4.2 GEFs can be inhibitory
As I have previously mentioned, GEFs are often referred to as the ‘activators’ of G
proteins, but their reversible reaction scheme directly implies a more complex role
in the regulation of G proteins.
For instance figure 6.6 (the enlargement of figure 6.5A) shows a G protein:GEF

system in the absence of GTPase activity. When stimulated by an increase in the
concentration of GEF, this simulation shows a decrease in the concentration of both
the inactive, and the active, forms of the G protein. This is evidence that—in at
least some conditions—GEFs can actually be inhibitory towards G proteins. This is
certainly contrary to their canonical role as ‘activators’ of G proteins.
The cause of this inhibitory effect is due to the formation of excess G protein:GEF

complexes – intermediate complexes in the reaction scheme, that I will assume have
no specific physiological role or functional interactions. The formation of these is
now shown as a bulk term in figure 6.6. Similar intermediate
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complexes are present for all enzymes, but are generally ignored in reduced (QSS)
models (such as the Michaelis-Menten equation). This is only acceptable when we
know that the total concentration of enzyme is much less than the total concentration
of substrate.
The effect we see in this simulation is in direct analogy with product inhibition.

For enzymes with product inhibition, excess product leads to a reduction in the
effective rate of production of further product. This is due to the enzyme being held
in a state that is incapable of catalysis, where if product is bound to the catalytic site
then the enzyme is not free to bind further substrate. In these simulations—which
do not satisfy —we observe the inverse inhibition, where excess enzyme
leads to a reduction in the concentration of available product. (Rather than excess
product leading to a reduction in the concentration of available enzyme.)
So far this discussion has been based solely on a single set of parameters measured

for a specific G protein:GEF system. It would be much more useful to be able to
make statements that we are sure will hold in general for G protein:GEF systems.
These statements will then certainly hold for Arf:Arf-GEF systems.
In the following mathematical analysis I will show that the observed inhibitory

effect of GEFs on G proteins will hold for all G protein:GEF systems that follow
the kinetics shown in figure 6.2. More precisely, I will show that there is no set of
parameters which give a model that has an increase in the steady-state concentration
of active G protein as the total concentration of GEF is increased. The proof of this
statement follows.
As we are interested in the result at steady-state, we can use the QSS-derived equa-

tions for the concentration of the GEF complexes, originally listed in equations 6.8
to 6.11, These are

We substitute these into the total concentration of G protein, given by the equation
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It is important to note that this definition of explicitly accounts for the concen-
trations of intermediate complexes. (For the QSS model we had to assume ,
because we were not accounting for these concentrations.) This means that in the
following analysis we are free to choose and independently, without restriction.
From equation 6.21 we also know that at steady-state , so

where . This equation can be rearranged to give a quadratic equation
in ,

where

The coefficients of the quadratic equation are given only by combinations of , ,
and the summary constants. This equation can be solved using the quadratic formula
to give two solutions

(6.23)

Because the concentration of active G protein must be positive, I am interested in
the sign of these two solutions, which can be reduced to investigating the sign of

, where . Note that is always positive. If
, then

, by the triangle inequality

Alternatively, if , then

, by the triangle inequality

So the solution taking the minus sign is always negative, and the solution taking the
plus sign is always positive. Therefore only the solution taking the positive sign is
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Figure 6.7 The steady-state proportion of active G protein as a function of the total concen-
tration of GEF for the Ran:RCC1 parameters listed in table 6.1. The equation that describes
this figure is given in equation 6.24. Ther darker shaded region indicates the region I assume
is physiologically relevant in healthy conditions, where the inhibitory effect of the GEF-G
protein complex formation is small. The exact form of this figure would differ for different G
protein:GEF systems.
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physiologically-relevant. Note that this equation gives the steady-state concentration
of active G protein in terms of only the summary constants and total concentrations.
This equation can be used to derive an alternative equation for the proportion of

G protein that is active (without the restriction that ),

(6.24)

For the Ran:RCC1 parameters this equation is plotted as figure 6.7. At very low
concentrations of GEF, we see that the proportion of active G protein effectively
reaches the previously derived maximum value given by equation 6.22. At mid
concentrations of GEF, there is inhibition of active G protein (via the formation of
excess G protein:GEF complexes). At high concentrations of GEF – parity with the
concentration of G protein and above, there is effectively zero free active G protein.
So far I have only discussed the steady-state dynamics of the system, however

this ignores one contribution of the concentration of GEF. We also know that the
concentration of GEF controls the maximum rate for the guanine nucleotide ex-
change activity in the system. This is directly evident from the QSS model given by
equation 6.12. This suggests that there will be a tradeoff in terms of increasing the
GEF concentration: low concentrations will have no inhibitory effect, but a slow
total catalytic activity; high concentrations will have a inhibitory effect, but a fast
total catalytic activity. Therefore, this suggests a physiologically plausible region
for the concentration of GEFs. This would be where this inhibitory effect is not so
pronounced that it is detrimental to the amount of active G protein, but where there
is sufficient GEF present to catalyse the reaction at an appropriate rate.
Restating the initial question: how does the steady-state value of the active form

of the G protein ( ) change as the total concentration of GEF ( ) is varied? In
equation 6.23 is (only) found within the parameter , so the answer can be found
by investigating the derivative of equation 6.23 with respect to ,

d
d

This is always negative as, by the triangle inequality,

and so
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So as the amount of GEF in the system ( ) is increased the steady-state concentration
of active G protein ( ) must decrease (and vice-versa). This proves that this inhibitory
effect is present for all possible sets of parameters, and therefore all G protein:GEF
systems.

6.4.3 GTPase activity has a crucial role in the observed activation of
G protein

In the simulations in figures 6.5B and 6.5C, we have already seen that the addition
of GTPase activity—both intrinsic and GAP-mediated—is sufficient to restore an
apparent activation of G proteins by GEFs. In these simulations, stimulating the
system by increasing the concentration of GEF does increase the steady-state con-
centration of active G protein. While I previously needed to prove impossibility of
a particular behaviour, proving the converse—the possibility—requires only that a
single example is found, for which these particular simulations suffice. However,
the question of why this is sufficient remains.

We know that the role of GTPase activity is to inactivate G proteins. This irrevers-
ible process will convert the entirety of the active G protein into inactive G protein
if left unchecked. So far I have demonstrated that GEFs act to create an equilibrium
between active and inactive G protein. The regulation of the full G protein:GEF:GAP
system is thus controlled by the competition of guanine nucleotide exchange against
GTPase activity. This competition can be directly observed in figures 6.5B and 6.5C,
the simulations including intrinsic and GAP-mediated GTPase activity, respectively.

In these simulations we can see that the initial steady-state concentration of active
G protein appears to be suppressed in comparison to the simulation without GTPase
activity, in figure 6.5A. Correspondingly, the steady-state concentration of inactive
G protein is greater than in the simulation without GTPase activity. This initial
regime corresponds to a low concentration of GEF, so the GTPase activity dominates
– moving the system away from the GEF-mediated equilibrium values. Stimulating
the system by increasing the concentration of GEF changes the relative rate of the
two activities, and so the system moves towards the GEF-mediated equilibrium
values.

For intrinsic GTPase activity (modelled by first-order exponential decay) I will
derive some further mathematical results showing the effect of the relative rates
of total GEF forward catalytic activity ( cat) and GTPase activity ( ase). I have
restricted this analysis to intrinsic GTPase activity, as the Michaelis-Menten model
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used for the GAP-mediated GTPase activity complicates the mathematical analysis.
As the GAP-mediated process is also irreversible, it is plausible that the following
results (or very similar) will also hold for that process.
Assuming the QSS model for GEF, given by equation 6.12, and intrinsic GTPase

activity modelled by exponential decay, we can write

d
d

cat
ase

Now at steady-state, d
d , and so we have

cat ase

cat ase ase ase cat

where

cat

ase

The above equation can then be rearranged to give

(6.25)

This equation gives the steady-state concentration of inactive G protein in terms of
the active G protein. It is analogous to equation 6.21, which gave this same result in
the absence of GTPase activity ( ).
The quasi-steady-state values of , , and , given in equations 6.8 to 6.11, and

the new function for the steady-state value of given , given by equation 6.25, can
be substituted into the equation for the total amount of G protein

and rearranged, to give a cubic equation in

(6.26)

with the coefficients



200 Arf family G proteins: mechanisms and models

and with . Cubic equations are in general solvable, and so it is
possible to find analytical solutions for equation 6.26. However, the complexity of
the coefficients mean that these are uninformative in providing analytical results
about the system.
So instead, the equivalent equation can be re-derived under the assumption that

. Again this means that , , and , and so

which can be rearranged to give a quadratic in

where . The solutions to this quadratic equation are

I will assume for the following analysis that .
The concentration of active G protein must be positive, so I am interested in the

sign of these two solutions. Let , , and note that is
always positive. If or , then

by the triangle inequality as

Alternatively, if or , then

by the triangle inequality as

In this case then there appear to be two positive solutions, however the second of
these is always greater than the total concentration of G protein. This can be shown
by a proof by contradiction – assume the converse
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then, by the triangle inequality,

We know and so substituting in the values of and gives

but this is a contradiction as . The following code in the Mathematica pro-
gramming language—which evaluates to false—also suffices to prove this statement:

1

2

3

4

5

I also note that , and so all solutions are real. The following code in
the Mathematica programming language—which again evaluates to false—suffices
to prove this statement:

1

2

3

4

5

Therefore, there is only one physiologically relevant solution, which is

Again, this equation can be used to derive an alternative equation for the proportion
of G protein that is active,

(6.27)

The relative strength of the total forward catalytic activity of the GEF ( cat) and
the GTPase activity ( ase) is given by . So I am interested in what happens as
this value changes. Though we are restricted by the constraint , we remain
unrestricted (mathematically) in the choice of both cat and ase.
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Figure 6.8 The steady-state proportion of active G protein as a function of the total concen-
tration of GEF divided by the total rate of GTPase activity for the Ran:RCC1 parameters
listed in table 6.1. The equation that describes this figure is given in equation 6.27. Note that
although this figure follows the constraint , we can choose GTPase activity small
enough to compensate. Therefore it may be misleading to directly compare this figure with
figure 6.7. They darker shaded region indicates the region I assume is physiologically relevant
in healthy conditions, where the system is responsive to changes in the concentration of
GEF. The exact form of this figure would differ for different G protein:GEF systems.
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For the Ran:RCC1 parameters equation 6.27 is plotted in figure 6.8. Note that we
have already set the value of cat with the choice of these parameters, so the x-axis
in this figure corresponds to the value of

ase
, which we are free to change under

the assumption that remains small. In which case increasing or decreasing ase

gives an equivalent response.
When there is high relative GTPase activity there is effectively zero active G

protein. When there is low relative GTPase activity we again reach the previously
derivedmaximum value given by equation 6.22. In between, the response is sigmoidal
and is such that increasing the concentration of GEF (relative to the GTPase activity)
is now capable of increasing the steady-state concentration of active G protein.
This is further proof that GTPase activity is required for GEFs to be able to

regulate G proteins. Here, we can now directly see how the competition between
the two activities affects the steady-state concentration of the active form of the
G protein. GTPase activity appears to act to suppress the system away from the
maximum equilibrium value. The strength of this suppression depends only on
the relative total rate of guanine nucleotide exchange to GTPase activity. As the
relative GTPase activity decreases—for example, through an increase in concentration
of GEF—then the proportion of active G protein returns towards the maximum
equilibrium value. Therefore, in order to properly respond to an activating or
inhibitory signal (increasing or decreasing the GEF or GAP concentration) the
system must lie somewhere on the sigmoidal region.

6.4.4 Sequestration is not sufficient to restore the activation of G
proteins by GEFs
Alternatively, other mechanisms may be sufficient to explain an observed activ-
ation of G proteins by GEFs. However—as I will demonstrate—simple reversible
sequestration of active G protein is insufficient to explain this effect.
Sequestration of active G protein (into a new form , ) could be caused

by: binding to a partner species; changing form; or, moving location. The simplest
version of this process can bemodelled by the inclusion of an extra reversible reaction
step to the reaction scheme shown in equation 6.1,

This implies an extra ODE
d
d
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Which at steady-state, d
d , implies

, where

Assuming no GTPase activity, we still know that , which can be derived from
d
d .
Now the conservation of mass equation for the G protein is given by

into which we can substitute the quasi-steady-state values of , , and , given in
equations 6.8 to 6.11, and the steady-state values of and to obtain a quadratic
equation,

where .
By identical reasoning to that in section 6.4.2, there is one positive solution

and again

d
d
Now under the assumption that both the active and the sequestered forms of the

G protein are functionally active, then we are interested in how changes with
respect to ,

d
d

d
d

d
d

This result shows that even with this sequestration scheme, the total amount of
active G protein is inversely correlated with the total amount of GEF in the system.
Therefore, this simple sequestering mechanism is insufficient to explain the role of
GEFs as activators of G proteins. However, it is still plausible that a more complicated
sequestering model may be sufficient.

6.4.5 Regulation of G protein regulation by GEFs and GAPs is by a
balance/imbalance mechanism
Taking the above analysis together, it becomes difficult to defend the canonical
description of GEFs as the ‘activators’ of G proteins. This is because I have shown,
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in section 6.4.1, that in the absence of GTPase activity, they seem more likely to act
as inhibitors towards the concentration of active G protein. I have also shown, in
section 6.4.1, how the true role of GEFs appears to be to drive the system towards an
equilibrium ratio of active to inactive forms of the G protein, given by the constant
. So GEFs could be said to act as a balancing force in the system.

In contrast, GTPase activity drives the system away from this equilibrium, towards
the state where none of the G protein is in the active form. So GTPase activity could
be said to act as an imbalancing force in the system.

In this sense the regulation of G proteins by GEFs and GAPs could be best described
as a balance/imbalance mechanism. The relative strengths of the guanine nucleotide
exchange and the GTPase activity will control the extent to which the system is
either in the balanced or imbalanced state, and so control the activation of the system.
This is illustrated in figure 6.9, which describes the form of the dynamics seen in
figures 6.5B and 6.5C. The important point to note from this illustration is that the G
protein can be activated by increasing the concentration GEFs, but only by starting
from an initially suppressed state. This activated state is then maintained only so
long as there is sufficient GEF present. Both the suppressed and activated states
are below the maximum (equilibrium) concentration of active G protein, which we
know is reached only when and ase . So GTPase activity could be
described as crucial in allowing the differential activation of G proteins by GEFs.
Therefore I suggest that G protein regulation must include both a functioning GEF
and a functioning GAP to display the complete and correct range of regulatory
behaviours.

This negative regulation of G proteins by GTPase activity is already known to be
crucial in the healthy control of intracellular signalling. For example, it is common
for mutations in Ras implicated in cancer to cause insensitivity to its GAPs (Stephen
et al. 2014). This leads to the G protein becoming constitutively active, where
the system is insensitive to the suppression normally supplied by GTPase activity.
Similarly, the vast majority of GTP analogues used to investigate G protein signalling
experimentally are non-hydrolysable, and so generate a form of active Arf which is
immune to GTPase activity.

In totality, the regulation of G proteins by GEFs will be some sum of the two
processes illustrated as figures 6.7 and 6.8. That is, the total activation will be
some sum of the inhibitory effect caused by the formation of excess intermediate
complexes and the activation caused by pushing the system towards equilibrium.
This will primarily depend on the total amount of G protein, and the strength of the
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GTPase activity.
Finally, I predict that experiments that attempt to regulate G proteins by over-

expression of GEFs are likely to produce unexpected behaviour – as in some circum-
stances this may cause the seemingly paradoxical inhibition of the G protein rather
than the activation. The activation of G proteins through indirect methods should
therefore be preferentially attempted, for example through reduction of GTPase
activity.
The mathematical and theoretical underpinning to these result means that it

should hold for all G proteins (heterotrimeric or small) as long as the mechanism
of nucleotide exchange is comparable to that in figure 6.2. Dynamics for more
complicated mechanisms—for instance systems with implicit GEF:G protein:GAP
complexes, which have previously been observed (Berstein et al. 1992)—would require
additional analysis.

6.5 Regulation of Arf: specific mechanisms
The above analysis focused on developing results that applied to a generic G protein
regulated by a generic GEF and GTPase activity, either intrinsic to the G protein or
by a generic GAP. Therefore these results should hold for any G protein:GEF:GAP
system which matches this regulation.
The Arf family of G proteins are regulated by whole classes of GEFs and GAPs

(Donaldson & Jackson 2011). I will assume that these behave exactly as described
above: Arf GEFs with a reversible reaction scheme; and Arf GAPs with Michaelis-
Menten with product inhibition reaction scheme. However one difference in regards
to the system as described so far is that while inactive Arfs can be cytosolic, the
regulation of Arf by GEFs is restricted to membranes. This is because Arf GEFs are
themselves localised to membranes (Kolanus 2007; Casanova 2007; Donaldson &
Jackson 2011); and as active Arf remains membrane bound, so GAP activity must
also be on the membrane.
Recall that active Arf is known to be membrane-localised through a myristoylation

on its N-terminus. In inactive Arf this myristoylation is hidden, and so the process of
activation causes the insertion of this domain into the lipid membrane. Inactivation
of Arf via GAPs—and as I will continue to assume—via GEFs mediating guanine
nucleotide exchange in reverse will cause the retraction of the myristoylated N-
terminus from the membrane – and so inactive Arf loses its membrane-tether. I will
need to include this differential localisation of Arf into the final model. The loss of
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membrane

Arf•GDP Arf•GDP Arf•GTP
adsorption

GEF

GDP GTP

GAP

Pi

Figure 6.10 Regulation of Arf by GEFs, GAPs, and an adsorption process. Guanine nucle-
otide exchange and GTPase activity for Arf occurs solely on the membrane, but inactive Arf
has no specific membrane-localisation. Therefore inactive Arf must approach the membrane
before activation can occur.
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membrane localisation of inactive Arf is—in one sense—theoretically equivalent to
sequestration of the inactive form of Arf.
The complete mechanism of the regulation of Arf by GEFs/GAPs will need to

describe at least the following steps:

• Inactive, cytosolic Arf approaches the membrane.

• Already membrane-localised GEF catalyses the guanine nucleotide exchange
of the G protein. During this process the myristoylated N-terminus of the G
protein is inserted into the membrane.

• A membrane-localised GAP catalyses the hydrolysis of the GTP bound to the
active G protein, thus inactivating the G protein. During this process the
myristoylated N-terminus of the G protein is retracted from the membrane.

• Alternatively, GEFs retain the ability to inactivate the G protein by mediating
guanine nucleotide exchange in reverse.

• Inactive G protein is free to diffuse away from the membrane.

These processes are illustrated as figure 6.10.

6.6 Regulation of Arf: QSS model
Recall that equation 6.12 gives a general equation for the regulation of active G
protein by a GEF,

GEF
cat

Also that equation 6.14 gives a general equation for the regulation of active G protein
by a GAP,

GAP
ase

ic

Here is the concentration of inactive G protein; is the concentration of active G
protein; is the total concentration of GEF; is the total concentration of GAP;
and the other symbols are summary constants.
Now, we need to indicate that and are extrinsic components of the membrane,

and so we relabel and . So we are interested in

GEF and GAP
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We also need reactions that describe rate of binding and unbinding of the inactive
Arf to the membrane,

on

off

In the previous discussion of surface-active enzymes, in section 3.5, I considered
enzymes which were adsorbed on the membrane. Here it is not the enzyme, but the
regulated species that is adsorbed. Equation 3.17 can easily be modified accordingly
to give the relevant equation,

adsorption on off

where is the surface area per unit volume; and is the available area function
for which a suitable form needs to be determined.
Figure 6.10 shows the relationship between the GEF, GAP, and adsorption pro-

cesses. This directly implies the equations that model these processes,

d
d adsorption

d
d GEF GAP adsorption

d
d GEF GAP

This system of equations follows the assumptions that and , where

I can use this conservation of mass equation to reduce the three equations (dd , dd ,
d
d ) to two. I am free to choose which equation I remove: I want to keep the equation
for , the concentration of active Arf; I will also choose to keep the equation for ,
the concentration of cytosolic Arf. So I will let , and so

d
d adsorption

d
d GEF GAP

Written out in full, we have

d
d on off

d
d

cat ase

ic



Regulation of Arf: QSS model 211

which can be rearranged to give

d
d off (6.28)

d
d

cat ase (6.29)

where

on

off

ic ic ic

Equations 6.28 and 6.29 give what I will refer to as the final model for the regulation
of Arf by an Arf-GEF and an Arf-GAP. It consists of two equations which model the
regulation of Arf as was illustrated in figure 6.10.
Alternatively, it is possible to reduce this model to a single equation using the

rapid equilibrium assumption (see section 3.2.4). Assuming

adsorption

Substituting into the conservation of mass equation gives

which implies

This can be substituted into equation 6.29 to give

d
d (6.30)

where

cat cat cat

ase ase

with .
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6.7 Discussion
I have now derived a quasi-steady-state model of nucleotide exchange on G proteins
catalysed by GEFs based on a well-described, well-accepted molecular reaction
scheme. This is a new derivation, using the linear framework of Gunawardena (2012)
described in section 3.3, of the model previously described by Randazzo et al. (2013).
Note that this derivation gives quasi-steady-state concentrations of the intermediate
enzyme complexes – information that was crucial to prove most of the included
results.
I have also determined sensible reaction schemes for GTPase activity, both intrinsic

(modelled by exponential decay), and mediated by GAPs (modelled by Michaelis-
Menten with product inhibition).
Together, the models of nucleotide exchange and GTPase activity form a complete

model of the regulation of a generic G protein. From this, a specific model for Arf was
generated by the inclusion of differential localisation of its active and inactive forms,
modelled using the approach of Kartal & Ebenhöh (2013) described in section 3.5.
This final regulatory model will be investigated further—independently and together
with the mechanistic models for PLD and PI4P5K—in chapter 7.
Both full mass-action-derived systems of ODEs, and the quasi-steady-state solu-

tions found by the application of the linear framework were used to derive math-
ematical results concerning the possible behaviours of the system. I have shown
that there are certain universal properties of GEFs that arise from their reversible
mechanism and which are independent of any particular kinetic rates.
There is a fundamental flaw in the language commonly used to describe the reg-

ulation of G proteins by nucleotide exchange and GTPase activity. Rather than
an ‘activation/inactivation’ cycle, this regulation is better described as a system
controlled through ‘regulated balance/imbalance’. Here, GEFs act to balance the con-
centrations of active and inactive G proteins, and GTPase activity acts to imbalance
the concentrations in favour of the inactive form. The distinction from the previous
description is that description of GEFs as ‘activators’ is only true when the system
is already imbalanced.
I have shown mathematically that GEFs, in the absence of GTPase activity, cannot

increase the concentration of the active G protein above a theoretical maximum
value defined by the ratio of the forwards and backwards kinetic rates. At steady-
state, stimulation by increasing the GEF concentration can therefore not positively
regulate the system. Addition of GTPase activity then restores the ability for GEFs
to activate the system, by causing an imbalanced state.
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The requirement for GTPase activity as a functional component in the activation of
G proteins may have previously been under-appreciated due to the almost exclusive
use of experimental systems where the GDP form of the G protein is the unique
starting condition and where uptake of GTP is monitored. Overall, many previous
studies that ignored the reversibility of GEFs will make valid conclusions under
some—but crucially not all—physiologically-plausible conditions. However, this
description is better placed to explore extreme scenarios, such as systems where
GTPase activity is diminished, for example constitutively active transforming muta-
tions in Ras common in cancers (Stephen et al. 2014). Note also that the irreversible
model (figures 6.5B and 6.5C) and the reversible model (figures 6.5E and 6.5F) in
the presence of GTPase activity have similar profiles, and so it may be difficult to
experimentally distinguish these schemes.
These results also suggest that attempting to regulate G proteins by the over-

expression of GEFs is likely to produce unexpected behaviour as in some circum-
stances this may cause inhibition of the G protein rather than activation. Activation
of G proteins should therefore be preferentially attempted through reduction of the
relevant GTPase activity. However, this suggests a novel approach for the inhibition
of G proteins where it is desired, and suggests that GEF up-regulation could be a
novel, naïvely paradoxical, therapeutic target.
The mathematical underpinning to these results mean that they should hold for

all G proteins:GEF systems as long as the mechanism remains identical to figure 6.2.
Conclusions based on alternative mechanisms, for instance systems with an implicit
G protein alpha subunit:GEF:GAP complex (Berstein et al. 1992), would require
further analysis.
I once more urge caution against description of GEFs as ‘enzymes that activate

G proteins’, and against continued representations that show this mechanism as
irreversible. This analysis demonstrates that GEFs should not be described as en-
zymes that simply convert a substrate into product, but as enzymes that act to attain
an equilibrium – a balance – of active and inactive G protein. The two key roles of
GTPase activity are then to: drive the system away from this equilibrium – to create
an imbalance; and, to confer a direction for the apparent activation/inactivation
cycle.
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7 The Arf/PLD/PI4P5K motif:
mechanistic models

I will now bring together the mechanistic models developed in chapters 5 and 6
to construct a complete mechanistic model of the entire Arf/PLD/PI4P5K motif
including regulation of Arf by a GEF and a GAP.
In order to combine the component models into a complete model of the Arf/

PLD/PI4P5K motif I require sensible relative concentrations of the involved species,
derived in section 7.1; and I need to discuss the adsorption processes and associated
constants, derived in section 7.2. Also I have yet to discuss the individual behaviours
and characteristics of any of the component models and so I will briefly reintroduce
and discuss these in sections 7.3 to 7.5. Finally, I will explain the construction of
(multiple versions of) the complete model and demonstrate that it is capable of
physiologically plausible behaviours in section 7.6.
Each of the models (component and complete) is suitable for inclusion into larger

models of signalling pathways and other intracellular processes – it only remains to
state a suitable set of parameters. Here I will derive a set of parameters that will be
sufficient and suitable to allow preliminary computational simulation and provide a
working basis for later numerical (and otherwise) investigation.
Information about the kinetic parameters of these enzymes is sparse, and so I will

supplement the data that does exist with plausible values derived from alternative
sources. This will include kinetic data from the BRENDA database (Schomburg
et al. 2013); numbers from the BioNumbers database (Milo et al. 2010) with BNID;
structural details from the PDB database (Berman et al. 2000) with PDB ID; and
proportional abundances of proteins from the PaxDB database (Wang et al. 2012).
Still, there will remain certain parameters for which there is no known data and for
which I can determine no sensible method for their derivation via suitable proxy data.
In these cases, in order to complete the parameterisation, I must choose arbitrary
(but sensible) values – I will clearly note wherever I am forced to do so.
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Throughout this chapter I will use the following notation:

total concentration of PLD plt
total concentration of PI4P5K pkt

concentration of cytosolic PI4P5K pk

total concentration of Arf a

concentration of cytosolic Arf⋅GDP a

concentration of membrane-associated Arf⋅GTP a

total concentration of (active) GEF geft
total concentration of (active) GAP gapt

Broadly—square brackets are retained for concentrations of proteins that will vary
throughout a simulation and dropped for concentrations that will be fixed for the
duration of a simulation. The exception to this rule is gapt which can be manually
varied in order to perturb the complete system. I will also retain square brackets for
all concentrations of lipids ( pc , pa , pip , pip ).
Parameters have been renamed so that these are distinct across the component

models. Notation specific to membrane binding has been dropped for brevity.
In each model I will assume that concentrations of lipid substrates ( pc and pip )

are constant (well-buffered by unspecified processes), and that products are removed
by an exponential decay (mediated by an unspecified sink). Note that in experimental
systems with fixed total concentrations of lipid these assumptions may have to be
re-evaluated.
Although I have previously included product inhibition in the models for PI4P5K

and GAPs, I have been unable to find suitable numbers for the associated inhibition
constants. So for the purposes of the following discussion I have chosen to assume
that product inhibition is not observed; equivalently ic .

7.1 Estimates of protein & lipid concentrations
I require estimates of baseline concentrations for each of the involved proteins and
lipids, for use as initial conditions and in the calculation of the decay constants (see
below).
Relative abundances of the proteins were obtained from the ‘Human, PaxDB

integrated dataset’ from the PaxDB database (Wang et al. 2012). These numbers
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specify the parts per million (PPM) for each protein, so to convert these into concen-
trations we require an estimate of the total intracellular concentration of proteins.
An estimate of proteins per µm3 ( proteins per m3) is given by Milo
(2013). Using Avagadro’s constant (6.022 1023 mol−1) this gives an estimated total
protein concentration of

5molm−3 5mm

This estimated total concentration was used to scale the PPM numbers to produce
the concentrations listed in table 7.1.
Relative abundances (mol%) of lipids were obtained from Pankov et al. (2006). To

produce the concentrations listed in table 7.1 the total concentration of lipids was
assumed to be 3300 nm, see section 7.2.2.

7.2 Notes on adsorption processes
The models of PI4P5K and the regulation of Arf include adsorption processes. In
order to simulate these models I need to choose the available area function,
(either Langmuir’s model, section 3.5.3; or RSA, section 3.5.4), and specify a form
for the fractional surface coverage, . I will also require sensible estimates for the
maximum surface concentration of adsorbates, ; and the surface area per unit
volume, .

7.2.1 A form for the fractional surface coverage

The coverage, , describes the fraction of the membrane that is already covered
by adsorbate, and so will be a function of the total concentration of membrane-
associated molecules. Here I will identify assumptions that will specify a simple
form for .
First, I will assume that the concentrations of the constitutively membrane-

associated species (GEF, GAP, PLD) can be ignored. Equivalently, there is addi-
tionally surface area sufficient for these that I will otherwise not discuss. Therefore,
will be a function of only the concentrations of membrane-bound Arf and PI4P5K.
Next, I need to know the relative areas occluded by a molecule of Arf and a

molecule of PI4P5K. I will assume that the surface area occluded by either can be
approximated by a disc with a given radius (e.g. caused by the projection of an
approximately spherical protein onto the membrane).
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It is possible to use the 3V tool (Voss & Gerstein 2010) on a known structure of Arf
(Pasqualato et al. 2001) to estimate its radius as 13.75Å. While there is no known
structure for PI4P5K, structures for PI5P4Ks (PDB IDs: 2GK9, DOI:10.2210/pdb2gk9/pdb;
2YBX, DOI:10.2210/pdb2ybx/pdb) give effective radii of 14.98Å and 16.54Å. Altern-
atively, we know that Arfs have a molecular weight of around 21 kDa (Liu, Kahn, &
Prestegard 2009) and PI4P5Ks have a molecular weight of around 68 kDa (Ishihara
et al. 1996). Given these values, Erickson (2009) gives a formula which suggests a
radius of 18.2 Å for Arf, and 26.9 Å for PI4P5K. Therefore, the radius of PI4P5K is
likely to be 1.1—1.5 times as large as that of Arf; and so the area occluded 1.2—2.2
times as large. However, in order to specify a particularly simple form for , I will
assume that both Arf and PI4P5K occlude identical areas.
Given the above assumptions, we have

pkt pk a a
(7.1)

7.2.2 Estimating membrane surface area
I need a plausible value for the total concentrations of lipids. This will give the factor
used to scale the percentage compositions listed in table 7.1. During this derivation,
I will need to choose a sensible value for the surface area per unit volume, .
I will assume that all lipids contribute identical surface area to the membrane.

Two estimates for the surface area per lipid molecule are:

• 0.5 nm2 from Brugger et al. (2006), BNID 106993

• 0.65 nm2 from Nagle & Tristram-Nagle (2000), BNID 102781

So I will assume a (surface) concentration of

lipids per nm2 2 1018 lipids per m2

Using Avogadro’s constant, this gives an estimated surface concentration of

3 3 10 6 molm−2

This is illustrated in figure 7.1A.
To convert this surface concentration to a volume concentration I need to specify a

number for the surface area per unit volume, . In practice (in biological situations
and in experimental setups) the value of will depend on multiple factors. For
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A Monolayer sheet

1m

1m

2 1018 lipids per m2

3.3 10−6 molm−2

B Stacked bilayer sheets

1m

1m

1m
4nm thick

200 nm separation

Figure 7.1 Illustration of lipid surface and volume concentrations.
A A 1m2 membrane monolayer sheet is estimated to contain 2 1018 lipids, which equates
to a surface concentration of approximately 3.3 10−6 molm−2.
B A 1m3 volume filled with 5000 equally spaced membrane bilayer sheets implies
103 m2 per m3, which equates to a volume concentration of lipids of approximately 33 µ .
As the thickness of a bilayer is only approximately 4 nm (Rawicz et al. 2000) (BNID 105298)
then each sheet is 200 nm away from its neighbours.

Figure 7.2 Composition of Hill functions. Illustration of the effect on the rate of production of
PA by the concentrations of Arf and PI(4,5)P2.
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my purposes I want to ensure that the concentration of lipids is at least an order of
magnitude higher than the protein concentration. So I will choose

104 m2 per m3 104 m−1

This gives a total volume concentration of lipids of

3 3 10 2 molm−3 33 µm

If we assumed that the volume was filled with homogeneous sheets of lipid bilayers,
then this would mean that the sheets are (on average) spaced approximately 200 nm
apart. This is illustrated in figure 7.1B. It is therefore plausible that we could choose
a still higher value for and retain a physically sensible system.
This derivation assumes that all lipids contribute to the cytosol-facing side of

the membrane. This would be certainly true if the lipids naturally form micelles
or monolayers. Alternatively, in practice (again, in biological situations and in
experimental setups) we may need to halve the actual (experimental) concentration
of lipids for use in the model.

7.2.3 Estimating maximal surface concentration of adsorbate
Finally, I need a sensible value for the maximum surface concentration of the ad-
sorbate, .
As in section 7.2.1 I will assume that molecules of Arf and PI4P5K occlude disc-

shaped areas of the membrane of identical size. I will assume these discs have a
radius of 18Å,

occluded area 103Å2 10 17 m2

The maximum density of circles on a surface is known to be (approximately)
0.9069 (Chang & Wang 2010). So once more using Avogadro’s constant, an estimate
of the maximum density of Arf and PI4P5K on the membrane surface is

molm−2 nmm

7.3 PLD model
Equation 5.18 described the final version of the 3-site mechanistic model for PLD.
With new notation and including exponential decay, this becomes

d pa
d

cat pc a pip plt
pc a pip decay pa (7.2)
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Parameter Value Source

cat 0.27 s−1 Henage, Exton, & Brown (2006) a

( ) 400 n Vinggaard & Hansen (1995)
10 n Henage, Exton, & Brown (2006) b

3 n Henage, Exton, & Brown (2006) c

decay 3.6 10−4 n −1 s−1 (see note) d

Table 7.2 Provisional parameters for the PLD model.
a As cited in the BRENDA database (Schomburg et al. 2013).
b The citation states that Arf1 activation of PLD is not saturated at 10 µ ; plausibly from
Figure 1C this is the EC50 (the concentration that gives half of the maximal response).
c The citation states that PLD achieves maximal velocity at 5 mol% PI(4,5)P2; total lipid
mass is 117.6 µ ; and assuming EC50 is 2.5 mol% of total lipid mass 2.94 µ .
d Calculated so that steady-state concentrations agree with table 7.1, see section 7.3.1.

Parameter Value Source

cat 0.026 s−1 Bazenet & Anderson (1992) a

( ) 1200 n Bazenet & Anderson (1992)
19.7 n (arbitrary) b

480 n (arbitrary) c

decay 2.1 10−4 n −1 s−1 (see note) d

exc 0.5 n −1 (arbitrary) e

rel 10 (arbitrary) e

off 10−1 s−1 (arbitrary) f

A 10−5 n (arbitrary) f

Table 7.3 Provisional parameters for the 3-site and 2-site PI4P5K models.
a Converted from specific activity of 0.023 µmolmin−1 mg−1, as cited in the BRENDA data-
base (Schomburg et al. 2013); based on a molecular weight of 68 kDa (Ishihara et al. 1996).
b Based on 10% of the concentration listed in table 7.1.
c Based on 100% of the concentration listed in table 7.1.
d Calculated so that steady-state concentrations agree with table 7.1, see section 7.4.3.
e See section 7.4.6.
f The parameter describes the ratio of the on rate to the off rate, off, for PI4P5K
membrane-adsorption. Therefore, on 105 n s−1. (These parameters control both
the rate of membrane-adsorption and the steady-state concentration of PI4P5K on the
membrane.)
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Alternatively, this model can be written as

d pa
d cat

pc
pc

a
a

pip
pip

plt decay pa

which demonstrates that it is the composition of three Hill functions (see section 4.3):
one for each of the substrate and the two regulators. Increasing any of the concen-
trations of PC, Arf, or PI(4,5)P2 will increase the rate of production of PA up to the
maximum, max cat plt. This is illustrated for Arf and PI(4,5)P2 (with fixed PC) in
figure 7.2.

7.3.1 Parameters for the PLD model

Provisional parameters allowing simulation of this system are listed in table 7.2.
The value for decay was calculated so that the concentrations agreed with the

concentrations listed in table 7.1 (assuming 10% Arf in the active form), using the
following Python script:

1

2
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17

18

19

7.4 PI4P5K models
Recall that I have developed two contradictory mechanistic models for PI4P5K: one
based on a 3-site assumption and the other based on a 2-site assumption.
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7.4.1 PI4P5K 3-site model
Equations 5.28 and 5.29 described the final version of the 3-site mechanistic model for
PI4P5K. With new notation, removing product inhibition, and including exponential
decay, these become

d pip
d

cat pip pkt pk
pip decay pip (7.3)

d pk
d off

pkt pk
pip a pa

pk (7.4)

Thus two equations: the net rate production of PI(4,5)P2; and the net rate of de-
adsorption of enzyme. Note that the equation for the rate of production of PI(4,5)P2
does not directly rely on the concentrations of Arf or PA, but that the rate of de-
adsorption does.

7.4.2 PI4P5K 2-site model
Equations 5.37 and 5.38 described the final version of the 3-site mechanistic model for
PI4P5K. With new notation, removing product inhibition, and including exponential
decay, these become

d pip
d

cat pip exc pip rel pa
decay pip (7.5)

d pk
d off

exc pip
a

pk (7.6)

where

exc pip pip rel pip pa
pkt pk

Again, two equations: the net rate of production of PI(4,5)P2; and the net rate of de-
adsorption of enzyme. Note that the equation for the rate of production of PI(4,5)P2
does not rely on the concentrations of Arf but does depend on the concentration of
PA; the rate of de-adsorption depends on both. This demonstrates the fact that PA is
involved within the substrate dynamics in this model.

7.4.3 Parameters for the PI4P5K models
Provisional estimates for the parameters for both PI4P5Kmodels are listed in table 7.3.
Parameters related to the adsorption process were discussed in section 7.2. A ma-
jority of values were unknown; as I can see no obvious method for their (indirect)
determination plausible (arbitrary) values have been assumed.



PI4P5K models 225

The value for decay was calculated so that the concentrations agreed with the
concentrations listed in table 7.1 (assuming 10% Arf in the active form), using the
following Python script:

1
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9
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11
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14

15

16

17

18

19

20

21

The parameters unique to the 2-site model rel and exc are discussed in sec-
tion 7.4.6.

7.4.4 Equality of models when pa
The models for PI4P5K both reduce to the same simplified model whenever pa ,

d pip
d

cat pip pkt pk
pip decay pip

d pk
d off

pkt pk
pip a A pk

This is not surprising as it removes the only distinction between the 2-site and 3-site
assumptions for PI4P5K—the mechanism of regulation by PA.

7.4.5 Steady-state behaviour of the 3-site model
Figure 7.3 shows the effect of varying pa on the steady-state proportion of cytosolic
PI4P5K and PI(4,5)P2 for the 3-sitemodel with both adsorptionmodels. With the value
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of I estimated in section 7.2.3 (which is large in respect to the concentration of
PI4P5K) Langmuir’s model and the RSA model have identical responses to increases
in the concentration of PA, see figure 7.3A. Reducing the value of leads to a clearer
distinction between the behaviours of the system under the different adsorption
models, see figures 7.3B and 7.3C. Specifically, we can observe a reduction in PI4P5K
binding under the RSA model due to jamming, see section 3.5.4.
For each of these systems, the response to changes in the concentration of PA is

not very tightly regulated; the activation profile from minimum to maximum spans
2/3 orders of magnitude. Whether this is due to the parameterisation or inherent to
the model structure is difficult to say, however this does suggest that PA activation
of PI4P5K is graded and gradual, rather than switch-like.

7.4.6 PI4P5K as a ‘competitive activator’
The 2-site model of PI4P5K has two additional parameters:

• exc, the ratio of the exchange rate (PA PIP) against the off-rate for PA;

• rel, the ratio of the exchange rate (PA PIP) against the on-rate for PIP.

I have provided the first description of these parameters, and so it will not be possible
to find existing values for these. Therefore I will need to suggest sensible values for
both, based only on their qualitative effect on the dynamics of the regulation.
Recall that in the 2-site model there are two routes to producing the enzyme

substrate complex:

PIPK PIPK PIP

PIP

PIPK PA PIPK PIP

PIP

PA

That is, a direct route and a indirect route (via a PA bound complex), respectively.
By definition, if rel then the rate of production of enzyme-substrate complex
will be identical through both routes. If rel then the rate for the indirect route
will be slower, and so we would observe a form of competitive inhibition (a larger
effective with the same max). If rel then the rate for the indirect route
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A exc 105; black line rel 1

B rel 100; black line exc 0

Figure 7.4 The effect of varying the parameters rel and exc on the rate of the 2-site PI4P5K
model. PA concentration fixed, and substrate concentration varied. Other parameters are
as given in table 7.3, and other variables as in table 7.1 except 19.7.
A If rel 1 then PA acts as a competitive inhibitor. Thus when rel 1 PA could be said to
act as a competitive activator.
B Decreasing the value of exc increases the strength of the activation of PA in a nonlinear
manner.
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Figure 7.5 The effect of the concentration of PA on the steady-state proportion of cytosolic
PI4P4K (concentration divided by the total PI4P5K concentration) and the steady-state
concentration of PI(4,5)P2 for the 3-site model (magenta line; as in figure 7.3A) and the 2-site
model (blue line) with exc 0.5 and rel 1.2. Other parameters are as given in table 7.3,
with other variables as in table 7.1 except 19.7.



230 The Arf/PLD/PI4P5K motif: mechanistic models

Parameter Value Source

cat 1.56 104 nmol−1 s−4 Klebe et al. (1995) a

2.65 Klebe et al. (1995) a

2.38 106 s−3 Klebe et al. (1995) a

3.31 103 nmol−1 s−3 Klebe et al. (1995) a

1.15 103 nmol−1 s−3 Klebe et al. (1995) a

ase 8 s−1 Ahmadian et al. (1997) b

5 103 n Ahmadian et al. (1997) b

off 10−6 s−1 (arbitrary)
10−5 n −1 (arbitrary) c

Table 7.4 Provisional parameters for the regulation of Arf model.
a Derived from kinetic parameters describing the Ran:RCC1 system, with concentrations of
GTP and GDP as in table 7.1.
b Parameters for the the H-Ras:GAP-334 system.
c See section 7.5.1.

de
cre
as
ing

increasing

Figure 7.6 The effect of varying the active concentrations of GEF and GAP on the steady-
state concentration of active Arf. The thick line corresponds to the concentration of GEF
listed in table 7.1; the dot corresponds to also the concentration of GAP listed in that table.
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will be faster, and in direct analogy to the inhibition we could term this competitive
activation (a smaller effective with the same max), see figure 7.4A.
By definition, if exc is large, then the off-rate for PA will be much larger than

the exchange rate. This gives an unstable enzyme-PA complex which decays into
the component molecules (PA and PI4P5K) before the exchange process can occur.
Therefore, we should expect exc to be (relatively) small, see figure 7.4B. In this
figure, we can also observe a complicated response to changes in the concentration
of PA for intermediate values of exc which is likely caused by substrate/regulator
competition.
Together this means that—as we expect PA to be an activator of PI4P5K—we must

have rel and exc (relatively) small. With these constraints, we can observe an
activation profile that is distinct from the activation profile of the 3-site model, see
figure 7.5: an increase in the maximum steady-state concentration of PI(4,5)P2, but
with an increase in the PA concentration for which the maximum is achieved.

7.5 Arf regulation model
Equations 6.28 and 6.29 describe a model for the dynamics of Arf regulation by GEFs,
GAPs, and including the membrane-adsorption. With new notation and removing
product inhibition from the GAP model, these become

d a
d

cat a a a geft
a a a

ase a gapt
a

(7.7)

d a
d off a a a (7.8)

Thus two equations: the rate of change of membrane-associated GTP-bound (active)
Arf; and the rate of change of cytosolic GDP-bound (inactive) Arf. Note that the rate
of change of membrane-associated GDP-bound (inactive) Arf, a , can be found
from

d a
d

d a
d

d a
d

7.5.1 Parameters for the Arf regulation model
In chapter 6 I analysed the model of a generic G protein:GEF system (without
membrane-adsorption) using the measured rates for the Ran:RCC1 system (Klebe
et al. 1995), which I included in table 6.1. I know of no similar measurements for the
kinetic rates of an Arf:Arf GEF system, so as Ran is also a monomeric G protein of
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complete model of the Arf/PLD/PI4P5K motif

Regulation of Arf model

equations 7.7 and 7.8
with table 7.4

GAP concentration

PLD model

equation 7.2
with table 7.2

PI4P5K model

equations 7.3 and 7.4
or 7.5 and 7.6
with table 7.3

PA concentration PI(4,5)P2 concentration

Adsorption model

equation 3.19 or 3.20
and equation 7.1
with 1.5, 1000

Figure 7.7 Diagram showing the components of the complete model of the Arf/PLD/PI4P5K
motif. Two choices remain: the adsorption model, Langmuir’s model or RSA; and the PI4P5K
model, the 3-site model or the 2-site model. Primary perturbation of the model should
be through the concentration of GAP; primary read-outs are the concentrations of PA and
PI(4,5)P2.
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the Ras superfamily I will continue use these rates as (preliminary) values for Arf
with a (yet unspecified) GEF. These rate parameters give the summary constants for
the GEF component of the Arf regulation model.
Similarly, I have been unable to find kinetic measurements for any Arf:Arf-GAP

system and so I will use values reported for the H-Ras:GAP-334 system (Ahmadian
et al. 1997).
I will continue to assume that the GTP-bound myristoylated Arf is unable to

leave the membrane surface. The association constant for myristoylated protein
(derived from the model system of a small myristoylated peptide) has been reported
as 104 m−1 10 5 nm−1 (McLaughlin & Aderem 1995) (BNID 105722). I will use this
number as a preliminary estimate for the association constant for the GDP-bound
form of Arf (though of course in this case the myristoylation is ordinarily hidden).
In total, parameters allowing simulation of this model are listed in table 7.4.

Parameters related to the adsorption process were discussed in section 7.2.

7.5.2 Perturbing the complete model via the GAP concentration
The effect of varying the concentrations of the regulators (GEF and GAP) on the
steady-state concentration of active Arf is shown in figure 7.6. We observe the expec-
ted outcome: increasing the concentration of GEF or decreasing the concentration
of GAP leads to an increase in the amount of active Arf.
As previously discussed in chapter 6, control of the activation of a G protein is more

reliably performed via controlling the concentration of active GAP. Therefore, in the
following simulations I will fix the concentration of GEF and vary the concentration
of GAP. This will restrict the steady-state activation profile of Arf onto the thick line
drawn in figure 7.6.

7.6 Arf/PLD/PI4P5K motif: complete models
We now have every component needed to construct a complete mechanistic model
of the Arf/PLD/PI4P5K motif. Or rather—given the choice of PI4P5K model and
adsorption model—we have the components to propose and construct a family of
mechanistic models consisting of multiple versions of the model within the same
structure. Figure 7.7 illustrates how the component models are connected in order
to generate these complete models.
The component and complete models have been implemented in the Python

programming language, included here in appendix C.
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Figure 7.8 Simulation of the complete mechanistic model of the Arf/PLD/PI4P5K motif, see
figure 7.7 assuming the 3-site model of PI4P5K and adsorption follows Langmuir’s model.
The basal concentration of GAP was taken as 50% of the value in table 7.1. During the
stimulation of the system (the darker shaded regions) this concentration was reduced to
10% of this value.
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7.6.1 Preliminary analysis of the complete models

It only remains to demonstrate that simulating the complete model with the paramet-
ers that have been derived in this chapter gives physiologically plausible behaviours.
A simulation of the complete model with the 3-site PI4P5K model and Langmuir’s

model is shown in figure 7.8. Here we can see that perturbing the system by decreas-
ing the concentration of active GAP produces the expected behaviour: an increase in
active Arf, which in turn gives an increase in the concentrations of PA and PI(4,5)P2.
Increasing the concentration of GAP restores the original state of the system.
Qualitatively similar behaviour was observed for the complete models with the

2-site PI4P5K model and/or the RSA model. These simulations have been included
as figure C.1.
Alternatively, the behaviour of the system can be investigated through its steady-

state dynamics. The effect of the concentration of GAP on the steady-state concen-
trations of active Arf, PA, and PI(4,5)P2 are shown in figure 7.9 for the complete
model with the 3-site model of PI4P5K. Here we observe a sigmoidal response, a
nonlinear decrease in the activation state of the system (and so reduction in the
PA and PI(4,5)P2 concentrations) on increase of the GAP concentration. Again, the
complete models with the 2-site PI4P5K models gives very qualitatively similar
behaviours; these have been included as figure C.2.
These figures are sufficient to show that each of the versions of the complete

model proposed for the Arf/PLD/PI4P5K motif are capable of behaviours that are
consistent with the known biology.

7.7 Discussion
I have now described the first complete mechanistic model of the Arf/PLD/PI4P5K
signalling motif, the construction of which is summarised by figure 7.7. These
complete models are built from the component models of PLD and PI4P5K described
in chapter 5, and the componentmodel for the regulation of Arf described in chapter 6.
Four versions of the mechanistic model are generated through two choices: the
model for PI4P5K (2-site or 3-site); and the choice of adsorption model (Langmuir’s
model or the RSA model).
The models presented here are large and complex, and so unsuitable for direct

mathematical analysis using the methods previously discussed. Instead I have
determined a full set of (preliminary) parameters which is sufficient to allow the
simulation of each of the component and complete models.
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A Langmuir’s model B RSA model

Figure 7.9 Steady-state concentrations of active Arf, PA, and PI(4,5)P2 as a function of the
concentration of active GAP, assuming the 3-site model of PI4P5K.
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As a first step towards validation, each version of the proposed model has been
shown to be capable of displaying physiologically plausible behaviours – see fig-
ures 7.8, 7.9, C.1 and C.2. In every case we observe a system where a decrease in
the concentration of GAP (the inactivator of the system) generates a corresponding
increase in the concentration of the concentrations of PA and PI(4,5)P2. In the presen-
ted simulations, these four versions have near identical steady-state behaviours
except for relatively small changes in magnitude. This means that, currently, each
of the four versions are equally plausible for further investigation and, potentially,
suitable for inclusion in larger models of signalling pathways.

Only one (or possibly none) of these models will accurately represent the actual
underlying biochemistry of the Arf/PLD/PI4P5K motif. If suitable (experimental)
kinetic data can be gathered or identified, Bayesian model selection could be used to
distinguish which model is best supported by the data (Liepe et al. 2014; Toni et al.
2009). Bayesian model selection may be particularly applicable for the determination
of the best model for the activation of PI4P5K by PA as I have now demonstrated that
the 2-site and 3-site models can display distinct activation profiles, see figure 7.5.

In respect to the choice of adsorption process—we already know that the RSA
model is more realistic (andmore complex) than Langmuir’s model (recall section 3.5).
However, the adsorption model does not appear to significantly alter the behaviour
of PI4P5K adsorption when the maximal surface concentration ( ) is large. For
the simulations of the complete models—while we can observe an effect of the
choice of adsorption model on the magnitude of the response in the simulations
shown (see figures 7.9 and C.2), the qualitative behaviour remains similar. However,
while numerical simulation remains the primary method of analysis, there is little
disadvantage in assuming the RSA model.

Equally important for the adsorption process is the choice of function for the
fractional surface coverage ( ). Here, in order to make this function as simple as
possible, I have assumed that a molecule of Arf and PI4P5K occlude identical area
on the surface of the membrane. As per the analysis in section 7.2.1 it is likely that
this assumption is not true, however a more realistic form for this function would
require a much better understanding of the interaction of both Arf and PI4P5K with
membranes, as well as a structure for PI4P5K to be determined.

Additionally, the current analysis ignores the effect of other membrane-associated
proteins, including the possibility of crowding on the membrane surface. It also
ignores any macro-scale effects of the organisation of lipids.

Together, these considerations suggest that the adsorption model should be care-
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fully reconsidered during application of, or further investigation into, any of the
proposed models.
Finally, it should be stressed that the arbitrary nature of many of the individual

parameters suggested here (in tables 7.1 to 7.4) means that the complete set of
parameters is currently only suitable for preliminary analysis and so unsuitable
for predictive use. Future effort needs to be directed towards determining more
physiologically-sound sets (or ranges) of parameters. It is also—so far—unclear as to
the sensitivity of the system to most of these parameters, and whether any of these
must be particularly tightly regulated in order for the system to display healthy
behaviour. Analysis of the model in this way (e.g. via sensitivity analysis) is likely
to lead to a better understanding of the underlying biology of the system.
To summarise, while there remain important considerations before they are ready

for predictive work, I have constructed a novel mechanistic model of the Arf/PLD/
PI4P5K signalling motif and have demonstrated, using a set of preliminary paramet-
ers, that each version of this model is capable of displaying physiologically-realistic
behaviours.
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8 Highlights & perspectives

For the full implications of many of the results presented within this thesis, I direct
the reader to the previous discussion sections:

Section 4.5 concerning initial, empirical models of the Arf/PLD/PI4P5K signalling
motif.

Section 5.6 concerning definition of plausible and complete molecular reaction
schemes for the enzymes PLD and PI4P5K; and construction of quasi-steady-
state mechanistic models.

Section 6.7 concerning the derivation of the quasi-steady-state models for the regu-
lation of G proteins by GEFs and GAPs; an argument towards the re-definition
of this regulation in terms of a balance/imbalance mechanism; and modifica-
tion of the regulatory models to be applicable to Arf family G proteins.

Section 7.7 concerning parameterisation and further consideration of the PLD,
PI4P5K, and regulation of Arf models, and construction of (multiple versions
of) a complete mechanistic model of the Arf/PLD/PI4P5K signalling motif.

In this chapter: I will summarise the major results; briefly describe plausible
experiments that could further the understanding of the Arf/PLD/PI4P5K motif; lay
out possibilities for future research connected with the themes presented; and draw
some final conclusions

8.1 Summary & highlights
The following subsections recap the major results, and discussion thereof, presented
within this thesis.
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8.1.1 Semi-automation of model construction using the Python
module enzymegraph

To simplify and semi-automate the derivation of quasi-steady-state models of en-
zymes using the linear framework of Gunawardena (2012) in section 3.4 I introduced
a new module for the Python programming language called . The
source code is available in appendix A and online. It has been released under the
MIT license, giving express permission for the dissemination and modification of
the module by future researchers.
The module contains a direct implementation of the linear framework of Gun-

awardena (2012). It uses a modified form of the algorithm from Gabow & Myers
(1978) to enumerate the rooted, directed spanning trees of a given graph. It utilises
the Python module to allow symbolic edge labels and algebraic manipulation.
An object can be created with an input graph—the graph on the

enzyme complexes for an enzyme—in one of several forms. This object can be queried
to return:

• the directed spanning trees of the graph (as objects);

• the basis element in terms of the edge labels;

• and, the quasi-steady-state concentrations of the enzyme complexes in terms
of the edge labels.

Additionally, the object can output (the precursors to) the spanning-
tree figures shown throughout this thesis (e.g. figure 5.7).
For an example script that uses the module see section 3.4.2. The

module was used in the derivation of the models in chapters 5 and 6.

8.1.2 Construction of both empirical and mechanistic models of the
Arf/PLD/PI4P5K signalling motif

Recall that in section 1.3 I defined two approaches for the construction of mathem-
atical model of biochemical systems: empirical and mechanistic. Each has specific
advantages and disadvantages.
Empirical models require less in-depth understanding of specific molecular inter-

actions, and allow us to choose their mathematical description to model the observed
qualitative behaviour of the system. Because we have this choice, we can often
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choose forms that will give models that are simpler than the equivalent mechanistic
model.
Mechanistic models require a well-defined molecular reaction scheme to be avail-

able, but can be less biased towards the modeller’s expectations. Because of this
they may more accurately predict emergent behaviours for a system, especially in
extreme scenarios.
Here, I have constructed models of the Arf/PLD/PI4P5K signalling motif under

both paradigms. Empirical models in chapter 4, and mechanistic models in chapters 5
to 7. Further discussion of these continues below.

8.1.3 Comparison with theoretical systems

Throughout the previous discussion I have frequently noted the differences in the
catalytic and regulatory mechanisms for PLD and PI4P5K, this leads to an asymmetry
in the Arf/PLD/PI4P5K motif that may not initially be apparent in illustrations (e.g.
figure 2.8).
Symmetric theoretical motifs in analogy to the Arf/PLD/PI4P5K motif were formed

by mirroring the behaviour of each enzyme. This approach highlighted behaviours
that were shared with the real motif; implying that the Arf/PLD/PI4P5K motif has
characteristics and advantages of both theoretical motifs.
This approach was used for the empirical models analysed in chapter 4. It would

also be possible to replicate the approach for the complete mechanistic models in
chapter 7 by again constructing models of the theoretical motifs using two copies of
either PLD or PI4P5K mechanistic model.

8.1.4 Empirical models of the Arf/PLD/PI4P5K signalling motif

In chapter 4 I have described three families of empirical models:

Pseudo-mass-action models (sections 4.1 to 4.2) based on a previous model of the
Arf/PLD/PI4P5K signalling motif (Stanley 2011). These models were capable
of displaying unbounded growth, and as such were deemed unrealistic.

Hill models (section 4.3) which included Hill functions in order to bound the beha-
viour of the systems.

Conservation of mass models (section 4.4) which included conservation of mass
on one or both of the enzymes in order to bound the behaviour of the systems.
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Much of the mathematical tractability of the pseudo-mass-action model was
lost when the complexity was increased through inclusion of Hill functions or
conservation of mass. However, further qualitative results were obtained by taking
additional assumptions on rate constants, and considering numerical results.

8.1.5 Empirical models: hypothesised mechanism for the
Arf/PLD/PI4P5K signalling motif

The results derived from theHill models and the results derived from the conservation
of mass models both suggested a mechanism of signal propagation for the Arf/PLD/
PI4P5K motif. In summary, this analysis suggested that the system is able to produce
two distinct output signals (the concentration of PA and PI(4,5)P2) from a single initial
input signal (the concentration of active Arf). Based on the results for non-extreme
parameterisations, I hypothesise that:

• PI4P5K acts to produce PI(4,5)P2 so as to replicate the original signal with little
to no modulation.

• PLD acts to produce PA only when there is a sufficient concentration of Arf
(above a threshold value). This also means that PLD could act to reduce low
levels of noise occurring in the upstream signal.

So when there is no active Arf there is no activation of either enzyme; at low
concentrations of Arf only PI4P5K is activated; and at high concentrations of Arf
both enzymes are activated.
The division of one signal into two signals means that downstream processes

could act in response to either one or both of these signals. This provides evidence
that the ‘simple’ Arf/PLD/PI4P5K motif is capable of complex behaviours.

8.1.6 Mechanistic models of PLD & PI4P5K

In chapter 5 sensible and complete (well-defined) molecular reaction schemes were
proposed for PLD and PI4P5K based on a mixture of evidence from published lit-
erature, and inference and extrapolation (see section 8.1.7 below). These reaction
schemes were used to derive three mechanistic models: the 3-site model for PLD; the
3-site model for PI4P5K; and the 2-site model for PI4P5K. PI4P5K was modelled in
both instances as a surface-active enzyme using the approach of Kartal & Ebenhöh
(2013) described in section 3.5.
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The 3-site hypothesis describes an enzyme that has independent binding sites for
substrate and two regulators. In this case, equivalent mechanisms for binding to the
allosteric regulations implies a hidden equivalent regulatory mechanism for the two
enzymes.
The 2-site hypothesis was based on conjecture by Stace et al. (2008) that the

binding sites for PI4P and PA on PI4P5K overlap. Whether the 2-site model is a more
accurate representation is unclear.

8.1.7 A lack of well-defined biochemistry

In chapter 5 the determination of molecular reaction schemes for PLD and PI4P5K
was impeded due to a lack of information regarding the specifics of the molecular
interactions of their catalytic and regulatory mechanisms. The existing body of
research is insufficient for immediately and uniquely determining suitable molecular
reaction schemes. This highlights a major requirement for further investigation into
these biochemical processes.
Amongst other factors, more evidence is needed to determine or reject: a specific

ordering of interactions between the enzymes and each regulator; the existence of
product inhibition; the independence of binding sites; the importance of multiple PA
binding sites on PI4P5K; the mechanism of activation of PI4P5K by Arf (membrane
recruitment and/or allosteric activation).
Here, sufficient (well-defined) descriptions of the molecular interactions of PLD

and PI4P5K were required in order to progress to (candidate) mathematical models.
Therefore, existing evidence had to be supplemented by additional biochemical
assumptions, each of which was noted and described in the text.

8.1.8 Complexity of mechanistic ( -site) models

Ameasure of the complexity of the catalytic and regulatorymechanisms of an enzyme
is given by the number of spanning trees of its graph on the enzyme complexes.
The proposed 2-site and 3-site mechanisms for PLD and PI4P5K lead to graphs
with spanning trees numbering in the thousands or millions. These spanning trees
lead directly to the basis element and the quasi-steady-state solutions, which will
therefore be very long and complicated functions of the parameters, which would be
highly impractical to manipulate. This large number of spanning trees is caused by
the large number of vertices and (reversible) edges between these vertices. Therefore,
one reason to attempt further experimental investigation of the two enzymes would
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be to determine whether there is any restriction on the order of binding of the
regulators.

So in order to construct models for each of the proposed mechanisms I could not
simply (naïvely) apply the linear framework of Gunawardena (2012), but instead I had
to take a modified approach. Specifically, I chose to separate the dynamics related
to regulation and dynamics related to catalytic activity. This used the assumption
that the catalytic dynamics act much faster than the regulatory dynamics, and so I
could use an argument in respects to time-scale separation (see section 3.2.3). This
vastly reduced the complexity of the system, and allowed the construction of the
mechanistic models.

8.1.9 Membrane-recruitment of PI4P5K by Arf

Both of the 2-site and 3-site mechanistic models of PI4P5K are described by two
equations: one for the rate of production of PI(4,5)P2 bymembrane-associated PI4P5K;
and another for the amount of cytosolic PI4P5K.

Note that for the 3-site model both Arf and PA are allosteric regulators; for the
2-site model only Arf is an allosteric regulator. In the final version of both models I
have assumed no allosteric activation of PI4P5K (catalytic rates are independent of
whether the allosteric regulators are bound). In this case, the equation for the rate
of production of product loses all dependence on the concentrations of the allosteric
regulators. Then, the concentrations of the allosteric regulators only determine the
amount of enzyme on the membrane. This model describes the hypothesis that
membrane-recruitment is the sole mechanism of PI4P5K activation by Arf.

8.1.10 Mechanistic model of Arf regulation by GEFs and GAPs

Based on a model for the regulation of a generic G protein by guanine nucleotide
exchange catalysed by a GEF, and GTPase activity catalysed by a GAP, a mechanistic
model of Arf regulation was derived in section 6.6. This includes the differential
localisation of the active and inactive forms of Arf modelled as a cytosol-membrane
transition using the approach of Kartal & Ebenhöh (2013) discussed in section 3.5.
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8.1.11 Regulation of G proteins by GEFs and GTPase activity is via a
balance/imbalance mechanism

During the construction of the model of the regulation of Arf in chapter 6, I first
constructed and analysed models of the regulation of generic G proteins by guanine
nucleotide exchange catalysed by GEFs and GTPase activity. The results of this
analysis have implications for much of the current understanding of G proteins.
I have determined that the fully reversible mechanism of GEFs (and GPCRs) means

that they act to produce a balance of active and inactive forms of the substrate G
protein. Only when the system is imbalanced towards an inactive state by the
presence of GTPase activity does stimulation of guanine nucleotide exchange result
in an observable activation event. In situations where the system is already in
balance then—in a manner equivalent with product inhibition—on stimulation of
guanine nucleotide exchange the amount of available active G protein will decrease.
This places GTPase activity as the key regulator of G protein signalling as it allows
a full, controlled, spectrum of signals to propagate downstream of the G protein. In
this way, I conclude that G protein:GEF:GAP systems are best described as controlled
via a balance/imbalance mechanism.
These results have implications in many systems where the perturbation of G

proteins has been previously studied. Over-expression of the ‘activator’ could
possibly lead to unexpected results, these systems should be preferentially controlled
through regulation in the GTPase activity. This does, however, suggest a novel
route for the negative control of G proteins which have become GTPase activity-
insensitive, as is the case for mutations in the G protein Ras which are common in
cancers (Stephen et al. 2014).

8.1.12 Mechanistic models of the Arf/PLD/PI4P5K signalling motif

The individual mechanistic models for PLD, PI4P5K, and the regulation of Arf were
combined to form a complete mechanistic model of the Arf/PLD/PI4P5K signalling
motif in chapter 7. As I had previously derived two distinct models of PI4P5K (2-
site or 3-site) and suggested two different adsorption models (Langmuir’s model
or the RSA model), this led to four distinct versions of the model being proposed.
While it remains uncertain which version most accurately describes the actual
biochemical system, each of these was shown to display plausibly physiologically
realistic behaviour when simulated using a series of preliminary parameters.
These models constitute the first known mechanistic (derived from individual
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Figure 8.1 Two approaches for the production of lipid vesicles with varying concentrations
of PIP. Either (diagonal, blue line) the PIP:total lipid mass ratio can be fixed and the total lipid
mass varied. Or (vertical, magenta line) the total lipid mass can be fixed and the PIP:total
lipid mass ratio varied.
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molecular interactions) models of the Arf/PLD/PI4P5K signalling motif, and as such
are now suitable for inclusion into the future models of larger signalling processes.

8.2 Experimental approaches to validation

I have identified the following experimental approaches for the further investigation
into the Arf/PLD/PI4P5K signalling motif and validation of some of the theoretical
results presented within this thesis. This section is not exhaustive; further proposals
for sensible experiments would result from additional investigation into each of the
models.

In addition to the following suggestions—and, as mentioned previously—there
remains a major requirement for further fundamental biochemical research into the
structure, function, and regulation of the enzymes PI4P5K and PLD.

8.2.1 Biochemical assays

In chapter 5 I developed two contradictory models for the catalysis and regulation
of PI4P5K. Only one of these (or neither) will accurately represent the biochemistry.
With sufficient data it becomes possible to use Bayesian approaches to determine
the model that is most plausible (given the data) (Toni et al. 2009).

Suitable data would be in the form of dose-response curves obtained (for example)
from in vitro kinase assays, by varying the concentrations of substrate and regulators.
Measurement can be made by a radioactive signal: ATP acts as the phosphate donor
for the phosphorylation of PIP; introducing [Ɣ-32P]ATP (ATP with a radioactive
phosphate group) means we can radioactively tag the resulting PI(4,5)P2.

Vesicles can be constructed from PI4P, PA, and (inert, in this context) PC. To
these vesicles, Arf will associate via incubation with Gpp(NH)p (a non-hydrolysable
analogue of GTP). The proportion of Arf that binds to the vesicles can be quantified
by measuring the amount of Arf remaining in solution (e.g. using a dot blot assay).

A reaction is completed by addition of PI4P5K and [Ɣ-32P]ATP. Thin-layer chro-
matography (TLC) can be used to separate the radioactive phospholipids from the
bulk solution, the radioactive signal imaged on a phosphorimager, and quantified.
The amount of PI4P5K remaining in the cytosol could also be quantified at this stage.

Note that the concentration of the substrate PI4P can be varied in two ways,
illustrated in figure 8.1:
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light source detector

interacting protein

captured lipid
vesicles

Figure 8.2 Outline of surface plasmon resonance using sensor chip with captured lipid
vesicles. Molecules interacting with a structure on a sensor chip causes the refractive index
of the surface of the chip to change.
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• By fixing the PIP:total lipid mass ratio and varying the total lipid mass. This
requires only a single preparation of vesicles.

• By fixing the total lipid mass, and varying the PIP:total lipid mass ratio.

These methods will lead to different dose-response curves for the activity of PI4P5K:
the latter will have an (approximately) fixed surface area per unit volume, whereas
for the former this will be variable. Data from both approaches is valuable, as this
difference only determines whether —the variable denoting surface area per unit
volume—should be fixed or variable.

The full or component models presented here could also be usefully compared with
time-series data, if suitable data can be gathered. This would let us directly compare
with model simulations (such as figure 7.8) so as to perform Bayesian parameter
estimation and model selection (Toni et al. 2009; Liepe et al. 2010).

8.2.2 G protein assays using fluorescent GTP

Data for the parameterisation of the models for the regulation of Arf (and other
G proteins) given a specific GEF and GAP is often obtained using measurement
of the binding of fluorescent analogues of GTP and GDP: mantGTP and mantGDP
(mantGXP) (Rojas et al. 2003). On binding to the G protein, mantGXP undergoes an
increase in fluorescence intensity. So using a fluorometer it is possible to record a
time-course of the effects of controlling the G protein, GEF, GAP, and nucleotide
concentrations. Using this approach it is possible to quantify the transient and
long-term dynamics of interactions in a G protein:GEF:GAP system.

Specifically, in relation to the work presented in this thesis, these nucleotides could
be used to investigate the strength of the inhibitory effect of over-expression of GEFs
(see section 6.4.2). This would further validate our understanding of this regulatory
system, and allow us to determine whether this effect is likely at physiological
concentrations of the species.

However, mantGXPs have been shown to affect the kinetics of the system in an
unpredictable manner (Mazhab-Jafari et al. 2010). Alternatively, other approaches
for the measurement of the kinetics of G protein:GEF:GAP systems are possible,
such as real-time NMR (Marshall et al. 2009).
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8.2.3 Surface-adsorption assays using surface plasmon resonance
Membrane-adsorptionwas shown to be an important regulatory step in the activation
of Arf and PI4P5K. These effects could be quantified using surface plasmon resonance
(Beseničar et al. 2006). Molecules interacting with a structure on the surface of a
prepared sensor chip cause its refractive index to vary; this is measured by a decrease
in the intensity of reflected light hitting a detector at a critical angle. In this manner,
binding processes can be detected.
For the purpose of lipid-binding assays, it is possible to coat a chip with either a

lipid monolayers or with a structure which can bind lipid vesicles, see figure 8.2.

8.3 Proposed extensions
I have identified the following areas as suitable for potential further investigation
regarding the theoretical understanding of the Arf/PLD/PI4P5K signalling motif.

8.3.1 Feedback of phospholipids on GAPs and GEFs
As discussed in section 2.7.1 there exists evidence for feedback of phospholipids onto
Arf-GEFs and Arf-GAPs. It is plausible that this regulation occurs via membrane-
recruitment effects, as Arf is known to be activated and inactivated on the membrane
surface. Modelling these regulations will require a thorough understanding of the
underlying molecular interactions.
Ultimately, inclusion of these interactions will increase the complexity of the

system and so, perhaps, lead to distinct, emergent behaviours. Therefore, predicting
the effect of these feedbacks without mathematical or computational analysis would
be difficult and somewhat inappropriate However, I would conjecture that positive
feedback on the activation of Arf activation will broadly act to reinforce a signal,
and negative feedback to diminish a signal.

8.3.2 Inclusion of ATP/ADP dynamics in kinase models
The mechanistic reaction schemes developed for PI4P5K have so far ignored the
crucial steps of ATP-binding, and ADP-unbinding. (This can be compared to the
reaction scheme used for the GEF model which did include GDP and GTP binding
and unbinding as individual kinetic steps.) We know that these events must occur at
some stage of the catalysis for the conversion of each molecule of PI4P to PI(4,5)P2,
as ATP is the provider of the additional phosphate group.
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Commonly, ATP/ADP dynamics are ignored for models of kinases as we assume
that ATP is well-buffered in the cytosol (otherwise the cell will be experiencing other
far more deleterious effects). However, there is some evidence that these dynamics
are important, and that crucially fluctuations in the concentrations of ATP may have
consequences to signalling (Nirody & Rangamani 2014).

8.3.3 -site models

It would be possible to directly extend the construction of the 2-site and 3-site
models to -site models, using similar time-scale separation arguments to simplify
the analysis whenever necessary.

This would be one approach to modelling the multiple, independent and allosteric
binding sites that have been hypothesised for PA on PI4P5K (Stace et al. 2008).

Additionally, multi-site models of phospholipid binding have some analogy with
multi-site phosphorylation models, which have been shown to be capable of complex
behaviours (Manrai & Gunawardena 2008; Thomson & Gunawardena 2009).

8.4 Perspectives

The results presented in this thesis have led me towards a series of ideas (or per-
spectives) for areas of potential future research that could potentially lead to greater
understanding of intracellular signalling processes. These ideas are presented here
in sketch form only.

8.4.1 Theoretical & synthetic biology

I have used theoretical motifs alongside the real Arf/PLD/PI4P5K in an attempt to
better understand the effect on signal propagation of the combination of regulatory
mechanism of the enzymes and cross-talk of their products. These theoretical motifs
were designed as to be similar in scale and form to the original system. Here, analysis
of the models of these motifs has helped in the understanding of the original system.
I propose that this approach is useful and generally transferable to other systems.

These theoretical systems could be considered to describe unhealthy, diseased, or
mutated states arising from the original system. Therefore their analysis could be
considered interesting in a therapeutic sense.
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A

enzyme

substrate

co-substrate

product

B

high specificity
binding site

Figure 8.3 Demonstrating a possible trade-off between specificity to substrate orientation
and product-inhibition, geometrically.
A A mechanism displaying product-inhibition, but where the enzyme has a low specificity to
substrate orientation. Thus a high on-rate of substrate.
B A mechanism not displaying product-inhibition, but where the enzyme has a high specificity
to substrate orientation. Thus a low on-rate of substrate.
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Also, this approach has links to the field of synthetic biology – in which we
could hope to actually construct these motifs and so investigate their behaviours
experimentally.

8.4.2 Evolutionary constraints on enzyme kinetics, product
inhibition

Some enzymes display product inhibition, while others do not. Here evidence
suggested that PI4P5K does have product inhibition, whereas the evidence for PLD
was less certain (ultimately I assumed it did not). This leads to the question: is
product inhibition due to a high structural similarity between substrate and product;
or is product inhibition a mechanism which has some role in signalling, for example
limiting the maximum concentration of the product?
I hypothesise the following. Suppose that an enzyme would evolve to maximise a

rate of production of product (in the absence/presence of appropriate regulators).
Then if the product and substrate are structurally similar, product inhibition may
imply a limitation to the maximum rate. One solution would be for the enzyme
to evolve a more specific binding site, one that would bind the substrate, but not
the product. However, by argument to geometry—see figure 8.3—this might further
restrict the optimal substrate orientations for binding, so reduce the on-rate, and
so limit the maximum catalytic rate. An optimum balance between specificity to
substrate orientation versus product inhibition would then depend on the roles and
requirements for a specific enzyme.
Complicating matters is that (models of) systems with product inhibition can have

fundamentally distinct behaviour to (models of) systems without product inhibition,
for example see Ortega et al. (2002). Particularly, product inhibition has been shown
to have an important role in transferring information about the concentration of the
end products of a (metabolic) system upstream, and as such assisting the system in
reaching steady-state (Fell & Sauro 1985; Cornish-Bowden & Cárdenas 2001).

8.4.3 Perturbing intracellular signalling through nucleotides

During analysis of themodel for G protein regulation, I demonstrated that GEFs act to
obtain a balance between active and inactive forms of the G protein; furthermore the
specific balance obtained strongly depends upon the GTP/GDP ratio. So fluctuations
in the concentration of GTP and/or GDP will affect the maximum possible ratio



254 Highlights & perspectives

response

extra-cellular
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output

input

output

input

output
input

reduced output gives
reduced input to next
system in the cascade

Figure 8.4 Proposed effect of altering nucleotide levels for a cascade of G protein and kinase
signalling. A reduction in ATP and GTP levels would diminish the maximum concentration
(subgraphs; grey line, reduced to black line) of activate G protein or phosphorylated protein
in individual systems. If multiple G protein or kinase systems form a tightly tuned signalling
cascade, then it is plausible that a reduction in the activation of the first system will further
reduce the activation of the next system (subgraphs; dots, vertical lines). In this way,
the reduction in signal could further compound through the pathway (an amplification of
downregulations) and lead to a severely diminished response to the initial stimulation.

A

PLD

B

PI4P5K

Figure 8.5 Proposed mechanism for which the choline-headgroup of PC is an inhibitors of
PI4P5K activity by restricting access of the kinase domain of PI4P5K to the PIP.
A Activated PLD cleaves the choline headgroup from PC (blue triangles), for a region of the
membrane.
B This allows PI4P5K to locate and bind to its substrate, PIP (magenta hexagon).
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of active to inactive form of the G protein, and so affect the maximum strength of
activation.
We also know that ATP concentrations will affect the maximum rate of kinases

(see section 8.3.2). Guanine and adenosine nucleotides are interrelated by nucleoside-
diphosphate kinases (NDKs) which catalyse the reaction

Throughout the cell there exist signalling cascades that make use of coupled G
proteins and kinases, such as the Ras-Raf-MEK-ERK pathway (Kolch 2000). In such
situations, it is plausible that altered nucleotide levels could cause a reduction in
signal strength, compounded through the signalling pathway. This is illustrated in
figure 8.4.
The strength of any inhibitory effect would depend on the stimulation required

for activation of the downstream elements, and the nonlinearity of this response.
Additional modelling should inform us of the likelihood or importance of this effect.
It is known that modifying the GTP concentration can control the cellular beha-

viours including apoptosis and differentiation (Meshkini, Yazdanparast, & Nouri
2011).

8.4.4 Topology of membranes
Lipid membranes are not flat, homogeneous surfaces. Size, shape, and charge differ-
ences for individual lipids will cause regions of intracellular membranes to have
distinct properties. Furthermore, proteins (such as PLD and PI4P5K) are able to bind
to and change the composition of the membranes. Some of these temporal changes
may have fundamental importance in the processes inherent to the Arf/PLD/PI4P5K
signalling motif.
It is known that the phospholipids PC, PA, and the PIs have distinct three-

dimensional shapes, and are so able to affect the curvature and topology of the
membranes they are part of (McMahon & Gallop 2005). Changing the topology may
also change the surface area. Different phospholipids have different charges, and
so attract differently charged regions on proteins. It is plausible that the proteins
considered here are affected by these effects and so further investigation into the
static and dynamic physical membrane-protein effects may lead to crucial insights
into the regulation of the system.
Indeed, observe from figure 2.4 that phosphatidylcholine has a much larger head-

group than phosphatidic acid. Therefore, I hypothesis that a plausible mechanism for
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the membrane recruitment of PI4P5K (and perhaps part of the apparent activation
by PA) is the removal of choline groups from the membrane surface by the action of
PLD. In this way, perhaps a region of the membrane is cleared of choline head-groups
allowing PI4P5K to get closer to its substrate. This is illustrated in figure 8.5.

8.5 Conclusion
This thesis has documented my progress towards a better theoretical understanding
of the mechanisms and behaviours of the Arf/PLD/PI4P5K signalling motif, formed
by the activation of the lipid modifying enzymes PLD and PI4P5K by Arf, and the
cross-regulation of their products. This system is of fundamental importance in
lipid signalling: it controls the concentrations of lipids which are important in many
intracellular processes; and it is ubiquitously expressed across eukaryotic cells in
distinct triple of isoforms in multiple locations inside every cell.
I have presented multiple new mathematical models of the component parts of

the motif, and have combined these into mathematical models of the entire motif,
using both empirical and mechanistic approaches. Each of these models is formed
of one or more ordinary differential equations.
Initial empirical models suggested a non-trivial behaviour for the motif: an ability

to produce two distinct signals from a signal input signal. Moderate parameters
suggested that PLD acts in a switch-like manner with an insensitivity to low-level
noise; only above a critical stimulation does PLD act to propagate a signal. PI4P5K,
in contrast, appears to act to propagate a signal largely as-is, likely resulting from an
assumption of a less restrictive mechanism of activation. The arbitrary construction
of these models and a limit to their mathematical tractability meant that effort was
focused on the construction of mechanistic models.
Individual mechanistic models were developed for PLD and PI4P5K in chapter 5,

and the regulation of Arf in chapter 6. The framework of Gunawardena (2012) was
used to construct suitable quasi-steady-state (à la Michaelis-Menten) models for
each enzyme. Where appropriate, additionally simplifying assumptions were taken
to produce reasonably compact final models. Cytosol-membrane interactions were
included in the models of PI4P5K and the regulation of Arf using the approach
described by Kartal & Ebenhöh (2013).
The component mechanistic models were finalised with the definition of a full

set of (preliminary parameters) and combined to form a new model of the Arf/PLD/
PI4P5K signalling motif. Initial simulations of (each version of) this model show
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that it is capable of displaying physiologically-realistic behaviour consistent with
the known biology.
The final, complete model of the Arf/PLD/PI4P5K signalling motif is suitable for

further individual analysis (under assumptions related to both healthy and diseased
states) and inclusion into other, larger models. For comparison with this model, this
final chapter has indicated potential approaches for gathering suitable experimental
data.
Finally—in addition to the derivation of these mathematical models—there are

three other major conclusions for the work presented within this thesis:

• I have identified a lack of current understanding of the molecular mechanisms
behind the regulatory and catalytic actions of the enzymes PLD and PI4P5K.
More experimental and theoretical evidence is needed to correctly verify (or
reject) the models proposed here or those constructed in any subsequent
attempts.

• G protein:GEF:GAP systems do not behave, as commonly described, as simple
activation/inactivation cycles but are better described as regulation through a
balance/imbalance mechanism. This result has fundamental implications for
the study of these wide-spread and crucial signalling components.

• ‘Simple’, oligo-enzyme biochemical systems such as the Arf/PLD/PI4P5K sig-
nalling motif can display complex behaviours. So care must be taken for the
inclusion of such motifs into models of larger processes and signalling path-
ways, that the small components are adequately and suitably modelled. The
Arf/PLD/PI4P5K system in particular has a greater complexity than is initially
apparent: physical interactions with the membrane; differential localisation
(surface adsorption); regulatory interactions on uncertain, perhaps complex,
binding sites; and close integration with other signalling systems (as a lipid-
modifying process). These properties of the system have each been considered
within this thesis to varying degrees, somewhat dependent on the limits of
the current level of knowledge, and the availability and complexity of suitable
mathematical tools. However, to properly understand the behaviours of the
system each of these properties (and many other) must be fully understood at
the scale of the molecular processes.

I have summarised the key themes of this thesis in figure 8.6.
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A Python module enzymegraph:
source code

This appendix contains the entire source code for version 1.0.2 of the Python module
, written for use in this thesis. See section 3.4 for further description of

the implementation and usage. As of the date of submission, the source code is also
available in the repository:
https://github.com/robjstan/python-enzymegraph.
This source code has been released under the MIT license:

https://github.com/robjstan/python-enzymegraph
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B Derivation of the PMA model

This material was originally included in Stanley (2011). The PMA model of the
Arf/PLD/PI4P5K motif is described by the system of ODEs

d
d
d
d

This system has a single steady-state, at

ss

ss

This steady-state will be positive in both and when , negative
whenever in both and when , and undefined when .
The change of variables

ss

ss

creates a new homogeneous system ,

d
d (B.1)

d
d (B.2)

where the steady-state is now at the origin. The system can be written in matrix
form as

d
d
d
d

A , where A
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Figure B.1 Phase portraits of equation B.2 with , , .
gives a stable steady-state; gives a bifurcation and a stable line of equilibrium points;

gives a saddle node. Black circles are the initial conditions for the connected trajectory.
Drawn using the implicit solution derived in section 4.1.1.
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and so the eigenvalues of A are

One eigenvalue ( ) is always negative as it is the sum of two negative components.
The other eigenvalue ( ) is negative if and only if

So for there is a positive, stable steady-state; for there is
a negative, unstable steady-state; and so when there is a bifurcation.
Phase planes demonstrating different behaviours of this system for different values
of are shown in figure B.1.
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C Complete model: source code and
additional figures

This appendix contains the source code for Python implementations of the models
listed in chapter 7.
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A 3-site model of PI4P5K; RSA model

Figure C.1 Simulations of the complete mechanistic model of the Arf/PLD/PI4P5K motif, see
figure 7.7. As figure 7.8.
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B 2-site model of PI4P5K; Langmuir’s model

Figure C.1 Simulations of the complete mechanistic model of the Arf/PLD/PI4P5K motif, see
figure 7.7. As figure 7.8.
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C 2-site model of PI4P5K; RSA model

Figure C.1 Simulations of the complete mechanistic model of the Arf/PLD/PI4P5K motif, see
figure 7.7. As figure 7.8.

.
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A Langmuir’s model B RSA model

Figure C.2 Steady-state concentrations of active Arf, PA, and PI(4,5)P2 as a function of the
concentration of active GAP, assuming the 2-site model of PI4P5K. As figure 7.9.
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