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Abstract

The primary purpose of this thesis is to develop mathematical models and tools that

aid the understanding of financial systemic risk, by analysing and applying techniques

from complexity science. Large systemic risks that arise in financial asset markets have

proved that they can emerge virtually without warning, and create large financial and

social costs. I argue that herd behaviour in asset markets is a source of such systemic

risk.

In this thesis, I present a new mathematical model of cascades on a stochastic pulse-

coupled network, in the presence of binary opposing influences, and analyse it as both

a mean field dynamical system, and probabilistically. I demonstrate that a critical

coupling parameter exists separating a quiescent regime, from a volatile synchronous

regime consisting of large cascades. Second, as an application to systemic risk, I de-

velop a new model of a stylised financial market, using only minimal assumptions,

and demonstrate how this replicates important empirical features of financial asset re-

turns, such as long-memory volatility patterns, without recourse to strategy switching

or stochastic volatility. Numerical evidence is presented that suggests this minimal

market model self-organises to a critical regime, assuming only mild plausible optimis-

ing behaviour on the part of the agent. Lastly, I consider some implications for policy

scenarios in light of my findings.
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Chapter 1

Introduction

The primary purpose of this thesis is to develop mathematical models and tools that aid

the understanding of financial systemic risk, by analysing and applying techniques from

complexity science. The study of systemic risk is intimately connected to the notion

of a system which, throughout this thesis, is taken to refer to a collection of interacting

components that contribute to the function, or objective, of the system. There is cur-

rently no agreed definition of systemic risk, financial or otherwise, although Haldane

and May [2011] consider risk and instability to the whole financial system as important

components of financial systemic risk. Another view of systemic risk is offered by D.

Helbing, who suggests such risks

‘can trigger unexpected large-scale changes of a system or imply uncon-

trollable large-scale threats to it’ [Helbing, 2012]

For this thesis, systemic risk is taken as referring to large-scale, macroscopic, change

among system components that either adversely impacts the functioning of the sys-

tem under consideration, or places the system in to an undesirable state. Systemic

risk events that arise within a system may do so endogenously, or be triggered by an

exogenous event.

The costs associated with a systemic risk event occurring within a particularly critical,

or interdependent system, can be immense. Even if the numéraire of cost is simply the

time required to return the system to its original state, it would be reasonable to surmise
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that opportunity costs had been incurred. For example, case studies of severe disruption

in electricity supply (blackouts) reveal economic costs to be in excess of four billion

U.S. dollars for a 2003 blackout in Canada, lasting a few days [Walker et al., 2014]. In

relation to financial systems, systemic risk events can be extraordinarily costly in both

the social dimension, through unemployment and poor public health [Stuckler et al.,

2009], and the monetary dimension, with estimates of the financial losses incurred as a

result of the financial crisis are of the order of trillions of U.S. dollars [The Financial

Crisis Inquiry Commission, 2011].

Given the potential for large social and economic costs, researchers and policy makers

are particularly interested in understanding systems that possess the ability to generate

endogenous systemic risk events [Helbing et al., 2011]. Gaining an understanding of

such systems may lead to better contingency plans, mitigation strategies and techniques

for predicting the onset of large scale system failure, or a shift to an undesirable state.

Systemic risk events in financial systems manifest in a number of ways, the classical

example being a bank run [Allen and Gale, 1998], during which many depositors with-

draw their funds from a bank near simultaneously, and attract others to do the same,

severely impairing the functioning of the bank as a result. Other examples include a

cascade of insolvencies occurring among financially important institutions - whose im-

pairment places the stability of the financial system at risk - as what occurred in 2007

and 2008 during the global financial crisis [Haldane, 2009].

This thesis is concerned with systemic risk arising in financial asset markets, as a result

of herd behaviour [Bikhchandani and Sharma, 2000]; how it may be quantified and

identified, and the consequence for asset price dynamics. This is achieved by placing

the simple theory of information cascades [Bikhchandani et al., 1992; Banerjee, 1992;

Shiller, 2015] into a mathematical context, and utilising techniques from complex sys-

tems in the subsequent analysis. By framing this problem in complex systems science,

it is argued that such systemic risk endogenously occurs as emergent behaviour, in ac-

cordance with typical features of a complex system. In addition, some pertinent policy
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implications are considered in light of this.

The contributions to knowledge that this thesis has made, can be separated in to three

areas. First, a new mathematical model [Wray and Bishop, 2014] of cascades occurring

on a stochastic network in the presence of binary opposing influence, is presented and

analysed both as a mean field dynamical system and probabilistically. The model is

demonstrated to possess a critical transition separating a quiescent regime, in which

cascade sizes are small relative to the system size, and a regime in which cascade sizes

are macroscopic in size. This contributes to the literature on phase transitions occurring

in processes that take place on a network.

Second, as an application to financial systemic risk in asset markets, a new minimalis-

tic model describing herd behaviour in a stylised financial market is developed [Wray

and Bishop, 2015]. The novel feature of this model is its ability to replicate important

features of asset returns time series, without explicit recourse to two of the commonly

assumed behavioural mechanisms presented in the literature to-date (namely strategy

switching amongst economic agents, and agents operating over fixed but heterogeneous

time scales). Although the model described here requires economic agents to operate

over a specific parameter range in order for the stylised facts to emerge, I reason, sup-

ported by numerical findings, that an economically plausible and simple optimising

mechanism (minimisation of the time duration between trades) drives agents to this

critical parameter range.

Third, this thesis as a whole contributes to a more constructive framing of certain fi-

nancial market risks related to herd behaviour, than has previously been the case. The

relationship between individuals and financial systems evolve through time, not only

in terms of participation, but also in how individuals (policy makers, researchers, cit-

izens) perceive and interpret events that may occur. To be specific, I am arguing that

the historic framing of possible systemic risk events as ‘anomalous’, suggesting such

events should conform to an already existing body of knowledge, or do not warrant ex-

planation, is non-constructive in the sense of deterring potential scholarly attention [see
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Frankfurter and McGoun, 2001, for a fuller account of this line of reasoning]. This, I

argue, is in contrast to the less emotive and more constructive framing of systemic risk,

that actively seeks interdisciplinary understanding in the pursuit of solutions to difficult

problems.

1.1 Motivation and background
In his, by now well known, opening speech of the 2010 European Central Bank (ECB)

annual conference Jean-Claude Trichet, then President of the ECB, made the following

profound remarks in relation to the Eurozone Sovereign debt crisis, that started in 2009,

and the shortcomings of available policy tools:

‘When the crisis came, the serious limitations of existing economic and

financial models immediately became apparent. Macro[economic] models

failed to predict the crisis and seemed incapable of explaining what was

happening to the economy in a convincing manner. As a policy-maker dur-

ing the crisis, I found the available models of limited help. In fact, I would

go further: in the face of the crisis, we felt abandoned by conventional

tools.’ [Trichet, 2010].

Trichet continues, with an appeal for economists to work in conjunction with scientists

and experts of complex dynamic systems:

‘... we need to develop complementary tools to improve the robustness

of our overall framework. In this context, I would very much welcome

inspiration from other disciplines: physics, engineering, psychology, bi-

ology. Bringing experts from these fields together with economists and

central bankers is potentially very creative and valuable. Scientists have

developed sophisticated tools for analysing complex dynamic systems in a

rigorous way. These models have proved helpful in understanding many

important but complex phenomena: epidemics, weather patterns, crowd

psychology, magnetic fields.’ [Trichet, 2010].
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It is clear that Trichet does not say economics needs to be replaced, nor from his com-

ments can one infer he believes economic models possess no value. Although, for a

highly regarded administrator to publicly question the efficacy of policy tools based

upon classical economic models, at a time when they are most needed, is excellent

motivation to develop financial-economic models using techniques from the science of

complex systems.

1.1.1 Financial markets as a complex system

The beginnings of complexity science, (as it most closely resembles the endeavour

today) can be traced back to two seminal contributions. Anderson [1972], who ques-

tioned the reductionist point of view which postulates fundamental laws of physics are

only those that apply to elementary particles - arguing instead that such laws depend on

a hierarchy of scales. This argument lead to the concept of emergence, a central con-

cept in complexity science. May [1972], demonstrated that a large (highly connected)

complex system need not be considered stable (contrary to the prevailing wisdom at

the time), and provided criteria for when stability exists - a concept which continues

to be central to the study of complex systems, and of clear relevance to the highly

interconnected financial systems that exist today.

It remains an unresolved question as to whether complexity is a universal phenomenon,

or if different disciplines exhibit domain-specific complexity. As a result, there is a

lack of consensus as to what exactly constitutes complexity, and therefore no agreed

definition exists. Researchers have therefore focused on describing core qualitative

features that are considered to be common to many complex systems. Three features

that appear to be present in most descriptions of complex systems are [Boccara, 2010]

1. Consisting of many interacting components.

2. Present emergent macroscopic phenomena not present at the microscopic level.

3. Emergent behaviour does not result from the existence of a central controller.
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Depending upon the particular system under study, the components of a complex sys-

tem may themselves have diverse properties. In the case of financial markets, and of

direct relevance to this thesis, these features are often taken to be agent (component)

heterogeneity [Page, 2010] and adaptive behaviour [Johnson et al., 2003]. It is noted,

that component heterogeneity is not a prerequisite to producing interesting complex

phenomena: paradigmatic models consisting of homogeneous components include the

cellular automata studied by Wolfram [1983], and the Ising [1925] lattice interaction

model. Both models continue to influence current research across a diverse range of

disciplines.

The classic examples of complex systems, together with corresponding emergent phe-

nomena include [Newman, 2011]

1. Condensed matter physics and spontaneous symmetry.

2. The brain and cognitive ability.

3. Ecosystems and extinction (and life) events.

4. Transport networks and congestion.

5. Financial markets and financial crashes/asset bubbles.

Aside from the classic examples listed above, other significant applications of ideas

arising from complexity science have occurred in urban planning and the theory of

cities [Batty, 2007], epidemic spreading [Pastor-Satorras and Vespignani, 2001; New-

man, 2002] and more recently network collapse [Majdandzic et al., 2013]. Tools used

to study complex systems, such as networks, are described in chapter 2.

The view of financial markets (and the economy, more broadly) as a complex sys-

tem has long been established by certain economists [Arthur, 1995; Anderson et al.,

1988; Arthur et al., 1997] (see Hommes [2013], and references therein for a recent re-

view), although neither this view, nor its implications, are shared universally amongst

all economists or policy makers. Notwithstanding this, it has been suggested that finan-

cial systems represent one of the best examples of a complex adaptive system [Havlin
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et al., 2012], since financial markets consist of many interacting heterogeneous agents,

acting with no central coordination and capable of producing seemingly macroscopic

emergent phenomena, such as crashes and asset bubbles [Sornette, 2003]. Moreover,

financial systems feature multiple hierarchies of feedback, ranging from performance

tracking of investment fund managers and the subsequent scrutiny of their portfolio

holdings, companies that sell stock and subsequent buy it back if it falls too low, and

feedback between a financial index and its constituent stocks [Kenett et al., 2013].

With the onset of the financial crisis that began in 2007, researchers have had another

piece of evidence that supports the view that financial markets generate endogenous

systemic risk events, and this has been followed by a range of studies examining the

conditions under which such events may arise and propagate in the interbank network

[Haldane and May, 2011; May et al., 2008; Gai and Kapadia, 2010; Tedeschi et al.,

2012b]. Although this is exceptionally important and necessary work, an influential

report [The Financial Crisis Inquiry Commission, 2011] states the most recent finan-

cial crisis first transpired in the asset market for financial securities derived from home

loans, whose collapse was preceded by the collapse of the U.S. housing bubble in exis-

tence at the time.

‘While the vulnerabilities that created the potential for crisis were years in

the making, it was the collapse of the housing bubble fueled by low interest

rates, easy and available credit, scant regulation, and toxic mortgages that

was the spark that ignited a string of events, which led to a full-blown crisis

in the fall of 2008.’ [The Financial Crisis Inquiry Commission, 2011, page.

16].

This raises the question of why so many independent professional investors arrived at

the same false conclusion (that the assets in question were correctly priced), when in

fact they were extremely mis-priced. One explanation is that such investors have iden-

tical (or near identical) thought processes and information sets - although, this raises

many difficulties in relation to prior and subsequent decisions. Another reason can be
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found in the context of herd behaviour and information cascades, first introduced by

Bikhchandani et al. [1992] and Banerjee [1992], which theorises how individuals may

eventually ignore their own private information, or preferences, as a result of taking

into account the judgements, or actions, of others [see Shiller, 2015, for an account].

Herd behaviour has been suspected, or known to be, the catalyst of many financial

crises and numerous asset bubbles (for example, Black Monday in 1987 and the Dot

Com crash in 2000. For a review of these events see Sornette [2003]). It follows

that herd behaviour can be considered a significant (but not exclusive) component of

systemic risk events.
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Figure 1.1. Value of the S&P 500 index, with inset additionally detailing bank deposits
(right hand scale EUR billions) placed with the European Central Bank, indicating the
extent of liquidity hoarding by European banks during the financial crisis.

Contextual economic background and summary of official U.S. government report

It is important to understand the context in which Trichet’s remarks [Trichet, 2010]

were made (during the global financial crisis that began in the U.S), if only to eradicate

any notion of exaggeration or hyperbole on his part. In a bid to increase home own-

ership, the U.S. department for Housing and Urban Development (HUD) relaxed the
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restrictions on Freddie Mac and Fannie Mae (government-sponsored enterprises whom

were overseen by the HUD) in securitizing sub-prime mortgages. During this time, in-

vestment banks, and private non-government enterprises, increased their securitization

of these riskier loans. While Government enterprises guaranteed the performance of

their securities, private and investment bank securitizations provided no such guaran-

tees, and mitigated their risk, by buying insurance, in the form of a credit default swap

(CDS), thus transferring the credit risk to a third party. As the government enterprises,

Fannie Mae and Freddie Mac, lost market share they too loosened their guarantee busi-

ness and underwriting standards, in a race to the bottom to attract a larger share of the

sub prime market. By mid 2004, sub-prime mortgages made up around 13% of total

mortgages, jumping from around 3% in 2003. By 2006, default rates of sub-prime

mortgages stood at 12.2%. The United States entered a national recession towards the

end of 2007, that caused real-estate prices to collapse from all-time historical highs,

driving up homeowner loan defaults (see Fig. 1.1). This in turn caused the value of

securities linked to real-estate loans (so-called asset backed securities) to plummet,

which incurred unexpected losses for institutions holding such securities. These events

marked the beginning of what has become known as the global financial crisis of 2007-

2008. The two years that followed revealed how the complex interplay between US

administration policy, rating agencies, regulators, banking practices and solvency pro-

visions can lead to a build up of systemic risk, having the potential to severely impact

the global economy. During 2008 and 2009 a large number (39 in 2008, and 10 in 2009,

in addition to the 140 smaller U.S. commercial banks and savings associations) of sys-

temically important financial institutions experienced exceptionally negative liquidity

problems and capital shortfalls as a result of sub-prime contagion, and either failed and

filed for bankruptcy (Lehman Brothers), or were acquired by competitors with govern-

ment assistance (Merril Lynch by Bank of America), or given restrictive bailout loans

by central authorities (American Insurance Group). Lending between banks on the in-

terbank market froze as they began liquidity hoarding: depositing their available cash

with central banks (deemed as safe), rather than make short term loans to another bank
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(seen as risky). The inset bar chart in figure 1.1 shows the marked increase in deposits

taken by the European Central Bank. In the short term, liquidity hoarding could be

seen as bolstering healthy banks, but eventually reduces the resilience of all banks due

to negative system-wide feedback effects. For a fuller account of the background, see

the comprehensive financial crisis inquiry report, compiled by the U.S. government

[The Financial Crisis Inquiry Commission, 2011].

1.2 Thesis outline
In chapter 2, mathematical and financial background material to this thesis is presented.

In chapter 3, a modern economic dynamic stochastic general equilibrium model is con-

structed and evaluated which is used to frame the remaining work and discussion, and

highlight the significant conceptual differences between classical economic modelling,

and the methods and models suggested in the rest of the thesis.

In chapter 4, a new model of cascades on a stochastic pulse-coupled network is de-

veloped, and analysed as a mean field dynamical system. The existence of a critical

network coupling is demonstrated both analytically and numerically, and a correspon-

dence with standard bond percolation. The model is demonstrated to possess a critical

transition separating a quiescent regime, in which cascade sizes are small relative to the

system size, and a regime in which cascade sizes are macroscopic in size. The transi-

tion of the system between regimes can be thought of as analogous to bond percolation

Grimmett [1999], which is recovered as a special case of the model. In general, the

model displays transitions that occur at a sharper rate than in the case for standard bond

percolation - a point which is discussed in relation to bank capital adequacy buffers in

chapter 6.

In chapter 5, two variants of a new financial market model are derived from the model

presented in chapter 4. It is demonstrated how the new model can be applied in the

context of herding in financial asset markets, and substantial numerical analysis is pre-

sented, showing the ability of the model to reproduce a number of observed empiri-

cal facts concerning financial time series, in a robust and parsimonious manner. By
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reference to economic literature, a detailed economic justification is provided for the

modelling choices, showing that such choices are not at odds with certain economic

evidence. Second, as an application to financial systemic risk in asset markets, a new

minimalistic model describing herd behaviour in a stylised financial market is devel-

oped [Wray and Bishop, 2015]. Substantial numerical results are presented as evidence

of the models ability to generically replicate some of the important features empirically

observed in the time series of returns of financial assets (known as the stylised facts of

financial markets, in the lexicon of financial markets), and an economic rationale for

specific modelling choices is stated. The novel feature of this model is its ability to

generate these stylised facts without explicit recourse to two of the commonly assumed

behavioural mechanisms presented in the literature to-date (namely strategy switch-

ing amongst economic agents, and agents operating over fixed but heterogeneous time

scales). and an economic rationale for specific modelling choices is stated.

In chapter 6, policy scenarios are discussed in light of the findings of this thesis. In

particular, the policy implications of considering asset bubbles as a precursor to sys-

temic risk are discussed, and bank capital adequacy buffers - one result from the policy

response to the most recent financial crisis - are discussed in the presence of sharp

transitions.

Chapter 7 concludes with a summary of findings, and implications to the economic

literature. In particular, the classical economic belief that the absence of external news

implies the absence of trading (and consequently the absence of fundamental price

changes) is reconciled with the threshold model developed in this thesis. Finally, some

ideas for further research are presented.
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Chapter 2

Mathematical Background

This chapter collects much of the background mathematical terms, tools, concepts and

notation that will be used in this thesis. Networks, or graphs as they are known in

the mathematical literature, have become valuable tools for modelling complex sys-

tems, and this chapter starts by describing the basic network models, and a selection of

their properties. This is followed by a brief description of a selection of methods and

tools commonly used to analyse complex systems and employed in this thesis (namely

dynamical systems and probabilistic methods). A description of agent-based models

follows, with an emphasis on finance and economics, as such models are frequently

employed to study complex systems, and because the financial market model in chap-

ter 5, can be viewed as an agent-based model. This is followed by background material

on deterministic pulse-coupled oscillators and the integrate-and-fire methodology that

is used in chapters 4 and 5, to model the communication structure between compo-

nents of the system considered therein. The latter part of this chapter collates notation

and fundamental concepts associated with the so-called stylised facts of financial asset

prices, that are referenced in chapter 5.

2.1 Network models
The vast literature on network theory has evolved from its roots in pure mathematics

[Erdős and Rényi, 1959] along a diverse interdisciplinary path finding application in a

wide range of research areas. Notable applications of network theory are: epidemiol-
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ogy and the spreading of disease on networks [Pastor-Satorras and Vespignani, 2001;

Castellano and Pastor-Satorras, 2010]; neuroscience and the modelling of neuronal

networks [Brunel, 2000], and the study of man-made technological and transporta-

tion structures [Colizza et al., 2006; Kaluza et al., 2010]. In economics and finance,

a significant amount of research utilising networks has been catalysed by the global

financial crisis, in particular to model financial contagion [Gai et al., 2011]. Boccaletti

et al. [2006] presents a comprehensive account of other areas where networks have

been applied.

Recent research concerning networks explores multiplex networks [Nicosia et al.,

2013], explosive percolation on networks [Achlioptas and Spencer, 2009], dynamic

failure and recovery of networks [Majdandzic et al., 2013] and cascades both on, and

within, networks [Buldyrev et al., 2010; Crucitti et al., 2004], and opinion dynamics

and general spreading phenomena [Watts, 2002; Singh et al., 2013; Hackett and Glee-

son, 2013].

For complex systems that do not require an idiosyncratic or specialised model to de-

scribe their interaction structures, network theory has, for some time now, come to be

the methodology of choice when modelling component interaction [Strogatz, 2001]. In

this section I provide an overview of basic networks.

Basic network models

A network is a collection of abstract objects, some of which may be pairwise connected

via links (interchangeably known as edges). The objects which comprise a network are

called vertices (interchangeably known as nodes), and may be labelled using enumer-

ation, so that reference can be made to node 1 or, in general, node i or simply ni,

depending upon the context.

A simple network is one where nodes are distinct; two nodes may have at most one

edge between them (no multi-edges), and nodes cannot have an edge with themselves

(no self-loops). In the case of simple networks, the collection of nodes and edges

can be conveniently represented by the so-called adjacency matrix, A, with entries Ai j
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satisfying

Ai j =


1, ni connects to n j.

0, otherwise.
(2.1)

Edges may be either undirected, implying the adjacency matrix is symmetric, or di-

rected with the corresponding adjacency matrix, in general, non-symmetric. The de-

gree of a node within an undirected network is taken as the number of edges incident

to the node. In the case of a network with directed edges, it is possible to make a dis-

tinction between incoming incident edges to a node (in-degree) and outgoing incident

edges to a node (out-degree). A central idea in network theory is that of the degree

distribution, which is the probability distribution of node degree, taken over the entire

network. Since the degree distribution is a fundamental global network property, it is

often used for preliminary classification, or analysis, of networks. Another important

network measure is the clustering coefficient, introduced in a local-network form by

Watts and Strogatz [1998]. Before defining the clustering coefficient for a node in an

undirected network, we first define the neighbourhood, N(i), of node ni to be the set

of nodes that directly connect to ni. Let E denote the set of all edges of the network;

the number of nodes in the neighbourhood of node i by |N(i)|, and an edge between

two nodes (ni and n j) by (i, j), then the local clustering coefficient [Watts and Strogatz,

1998], Ci, for an arbitrary node ni is

Ci =
2
∣∣{( j,k) : n j,nk ∈ N(i), ( j,k) ∈ E

}∣∣
|N(i)|(|N(i)|−1)

. (2.2)

Intuitively, Ci measures the density of connections between the nodes in the neighbour-

hood of a given node. A global measure of clustering, C(N), can be obtained by taking

the average local clustering coefficient, Eqn. (2.2), over all N nodes in the network. An-

other widely used measure of network topology is the average path length, L(N), and is

simply the average number of edges along the shortest paths between all possible pairs

of nodes.
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Models for generating networks are invaluable for understanding and classifying real-

world networks. Not only can it be resource intensive, time consuming or impractical

to gather enough data to reconstruct a specific network. In some cases, such as financial

or trade related networks, there may be regulatory barriers or competitive restrictions

in obtaining relevant network data. The main types of network models, and how they

are constructed, are presented below.

Erdős-Rényi networks.

The paradigmatic random graph model (or random network), introduced by Erdős and

Rényi [1959] is a simple probabilistic graph construction model lacking any informed

edge creation mechanism. Instead, undirected edges between nodes exists randomly,

and independently from other edges and the size of the network.

Equivalent to the Erdős-Rényi network, is the binomial network, that consists of N

nodes, with each of the N(N−1)/2 possible edges having an independent probability

p of being present and probability 1− p of being absent, from the network. For a given

N, p we can compute the degree distribution explicitly. Let P(z) be the probability that

a node of degree z is present in the network. In a network of N nodes, consider a node

of some degree 0 < z < N that necessarily connects to z other nodes, and does not

connect to the other N− z−1 nodes. Since each connection exists independently with

probability p, we can use the binomial distribution to show that

Figure 2.1. A) directed Erdős-Rényi, B) undirected Watts-Strogatz ‘small-world’
showing ring-lattice with some rewired edges, C) scale-free network produced via
the Barabási-Albert preferential attachment mechanism
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P(z) =
(

N−1
z

)
pz(1− p)N−z−1 (2.3)

≈ e−〈z〉
〈z〉z

z!
, (2.4)

where 〈z〉 represents the average (mean) node degree, and the approximation in equa-

tion (2.4) follows from the Poisson approximation for large N and bounded 〈z〉 =

(N−1)p.

Watts-Strogatz network.

Watts and Strogatz [1998] introduced a single parameter (β ∈ [0,1]) family of net-

works, known as small-world networks, to analyse the small-world character of real-

world networks that simultaneously have a high clustering coefficient and low average

path length. The method of constructing a small-world network (in one dimension)

utilises two features: the high clustering value of ring-lattices (β = 0), and secondly,

the low average path length of random networks (β = 1). The small-world network

construction method produces a small-world network as the result of an interpolation

between these two network types. A small-world network with N nodes and average

(even) degree Z, with N >> Z >> logN >> 1, can be constructed in two stages. First, a

regular ring lattice of N nodes, with each node connected to its Z/2 nearest neighbours

on either side of the node, is produced. Each edge can be represented by the nodes it

connects, so that (i, j) represents the edge connecting nodes labelled i and j. We say an

edge is rewired when the edge (i, j) is replaced by (i,r) where r 6= i is selected to avoid

self-loops and edge duplication, but randomly selected otherwise. The second stage of

the construction consists of rewiring each edge (i, j), for i < j, with probability β or

leaving it unchanged with probability 1−β . This mechanism produces an undirected

small-world network, parametrised by β .

The key mechanism for producing small-world graphs with high clustering values is

how quickly the average path length drops as the edge-rewiring probability increases

from zero, and importantly how it does so more quickly compared to the normalised

mean clustering. By considering average network clustering and shortest path length
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Figure 2.2. The normalised mean clustering coefficient (◦) and mean path length (4),
plotted against the Watts-Strogatz β parameter using log scale. The x-axis is shown in
log scale. The networks have 1000 nodes and average degree of 20. Each point is the
average of 1000 realisations.

Network type Average clustering Average path length

Ring-lattice (β = 0) N
2Z

3(Z−2)
4(Z−1)

Random network (β = 1) logN
logZ

Z
N

Table 2.1. Average shortest path lengths and average clustering for ring lattice and
random network

parameterised by β , Fig. 2.2 shows that as β increases from 0 to approximately 0.001,

the normalised path length drops from one to, L(β )
L(0) ≈ 0.3, while the normalised average

clustering coefficient changes from one to C(β )
C(0) ≈ 0.99. Showing that even a small

perturbation of β can have a drastic impact upon the topological connectivity of the

network. Table. 2.1 compares the average clustering and shortest path length for ring-

lattices and random networks, expressed in terms of total number of nodes (N), and

average degree (Z).
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Scale-free networks: Barabási-Albert.

In a seminal article, Barabási and Albert [1999] introduce a preferential attachment

mechanism for constructing networks that possess a scale-free degree distribution. Al-

though the small-world network [Watts and Strogatz, 1998] reproduces some features

possessed by many empirical networks, there are other attributes it does not reproduce

or explain. One such phenomena is that of a scale-free degree distribution. A Barabási-

Albert network is constructed via a growth and preferential attachment mechanism,

which means that new nodes joining a network are more likely to connect to nodes that

are already well connected, and results in a power-law degree distribution, P(z)∼ z−3.

The algorithm used to create a Barabási-Albert network is simple: start with a con-

nected network of N0 nodes, and then at each time-step add a new node with m < N0

edges. Each edge connects to one of the existing nodes with a probability proportional

to the node degree. Once all the new edges have been attached to nodes in the system,

the process is repeated with updated probabilities until a network with the desired num-

ber of nodes, (N), is reached. The average clustering coefficient, for a Barabási-Albert

network is [Klemm and Eguı́luz, 2002]

C(N) =
m

8N
(logN)2, (2.5)

while Bollobás and Riordan [2003] show that average path length scales like

L(N)≈ logN
log logN

. (2.6)

Scale-free networks (obtained via a method such as growth plus preferential attach-

ment) explain the formation of hubs, or highly connected nodes, within networks. Such

nodes are considered important, due to their high topological relevance within a net-

work [see Albert et al., 2000; Doyle et al., 2005, for a description of so-called robust-

yet-fragile systems]. It is reported that many important networks, such as the World

Wide Web and metabolic networks, appear to possess power-law degree distributions

[see Albert and Barabási, 2002].
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2.2 Tools for analysing complex systems

2.2.1 Topological structure

One of the earliest tools to study complexity was popularised by Stephen Wolfram, who

carried out pioneering research on complexity in one-dimensional cellular automata

[Wolfram, 1983]. An elementary cellular automata can be thought of as an array of

discrete cells each consisting of a state variable whose value depends upon the states of

cells in the immediate neighbourhood, at the previous time step. Updates to cell states

typically occur in parallel, although other schemes are possible. Cellular automata are

particularly suited for describing local interactions, between homogeneous units when

the cell update rule is both spatially and temporally homogeneous. There are numer-

ous extensions and generalisations of cellular automata, including stochastic cellular

automata, asynchronous updating cellular automata and cellular automata in higher di-

mensions [a comprehensive survey can be found in Kari, 2005]. An important property

of cellular automata is the ability to realise coherent global patterns from strictly local

rules. Furthermore, because such systems lack central control, cellular automata repre-

sent a useful tool to model self-organisation, as well as emergent behaviour. It is noted

that an agent based model may be depicted as a cellular automata, that is no longer

required to be homogeneous, or act in accordance with the same (local) rule-set.

When modelling a complex system, there is a certain freedom in choosing the repre-

sentation of interactions. For spatially constrained systems consisting of homogeneous

components, cellular automata represent a natural modelling choice. Similarly, lat-

tices may be employed to represent a constrained interaction neighbourhood of each

component (each component in a d-dimensional regular cubic lattice has 2d nearest

neighbours). Table. 2.2 lists some common topological structures, and tools used to

model interactions.

2.2.2 Analysing dynamics

Aside from the significant amount of research in complex networks, few tools exist

that have been specifically designed to analyse complex systems. As a result, a range
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Topological structure Tool

Homogeneous and local interaction Cellular automata / lattice
Spatially distributed Cellular automata / lattice
High dimensional / random interaction Random network
High dimensional / structured interaction Small-world / Scale-free network
High dimensional / ensemble of networks Multiplex network

Table 2.2. Modelling different interaction structures in complex systems.

of domain specific tools are often employed. Although certain tools are better suited to

certain circumstances, as summarised in Table. 2.3.

Analysis type Topological structure

Deterministic non-linear
dynamical systems

Small to medium number of components
Small number of homogeneous component groups
Weak stochasticity
Bifurcation and abrupt qualitative transitions

Probabilistic

Large number of components
Many inhomogeneous component groups
Weak interactions
Smooth divergence

Table 2.3. Suitable analysis tools based upon properties of a complex system.

Due to the multiplicity of choice that can arise in a complex system, coupled with

sensitive path dependence of system trajectories, the variability of outcomes can be

viewed probabilistically [Nicolis and Nicolis, 2009]. This stochasticity is innate to the

system, rather than imposed exogenously, making a probabilistic description of a com-

plex system useful in extracting information concerning aggregate system behaviour.

An alternative approach consists of using (non-linear) dynamical systems to model

the behaviour of systems, a benefit of which is the substantial body of mathematical

knowledge that exists to describe such models. Aggregate qualitative phenomena, such

as phase transitions, are naturally described by the bifurcation theory of dynamical sys-

tems. Although, both of the aforementioned approaches have their drawbacks. Prob-

abilistic methods require careful construction to avoid excessive simplification via as-

suming the independence of events. Analogously, the theory of non-smooth dynamical

systems is much less developed than the standard smooth theory. Significant stochastic-
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ity may also present problems when utilising the standard theory of dynamical systems,

which can often be simplified by resorting to the mean field approximation [Stanley,

1988], or other more recent moment closure methods.

A parsimonious way to capture such dominating features of a complex system is to

study the phase transitions, if present. This is analogous to the insights provided by

bifurcation analysis of dynamical systems. A phase is interpreted as a region of param-

eter space in which the macroscopic behaviour of a system is qualitatively similar, and

macroscopic variables change smoothly. In contrast, at a phase transition a small varia-

tion in control parameters induce qualitative changes in macroscopic system behaviour

and macroscopic variables change abruptly, either discontinuously or continuously. In

summary, phase transitions can be regarded as demarcating regions of parameter space,

known as states, where the system macroscopic behaviour is equivalent.

Many physical systems can be analysed in this way. Water, considered as a thermo-

dynamic system, undergoes phase transitions between solid, liquid, gas and plasma

phases, that occur at various temperatures and pressures. So useful is this method of

analysing complicated (or complex) systems, that these ideas have been applied in a

wide variety of contexts, including population dynamics and ecology, financial mar-

kets and climate science [see Scheffer et al., 2009, and references therein].

To ease the burden of attempting to determine the macroscopic phases and associated

phase transitions of many-particle systems, a mean field approximation, is often made

about the microscopic interaction effects between components. Rather than attempt to

capture each and every interaction between components and the effect on the macro-

scopic system variables, one can allow each component (or groups of components) to

experience a mean, or statistically average, effect. The benefit of this transformation

is to replace a large number of stochastic interactions, with a smaller number of de-

terministic ones, making aggregation and the determination of macroscopic variables

tractable.
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2.3 Agent based models in finance
For the basic modelling unit of the economic agent, its behaviour may not be easily and

directly described, in a given context. On the contrary, the rules that govern behaviour

may be known with much greater certainty or depend upon physical, commercial or

monetary constraints that are easily computerised. Moreover, in most situations, eco-

nomic agents can be assumed to possess a memory of events which may influence their

future decisions. Capturing such path-dependency using traditional, or equation-based,

techniques is extremely challenging.

For the reasons cited above, there is a persistent interest in agent based models, and

especially so in the domain of financial and economic modelling. The analytically

tractable, but often highly simplified, traditional economic models rely upon assump-

tions that render them inappropriate for a range of important situations. For instance,

the recent global economic crisis brought to wide attention the dearth of tools available

to economists wishing to study economic and financial crises [Trichet, 2010]. Although

this point has been made both before [Bouchaud, 2008; Farmer and Foley, 2009] and

since [Kirman, 2010a; Gallegati and Kirman, 2012], it remains true that agent based

models are an important modelling tool, applicable to situations in which traditional

economic and financial models either do not apply, or become impractical to apply. A

brief chronology of important financial agent based models is presented below.

• Kim and Markowitz 1989. An early agent based model [Kim and Markowitz,

1989], developed with the aim of understanding the Black Monday crash in 1987

during which the largest one-day percentage decline in the Dow Jones index oc-

curred. The agent based model is designed to investigate whether hedging and

Constant Proportion Portfolio Insurance (CPPI) strategies could be the cause of

the crash via endogenous instability and explosive market volatility. Using a

series of simulations in which each agent is one of two possible types: a ‘rebal-

ancer’ or portfolio insurer, it was demonstrated that as the proportion of agents

following CPPI strategies increases, asset volatility, and transaction volume, in-
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crease.

• The Santa Fe Artificial Stock Market. A pioneering agent based model [Arthur

et al., 1996] investigating the efficient market hypothesis and agent rationality.

The model sets out to test the possibility of allowing heterogeneity in agents’

price expectations, whilst remaining economically valid otherwise, and the con-

sequences for market dynamics.

• Minority Game. A much-studied game-theoretic agent based model, first posed

by Arthur [1994] as the so-called El-Farol Bar Problem and later studied and

extended by Challet et al. [2001b]. The model investigates agent choice in the

presence of a reward structure - with agents rewarded for selecting the minority

decision. Later versions of the model incorporate agent memory, adaptability and

strategy-switching.

• Behavioural heterogeneous agent models. Brock and Hommes [Brock and

Hommes, 1998; Brock et al., 2005] take a behavioural finance approach to agent-

based models, and relax a number of traditional economic assumptions, namely

that of the representative agent (replaced by agents with heterogeneous beliefs)

and rationality (replaced by bounded rationality). Chaotic market dynamics are

produced by the models.

A review is carried out by Iori and Porter [2012]. More recently, agent based models

have been applied to problems and scenarios relevant to central banks and policy mak-

ers, that have historically been analysed using traditional economic modelling tools.

These include, the Bank of England agent based model modelling of payment systems

[Galbiati and Soramäki, 2008], and the European Commission-backed CRISIS project

[Hommes and Iori, 2015], that aims to build a fully functioning agent based economy,

are prominent examples.
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2.4 Integrate-and-fire and pulse coupled oscillators

Pulse coupled oscillators are simple dynamical units that occupy a prominent role in

the study of synchronisation. A seminal contribution to this area was made by Mirollo

and Strogatz [1990], who proved and generalised a previous conjecture of Peskin

[1975] concerning the synchronisation of a general number of deterministic oscillators.

Since then, synchronisation on more general topologies have been studied (on complex

networks [Timme et al., 2002], and small-world networks [Rothkegel and Lehnertz,

2009]). Arenas et al. [2008] provides a comprehensive overview of this area.

Pulse-coupled integrate-and-fire (IF), oscillators have been used to model various bio-

logical processes for some time. Here, the essential characteristics of pulse-coupled IF

osciallators are initially presented using a simple model, followed by statements of the

original Peskin [1975] model of a cardiac pacemaker, and the associated conjectures

concerning the synchronised firing of an ensemble of pulse-coupled IF oscillators. Fi-

nally, a sketch of the generalised IF framework used by Mirollo and Strogatz [1990] to

prove one of the conjectures of Peskin is given.

The inclusion of this material serves two purposes. First, as an aid to understanding

subsequent models of this thesis (chapter 4 and chapter 5) that incorporate a network

of (stochastic) pulse-coupled IF oscillators to represent the implicit, and minimalistic,

interaction between components of a system. Second, an understanding of the method

of proof used by Mirollo and Strogatz [1990] to prove Peskin’s conjecture illuminates

why their result does not carry over in the case of stochastic pulse-coupled oscillators.

A population of coupled integrate-and-fire oscillators, with state xi is characterised

by the pulsate coupling, initiated upon an oscillator’s phase (also known as poten-

tial) reaching a certain threshold, and then resetting back to some rest level. For

i 6= j ∈ {1,2, ...,N}, let N(i) represent the neighbourhood of oscillator i - that is the
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set of all those oscillators directly pulse-coupled to oscillator i

ẋi =
1
τ
, xi(t) ∈ [0,1], (2.7)

if xi(t) = 1 with j ∈ N(i) =⇒ x j(t+) = min(1,x j(t)+C), xi(t+) = 0

where C is the coupling strength (pulse), and when a pulse is sent at some time t = ti,

the time immediately after a firing of the pulse is t = t+i (see Fig. 2.3).

0

1

t1 t2

x(t)

Time (t)
0

1

t3 t4 t5

a b

Figure 2.3. a) The unperturbed oscillator, given by Eqn. (2.7), reaches threshold x(t)=
1 at times t = t1 and t = t2. b) At t = t3 the oscillator described by x(t) experiences
a pulse, which brings it closer to threshold, reached at t = t4. At t = t5 the oscillator
experiences a pulse which brings it to threshold.

The Peskin [1975] model consists of a globally coupled network of N identical

integrate-and-fire oscillators xi (indexed by i ∈ {1,2, ...,N}), characterised by

ẋi =−γxi +S0, xi(t) ∈ [0,1], (2.8)

where S0 and γ are constants. When an oscillator reaches the threshold xi(t) = 1 it

fires and compels all other oscillators to move closer to the threshold, by an amount

ε/N > 0, which may result in further oscillator firings. Once an oscillator has fired, its

state is reset to zero, xi (t+) = 0, where t+ is the time immediately after firing. Peskin

stated the following conjectures:
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1. For arbitrary initial conditions, the system approaches a state in which all the

oscillators fire in synchrony.

2. Synchronous firing of oscillators is reached even when oscillators are not identi-

cal.

In Peskin [1975], the case N = 2 with the product εγ > 0 small, was proved to result in

synchronous firing of oscillators.

In the seminal text, Mirollo and Strogatz [1990] generalised Peskin’s ideas, to the case

of N arbitrary oscillators, making use of a phase resetting function, f , satisfying con-

cavity constraints

xi = f (φi), (2.9)

where xi is called the state of the oscillator; f ′ > 0 (increasing); f ′′ < 0 (concave);

f (0) = 0, f (1) = 1 and φi ∈ [0,1] is the phase variable with φ̇i =
1
T . The conditions on

f guarantee the existence of f−1. Under this generalised IF model, with pairwise in-

teractions between oscillator-i and oscillator- j given by Ci j, the phase update equations

can be written

φi(t) = 1⇒


φi(t+) = 0

φ j(t+) = min(1, f−1( f (φ j(t))+Ci j)).

(2.10)

Figure. 2.4 shows a diagram of the phase advance of oscillator j due to pulse-coupling

from oscillator i.

Mirollo and Strogatz [1990] show that the phase resetting function f , as in Eqn. (2.9),

for Peskin’s model (Eqn. (2.8)) is given by

f (φi) =
1− e−γφi

1− e−γ
. (2.11)

Using the generalised IF model, Mirollo and Strogatz [1990] show that Peskin’s con-

jecture holds for all N and all ε,γ > 0. An outline of the proof in the N = 2 oscillators
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Figure 2.4. Phase response of an oscillator j after a pulse from oscillator i, according
to Eqn. (2.10)

case is presented below.

Synchronisation of IF models.

For the case of two oscillators, assume oscillator A has reached threshold and fired and

has thus reset to zero. Let φ be the phase of oscillator B at this point. Define the return

map, R(φ) as the phase of B immediately after the next firing of A, and the firing map,

h(φ) = f−1(C+ f (1−φ)). Initially the system has a macro state of (φA,φB) = (0,φ).

After a time equal to 1−φ , oscillator B will be at threshold, and so will fire and reset to

zero. And A will have a phase of h(φ) (see Eqn. (2.10)). The macro state at this point

is (h(φ),0). Clearly after the next firing of A, which occurs after a time of 1− h(φ),

we can deduce that B phase will be h(h(φ)), and the system will have a macro state of

(0,h(h(φ))), and so on. From the definition of R(φ) (the phase of B after the next firing

of A), we see that R(φ) = h(h(φ)). Mirollo and Strogatz [1990] showed that the return

map, R(φ) has a unique repelling fixed point, by showing that h has such a fixed point.

This means that starting from any arbitrary phase, except the single unique fixed-point

of R, will evolve the system to φ = 0, or φ = 1 implying the system always settles to

a synchronous regime. Generalising this to the N oscillator case is based upon similar

ideas, and full details can be found in Mirollo and Strogatz [1990].

It is reasonable to consider the values of various quantities, such as time to synchro-
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nisation and degree of synchronisation. With this in mind, for a reference oscillator j,

define

S =
1
N

N

∑
i=1

(
1−φi(t+j )

)
, (2.12)

which is estimated per cycle of the reference oscillator, that is, each time it resets to φ j =

0. As the system tends towards full synchronisation, all the oscillators (i), begin to reset

simultaneously, and therefore S→ 1. Figure. 2.5 shows a plot of S against cycle number

for a system with N = 100 oscillators, for two different pulse-coupling strengths C1 >

C2. Motter et al. [2005] presents further analysis of the time to synchronisation.
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Figure 2.5. The quantity S defined by Equation (2.12) for the cycles of an arbitrary
oscillator of a system of N = 100 integrate and fire oscillators plotted for two different
pulse strengths, C1 >C2. Coupling is all-to-all and the onset of complete synchronisa-
tion is shown to be sooner for the larger pulse magnitude, as expected. The phase-to-
state function used is x = f (φ) = log

(
1+(e−1)

√
φ
)
, with inverse f−1(x) =

( ex−1
e−1

)2
.

As mentioned above, in chapters 4 and 5, the pulse-coupled oscillators are stochastic,

meaning they do not proceed smoothly through the integrate phase (Eqn. 2.7). The

synchronisation result of Mirollo and Strogatz [1990], in particular, does not carry over

in this case.
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2.5 Empirical facts of financial asset prices

Certain empirical facts concerning financial asset prices are widely referred to

[Chakraborti et al., 2011b] using the phrase financial stylised facts, in the same sense

as originally expressed in Kaldor [1961]. This phrase is used to describe the collection

of simplified, but otherwise non-trivial, observations and generalisations about aspects

of the financial market, and in particular the nature of asset prices. Typically, such facts

are empirical in nature, and are unaccounted for by standard economic theory. Here,

we collect the facts and observations most relevant to this thesis, for future reference.

Much of this discussion will be brief, as excellent references exist [Chakraborti et al.,

2011b; Cont, 2007]

2.5.1 Notation

Throughout this thesis the use of log refers to the natural logarithm, of base e. When a

logarithm to any other base is required, it will be explicitly stated. Standard probability

and statistical notation is used throughout, such as that used by Feller [1968]. Let Pt be

the price of a traded asset - such as a stock, bond or commodity and let the (logarithmic)

price return, rt,∆t over some interval ∆t starting at time t is given by

rt,∆t = logPt+∆t− logPt = log
(

Pt+∆t

Pt

)
. (2.13)

The volatility of the returns, σ when returns are considered to be a random variable is

σ(∆t) =
√

Var(rt,∆t), (2.14)

and the estimate, or measurement, from a sample is

σ(∆t) = St.dev
{

Pt1+∆t

Pt1
,
Pt2+∆t

Pt2
, . . . ,

Ptn+∆t

Ptn

}
, (2.15)

When R is a random variable representing the returns of some asset, the tails of the

probability distributions are the regions defined by (typically large x > 0 and large
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y < 0),

P(R > x) and P(R < y). (2.16)

The tail probability decay can be captured using generic functional forms, P(R > x)∼

F(x), and categorised into three classes

F(x) = e−g(x) exponential decay (2.17)

F(x) = x−α+1 power law decay (2.18)

F(x) = x−αe−h(x) exponentially truncated power law decay, (2.19)

where α >−1 is the power law exponent, and g(x)> 0,h(x)> 0 are regular functions.

Capturing accurate behaviour of extreme (either positive or negative) asset returns is

of central importance to financial risk managers, investors and other financial market

participants, and as a result the specification, and identification, of tail probabilities for

asset return distributions has received much attention (see Chakraborti et al. [2011b]

for a review). This topic will be revisited in the section 2.5.2.

Differentiating Eqn. (2.18) gives the generic probability density for a (continuous)

power law distribution (up to scale) as f (x) = x−α . Furthermore, power laws admit

scale-invariance, so that for λ > 0

f (x) = x−α =⇒ f (λx) = λ
−α f (x). (2.20)

Black-Scholes-Merton model

In chapter 5, consideration is given to the pricing of a financial asset. In order to

provide some contextual background and motivation to the methodology employed in

later chapters, the Black-Scholes-Merton (BSM) model for option pricing, presented in

Black and Scholes [1973]; Merton [1973] is stated here for reference.

We start by modelling the price at time t of a financial asset (hereafter and without loss

of generality an equity stock), Pt as a geometric Brownian motion. That is, Pt solves
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the stochastic differential equation

dPt = µPtdt +σPtdWt , µ,σ ∈ R,σ > 0, (2.21)

where Wt is a standard Brownian motion with W0 = 0, µ is known as the drift, and σ

the volatility. Solving this equation reveals,

Pt = P0 exp
((

µ− σ2

2

)
t +σWt

)
, (2.22)

for some initial price P0. An important consequence under this framework, is that

log-returns, log(Pt/P0), are normally distributed since Wt ∼ N(0, t), which does not ac-

commodate so-called fat-tails (or excess kurtosis). Indeed, the tail probability decay

is exponential, as characterised by Eqn. (2.17). As will be discussed in the following

section, such tail behaviour is at odds with what is observed in real financial markets

(where return distributions do generally exhibit excess kurtosis over a range of time

horizons). The inability of geometric Brownian motion to capture realistic return dis-

tributions is one motivating factor for the financial market model presented in chapter 5

which generates power-law tail probability behaviour, characterised by Eqn. (2.18).

A European option is a financial asset that endows the buyer of the option the right

(but not the obligation) to purchase (known as a call option) or sell (known as a put

option) the underlying stock at a fixed future date (the expiry) in T years, at some

predetermined price known as the strike price, K. Let C =C(P, t) denote the time t price

of a European call option with expiry T and strike price K. The stock price, P, is written

without explicit time dependence, for notational ease. By employing the technical

probabilistic tools of Itô’s lemma and the Girsanov change of measure theorem, it is

possible to derive the Black-Scholes-Merton (BSM) equation (Eqn. (2.23)) by forming

a so-called risk-free portfolio (attracting the risk-free interest rate r) that replicates the
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value of a call option, C, from dynamic holdings in cash and the underlying stock.

BSM equation:
∂C
∂ t

+
1
2

σ
2P2 ∂ 2C

∂P2 + rP
∂C
∂P
− rC = 0. (2.23)

Call option boundary conditions: C(P,T ) = max(PT −K,0), (2.24)

lim
P→0

C(P, t) = 0, lim
P→∞

C(P, t)/P = 1.

BSM formula: C(P, t) = Φ(d1)P−Φ(d2)Ke−r(T−t), (2.25)

See Karatzas and Shreve [1991] for probabilistic details and a thorough derivation of

Eqn. (2.23). The celebrated Black-Scholes-Merton formula for finding the time t price

of a European call option (Eqn. (2.25)), is obtained by solving Eqn. (2.23) for the

particular ‘payoff’ and boundary values in Eqn. (2.24). It is of particular note that the

BSM formula in Eqn. (2.25) contains a constant volatility parameter σ . As will be

discussed in the following section, option prices observed in markets imply that the

BSM volatility parameter (when option prices are used to infer the volatility parameter

σ , the result is known as implied volatility) varies non-linearly with strike price for a

given expiry. In particular, the implied volatility is generally higher at very low and

very high strike prices, compared to when the strike price is very close to the current

stock price; a phenomenon known as the volatility smile. The financial market model

presented in chapter 5 is demonstrated to produce ‘fat-tailed’ return distributions for

a range of parameters, and recovers plausible market option prices (tested on 1-month

expiry European call options), from the (simulated) return distribution of the underlying

asset.

The variables and parameters relevant to Eqns. (2.23)-(2.25) are collected here for ease
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of reference

C(P, t) is the value of a European call option.

P is the price of the underlying stock.

Φ the cumulative standard normal distribution function.

σ is the volatility parameter of the Brownian motion describing the price process.

T is the expiry of the option.

r is the short-term interest rate.

K is the strike price of the option.

d1 =
1

σ
√

T − t

(
log

P
K
+(T − t)

(
r+

σ2

2

))
d2 = d1−σ

√
T − t

t time.

For a review and derivation of the BSM formula and equation, see Hull [2011].

2.5.2 A brief historical perspective of stylised facts

Standard deviation, the second central moment and volatility are different names for

the same statistical property: the dispersion of observations around the average obser-

vation. Within finance, volatility is one of the most important metrics used to charac-

terise the distribution of price returns. The standard financial model, different aspects of

which originate from the amalgam of work by Friedman, Samuelson and Fama [Fried-

man, 1953; Samuelson, 1965; Fama, 1970], considers asset price returns to be Gaussian

(normally distributed), with zero-mean and constant volatility.

• Observation 1: The level of volatility of financial returns is unexplained by other

fundamental macroeconomic factors.

The magnitude of volatility was first seriously investigated by Shiller [1981], who

demonstrated that the volatility of financial stock returns is not explained by changes

in the rationally expected dividend stream of a stock. Whereas the standard financial
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model asserts that returns of assets reflect the arrival of new information and incorpo-

rated into forecasts of future dividends.

• Observation 2: The distribution of price returns is non-Gaussian, and in partic-

ular exhibits positive excess kurtosis.

The distribution of price returns for virtually all financial securities (stocks, bonds, ex-

change rates) have been documented as displaying positive excess kurtosis [Chakraborti

et al., 2011a]. This implies that observations in the tails of the distribution (either very

negative returns or very positive returns) are more likely to occur than when modelled

using a Gaussian random variable (which has zero excess kurtosis). The seminal contri-

bution to the non-Gaussian nature of financial returns was made by Mandelbrot [1963],

and further refined by Gopikrishnan et al. [1999]; Gabaix et al. [2003] who present

evidence suggesting such returns are better described by power law distributions.

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

−20 −10 0 10 20

Normalised observation

P
ro

b
ab

ili
ty

 d
en

si
ty

Gaussian

Power law

α= 2

Power law

α= 3

Figure 2.6. Linear-log plot showing the comparison of power law densities, with
exponent α , compared to standard Gaussian.

• Observation 3: The time-series of financial return exhibit intermittent behaviour,

and auto-correlated volatility.

46



Volatility clustering, can be summarised with the maxim: large increments in price tend

to follow similarly large increments, while small increments in price tend to follow

similarly small price increments. This implies that while (raw) returns may be serially

uncorrelated, they are not statistically independent as periods of large returns (positive

or negative) tend to cluster together, as reported in Fig. 2.7. This statement can be

formalised mathematically by examining the time series of the magnitude, or absolute

value, of price returns for positive serial correlation [Ding et al., 1993]. As a function of

the time-lag L and price return over the interval d, the autocorrelated volatility C(L,d)

may be written in terms of the returns time series r as defined by Eqn. (2.13)

C(L,d) = Corr(|rt+L,d|, |rt,d|). (2.26)

Volatility is said to possess long memory [Baillie, 1996; Zumbach, 2004] when autocor-

relation remains positive and, in particular, decays hyperbolically over large time-lags.

Formally,

C(L,d)∼ ALγ as L→ ∞, A > 0,γ < 0. (2.27)

Research into the causes of volatility clustering remains active [Thurner et al., 2012],

particularly so in the search for behavioural explanations [Feng et al., 2012].

The identification of volatility persistence in financial data has given rise to a class of

models known as generalised auto-regressive conditional heteroskedasticity (GARCH)

models, introduced in Bollerslev [1986], which remain popular with economists (see

Shin Kim et al. [2010], for a recent application to option pricing).

• Observation 4: The volatility smile: the Black-Scholes implied volatility for eq-

uity derivatives of expiry T is a non-linear as a function of strike price.

The standard model of pricing European-style derivatives was devised in Black and

Scholes [1973]; Merton [1973], and continues to be a reference model for the valuation

of such securities today. The key result of Black, Scholes and Merton is that under

the assumption of a Brownian motion representing the stock price process, the value
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Figure 2.7. Volatility clustering of daily returns of the S & P 500 index. Significant
auto-correlation persists for approximately 200 days, whereas raw returns exhibit no
correlation. The data consists of daily data 2006 to 2014.

of a derivative can be found as a closed-form formula, Eqn.(2.25). Since one of the

parameters in this formula is the volatility of the stock-price process, it can be inferred

(implied) from market prices for a derivatives, by numerically inverting the Black-

Scholes formula given by Eqn. (2.25).

Since the global crash of 1987, the implied volatility for most options exhibit a per-

sistent non-linear shape, with implied volatility generally higher for strike prices both

much less, and much greater, than the current market price (see Fig. 2.8). This persists

for all maturities, T . One hypothesis for this feature is that that underlying assump-

tion of a constant volatility Brownian motion process underestimates the frequency of

tail events. Thus, volatility, and hence market prices, deviate from the Black-Scholes

model.

In relation to the observed implied volatility smile, various models have been offered

as alternatives to the underlying Brownian motion and Black-Scholes option pricing

framework. In particular, stochastic volatility models, such as the seminal Heston

[1993] model and more recently multivariate models [Muhle-Karbe et al., 2012; Da
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Figure 2.8. Volatility smile as of 26 November 2014 for options on the S & P500
index showing significant skew either side of the current market price.

Fonseca et al., 2014]. In chapter 5, another class of stochastic volatility models, known

as multifractal models [Bacry et al., 2001; 2012], are discussed in the context of the new

model presented there. Such models are able to reproduce so-called memory patterns

often seen in asset return volatility.

Other popular class of models used in option pricing or asset price modelling include

jump-diffusion models [Merton, 1976; Cai and Kou, 2011], asset pricing models em-

ploying Lévy processes [Brody et al., 2012], and non-Markovian option pricing models

based upon GARCH dynamics [Heston and Nandi, 2000]. In addition to constructing

option pricing models, researchers have developed models that focus specifically on

modelled the volatility smile [Yan, 2011; Liu et al., 2014].

This chapter has described the mathematical background of the main modelling tools

used throughout this thesis. The terminology and basic theory of networks have been

introduced, due to the important role they play in analysing complex systems. In de-

scribing typical features of a complex system an overview of the various modelling

approaches has been provided, and in particular, the circumstances in which a dynam-

ical systems approach (the natural setting for bifurcation analysis) and a probabilistic

approach, may yield useful results, are compared (see Table. 2.2). An important area of
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analysis not fully covered here (but used in later chapters) is the combinatorial nature of

systems with large numbers of interacting elements. In such systems, even rudimentary

stochasticity can result in a wide array of different aggregate outcomes, reflecting the

multiplicity of system states. Finally, an account of observed financial stylised facts has

been provided and, importantly, how these remain unaccounted for by traditional eco-

nomic and mathematical modelling. The next chapter presents a detailed analysis of a

traditional, or equilibrium, economic model upon which much of modern mathematical

financial analysis is based.
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Chapter 3

Standard economic theory and a

socio-economic perspective

3.1 Classical economic modelling: Dynamic stochastic

general equilibrium models

The prevalence of dynamic stochastic general equilibrium (DSGE) models used

throughout major policy institutions is indisputable and, until recently, uncontroversial.

Since the seminal work of Kydland and Prescott [1982] and Rotemberg and Woodford

[1997], DSGE-based tools have successfully moved from academia to policy institu-

tions, at an increasing pace over the last decade. A partial list of institutions known

to incorporate DSGE modelling into forecasting, or policy, analysis is: the US Federal

Reserve, International Monetary Fund, Bank of England, Bank of Canada, European

Central Bank, Norges Bank, Sveriges Riksbank, as well as the central banks of Iceland,

Peru, Chile, Nigeria and India. Tovar [2009] provides an overview of the use of DSGE

models within central banks.
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3.2 What are Dynamic Stochastic General Equilibrium

models?

A DSGE model is an economic model that aims to describe aggregate economic vari-

ables (such as inflation, consumption, etc.) as a consequence of interactions between

different agents within an economy (such as households and firms). As the name

implies, such DSGE models are general equilibrium in nature, meaning that markets

clear in each period. More formally, DSGE models attempt to describe aggregate eco-

nomic behaviour via the (microeconomic) decisions of agents. In the economic lexicon,

DSGE models are said to be microfounded, in contrast to the earlier and more tradi-

tional empirical forecasting models [see Lubik and Surico, 2010, on the Lucas critique]

that are based upon observed historical relationships between macroeconomic vari-

ables. DSGE models derive their dynamism from considering agents as time-varying

decision makers with the ability to formulate expectations of future outcomes, and to

apply these to current decisions. Furthermore, the DSGE methodology considers the

economy subject to fluctuations, and this is captured by taking into account exoge-

nous driving processes, or so-called stochastic shocks. In addition to identifying which

agents to include in a model, the modeller must specify an agents’ preferences and tech-

nological endowments. Preferences determine the objectives of an agent (e.g. house-

holds as utility maximiser), and technology determines the productivity of an agent

(e.g. how effective a firm is at using capital and labour to produce goods). Furthermore,

constraints governing economic interaction between agents must also be specified (e.g.

any market-clearing procedures and budget constraints). In this chapter an analysis of

a DSGE model, and its assumptions, is presented.

In summary, DSGE models attempt to model the economy as a coherent and interacting

whole, by identifying relevant agents and specifying their associated preferences, tech-

nology and interactions. Macroeconomic interaction equations and equilibrium con-

ditions are then formulated from the aggregation of agents’ microeconomic actions.

Very often the rational expectations hypothesis, introduced by Muth [1961], is invoked
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in empirical DSGE models as a simplifying mechanism for agents that are required to

solve inter-temporal optimisations (dynamic utility maximisation) associated with their

preferences. Moreover, the aggregation of agents’ microeconomic decisions is simpli-

fied via the assumption of agent homogeneity, leading to the so-called representative

agent simplification.

Figure 3.1. A diagram showing the relations between the basic components of a sim-
ple DSGE model. Economic variables belonging to a block are shown in brackets.
Solid lines depict the direction of influence and dashed lines represent feedback.

3.2.1 A basic New-Keynesian DSGE model

Deciding whether a specific agent type, or exogenous shock, is to be included in a

model is a judgement made by the economist constructing the model. In deciding

these, the economist is likely to consider how relevant the activity of that agent is

to the economic variables under analysis, and the potential explanatory power of the

shock. With that said, many contemporary empirical DSGE models used for monetary

policy analysis share a common framework based on the basic New-Keynesian model,

or a variation thereof. A schematic of the interrelations between economic blocks of a

simple model is shown in Fig. 3.1. The economic blocks (demand, supply and policy)

provide a context in which the model equations are constructed. In the most simplistic

case, each block can be associated with a single economic variable whilst links between
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blocks represent parameter dependencies.

A basic DSGE model is derived for completeness, and the details can be found in

appendix A.

3.2.2 Criticism of DSGE models and methodology

The DSGE framework is said to lack realism due of the ubiquitous assumption of ho-

mogeneous (representative) agents that exercise rational expectations [see Milani and

Rajbhandari, 2012]. Furthermore, modelling components used in early DSGE models

often excluded financial sectors, international capital flows and economic sectors, and

financial intermediaries (such as banks and loan providers). By excluding such items,

the model is unable to capture the influence of shocks arising from these institutions and

as a result, the impact such sectors may have on macroeconomic variables go untested.

The inclusion of such items is becoming more frequent, and especially so post-financial

crisis [Gerali et al., 2010]. Furthermore, the forecasting ability of DSGE models have

been questioned [see Edge and Gürkaynak, 2010; Wickens, 2012].

Relevant to this thesis, the period post financial crisis has seen an increasing number of

researchers and policy makers, both outside and within the economic academic com-

munity, dispute the benefits of such models [Arthur, 2014; Holt et al., 2011]. A central

argument of this thesis is that while the intention to formulate a macroscopic model

based upon the interaction of microscopic economic elements can yield useful results

- the traditional modelling tools of economics require adverse simplifications and as-

sumptions in order to yield tractable problems. Alternatively, a modelling approach

based upon complex systems can allow for aggregate system states to emerge, rather

than be predetermined by modelling constraints.

The limitation of realistic macroscopic system states produced by traditional analysis

such as DSGE modelling, coupled with the central role such modelling plays in re-

search programmes and policy making institutions, has resulted in negative feedback

where the observed phenomena, in financial markets for instance, is judged against a
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benchmark constructed from an economic model, rather than a firm understanding of

the intrinsic dynamics underlying such systems. In the absence of a firm understanding

of the dynamics of economic systems, a scientific observer might argue for an analy-

sis driven by data, where this is available. Frankfurter and McGoun [2001] argue that

while observed anomalies typically force a re-evaluation of a true scientific model, this

has not been the case for traditional economic modelling, where “anomaly” appears

synonymous with lacking scholarly content.

3.3 A socio-economic perspective
The understanding of socio-economic systems is an important aim of social scientists

(Helbing et al. [2011], Bouchaud [2013]). Collective human behaviour inherent in

socio-economic systems includes many interesting and complex phenomena. For in-

stance, the dynamics of crowds, mass panics and social movements [Shiwakoti and

Sarvi, 2013] are examples of collective behaviour that cannot be understood as naı̈ve

aggregation of the interacting parts. In this regard, socio-economic systems present

emergent behaviour, and represent a canonical example of a complex system.

In particular, herd behaviour (or herding) arises naturally (though not always expect-

edly) in a range of situations, and of particular interest to this study, has been discussed

in the context of financial markets for some time [Kirman, 2010b]. Indeed, forums such

as financial markets may even exacerbate herding tendencies [Helbing et al., 2011].

An analysis of the dynamic stochastic general equilibrium model, and its modelling

assumptions, (in appendix A) reveals that some modern economic models have devi-

ated from such considerations (by effectively making emergent behaviour inadmissible

either as an input or output of the model) [Stiglitz, 2011]. While this thesis is not con-

cerned about the motivations for this, it is useful to know in a modelling context, and

places the comments of Trichet [2010] (I surmise), in their intended context.

In this chapter I argue that if tools based in complex system science are to aid economic

policy makers, incorporating herding should been seen a priority. To achieve this, herd-

ing in financial markets needs to be seen - by financial market participants and policy
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makers - as a source of systemic risk, rather than as an anomaly or market irregularity.

The latter interpretation represents an intellectual dead-end, while the former frames

herd behaviour as a natural consequence of collective behaviour, and encourages intel-

lectual investigation. Secondly, I discuss a selection of existing agent-based herding

models and motivate the models developed in this thesis.

3.3.1 Herding as a contributor to systemic risk

As discussed in chapter 1, herd behaviour has been seen as responsible for (or played a

significant part in) a number of financial crashes and asset bubbles [Sornette, 2003], and

most recently the financial crisis [The Financial Crisis Inquiry Commission, 2011]. Al-

though, due to the opacity of financial markets, and the assumed independence amongst

market participants, the exact mechanisms that cause this are not fully understood.

Herd behaviour in asset markets is not the only source of systemic risk. Historically,

the prototypical model of systemic risk is that of a ‘bank run’, which describes the near

simultaneous withdrawal of bank funds by depositors [Allen and Gale, 1998]; the use

of leverage and complex derivatives has been cited as a potential source of market in-

stability [Thurner and Poledna, 2013; Battiston et al., 2013], and systematic erroneous

credit rating and asset price modelling decisions - such as not taking account of in-

terconnectedness or relevant market factors in structural models [Eisenberg and Noe,

2001]. While there is no consensus on the exact definition of systemic risk as applied

to financial markets, a significant volume of recent research has focussed on systemic

risk associated with institutions; such as research concerning the default of banks, and

interbank network stability (Haldane [2009], Gai and Kapadia [2010], Roukny et al.

[2013], Anand et al. [2012]). While such research is immensely important, systemic

risks can arise, or manifest, via other avenues as the most recent crisis demonstrates. By

adopting the definition of systemic risk of Helbing [2012], herding can be categorised

as systemic risk, via its ability to ‘trigger unexpected large-scale changes of a system

or imply uncontrollable large-scale threats to it’ Helbing [2012].

56



3.3.2 Classes of agent-based models of herding

It has been observed that a colony of ants, when presented with two identical food

sources, will not divide equally and utilise both sources of food - but a majority of

them will herd on one source only. Moreover, the majority group of ants will, at ran-

dom times, decide to herd on the other food source, before switching back. In a seminal

article, Kirman [1993] presented a 1-step 2-state Markov switching model to describe

this observed behaviour of ants. Kirman’s model has been used as the basis for a

plethora [see Alfarano and Milaković, 2009, for a discussion of this] of agent-based

financial market models, (the paradigmatic example being Lux and Marchesi [1999]),

with food-switching replaced with strategy-switching among heterogeneous agents. As

this model is central to many of the agent-based models in the literature, a brief descrip-

tion is included here.

Kirman’s ant model - financial interpretation

Assume a population of N traders, divided into to two groups, A and B of size n and

N−n respectively. The groups of traders are usually given labels such as chartists and

fundamentalist. Then at each time step, the size of population A transitions according

to

P(n→ n+1) = (N−n)
(

ε +δ
n
N

)
(3.1)

P(n→ n−1) = n
(

ε +δ
N−n

N

)
, (3.2)

where ε represents random switches between groups, and δ represents the herding

effect. For N large, Kirman showed that this Markov chain has an equilibrium beta

distribution [Kirman, 1993].

3.3.3 Lux’s categorisation of behavioural agent-based models

Here, the standard categorisation of agent-based models, proposed by Lux [2006], is

stated and example models from each category are listed. The key point of doing this

is to demonstrate that agent-based models represent an important modelling paradigm
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for financial markets, and to highlight the difficulty in constructing coherent financial

models capable of generating realistic dynamics over a range of parameters. While

much research has been published on producing agent-based, or herding based models

of financial markets, many suffer from the lack of generality imposed by a restriction

on the parameters of the model.

• Dynamical systems with attractor switching. Models of this type consist of

heterogeneous agents, with a modified notion of economic rationality, such as

adaptive or bounded. Communication between agents takes place globally, rather

than locally reflecting in a realistic way how market participants limit direct in-

teraction. A prototypical example is provided in Hommes [2006].

• Statistical physics critical systems. Models of this type utilise some aspect of an

already well-known critical phenomena, such as percolation [Grimmett, 1999],

which critically transitions between a connected macro state and an unconnected

state (or vice-versa). Such models generally require parameter tuning to arrive at

the critical dynamics. Moreover, the agent interaction structure is typically local,

contravening how real markets operate. Examples include Cont and Bouchaud

[2000]; Xiao and Wang [2012].

• Herding models. Such models directly include social interaction, and herd ef-

fects via local interaction. Critical dynamics result from finite size effects only

(an agent population of size N), formalised by Alfarano and Milaković [2009] as

the ‘large N effect’, implying model dynamics revert to Gaussian as N increases.

Prototypical examples are Alfarano and Lux [2007] and Kirman [1993].

Recent research using behavioural models have revealed important insights into finan-

cial markets. Kononovicius and Gontis [2014] reveal how herding may be controlled

by a small number of individuals who are immune to herding effects. In chapter 5, I

return to this point and detail how a hierarchy of herding may occur, and its relation to

volatility clustering observed in financial markets.
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In the next chapter, I present a new model of cascade on a stochastic pulse model, that

has been constructed with the shortcomings of the above models in mind. In subse-

quent chapters this new model is further refined and developed into a financial market

model, that does not rely on strategy switching, scales correctly with N, and a simple

mechanism will be proposed that allows the model to be considered self-organising.
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Chapter 4

Stochastic pulse-coupled network: A

threshold model of emergent

behaviour

In chapter 3, it was demonstrated that the standard economic framework of dynamic

stochastic general equilibrium (DSGE) models rely upon a collection of assumptions

and constraints that restrict agent behaviour. In particular, agents are endowed with so-

called rational expectations that enforce internal model-consistent agent behaviour, and

presupposes the existence of certain agent equilibria. As a direct result, DSGE models

lack the ability to accommodate non-trivial emergent behaviour, and rely upon exoge-

nous inputs (so-called shocks) to determine model dynamics. In chapter 3 section 3,

examples of socio-economic systems exhibiting complex endogenous phenomena are

provided, and a selection of behavioural agent-based models are discussed in order to

demonstrate the viability of agent-based models as a modelling paradigm for emergent

phenomena. This chapter acts a mathematical prelude to the presentation of a new

financial market model incorporating herd behaviour in chapter 5, that aims to avoid

some of the aforementioned weaknesses in standard economic modelling, and address

some of the aforementioned shortcomings of existing agent-based models of financial

markets.
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In particular, this chapter presents a new model consisting of a network of stochastic

pulse-coupled oscillators, and is systematically analysed using both numerical simula-

tion and a mean field dynamical system [Wray and Bishop, 2014]. The proposed model,

an extension of the neural network model presented by DeVille and Peskin [2008] (DP

model), accounts for oscillators sending and receiving pulses of (binary) opposing in-

fluence. Pulse-coupling between oscillators is modelled as taking place on an all-to-all

network where incoming pulses, from firing oscillators, are successfully received with

coupling probability 0 < p < 1, and ignored otherwise. The oscillators in the model

interact in such a way that a pulse from a single firing oscillator probabilistically, and

instantaneously, induces other oscillators to fire, which may result in a cascade of os-

cillator firings. Throughout this chapter, and the next, the cascade size is to be taken as

the number of firing oscillators during a single pulse-coupling event.

For systems consisting of a finite number of oscillators, a critical range of coupling

probability, p, is found that separates two distinct system regimes: asynchronous (cor-

responding to the case when all cascade sizes are small) and synchronous (when large

cascade sizes appear). In this chapter, the use of the terms ‘synchronous’ and ‘asyn-

chronous’ adheres to the usage of DeVille and Peskin [2008], and refers to the moments

at which pulse-coupling takes place. If pulse-coupling results in more than one oscil-

lator firing at a single instant, then those oscillators fire simultaneously (since pulse-

coupling occurs instantaneously). At the system (macroscopic) level, when the dynam-

ics consists of repeated simultaneous oscillator firings, then the system is said to be in

the synchronous regime, and in the asynchronous regime otherwise.

Numerical confirmation of asynchronous and synchronous regimes of the stochastic

system is presented, along with identification of the sparse-coupled fixed point of the

associated mean field system. Furthermore, a closed-form expression for the cascade

size of a low-dimensional mean field system is derived. The detailed specification of the

model can be found in appendix B. Although this material is not standard bookwork, it

is included as an appendix to aid the readability of the text.
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While the extended model is not intended to serve the original problem-domain of

neuronal dynamics it is, however, relevant for a slightly different class of problem

concerning interacting elements subject to recurring opposing influences. This chapter

serves as a prelude to the next, in which these ideas are formulated into a stylised model

of a financial market.

4.1 Model motivation: Cascade phenomenon in the

presence of opposing influences

For many interconnected systems the propagation of constituent failure can represent

a serious, and often irreversible, risk. Examples include corporate insolvencies in the

real economy [Roukny et al., 2013; Tedeschi et al., 2012b; Arinaminpathy et al., 2012;

Haldane and May, 2011], blackouts caused by mechanical failures in power grids [Dob-

son et al., 2007] and the spreading of fatal diseases [Kermack and McKendrick, 1932;

Brauer, 1990]. When the propagation of failures amongst system components is fast,

relative to the system lifetime, it is natural to characterise this spreading as a cascade.

As a result, much research has focused on understanding the important phenomenon of

cascades of an irreversible, or absorbing, state in networks [Watts, 2002; Crucitti et al.,

2004; Gleeson and Cahalane, 2007; Hackett et al., 2011].

In contrast, many other systems exhibit persistent, yet transient, cascades of a specific

non-absorbing state, interspersed with disordered behaviour. Such a system is said to

display both asynchronous and synchronous behaviour. Examples of systems display-

ing bursts of synchronised behaviour include: neuronal activity in the brain during both

normal, and abnormal, phases [Salinas and Sejnowski, 2001; Beggs, 2013; Vladimirski

et al., 2008], and financial markets, where recurrent cascades of buying and selling

may result in crashes and bubbles [Lux, 1995; Abreu and Brunnermeier, 2003; Sor-

nette and Johansen, 1997; Khandani and Lo, 2011]. In the latter case, agents exerting

both buying and selling influences are necessary for the proper functioning of markets,

although large imbalances, especially over short timescales, can result in volatile price
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dynamics [Easley et al., 2011]. In these systems, understanding cascades in a one-off,

or static, context only provides partial understanding of the macroscopic behaviour.

In this chapter, we investigate how transient synchronous behaviour, characterised by

large cascades of state adoption, can arise as a result of many smaller cascades.

To model systems in which transient cascades of two distinct and opposing influences

can form, the neural network DP model [DeVille and Peskin, 2012; DeVille et al., 2010;

DeVille and Peskin, 2008] is extended, first, to allow each integrate-and-fire (IF) oscil-

lator [Kuramoto, 1991; Maass and Bishop, 2001] to produce both positive and negative

pulses that compel coupled oscillators to move closer to an upper or lower boundary

(represented by distinct firing states), respectively. And second, by modelling the state

variable as a symmetric diffusion process - that describes the oscillators’ behaviour

during the integrate phase.

Although deterministic pulse-coupled oscillator models have been successfully applied

to a wide range of physiological and biological processes [Mirollo and Strogatz, 1990;

Guardiola et al., 2000; Timme et al., 2002], for systems that exhibit multiple firing

thresholds and uncertain state dynamics, stochastic models may be more appropriate.

4.2 Model description
The DP model of DeVille and Peskin [2008] describes the situation where the state of

integrate-and-fire oscillators proceed monotonically towards a single firing threshold

during the integrate phase. In the extended model presented here, oscillators may pro-

ceed towards, and recede away from, two firing thresholds during the integrate phase

and, moreover, each firing threshold induces opposing pulse coupling (coupling origi-

nating from either firing state compels oscillators to move closer to that particular firing

state and farther from the other firing state). The mechanics of the resulting cascades

remains the same between both models (oscillators may be induced into a firing state

instantaneously upon receiving pulse-coupling).

The model consists of N identical discrete-state IF oscillators, u, represented as the ver-

tices of an all-to-all graph, with parameters K and p determining the number of states
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and representing the coupling probability, respectively. Given K ≥ 1, each oscillator is

characterised by its discretised state variable

θu(t) ∈ {0,1, . . . ,2K}, (4.1)

at time t. The system alternates between a diffusion phase (also called the integrate

phase), during which each oscillator independently transitions between its two nearest-

neighbour states, according to an unbiased continuous time one-dimensional random

walk of step size 1, and an instantaneous cascade phase. The cascade phase begins

when, at some time τ , an oscillator first transitions into one of states 0 or 2K (the

firing states), and fires a negative (state 0), or positive (state 2K) pulse. The pulse

is either received independently by the other nodes yet to fire, with probability p, or

ignored, with probability (1− p). If an oscillator receives a positive pulse, its state is

immediately increased by 1. Similarly, its state is immediately decreased by 1 upon

receiving a negative pulse. A firing oscillator remains immune to all influences until

the cascade phase ends, whereupon it is reset to state K. The cascade phase ends when

there are no oscillators occupying either firing state, at which point the total number of

oscillators that fired during the cascade is denoted mR. When a cascade occurs at the

upper boundary (initiated by an oscillator firing while occupying state 2K), then the

cascade size, m, is set to m = mR, while for cascades occurring at the lower boundary

(initiated from state 0), m is set equal to −mR. The diffusion phase restarts as soon as

the cascade phase finishes.

As previously stated, while the dynamics of this extended system render it unsuitable

as a model of neuronal interaction as it stands, it can be used to examine and inter-

pret certain systems involving repeated binary choice and social influence. A pertinent

example of this is a system of interacting agents in a financial market, repeatedly buy-

ing and selling an asset. In this case, the synchronous regime may be identified with

herd behaviour [Banerjee, 1992] in financial markets, which occurs when investors

mimic the decisions of other investors upon gaining knowledge of their actions. Re-
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searchers addressing herd behaviour in financial markets have done so using a variety

of techniques: percolation models [Cont and Bouchaud, 2000; Eguı́luz and Zimmer-

mann, 2000]; game theory [Challet et al., 2001a; Zheng et al., 2004; Zhao et al., 2011];

econometric modelling [Cipriani and Guarino, 2014; Chang, 2014], and agent-based

modelling [Lux and Marchesi, 2000; Kim and Kim, 2014; Tedeschi et al., 2012a].

The advantage of a herd behaviour model based on the work presented here, is the

availability of a mean field dynamical system which facilitates the identification of

certain features of interest, such as phase transitions. As a result, the model provides a

novel approach for investigating the so-called two-phase behaviour of financial markets

[Zheng et al., 2004; Plerou et al., 2003], discussed in chapter 5.

Throughout this study the coupling probability p is parametrised as p = Kq/N, for

0≤ q≤ N/K, N is taken to be large, but finite, with N >> 2K +1. For supplementary

calculations concerning the model described, see appendix B.

4.3 Numerical Analysis of the stochastic system

The stochastic system displays a number of interesting phenomena, including asyn-

chronous and synchronous behaviour, separated by a region where both behaviours co-

exist. Presented in Fig. 4.1 the evolution of the cascade size, m, plotted against bound-

ary hitting time, τ , for a system of fixed N = 1000, K = 3 and q = 0.5, 0.9, 1.1, 1.5.

In Fig. 4.1(a) and Fig. 4.1(b) (q < 1), we observe an almost symmetric process, about

m = 0, with cascades of comparable sizes representative of the asynchronous regime.

In contrast, Fig. 4.1(c) depicts the system during what DeVille and Peskin [2008] call

the bistable regime, in which both the asynchronous and synchronous regimes coex-

ist. Figure. 4.1(d) depicts the synchronous regime, where cycles consisting of long

periods of successive small cascades result in spikes of large cascades. Furthermore,

when K > 1 the results suggest a symmetry-breaking pitchfork bifurcation exists [Lai,

1996] that coincides with the end of the asynchronous regime, which was not present

in the original DP model. In Fig. 4.1(c) and Fig. 4.1(d), it is noted that the cascades

persistently favour one firing state over another (which state is favoured depends upon
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Figure 4.1. Cascade size propagation of the stochastic model. For a fixed network
size N = 1000 and K = 3 the panels show the effect on the time series of cascade size
for four values of q. (a) q = 0.5 resulting in small cascades sizes occurring evenly at
both boundaries. (b) q = 0.9 resulting in small cascades sizes occurring evenly at both
boundaries. (c) q = 1.1 and the symmetry present in (a), (b) is broken with cascades
occurring exclusively at a single boundary, dependent upon the initial conditions, and
shown here occurring at the upper boundary. Both small and large cascade sizes are
present, with no obvious periodic behaviour. (d) q = 1.5 and the symmetry present in
(a), (b) is broken with cascades occurring exclusively at a single boundary, dependent
upon the initial conditions, and shown here to be occurring at the upper boundary.
Cascade propagation appears almost periodic, with long periods of small cascades
culminating in isolated large cascades of similar magnitude.

initial conditions), implying the symmetry seen for the system when q < 1 is broken.

Because the so-called bistable region represents the system switching randomly be-

tween the asynchronous and synchronous regimes, we expect to see this reflected in

the cascade size output, m. To emphasise this effect, plotted in Fig. 4.2 is Wm, equal

to the cumulative sum of absolute cascade sizes, against the boundary hitting time.

For the case q = 1.1, corresponding to the bistable regime, the random duration of the
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Figure 4.2. Cumulative absolute cascade size during different system regimes. Cu-
mulative absolute cascade size, Wm is shown for the system N = 1000, K = 3 and
q = 0.5, 0.9, 1.1, 1.5, based upon data shown for Fig. 4.1. Of particular note are the
almost periodic large cascades present during the synchronous regime (q = 1.5) and
the linear, and almost identical, graphs for q = 0.5,0.9 representing the asynchronous
regime. During the coexisting regime, the dynamics randomly switches between the
asynchronous and synchronous regime, persisting in each for a random duration. Two
such asynchronous regimes, of different durations, and three large cascade events, oc-
curring during the synchronous regime, are labelled for the case q = 1.1.

asynchronous dynamics are highlighted along with the synchronous bursts.

The components of the extended stochastic model described here, while elementary,

contribute two main sources of randomness to the system that complicate the analysis.

The first is randomness from the coupling probability, controlled by p, and the second

is via the (multiple) random walks used to represent the state dynamics during the

diffusion phase of the system. A well-used tool for facilitating the analysis of systems

of this type is the mean field approximation [see Stanley, 1988, for a summary], which

is used to construct a deterministic approximation to the stochastic model.
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Figure 4.3. A bifurcation diagram representing the long-time behaviour of the mean
field system superimposed over the same bifurcation diagram for the stochastic sys-
tem. The system parameters are the same in both cases: N = 1000 and K = 3. The
bifurcation parameter is q, which forms part of the parameterised network coupling
probability p = Kq/N. For q = qc ≈ 1, the cascade size suddenly increases in mag-
nitude, denoting the end of the asynchronous regime. Panels (b), (c) and (d), from
Fig. 4.1, corresponding to the cases q = 0.9,1.1,1.5 respectively, are displayed em-
phasising the dynamics in each region. During the synchronous regime, the impact on
the system of long periods of successive and relatively small cascades eventually ac-
cumulate, culminating in a large cascade, before the cycle is repeated (see Fig. 4.1(d).
As a result, both small and large cascades are evident during this regime.

4.4 Solution of the model in mean field approximation

By applying the method outlined by DeVille and Peskin [2008], a mean field approxi-

mation appropriate for our symmetric diffusion and binary firing states is constructed.

The central quantity of the mean field approximation is the expected state occupation

vector, xxx(t), given by

xxx(t) = (x0(t),x1(t), . . . ,x2K(t)), (4.2)

where xs(t)> 0 is the expected number of oscillators with state s in {0, . . . ,2K} at time

t. Unless otherwise stated, the mean field system is normalised so that ∑ j x j(t) = 1, and
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Figure 4.4. Maximal cascade size and interval between maximal cascades. (a) the
absolute value of the normalised maximal-cascade size of the mean field system, of
fixed size N = 1000, plotted against q, in log-scale, for K = 3, 4, 5, 6. (b) mean
interval between successive maximal cascades for the same mean field systems used
in (a), indicating a qualitative difference between the cases: K = 3,4,5, and K = 6.
For the former case, the mean interval between large cascades initially increases as the
parameter q is increased, while for the case K = 6, the reverse is true. This distinction
holds for all cases K ≤ 5 and K ≥ 6 tested. In both (a), (b) the results for each mean
field system are plotted up to the value of q that generates a cascade size equal to the
total system (1000), and different random initial values are used for each value of q.

ε = 1/N to facilitate the asymptotic analysis. All stochasticity is removed and replaced

by a (2K +1)-dimensional dynamical system which describes the dynamics of xxx(t).

Analogous to the results obtained by DeVille and Peskin [2008], the mean field system

displays two distinct types of behaviour. The first, described as asynchronous, is char-

acterised by isolated (mR = 1) oscillator firings originating from either firing state. The

second corresponds to the synchronous regime, and is characterised by long periods of

isolated firings (minimal cascades) leading to infrequent bursts of synchronised firing

(maximal cascades). This is summarised in Fig. 4.3, which shows a bifurcation dia-

gram of the long-time behaviour for the stochastic and mean field systems, plotting the

range of m against q. The agreement between the mean field and stochastic systems at

the critical value of q = qc, marking the appearance of cascade sizes greater than 1 for

the mean field system, is of particular note. Figure. 4.4 shows the normalised maximal

cascade size and mean time interval, λ , between successive cascades as a function of q,
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Figure 4.5. Transition from asynchronous to synchronous regimes. Maximal (solid
circles) and minimum (open circles) cascade sizes occurring at the upper boundary
obtained for each q value, suggesting q≈ 1/(1− ε), indicated by the dashed line and
labelled qε , is a critical value of the finite N system for all K shown. Cascade sizes are
shown as a proportion of N (normalised cascade size) and plotted on the vertical axis
in log scale.

for mean field systems with K = 3,4,5,6. Figure. 4.4(b) reveals qualitative differences

between mean field systems in how increasingly synchronised behaviour (identified

with increasing q) affects the time interval between maximal cascades. While systems

with 1 < K < 5 experience longer intervals between maximal cascades as synchronisa-

tion increases, for a significant range of q, systems with higher values of K (true for all

K > 5 tested) experience a monotonic decrease in the time interval between maximal

cascades, for a significant range of q.

For the one-sided normalised mean field DP model, DeVille and Peskin [2008] obtain

the value of xxx(t), (here, labelled xxxDP) corresponding to behaviour in the asynchronous

regime, as the solution to a fixed point equation using an asymptotic method, finding

xxxDP = (1/K, . . . ,1/K,O(ε)) (4.3)

70



exists and is asymptotically stable for q < 1. A first order phase-transition representing

the transition from asynchronous to synchronous behaviour was observed to occur at

the critical value, q = qc < 1, although little attention is given to actual value of qc.

By applying the aforementioned asymptotic method to the system presented here, we

solve a fixed point equation to obtain the steady-state behaviour of xxx(t) when the system

is in the asynchronous regime. It is sufficient to consider the case when the system

exhibits isolated (size 1) cascades alternating between the two firing states 2K and

0. In particular, we compute the solution, up to O(ε), of the fixed point equation

G0(xxx) = xxx, where the map G0 is given by (see appendix B.1 for a detailed description

of the construction of G0)

G0(xxx) = (I + εKqLC,−)eτ2LD

×
[
(I + εKqLC,+)eτ1LDxxx− ε(vvv2K− vvvK)

]
(4.4)

− ε(vvv0− vvvK).

This gives the fixed point (up to O(ε)) as

xxx∗0 =
(

O(ε), 1
K2 ,

2
K2 , . . . ,

K−1
K2 , 1

K ,
K−1
K2 , . . . , 1

K2 ,O(ε)
)

∈ R(2K+1)×(2K+1)
+ . (4.5)

In Eqn. (4.4), τ1 and τ2 are the times spent in the diffusion phase before reaching

the respective firing state, LC,−,LC,+ are the pulse-coupling matrices for negative and

positive pulses respectively, and vvv0,vvv2K are basis vectors. The fixed point xxx∗0 exists

for q < K, although to determine the exact range of q for which this solution is stable

would require terms involving higher orders of ε to be taken in to account, and is

not pursued here. Extensive numerical simulations strongly suggest that, for the finite

systems tested, a transition takes place between the asynchronous and synchronous

regimes, for q = qc >
1

1−ε
. As qc appears to be the same for all values of K tested, we

infer, heuristically, a lower bound for qc in the low-dimensional case K = 1, and obtain
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qc >
1

1−ε
(see the next section titled ‘Path to synchronicity’). Figure. 4.5 presents a

selection of the simulations performed, where the maximum and minimum cascade

sizes, occurring at the upper boundary, are plotted against q for 1− ε < q < 1+ 8ε .

Large cascades occur for values q > 1
1−ε

, in agreement with our calculation. As the

system size N tends to infinity, and by taking the limit of 1
1−ε

as ε → 0, we infer a

phase transition takes place at qc = 1.

Our final result for the normalised mean field system is a closed form expression for

the cascade size m = m(xxx(t)), which forms an essential part of the specification of the

system dynamics given by equations given by Eqns. (B.11) - (B.12). This result is

found for the case K = 1 and stated in terms of the network coupling parameter p and

the expected state occupation vector, xxx given by Eqn. (4.2) (dropping the dependence

on t as cascades occur instantaneously). For K ≥ 1, during a cascade of (as yet unde-

termined) size m occurring at the upper boundary (and before firing oscillators are reset

to state K), xxx is mapped to (I+ pLC,+)
mxxx−mvvv2K . By considering the 2K-th row of the

matrix (I+ pLC,+)
m, the eventual cascade size can be written in terms of a vector inner

product and computed as min{m : 〈zzz(m),xxx〉−mε < ε}, where the i-th component of

zzz(m) is given by

zzz(m)i =


0 for i < 2K−m, i = 0

1 for i = 2K

p2K−i
∑

m−2K+i
ν=0

[2K−i
ν

]
(1− p)ν otherwise,

(4.6)

and
[n

r

]
= (n+r−1)!

r!(n−1)! . Since the cascade is assumed to occur at the upper boundary, x2K =

ε . Moreover, when K = 1, we note from Eqn. (4.6) that zzz(m)1 = p∑
m−1
ν=0 (1− p)ν is

the only non-trivial vector component. By treating m as a real-valued variable, and

solving for the single solution of m satisfying

〈zzz(m),xxx〉− ε(1+m) = 0, (4.7)
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Figure 4.6. Comparison of K = 1 mean field cascades size. Cascade size of the
K = 1 mean field system computed via direct simulation (solid line) and closed form
expression (filled triangles), computed using Eqn. (4.8).

we obtain,

m = max
(

1,
⌊

β −W (αβ exp(αβ ))

α

⌋)
, (4.8)

where the substitutions α = log(1− p), β = x1/ε have been made; b . c the floor func-

tion [Iverson, 1962], and W the principle branch of the Lambert W -function [see Cor-

less et al., 1996, for a discussion of the W -function]. The maximum function is used

to make a correction for small cascades, while floor allows m to be reported as an inte-

ger. Figure. 4.6 compares cascade sizes obtained via direct simulation of the mean field

system (solid line), and Eqn (4.8) (filled triangles), where p is parameterised as p = qε .

For each value of q, 50 values of x1, equally spaced in the open interval (1−2ε,1−ε),

are used to compute and plot 50 values of m (in this case there is very little variation

amongst these values). Obtaining similar closed form formulae for the cascade size

when K > 1 remains an open problem, and is not pursued here. This is due, in part, to
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the difficulty associated with applying the direct calculation method (used for the case

K = 1 by solving Eqn. (4.7)) to the K > 1 case, and as a result a new solution method

would likely need to be devised.

While xxx is a (2K+1)-dimensional parameter, with 2K−1 degrees of freedom, we note

that in certain cases it may be sufficient to solve Eqn. (4.7) when xxx is given by the

asynchronous fixed point in Eqn. (4.5), and thereby reduce the number of parameters

required in calculations.

4.5 Path to synchronicity

Within the asynchronous regime, the mean field DP model displays only one type of

behaviour - a constant stream of isolated firings. In contrast, due to the extra degree of

freedom of the mean field double threshold system presented here, there exists a mul-

titude of behaviours during the asynchronous regime, each coinciding with a different

firing pattern with respect to each of the firing states. The map G0 given by Eqn. (4.4)

coincides with the infinite alternating sequence of firings: (. . . ,+,−,+,−, . . .), where

“+” and “−” denote firing occurring at the upper and lower boundary, respectively.

Via positive feedback, when an oscillator fires, it induces a proportion of the remaining

oscillators to move closer to that firing state. Viewed from the perspective of the ran-

dom walk, this feedback is equivalent to bias. By considering the indefinite sequence

of isolated firings (. . . ,+,+,+,+, . . .) represented by the map, G1

G1(xxx) = (I + εKqLC,+)eτ1LDxxx− ε(vvv2K− vvvK), (4.9)

and the equivalent map, G−1 representing the indefinite sequence of isolated firings

(. . . ,−1,−1,−1, . . .), it is clear that these cases inject the maximum amount of bias

into the random walk process, and therefore represent a boundary of the asynchronous

regime. Thus, by obtaining the fixed point of the maps, G−1,G1, given by xxx∗−1,xxx
∗
1

respectively, and determining the range of q for which they exist, we claim to obtain

bounds on the critical coupling parameter, qc defining the asynchronous region.
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For K = 1, and N finite, we use the asymptotic method, described previously, to de-

termine that the solutions xxx∗−1,xxx
∗
1 exist only when q satisfies 1 < q < 1

1−ε
, while direct

calculation demonstrates that the solution xxx∗0 exists only for q satisfying 0 < q < 1
1−ε

,

suggesting that qc >
1

1−ε
.

4.6 Analysis of the stochastic system: finite state-space
In order to derive and prove certain results presented in this, and subsequent, sections

ideas from various branches of mathematics are used. In particular, deriving the prob-

ability distribution of cascade sizes requires notation and results from percolation the-

ory [Grimmett, 1999] and enumerative combinatorics [Stanley, 2012]. In addition, the

negative binomial approximation to the cascade size distribution, and Kolmogorov-

Smirnov tests, assume a familiarity with basic results from mathematical statistics

[Shao, 2007; Feller, 1968]. While these excursions are necessary (and not all such

material represents trivial book work), many of the extended statements and proofs

are placed in appendix B, to keep interference with the main text of this chapter to a

minimum.

In this section the stochastic version of the (K,q) process presented in [Wray and

Bishop, 2014], and earlier in this chapter, is analysed and briefly recounted in the con-

text of an agent-based model (further details of the model in an economic agent-based

context are contained in appendix C).

This and subsequent sections of this chapter act as a prelude to the financial market

model developed in chapter 5. There, the stochastic cascade process, labelled (K,q) -

generated by the probabilistic interaction of economic agents (traders) - is incorporated

into a simple model of asset price returns. Using the new model presented in chapter 5,

a number of empirical facts (see section 2.5.2 in chapter 2) concerning financial returns

can be reproduced. Certain features of empirical data, such as truncated power-law dis-

tributed price returns, and volatility clustering, are exhibited, and the so-called (Black

and Scholes [1973] implied) volatility smile [Derman and Kani, 1994], obtained from

the price of index option contracts [Hull, 2011], is approximately recovered. In gen-
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eral, from this point onwards the term ‘agents’ will be used in place of ‘oscillators’ -

although both terms refer to the same underlying mathematical object.

The cascade size, m, is defined as the signed number of agents, mA, that accumulate

in the firing state, prior to being reset to state K. If the firing event of the agent whom

initiated the cascade is positive (representing excess demand) we take m = |mA| other-

wise we take m = −|mA|. After a reset, all agents resume stochastic accumulation of

sentiment until the next transition into a firing state occurs, and the system repeats. The

cascade process (K,q) is taken to refer to the sequence of cascade sizes, {m1,m2, ...},

generated from such a system.

In the next section, an asymptotic expression for the cascade probability is derived in

the case K = 1, while for K ≥ 1, comparison with the negative binomial distribution

enables the functional form of price return standard deviation (also known as volatility

in the lexicon of financial markets) to be expressed in terms of q.

The K = 1 system represents a special case as it can be most readily analysed using

standard statistical methods. In this case, the system has three states: two firing states

and a rest state. This implies that after each cascade event all agents will occupy the

rest state, unconditional on their state prior to the cascade event. The system then

repeats in this way. As a result, the cascade sizes can be considered to be independent

and identically distributed statistical random variables. For K > 1, the system can be

said to possess memory, because cascade sizes depend upon the outcome of previous

cascades due, in part, to the distribution of agents among the system states generally

differing after each cascade event.

4.6.1 Cascade distribution of the K = 1 system

When a cascade is initialised, the number of agents that are subsequently induced to fire

is governed by a stochastic process. Furthermore, during the course of a single cascade,

agents can only be induced to the firing state at which the cascade is initialised, as

agents either transition closer to the firing state, or do not transition at all. We proceed

by breaking the development of an arbitrary cascade into discrete levels. Let X0 = 1
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represent the initial firing, and Xk represent the number of agents that fire at the k−th

level. The total number of agents that have fired by level n is written as

mn =
n

∑
k=0

Xk. (4.10)

Once agents are induced to the firing state, for a given level of the cascade, they fire

serially and then enter a refractory state - reducing the number of nodes available to be

induced to the firing state at the next level. Hence,

X0 = 1,Xk =
Xk−1

∑
i=1

Yi,k (4.11)

where Yi,k is a binomial random variable given by

Yi,k ∼ Bin(N−mk−1−
i−1

∑
j=0

Y j,k,q) (4.12)

and Y0,k = 0. The cascade stops at some level T < N, with

T = min{n |mn = N or Xn = 0}

and the cascade size is taken to be mT . The process defined by Eqns. (4.10)-(4.12) is

similar to a Galton-Watson process [Watson and Galton, 1875], with the exception that

our model is finite (meaning the process always stops) and “offspring” distributions

do not satisfy the independence requirement (Xk for k > 1 is the sum of dependent

binomial random variables).

Shrinking N-ary trees. To obtain an asymptotic expression for the probability of a

given cascade size, we apply combinatorial methods to a variant of rooted incomplete

N-ary trees [Knuth, 1998]. A graphical interpretation of the tree-representation of an

arbitrary cascade, described below, is presented in Fig. 4.7. Starting with a given sin-

gle root node (level 0, X0 = 1), the evolution of a single cascade can be represented

exactly by a tree consisting of two types of nodes: internal nodes and perimeter nodes
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[Grimmett, 1999]. An internal node, at a given level of the tree, represents an agent

induced to the firing state by an agent at the preceding level. A perimeter node rep-

resents an unsuccessful attempt, by an agent in a firing state at the previous level, to

induce an agent to the firing state. Thus, perimeter nodes are connected to parent in-

ternal nodes, and do not produce any further branches. The collection of all perimeter

nodes is called the perimeter of the tree, and the size of the perimeter, Q, is equal to

the number of perimeter nodes. A cascade terminates when the firing state becomes

unoccupied - which is represented in the tree as all nodes of a given level consisting of

perimeter nodes (which means the tree stops growing). Therefore, a tree consisting of

m internal nodes, and Q perimeter nodes, represents a cascade of size m. It follows the

probability of a cascade of size m can be written in the form

P(m) = ∑
Q

G(m,Q)pm−1(1− p)Q (4.13)

where the summation is taken over different values of Q that correspond to a single

value of m, and G(m,Q) is the number of trees consisting of m internal, and Q perime-

ter, nodes. When the number of agents remain constant at each level, for instance equal

to (N−1), an arbitrary cascade can be modelled using a standard (rooted, incomplete)

(N− 1)-ary tree. In this case the number G(m,Q) is given by the Fuss-Catalan num-

bers (also known as generalised Catalan numbers; see Hilton and Pedersen [1991] and

Drmota [2009])

G(m,Q) = Q−1
(
(N−1)m

m

)
(4.14)

where Q is a 1-1 function of m given by

Q = m(N−2)+1. (4.15)

When dependence between levels of the tree is taken in to account, according to

Eqns. (4.10)-(4.12), the arity of the tree representing a cascade shrinks monotonically

78



dc

ba

k=1

k=2

Internal nodePerimeter node

root

node

Figure 4.7. Filled nodes are internal nodes, representing agents induced to the firing
state during the course of the cascade. Open nodes are perimeter nodes, representing
the unsuccessful attempt of a connected parent node at the preceding level to induce
an agent to the firing state. For all panels N = 6. a) depicts a cascade of size m = 4,
with perimeter Q = 8, b) m = 4 with Q = 10, c) m = 4 with Q = 11, d) m = 5 with
Q = 8.

as the cascade progresses (see Fig. 4.7). For example, level 1 consists of a single-level

(N−1)-ary tree, while level 2 is a single-level tree, distributed over X1 root nodes, able

to produce up to (N−1−X1) internal nodes in total - and so on. For this tree structure

we obtain the perimeter size, given the number of internal nodes m, as

Q = m(N−m)+ 1
2(m−1)2− 1

2 ∑
k≥1

X2
k (4.16)

and asymptotically for large N the probability of cascade size reduces to,

P(m)∼ (2π)−
1
2 m−

3
2 e(1−q)mqm−1. (4.17)

The details of the derivations of Eqns. (4.16) and (4.17) are presented in appendix B.
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Figure 4.8. a) log-log probability plot of absolute cascade sizes when the system is
near the transition value q = 1 for K = 1,2,3,4 with N = 1000. The case K = 1,
corresponding to the maximal coupling strength, displays an exponentially truncated
tail due to finite size effects. b) log-log probability plot of cascade size for the system
with parameters K = 1,q= 0.75 and N = 1000 (filled circles), compared to a geometric
distribution (crosses) of equal mean, and a negative binomial (open squares) with both
mean and variance matched.
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When q = 1 the asymptotic cascade distribution takes the form of a power law

with exponent −3/2, consistent with the infinite sub-critical Galton-Watson process

[Bouchaud, 2013], while for q 6= 1, Eqn. (4.17) represents a truncated power law. Fig-

ure. 4.8a displays the distribution of absolute cascade sizes for various K near the criti-

cal point of q = 1, obtained via simulation, reflecting these findings for K = 1.

4.6.2 Analysis and approximation of systems with K ≥ 1

When K > 1 each agent requires more than one pulse to induce it to a firing threshold,

from the rest state. As a result, this dampens the ability of cascades to sweep through

the entire system. Figure. 4.8a displays the distributions of cascades sizes for K =

2, 3, 4 when q = 1. The exponents are estimated via maximum likelihood estimation

(MLE), and the distribution fit tested using the Kolmogorov-Smirnov test. Estimates

of the exponent (with standard error in parenthesis) range from α ≈ −2.25(0.001)

for K = 2, to α ≈ −3.5(0.06) for K = 4, although the quality of the power law fit

decays rapidly as q deviates from the critical value q = 1. We leave the derivation of

a closed-form expression for the cascade distribution (equivalent to Eqn. (4.17)) when

K > 1 for future research. Instead, the negative binomial approximation is sufficient

for expressing the approximate moments of the cascade distribution in terms of q < 1.

4.6.3 Fitting a negative binomial distribution.

Even though the mean and variance of the K = 1 cascade distribution can be expressed

in closed form using special functions, we provide numerical evidence for a range of

K values showing that a negative binomial distribution [Feller, 1968] may be used as

a good approximation to the cascade distribution, when q < 1. Figure. 4.8b shows the

cascade distribution K = 1,q= 0.75 compared to a moment-matched negative binomial

distribution with good agreement. Figure. 4.9 shows how the parameters, r and pNB,

of moment matched negative binomial distributions vary with q. Except for the case of

pNB when K = 1, both sets of parameters can be well approximated as varying linearly

with q, for all K tested. The benefit of this approach is that the moments of the cascade

distribution are easily expressed in terms of q, the key parameter of interest.
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Figure 4.9. The parameters of moment matched negative binomial distributions as a
function of q, for K = 1,2,3. a) r and b) pNB.

In Figs. 4.10a and 4.10b, the Kolmogorov-Smirnov test statistic (see [Clauset et al.,

2009] for methodological details) is reported for both a power law and negative bino-

mial fit, and the regions of q in which each distribution provides the best relative fit

to the distribution of (K,q) is highlighted (via filled shapes). In the case K = 1, the

negative binomial provides a good fit for 0 < q < 0.6, and the power law provides a

better relative fit in the range 0.79≤ q≤ 1.

Cascades can occur in both the positive and negative directions, and in the case K = 1

they occur with equal probability. As a result, the (approximate) full distribution of

cascades sizes (both negative and positive) is obtained as a mixture distribution of two

equally weighted negative binomial distributions, symmetric about 0. Using standard

moment calculations (see appendix B) the variance of this full distribution may be writ-

ten in terms of the negative binomial distribution parameters, considered as a function

of q

σ
2(q) =

1
pNB(q)2

(
r(q)(1− pNB(q))+ [pNB(q)+ r(q)(1− pNB(q))]

2
)

(4.18)
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where r(q) = a1 + a2q, pNB(q) = b1 + b2q+ b3q2 and the constants a1, a2, b1, b2, b3

vary with each value of K (see Fig. 4.9). For K = 1, pNB(q) = (1− q)2 and mean

values of a1 and a2 over 1000 observations are 0.53(0.016) and −0.40(0.024), re-

spectively (standard deviation displayed in parenthesis). For K = 2, a1 = 0.52(0.03),

a2 =−0.19(0.04) and b1 = 0.96(0.007), b2 =−0.77(0.01), b3 = 0.

When K = 1, the standard deviation can be written

σ(q) =

[
(a1−a2q)(1−(1−q)2)

(1−q)4 +

(
1+

(a1−a2q)(1−(1−q)2)
(1−q)2

)2
]1/2

, (4.19)

and a similar calculation can be performed for excess kurtosis, as presented in ap-

pendix B.
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Chapter 5

Complexity model of herding in

financial markets

In the previous chapter I introduced a model of a stochastic pulse-coupled network,

incorporating two event boundaries, and established the existence of a critical pulse-

coupling probability, pc. The critical pulse-coupling probability separates the be-

haviour of the system into a small cascade-size regime (for 0 < p < pc, named asyn-

chronous), and a regime in which large cascade sizes are repeatedly observed (for

p≥ pc, named synchronous). The aim of this chapter is two-fold. First, a detailed prob-

abilistic analysis of the stochastic system is carried out, yielding an explicit asymptotic

expression for the cascade-size probability distribution of the K = 1 system. This anal-

ysis builds upon, and complements, the dynamical system (mean field) approach of the

previous chapter. Second, the pulse-coupled network model is used to develop a new

model of agent (or trader) interactions in a stylised financial market [Wray and Bishop,

2015].

The financial market model described here incorporates a number of important fea-

tures (but not all) observed in real markets. In this regard, a pertinent property is

its micro-foundedness, meaning dynamics produced by the model are derived directly

from the economic interactions of market participants (rather than resulting from mea-

sured quantities or exogenous distributions and parameters). As well as accounting for
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so-called fat-tailed, or leptokurtic, asset price return distributions (arising from a trun-

cated power law derived directly from the interaction of agents), the model displays

volatility clustering [Bollerslev et al., 1992] and evidence of long-memory volatility

[Baillie, 1996]. The existence of a transition between system states, separated by the

critical pulse-coupling probability, provides a mechanism accounting for both relative

high and low return volatility regimes [the so-called two-phase behaviour, see Plerou

et al., 2003; Zheng et al., 2004]. This is achieved in a coherent way, via identifica-

tion with the synchronous and asynchronous regimes (respectively) of the underlying

pulse-coupled network. A summary of so-called stylised facts in financial markets is

provided by Cont [2001; 2007].

While the study of the empirical, or stylised, observations of financial markets can be

traced back to the work of Mandelbrot [1963], research continues into the mathematical

description of such phenomena [Muzy et al., 2013; Zheng et al., 2014; Xue and Gençay,

2012]. One reason for this persistent interest is that a universally accepted behavioural

explanation of these phenomena is lacking, and although much progress has been made

in this regard (pertinent examples are: investment strategy switching among agents

[Lux and Marchesi, 2000; Bouchaud et al., 2001; Alfarano and Lux, 2007; LeBaron,

2012]; the development and application of minority games [Challet and Marsili, 1999;

Ortisi and Zuccolo, 2013]; percolation and general Ising-like lattice interaction models

[Cont and Bouchaud, 2000; Kaizoji et al., 2002; Sornette and Zhou, 2006; Bartolozzi

and Thomas, 2004]; the development and application of bounded rationality to econo-

metric models [Hommes, 2002] and models incorporating agent memory, evolutionary

learning and multiple time scales [Brock et al., 2005; Zumbach and Lynch, 2001; Bor-

land, 2006]), no clear consensus, favouring one behavioural mechanism over the others,

has emerged. Indeed, in the case of financial markets, evidence of each of the different

behavioural mechanisms can easily be found (or can be reasonably surmised).

For more than a decade, herd behaviour [Banerjee, 1992; Lux, 1995] in financial mar-

kets has been subject to much research [Bikhchandani and Sharma, 2000; Tedeschi

et al., 2012a; Park and Sgroi, 2012; Zheng et al., 2004; Eguı́luz and Zimmermann,
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2000; Cont and Bouchaud, 2000; D’Hulst and Rodgers, 2000], in parallel with re-

search investigating the phenomenon of stock market crashes [Yalamova and McK-

elvey, 2011; Petersen et al., 2010; Levy, 2008; Johansen et al., 2000], and the identi-

fication of certain stylised features of financial market data (see the reviews by Cont

[2001] and Bouchaud [2002]). Recent extraordinary market events [Khandani and Lo,

2007; Easley et al., 2011], reviewed by Cincotti et al. [2012], demonstrate that herd

behaviour can have material consequences for investors, and regulators, alike. While

identifying and estimating the impact of herd behaviour on financial markets remains

a challenge, technological and market developments have increased the potential for

herding to arise. For instance, investor sentiment via social media [Sprenger et al.,

2014; Zhang et al., 2011; Bollen et al., 2011], and the availability of data sets quanti-

fying collective behaviour [Preis et al., 2013; Curme et al., 2014], have the potential to

facilitate both intentional and spurious herding, using the terminology of Bikhchandani

and Sharma [Bikhchandani and Sharma, 2000]. Furthermore, in a report commissioned

by the UK government [Sornette and Von der Becke, 2011], herd behaviour is identified

as a possible consequence of high-frequency trading - although this is not a universally

accepted conclusion amongst researchers. Indeed, the impact of high-frequency trad-

ing on financial markets is an active area of research with no clear consensus either for

or against adverse market or regulatory impact [Hasbrouck and Saar, 2013; Brogaard

et al., 2014].

Previous attempts at understanding the dynamics of financial markets have primarily

focused on accurately describing the observed data using time-series, or purely sta-

tistical, methods. It is well-documented that price returns of financial assets exhibit

significant deviations from the Gaussian model [Mandelbrot, 1963; Cont, 2001], which

has resulted in a plethora of alternative representations. Models such as α-stable dis-

tributions [Lévy, 1925], generalised hyperbolic models [Barndorff-Nielsen and Shep-

hard, 2001], generalised autoregressive conditional heteroskedasticity (GARCH) mod-

els [Bollerslev, 1986] and stochastic volatility models [LeBaron, 2001; Heston, 1993]

attempt to account for features, such as high kurtosis and volatility clustering which are
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inconsistent with Gaussian behaviour.

More recently, a particular class of stochastic volatility models known as multifractal

(or multi-affine) models, derived from multiplicative cascades studied in the context

of fluid turbulence [Kolmogorov, 1962; Mandelbrot, 1974], and multifractal random

walks [Arneodo et al., 1998] have successfully been applied to the modelling of finan-

cial time series [Bacry et al., 2001; Calvet and Fisher, 2004; Di Matteo, 2007; Barunik

et al., 2012; Bacry et al., 2012]. Such statistical models explicitly capture multifractal

anomalous scaling in higher statistical moments, Mb(L). Explicitly,

Mb(L) = E{|X(t +L)−X(t)|b} ∼ AbLζb, (5.1)

where X(t) a stochastic process with stationary increments, b is the moment order,

Ab is a constant, and the index ζb is not equal to the Brownian motion value of b/2.

An attractive feature of stochastic multifractal cascade models, as applied to financial

markets, is the evolution of asset volatility is modelled as a multi-time scale process;

an observation which is supported by empirical analysis [LeBaron, 2001; Zumbach and

Lynch, 2001].

The financial market model described here contributes to the body of work that aims

to combine agent-based modelling with traditional probabilistic analysis of financial

markets [Feng et al., 2012; Gontis and Kononovicius, 2014]. In this endeavour, asset

price returns are modelled using two variants of the stochastic version of a recent model

[Wray and Bishop, 2014] describing cascades on a pulse-coupled network. In the first

case, agents trade at two well-defined firing thresholds, that bound the state space in

which information (both private and public) is considered to accrue. In the second

case, a semi-infinite state space is considered by removing one of the firing thresholds

and allowing agents to occupy states infinitely distant from the firing threshold. In

both cases, for each agent the accumulation of private information is represented by

random transitions between nearest-neighbour states (a random walk), thereby agents
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are not endowed with any particular trading strategy. The agents preference to buy or

sell is revealed only when a firing threshold is reached, at which point other agents

may be induced (via observational herding) to imitate the decision of the initial agent,

regardless of their own preference. In this regard both spurious and intentional herding

[Bikhchandani and Sharma, 2000] may occur in the model, with equal probability.

The inducing of agents towards the firing threshold is represented by stochastic pulse-

coupling on a network, with N agents represented by N network vertices, with network

edges able to successfully transmit a given pulse-coupling event with probability p =

Kq/N, as described in the previous chapter.

Rationale for modelling approach.

While this model may appear overly simplistic, empirical and theoretical financial eco-

nomic justification for the modelling choices can be provided.

i. Random walk/diffusion as a model for the accumulation of private agent infor-

mation and sentiment.

First, on theoretical grounds, the importance of noise traders [Kyle, 1985] has long been

established as essential for the functioning of markets [Black, 1986; Shleifer and Sum-

mers, 1990]. Indeed, the conclusion of the no-trade theorem of Milgrom and Stokey

[1982] states that in a market consisting entirely of economically rational traders, where

common knowledge about the market structure exists, no exchange (trades) would take

place - as it would be irrational to do so. Moreover, traders hedging existing positions

or products, aiming to provide market liquidity, or trade on no information at all, can be

classified as noise traders (Bloomfield et al. [2009], and for a recent literature review,

see Ramiah et al. [2015]).

The relatively recent emergence of high and ultra-high frequency traders as significant

market participants (numerous reports on participation rates in equity trades are broadly

consistent, with approximately 35% in European markets [Menkveld, 2014], 74% for

a 2010 sample of U.S. markets [Brogaard, 2010] and 77% in U.K. markets [Mizen and

Rhode, 2011], while Easley et al. [2012] reports similar values) adds another dimension
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to the continuing debate surrounding how noise traders contribute to the dynamics of

market prices. While the question of whether high frequency traders represent true

liquidity providers, as opposed to providers of phantom (or fleeting) liquidity [Golub

et al., 2012] remains unresolved, the issue of whether such traders act upon solely

fundamental news (and therefore not to be considered as noise traders) is easier to

answer. Given trades and quotes are often placed at sub-millisecond intervals, which far

exceeds the frequency with which fundamental corporate news is released (annual and

quarterly reports, stock-split and dividend announcements, bankruptcies, mergers and

acquisitions do not occur at sub-millisecond frequencies for a security issued by a single

corporate entity) [Fricke and Gerig, 2015], it would appear high frequency traders are

closer to noise traders than fundamental-based traders. Furthermore, in the case where

agents are endowed with evolutionary competing strategies, simple trading rules may

outlive (and even outperform), other so-called fundamental strategies [Hommes, 2001].

Finally, in a detailed study of U.S investment mutual fund performance Fama and

French [2010] find only weak evidence in favour of investor skill, over investor luck.

And using a similar data set, Barras et al. [2010] find that 25% of mutual funds are

classified as unskilled, while 0.6% are classified as skilled using statistical tests on the

distribution of cross-sectional returns.

Taking these arguments into account, at the aggregate market level, a random walk

model of the accumulation of agent information is plausible.

ii. Separation of private agent information and public knowledge via a pulse-

coupling model.

Separating the accumulation of agent information, or sentiment, into a private phase

and public phase (via the probabilistic observation of market prices) fundamentally

reflects the expectations of investors (whom compensate agents for the use and appli-

cation of their private knowledge for investing on their behalf) and financial regulators

(whom encourage agents to act in accordance with their fiduciary duties). It is this ob-

servation that partly motivates the choice of an integrate-and-fire mechanism that forms
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the basis of the model described in chapter 4. While consideration of the interaction

(or communication) structure amongst economic agents is relevant (represented by the

pulse-coupling mechanism used in the model presented in chapter 4), it is equally im-

portant to allow for agents to act in a seemingly independent capacity - and to study

how the two modes of behaviour may interrelate. Indeed, lattice Ising-like models that

assume direct or continuous agent coupling is an example of a modelling paradigm that

does not demarcate between independent and dependent agent actions. It is noted, that

although an argument has been put forward for a random walk model of the accumu-

lation of private agent information - this does not preclude using a correlated random

walk (for instance) to simulate a concentration of similar trading strategies.

iii. The preference for simple behavioural models over complicated ones.

In accordance with the principle of parsimony, given that a multitude of behavioural

mechanisms may be responsible for the same observed phenomena - and the difficulty

associated with ruling certain mechanisms out (a falsification problem) - models that

are simple enough to discern cause-and-effect between behavioural mechanisms and

observed phenomena represent a viable way to approach modelling.

5.1 Financial market model

As an application of the (K,q) process, we illustrate how it may be incorporated into

a simple model of financial returns. Let the logarithmic price return, rt,∆t over some

interval ∆t starting at time t be given by

rt,∆t = logPt+∆t− logPt = log
(

Pt+∆t

Pt

)
(5.2)

where, Pt is the price of a traded asset - such as a stock, bond or commodity. We regard

the cascade sizes m, generated by the actions of traders in our model, as excess demand

for a financial asset. When the excess demand is positive, the price of the asset will

increase and vice-versa it will decline when excess demand is negative (excess supply).

Given an excess demand (cascade size) of m, the price impact function [Lillo et al.,
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2003], F , dictates the magnitude of the price change by mapping m to a positive real

variable, so that F(m) ∈R. In order to keep the model as simple as possible, we follow

previous works [Cont and Bouchaud, 2000] and take F(m) = λm, for some λ > 0

referred to as the market depth parameter.

To summarise, by rearranging Eqn. (5.2) and setting ∆t = 1, the 1-period price update

can be formed as

Pt+1 = Pteλm (5.3)

where λm is identified with the 1-period return: rt,1. More generally, let M be a variable

representing observations {m1,m2, ...} from the (K,q) cascade process. Then we can

write the n-period price as

Pn = P0eλ ∑
n
i=1 mi. (5.4)

Recall that trades occur in continuous time with an exponentially distributed waiting

time between trades. In order to fully specify the price process, we write this as a

compound Poisson process

J(t) =
n(t)

∑
i=1

Mi. (5.5)

Each Mi follows the distribution of M and {n(t)} is a Poisson process with rate θ , used

to describe the time between trades (and any ensuing cascades). Finally, for time t > 0

we write,

Pt = P0eλJ(t) =⇒ r0,t = λJ(t). (5.6)

For the case K = 1, recall that cascades are statistically independent identically dis-

tributed events. As a result, using standard results of compound Poisson processes, and

noting that the mean cascades size is zero due to symmetry, the variance of J(t) can be

given as: Var(J(t)) = θ t E{M2}. When M is approximated as a mixture distribution of

two equally weighted negative binomial distributions symmetric about 0 we have

Var(J(t)) = θ tσ2(q) (5.7)
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where σ2(q) is given by Eqn. (4.18). This connects the variance of model price returns,

of all periods, to the network coupling probability.

A comparison between simulated values of
√

Var(J(t)) (the standard deviation of pe-

riod t returns r0,t with λ = 1) and
√

θ tσ(q), using Eqn. (4.18), is shown in Fig. 5.1.

Parameter values used are N = 1000 and q = 0.6. For each t shown, 100 values of√
Var(J(t)) are plotted, where the variance is taken over 200 period t returns. By

appealing to standard results concerning random diffusion without drift between two

symmetric absorbing barriers [Redner, 2001], θ = N/K2.
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Formula

Figure 5.1. Simulated values of the standard deviation (volatility) of period t returns,
for 0< t ≤ 1, given by Eqn. (5.6) with λ = 1, compared to values given by Eqn. (4.18).
Values for both K = 1 (open circles) and K = 2 (filled circles) are displayed. For K = 2,
the formula underestimates the mean simulated value, due to dependence between
returns.
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5.2 Comparison to market data

Equity returns. As an example of the use of the (K,q) financial market model, in-

dicative values of K and q are computed in order to estimate the distribution of market

returns for a randomly selected instrument (General Electric equity stock) over two dif-

ferent time scales, and summarised in Fig. 5.2. To produce the plot shown in Fig. 5.2a,

end of day closing prices from January 3 2003 to February 6 2015 are used to compute

the daily log-return distribution, and this is compared with a K = 2, q = 0.85 distri-

bution with market depth parameter, λ , of 8.2× 10−3. For Fig. 5.2b we use intraday

data to compute non-zero log-returns, of approximately 1.5-second intervals, over a

period of time capturing the so-called flash-crash of May 6 2010. In particular, we use

data from May 6 2010 14:05 to 15:25 (EST), resulting in 3390 data points to com-

pute the cumulative probability and compare this to a K = 2, q = 1.05 distribution with

λ = 5.2×10−5. While these comparisons are provided as illustrative, rather than rep-

resenting detailed statistical best-fits, it is of interest to note Fig. 5.2b showing q > 1

during the extremely volatile period of the flash-crash, as one might expect.

Option on an equity index.

One of the reasons for the persistence of Gaussian-based models of financial returns,

is the body of knowledge accumulated to price derivative contracts [Hull, 2011] - and

most notably the framework of Black, Scholes and Merton (BSM) [Black and Scholes,

1973; Merton, 1973], that enables a price of certain derivative contracts to be computed

using closed form formulae. To account for the gap between real market characteristics

and the Gaussian assumptions that underpin the BSM framework, traders make an ad-

justment to the volatility of returns (a parameter of the BSM pricing formula) to account

for the observed heavy tails of financial returns [Derman and Kani, 1994; Pan, 2002].

As a result, when the volatility used to price derivative contracts is plotted against the

strike price of option contracts, the resulting implied volatility curve is known as the

volatility smile, due to its curved appearance, indicating larger values at the extremes

of strike price.
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Figure 5.2. a) The cumulative probability distribution of daily non-zero returns for a
randomly selected stock, General Electric, computed using data for the period January
3 2003 to Feb 6 2015 (3045 points) (filled circles). Overlaid is the distribution of
K = 2, q = 0.85 using market depth λ = 8.2× 10−3. b) The cumulative probability
plot of the same stock as in a), but using intraday price returns computed at, on average,
1.5 second intervals over the period May 6 2010 (flash crash), 14:05 to 15:25 (3390
data points) (filled circles). Overlaid is the distribution of K = 2, q= 1.05 using market
depth λ = 5.2×10−5.

I demonstrate that the (K,q) model is able to recover approximate market prices of

European options (see appendix C) by matching the market price implied volatility

smile. Data consisting of European call options written on the afternoon-settled S&P

500 (SPXpm) index as of November 25 2014, with an expiry of December 20 2014, is

used. Options have a strike price between 2000 to 2250, with the SPXpm index level at

2067.03 at the close of November 25 2014. For a model comparison, the recovered im-

plied volatility from a simulation of the Cont-Bouchaud percolation model [Cont and

Bouchaud, 2000] is also shown. While the (K,q) model compares favourably to the

Cont-Bouchaud model (parametrised by qCont), the latter possesses one less effective

parameter compared to the (K,q) model. Indeed, since the Cont-Bouchaud model is a

static bond percolation model, it is most similar to the (K,q) when K = 1. Figure. 5.3

demonstrates the recovered volatility smile for these data. The fit, while not perfect,

does match the general shape of the smile (although it must be taken into account that
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volatility smile modelling is not a principle aim of either the (K,q) or Cont-Bouchaud

models). To obtain the volatility smile, a large number of draws from the simulated

asset return distributions derived from both models is taken, and the empirical option

pricing procedure outlined in Bouchaud and Sornette [1994] is applied to obtain prices

for call options for the given expiry and strike prices. The implied volatility is then re-

covered by using a simple numerical root-search. The recovered implied volatilities are

compared to those obtained via market data, and the process is repeated with different

values of K, q and qCont until suitable fits are found.
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Figure 5.3. The Black-Scholes implied volatility smile obtained from market data of
European call options on the SPXpm index is compared with the implied volatility
obtained from empirical option prices, generated using a K = 2, q = 0.78 model, and
the Cont-Bouchaud percolation model (with qCont = 1.01), described in the main text.
While the (K,q) model compares favourably with the Cont model, it must be remem-
bered that the Cont-Bouchaud model has 1 less effective parameter compared to the
(K,q) model.

In this section, a detailed probabilistic analysis of the stochastic pulse-coupled network

model [Wray and Bishop, 2014] was carried out, yielding an asymptotic expression for

the probability distribution of cascade size for the case K = 1, given by Eqn. (4.17).

In general, the cascade size distribution takes the form of truncated power law, and

reduces to a pure power law at the critical coupling parameter value q = 1. This result
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is consistent with similar processes, such as the sub-critical Galton-Watson process.

For the case K ≥ 1, I demonstrated how a mixture of negative binomial distributions

may be used to approximate the cascade size distribution when 0 < q < 1.

Lastly, the stochastic pulse-coupled model is incorporated in to a new model of a

stylised financial market, similar in character to the financial market models of Eguı́luz

and Zimmermann [2000] and Cont and Bouchaud [2000] and variants thereof. The

model presented here differs from those previous network-based financial models in a

number of critical ways. Firstly, our model is inherently dynamic - with the diffusion

phase of the pulse-coupling controlling the time interval between pulse-coupling (and

therefore cascade) events. The Cont and Bouchaud model, in contrast, is effectively a

static bond-percolation on an Erdős-Rényi network, where ‘clusters’ on a network are

formed simultaneously, and each assigned a random designation of buy, sell or hold.

Excess demand or supply in this framework is therefore determined by the relative clus-

ter sizes. In this regard, the K = 1 model presented here results in a similar probability

distribution for the simulated asset returns because the cascade sizes, induced by pulse-

coupling, is equivalent to cluster size in standard bond-percolation on an Erdős-Rényi

network.

Secondly, for K > 1, the cascade sizes are similar to so-called explosive percolation

[Achlioptas and Spencer, 2009; Bohman, 2009; Chen et al., 2013], reviewed by Ziff

[2013], in which the percolation transition becomes increasingly abrupt (although con-

tinuous [Da Costa et al., 2010]) and occurs, delayed, at a higher value of bond occu-

pation probability. In the pulse-coupled model, as K increases, the transition to the

large-cascade regime occurs at increasingly larger values of network coupling proba-

bility (see Fig. 4.4 of the previous chapter, noting the parametrisation p = Kq/N). The

model presented here, then, differs from the Cont-Bouchaud model in the types of per-

colation present in the system. Explosive percolation is covered in more detail in the

next chapter.

It is of interest to note that the K = 2 model is favoured over the K = 1 model, when
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model output is fit to the various stock market data shown in Figs. 5.2 and 5.3.
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Figure 5.4. Log-linear plot of maximal cascade size for various K in a) q-space and
b) p-space
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5.2.1 Volatility clustering and long-memory

Zumbach [2011] details three functional forms of volatility autocorrelation, C(L,d),

given by Eqn. (2.26), each characterised by the rate of decay (exponential, logarithmic

and hyperbolic), and provides evidence supporting the logarithmic decay of volatil-

ity autocorrelation. For ease of reference, the definitions of C(L,d) and the form of

hyperbolic decay (a hallmark of long memory) are repeated here as Eqns. (5.8) - (5.9)

C(L,d) = Corr(|rt+L,d|, |rt,d|), (5.8)

where L is the lag, r is the log-return and d is the horizon over which the return is

calculated. Volatility is said to possess long memory [Baillie, 1996; Zumbach, 2004]

when autocorrelation remains positive and, in particular, decays hyperbolically over

large time-lags. Formally,

C(L,d)∼ ALγ as L→ ∞, A > 0,γ < 0. (5.9)

While volatility clustering is a much studied phenomenon, the behavioural causes of

this effect remain only partially understood. In particular, two major behavioural mech-

anisms capable of generating volatility clustering have been identified in the literature.

First, strategy switching amongst a group of agents, originating from ideas presented

by Kirman [1993], and subsequently utilised in a number of studies [Lux and Marchesi,

2000; Alfarano and Lux, 2007; Xue and Gençay, 2012; Tseng and Li, 2011]. Second, is

heterogeneity in agent time scales [Feng et al., 2012; Lynch and Zumbach, 2003; Giar-

dina and Bouchaud, 2003; Zumbach and Lynch, 2001], where more attention has been

given to purely statistical models incorporating the heterogeneity of agent time-scales

in models of market volatility and price dynamics [Bacry et al., 2001; Di Matteo, 2007;

Bacry et al., 2012] (reviewed in Borland et al. [2005]). While such models are able to

produce many of the observed features of financial time series, they lack behavioural

explanations or interpretations for their dynamics.
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Aside from behavioural models, other important classes of models that aim to capture

volatility clustering effects include, stochastic volatility models (LeBaron [2001], and

see Shephard and Andersen for an overview), GARCH-family of models [Bauwens

et al., 2012], and regime-switching models [Liu, 2000; Liu et al., 2012]. While an in-

depth study of these models is outside the scope of this thesis, they occupy a large and

important proportion of the relevant literature.

In order to test for volatility clustering, substantial simulations, and a battery of statis-

tical tests, are carried out and the results presented in the next section.

Simulation details

In both the finite state-space and semi-infinite state-space case, simulations are per-

formed (see Figs. 5.5-5.11) according to the following specification. Together the pa-

rameters N and the threshold distribution amongst the agents, which may be constant or

vary, determine the speed of the simulation, which is measured by average trade arrival

rate, j. For each of the simulations, the average trade arrival rate time is standardised.

Returns are standardised, and the generated time-series are of equal length, X . The

returns are taken over a unit of time equal to δ t = 5
60T = 0.083T , which equates to

5-minutes returns, when a unit of simulation time, T , is taken to be an hour. For these

parameter values to reflect realistic market activity, with the unit of time T is fixed (at

say one hour, or one minute or one day), N would need to be varied accordingly, to

make the arrival rate of trades in the unit of time, T , realistic. In summary, although the

threshold values, or distribution, varies along with N, in the simulations below, the av-

erage arrival rate of trades is constant. With the understanding above, δ t = 0.083, Other

than adhering to those common sense rules, the parameters were chosen arbitrarily and

not tweaked.
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Parameter Value (if set) Function
δ t 5

60T Return period
j 10−3T Average trade arrival rate

N Variable Number of distinct agents
X 104 Length of returns time series
T 1 (unit unset) Determines the unit of 1 simulation time unit

Table 5.1. Parameter values of simulation corresponding to Figs. 5.5-5.11

For each simulation figure, the following statistical tests are run:

1. MLE estimate of the power-law exponent is computed for models returns (upper

right panel).

2. Functions, exponential (Ae−γL)), logarithmic (A + B log(L)) and hyperbolic

(AL−γ ) are fit to the volatility auto correlation via non-linear least squares (lower

left panel).

For Figs. 5.5 - 5.11, panel a depicts a sample of the generated time series arising from

the particular simulated model. Panel b shows the distribution of the absolute value

of log-returns from the particular simulated model, and a moment matched Gaussian

distribution for comparison. In panel c, the coloured bands surrounding the volatil-

ity autocorrelation represent the one standard deviation limits and a non-linear least

squares fit of the mean volatility autocorrelation. Panel d shows three samples of the

volatility correlation, that is computed each time the simulation is replicated. Note for

all of Figs. 5.5 - 5.11, panel c shows zero serial correlation in log-returns, in agreement

with empirical observations (see chapter 2).

It is noted that the features observed have been tested over many parameter combina-

tions N = 1 to N = 10000, and over various values and distributions of K - suggesting

the results, in particular long-memory patterns, are robust.
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5.2.2 Volatility clustering in the finite state space case

The numerical results of three scenarios are presented and discussed.

Homogeneous model: Agents with identical firing thresholds. Fig.5.5

This scenario consists of all agents having a single firing threshold equal to K = 1. In

this case, agent time scale are homogeneous, and the probability coupling parameter

is fixed. As might be expected, no evidence of volatility clustering is found, and no

evidence of long memory in volatility is found. The estimated power-law exponent for

the distribution of model returns is 7.0.
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Figure 5.5. The results from ten independent simulations each of 150,000 cascades
for N = 200, K = 1 and q = 1 is presented. (a) A sample from one of the ten simulated
log-returns series. (b) Comparison of the distribution of log-returns arising from the
model (4) with a moment matched Gaussian distribution (•), shown in log-log scale
showing fat-tails. MLE estimate of the power law exponent of model returns is 7.0.
All simulated data used. (c) one standard deviation envelope around the mean volatil-
ity autocorrelation of log-returns (r and black) and absolute log-returns (|r| and red)
with lag L, together with the non-linear least squares fit of exponential (labelled E -
solid line), logarithmic (labelled L - dashed line) and hyperbolic (labelled P - dotted
line) decay functions, with exponential decay providing the best fit. The correlation
exponent is not computed as C ∼ 0. All simulated data used. (d) a random sample of
three out of ten volatility autocorrelation computations with hyperbolic decay lines of
best fit, shown in log-log scale.
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Inhomogeneous model: Agents non-identical firing thresholds. Fig. 5.6

Surprisingly, no evidence of volatility clustering or long memory is found, even though

agents act over inhomogeneous time scales.
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Figure 5.6. The results from ten independent simulations each of 150,000 cascades
for N = 700, K ∼ U[1,20] and q = 1 is presented. (a) A sample from one of the ten
simulated log-returns series. (b) Comparison of the distribution of log-returns arising
from the model (4) with a moment matched Gaussian distribution (•), shown in log-
log scale showing fat-tails. MLE estimate of the power law exponent of model returns
is 6.5. All simulated data used. (c) one standard deviation envelope around the mean
volatility autocorrelation of log-returns (r and black) and absolute log-returns (|r| and
red) with lag L, together with the non-linear least squares fit of exponential (labelled E
- solid line), logarithmic (labelled L - dashed line) and hyperbolic (labelled P - dotted
line) decay functions, with exponential decay providing the best fit. The correlation
exponent is not computed as C ∼ 0. All simulated data used. (d) a random sample of
three out of ten volatility autocorrelation computations with hyperbolic decay lines of
best fit, shown in log-log scale.
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Homogeneous model: Agents identical threshold K and time varying coupling

probability parameter. Fig.5.7

In this case, K = 1 for all agents, and the network coupling parameter, q, is made to

vary according to an exponential Ornstein-Uhlenbeck mean reverting process around

q = 1 [Karatzas and Shreve, 1991]. In this case volatility clustering is expected due to

the system fluctuating across the critical coupling parameter value of q = 1. Figure.5.7

shows that volatility clustering with exponential decay is recovered. The parameters

of the Ornstein-Uhlenbeck (OU) process were set at σOU = 0.035 and mean reversion

θOU = 0.02 It is noted that the volatility for of the return is given by Eqn. (4.19).
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Figure 5.7. The results from ten independent simulations each of 150,000 cascades
for N = 90, K = 1 and q time-varying according to an OU process with σOU = 0.035,
θOU = 0.02 is presented. (a) A sample from one of the ten simulated log-returns series.
(b) Comparison of the distribution of log-returns arising from the model (4) with a
moment matched Gaussian distribution (•), shown in log-log scale showing fat-tails.
MLE estimate of the power law exponent of model returns is 6.2. All simulated data
used. (c) one standard deviation envelope around the mean volatility autocorrelation
of log-returns (r and black) and absolute log-returns (|r| and red) with lag L, together
with the non-linear least squares fit of exponential (labelled E - solid line), logarithmic
(labelled L - dashed line) and hyperbolic (labelled P - dotted line) decay functions,
with exponential decay providing the best fit. The correlation exponent is obtained
by non-linear least squares to give C ∼ exp(−0.0016L). All simulated data used.
(d) a random sample of three out of ten volatility autocorrelation computations with
hyperbolic decay lines of best fit, shown in log-log scale.

107



5.3 Analysis of the stochastic system: semi-infinite

state-space

Here, one of the firing thresholds is removed (the lower boundary is removed, without

loss of generality) allowing the state-space defining the accumulation of private agent

information to be replaced with the semi-infinite region (compare Eqn. (4.1) in chapter

4). In numerical results, a distribution of thresholds D, is incorporated, so that agents

with different thresholds coexist. Numerical results presented below suggest that when

D is left skewed, as a power law in Eqn. (5.10) long-memory patterns generically appear

in asset return volatility (see Figs.5.10-5.11).

D(K)∼ (1+Kmax−K)−α , (5.10)

θu(t) ∈ Z≤K, (5.11)

with u ∈ [1,2, . . . ,N] an index for each agent. While this represents a relatively mi-

nor amendment to the model, the system dynamics are altered quite considerably, in

comparison to the bounded state-space case. In this section, I demonstrate using sub-

stantial numerical simulation, how the system with this amendment generically repro-

duces many of the observed features of financial time series, including evidence of long

memory in volatility.

Initially, this model may appear to represent a physically infeasible situation with re-

gards to participants in a financial market, because the mean first passage time for a

single unbiased random walk in a semi-infinite region to reach a fixed boundary is

known to be infinite [Redner, 1982]. Although, for a random walk biased towards the

fixed boundary, the mean first passage time, τ , is finite and given by

τ(p̂,K) =
x0 +K
2p̂−1

, 1
2 < p̂≤ 1, K > 0, (5.12)
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where p̂ is the biased probability, starting at position x0, at each time step, of moving to-

wards the fixed boundary K (see Fig. 5.8). Due to the network effect of pulse-coupling,

agents are induced towards the firing threshold, and since there is only a single firing

threshold, the unbiased random walk of agent information accumulation - in the un-

connected case - behaves more like a biased random walk, as coupling probability in-

creases. It follows from Eqn. (5.12), that when the coupling probability p = qK/N > 0,

agents will have finite mean first passage times.

0.50

0.55

0.60

0.65

0 10 20 30 40

Firing threshold K

Im
p
lie

d
 b

ia
se

d
 p

ro
b
ab

ili
ty

 q

0.8

0.85

0.95

0.99

1

1.01

1.05

q = 1

q = 1.05

Figure 5.8. A randomly selected agent, one for each threshold, is followed by the
simulation and mean hitting time is computed and compared with Eqn. (5.12), to infer
the implied bias probability.

It is noted that for some categories of financial market participants, long durations

between trading events may accurately describe their intrinsic trading frequency. For

instance, so-called buy-and-hold long-term fundamental investors may hold the same

security for years [Cella et al., 2013].

An economic basis for considering a semi-infinite state-space can be developed by first

noting that the mean time to reach the firing threshold for a single uncoupled agent is

approximately Lévy distributed, and in the presence of pulse-coupling the same pas-

sage time is approximately distributed as inverse Gaussian [Barndorff-Nielsen, 1997]
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(by identification of the biased random walk described above with Brownian motion

with drift in the continuous limit). In both cases the distribution of sojourn times is

heavy-tailed with power law tails of exponent 3
2 . Reboredo et al. [2014] presents a

statistical analysis showing the time duration between large returns in European eq-

uity indices are well-fitted by heavy-tailed distributions, while Liu [2000] develops a

statistical regime switching model, where the distribution of the in-regime time dura-

tion is heavy-tailed, that displays long-memory patterns in volatility correlation. While

these studies do not directly corroborate the modelling assumptions made here, they

are evidence that heavy-tailed intra-event durations are not implausible as a model for

agent behaviour. Furthermore, investors may withdraw their participation at any given

time, depending upon both their sentiment and the prevailing market conditions [Easley

et al., 2012, report high frequency traders withdrawing liquidity during the flash-crash

of May 2010].

While different market participants undeniably have different investment horizons,

holding periods and motivations for participating in financial markets, a consequence

of the model developed in this chapter is the idea that the observed investor time scale

is the result of two effects. The first, an internal private sentiment process such as

cognitive reasoning (knowledge gathering, or risk-aversion), algorithmic, random or

imitative. And the second effect comes from indirectly and probabilistically observ-

ing the actions of others, via market prices. The conclusion of the sentiment process

is modelled as coinciding with an agent reaching a fixed threshold. While the second

effect is modelled as instantaneous stochastic pulse-coupling between agents.

While the long-memory patterns appear only when q ≥ 1, I argue, with reference to

Fig. 5.12 which shows for a range of threshold distributions over the agents, that when

q ≈ 1, the agents minimise their intra-trading times. In contrast to models that keep

the agents investment holding period fixed, here it can vary in accordance with the

behaviour of other agents.
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A heuristic argument for self-organised behaviour

The above can be rephrased as saying there is a stable fixed point in the neighbourhood

of q = 1. A simple heuristic argument for this can be given. Take an agent whom

has threshold K1 and let q < 1 initially. Assume our agent desires to accumulate her

knowledge, or sentiment, as fast as possible. The probability that an agent accepts a

pulse from another agent is K1q/N, so she would like to make q as large as possible. On

an all-to-all network, in mean field she can be considered to have up to K1 neighbours,

who are assumed fixed. There are two effects that this agent experiences, the first

is increased implied bias from receiving pulse-coupling events from her neighbours,

allowing her to accumulate sentiment more quickly. But she also gains no bias from

her neighbours that reset with her, as they are just as likely to reach the firing threshold

after she does, than before. Recall that in the semi-infinite state-space, the mean time to

reach the firing threshold without pulse-coupling effects is unbounded. The other effect

is, if our agent increases q without bound, then there is no reason to assume all other

will not do the same. But clearly, not all agents can do this, otherwise a macroscopic

cascade occurs and all agents are left at the reset, equidistant from the firing threshold.

Thus it is highly likely the fixed point, if it exists, is on the boundary of the critical

coupling parameter value. As this is when cascade sizes are microscopic compared

to the system size and, almost surely, no agent will reset with a neighbour - gaining

maximum bias from her neighbours, any deviation from this fixed point will result in

an adverse effect, hence the fixed point will be stable.

5.3.1 Volatility clustering in the semi-infinite state-space case

As for the finite state-space, numerical simulation of the financial market model is

performed. In the case where all agents have the same threshold, exponential decay

volatility clustering can clearly be seen (Figs. 5.9-5.10). In the case where thresholds

are distributed according to an inverse power-law (with many agents with large thresh-

olds and a few with small thresholds) volatility clustering is seen with hyperbolic decay

(Fig. 5.11). This together with the slow convergence to Gaussian behaviour (Fig. 5.14),

111



and the fat-tailed model returns replicate important stylised facts of financial asset mar-

kets, using a minimalistic model.

Volatility clustering is generated which decays exponentially in the homogeneous case,

and hyperbolically when agent pulse-coupling thresholds are inhomogeneous and dis-

tributed according to Eqn. (5.10). The hyperbolic decay visible in Fig. 5.11c is ex-

hibited for all α tested in the range α = 1.5 to α = 5, and Kmax ∈ [10,100], although

the hyperbolic nature of the decay becomes less pronounced as the distribution D devi-

ates from the power-law form given by Eqn. (5.10), and becomes virtually non-existent

when D is changed so as to produce a market consisting of many relatively influential

(low K) agents together with fewer easily influenced (large K) agents.

In Fig. 5.13 the average time to threshold is shown when D is given by a power law

with α = 2 in Eqn. 5.10. In Fig. 5.14, a log-log plot showing slow convergence to a

Gaussian when the period of returns is increased. In the same figure, the Kolmogorov-

Smirnov two sample test statistic and excess kurtosis is plotted, showing the tests for

normality are unable to be rejected only after approximately 2 simulation years.

In Fig. 5.12, average time to threshold (hit) time is computed for a range of q, about

q = 1, and for a range of distributions D: in order of figure key 1: Power-law(2), 2 :

Power-law(3), 3 : Uniform[1,50], 4 : Triangular with mode at K = 1. A minimum hit

time occurs around q≈ 1, for nearly all threshold distributions.

In terms of economic implications, these results are consistent with previous studies

that incorporate heterogeneity of agent time-scales into statistical models of market

volatility Bacry et al. [2012; 2001]; Xue and Gençay [2012], although in the models

presented here, an explicit trader interaction mechanism is responsible for patterns in

asset volatility autocorrelation. Moreover, this model shows how hyperbolic decay of

volatility autocorrelation, associated with statistical long-memory, may be the result of

a leadership effect [Kononovicius and Gontis, 2014] resulting from the structure and

composition of markets with agents of differing trading, or informational, thresholds.

Kononovicius and Gontis [2014] detail how a small number of herd-immune agents
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can influence and control a larger number of agents whom have a higher propensity to

herd. With regards to agents in the model presented here, agents with threshold K have

a probability proportional to Kq of receiving an incoming pulse-coupling, therefore

agents with low-K thresholds are less likely to receive pulse-coupling than an agent

with a higher threshold. When the threshold distribution over the agents is then left-

skewed (a few agents with low K thresholds and relatively more with high K thresholds)

as is the case in Eqn. (5.10), the herding conditions are similar to what is studied by

Kononovicius and Gontis [2014]. Such an understanding may aid investors in deter-

mining appropriate trading strategies for a given market, or in examining if a particular

trade or market is crowded, with an abundance of either influential, or easily influenced,

traders.
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Figure 5.9. The results from ten independent simulations each of 150,000 cascades
for N = 200, q = 1 and K = 1 is presented (a) A sample from one of the ten simulated
log-returns series. (b) Comparison of the distribution of log-returns arising from the
model (4) with a moment matched Gaussian distribution (•), shown in log-log scale
clearly showing fat-tails. MLE estimate of the power law exponent of model returns
is 5.8. All simulated data used. (c) one standard deviation envelope around the mean
volatility autocorrelation of log-returns (r and black) and absolute log-returns (|r| and
red) with lag L, together with the non-linear least squares fit of exponential (labelled E
- solid line), logarithmic (labelled L - dashed line) and hyperbolic (labelled P - dotted
line) decay functions, with exponential decay providing the best fit. The correlation
exponent is obtained by non-linear least squares to give C ∼ exp(−0.25L). All sim-
ulated data used. (d) a random sample of three out of ten volatility autocorrelation
computations with hyperbolic decay lines of best fit, shown in log-log scale.
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Figure 5.10. The results from ten independent simulations each of 150,000 cascades
for N = 325, q = 1 and K = 2 is presented (a) A sample from one of the ten simulated
log-returns series. (b) Comparison of the distribution of log-returns arising from the
model (4) with a moment matched Gaussian distribution (•), shown in log-log scale
clearly showing fat-tails. MLE estimate of the power law exponent of model returns
is 5.5. All simulated data used. (c) one standard deviation envelope around the mean
volatility autocorrelation of log-returns (r and black) and absolute log-returns (|r| and
red) with lag L, together with the non-linear least squares fit of exponential (labelled E
- solid line), logarithmic (labelled L - dashed line) and hyperbolic (labelled P - dotted
line) decay functions, with exponential decay providing the best fit. The correlation
exponent is obtained by non-linear least squares to give C ∼ exp(7.6× 10−3L). All
simulated data used. (d) a random sample of three out of ten volatility autocorrelation
computations with hyperbolic decay lines of best fit, shown in log-log scale.
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Figure 5.11. The results from ten independent simulations each of 150,000 cascades
for N = 300, q = 1 is presented where firing thresholds are distributed according to
Eqn. 5.10 with α = 2 and Kmax = 20. (a) A sample from one of the ten simulated
log-returns series. (b) Comparison of the distribution of log-returns arising from the
model (4) with a moment matched Gaussian distribution (•), shown in log-log scale
clearly showing fat-tails. MLE estimate of the power law exponent of model returns
is 3.5. All simulated data used. (c) one standard deviation envelope around the mean
volatility autocorrelation of log-returns (r and black) and absolute log-returns (|r| and
red) with lag L, together with the non-linear least squares fit of exponential (labelled E
- solid line), logarithmic (labelled L - dashed line) and hyperbolic (labelled P - dotted
line) decay functions, with hyperbolic decay providing the best fit. The correlation
exponent is obtained by non-linear least squares to give C∼ L−0.15. All simulated data
used. (d) a random sample of three out of ten volatility autocorrelation computations
with hyperbolic decay lines of best fit, shown in log-log scale.
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Chapter 6

Financial complexity and its use in

policy scenarios

Here, the research reported in previous chapters (in particular 4 and 5) is framed in

the context of economic policy and regulation. While the financial crisis of 2007-2008

has provided an opportunity for researchers from the wider scientific community to

engage with problems originating from the socio-economic domain, how (and where)

such theories and models are used in relation to the management of an economy is an

important consideration for policymakers, distinct from the particular problem itself.

As is true for many applied science disciplines, a community of expert practitioners

may consume and apply results established by a community of researchers (and vice

versa), via a knowledge transfer process [Rynes et al., 2001]. The extent to which

members belong to both communities, interact and share knowledge are the subjects

of knowledge transfer theories that aim to explain the gap between theory and practice

[see Van De Ven and Johnson, 2006, in the context of organisational management],

otherwise known as the academic-practitioner gap [Bartunek and Rynes, 2014].

While research of knowledge transfer, in relation to applying complex systems mod-

elling to already established disciplines, is beyond the bounds of this thesis; ascertain-

ing and formalising pertinent factors relevant to the application a body of knowledge

from one discipline to another [Carlile, 2004] is an important context for this chapter,
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and the conclusion of this thesis. Furthermore, the perspective of knowledge transfer

offers researchers a simple framework in which to classify and contextualise existing

cross-discipline literature, and identify potential areas of future endeavour discussed in

the conclusion of this thesis.

Using the example of economic policy in particular, knowledge transfer between policy

makers and complexity-theoretic research conducted outside the domain of economics,

must traverse an economic discipline barrier since policy makers, and especially so

their advisers, are likely trained in classical economics, and may be unable, or unwill-

ing, to fully engage with research external to their specialisation. In addition to the

academic-practitioner gap and the discipline barrier mentioned above, the application

of complex systems research to economic policy faces a third barrier to knowledge

transfer, arising from the long established interdependence between economic policy

and the political and institutional objectives of the incumbent administration (see Hi-

bbs Jr [1977] and chapter 3 of Persson and Tabellini [1999]). In particular, institu-

tional objectives may influence research agendas in such a way that impacts (either

advantageously or adversely) knowledge transfer between particular domains [see The

European Commission, 2007, for example].

6.1 A brief outline of broad UK economic policy before

and after the financial crisis

During the period 1979-2007, the UK was firmly committed to economic policies

aimed at maintaining low inflation, via consumer price stability, and maintaining in-

ternational competitiveness of the financial sector via light-touch regulation [Hodson

and Mabbett, 2009]. Financial regulation during this period was conducted in a micro-

prudential fashion, meaning the objective of financial stability is pursued by ensuring

the solvency of individual institutions. With the arrival of the 2008 financial crisis, a

radical change in policy occurred starting with the reduction of the Bank of England

base interest rate, which stood at 5.75% in July 2007, to 0.5% by March 2009. Policy
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action continued with the unconventional measure of internationally coordinated quan-

titative easing, via the creation of an Asset Purchase Facility [see Joyce et al., 2011,

for a summary of quantitative easing carried out by the Bank of England], designed to

stimulate the economy and improve market liquidity.

Subsequent to the UK policy decisions taken shortly after the start of the financial cri-

sis, a consensus emerged amongst policymakers and researchers [Hanson et al., 2011;

Bernanke, 2009; Sap, 2009] advocating a macroprudential approach to financial regu-

lation and policy. In contrast to a microprudential approach, macroprudential frame-

works approach the objective of financial stability [Allen and Wood, 2006; Schinasi,

2005] via the soundness of the entire system [Borio, 2003]. A key concept relevant to

macroprudential frameworks is systemic risk [Acharya, 2009], defined simply as the

risk of system-wide failure of financial institutions. Galati and Moessner [2013] pro-

vide a review of the literature surrounding macroprudential economic policy and, in

particular, discuss the difficulties policymakers have in agreeing how macroprudential

regulation should be implemented.

As part of international efforts to make financial systems (more) robust to the failures

of connected institutions (either other banks via the interbank market, or firms in the

real economy defaulting on loans), a range of suggested (and some already finalised)

policy measures have emerged that aim to improve the soundness of individual finan-

cial institutions, and to curtail the propagation of systemic risks, or contagion. In the

following sections, a selection of these policies are discussed, in light of the findings of

this thesis.

6.2 Bank capital adequacy and delayed transitions
Since 2008, the literature concerning failures in financial networks has grown to a

large extent, with many researchers, and policymakers, carrying out both analytical

and experimental analysis of financial networks. In particular, research has focused

on interbank networks, given the central role such markets play in facilitating orderly

day-to-day banking activities. For instance, when banks require liquidity (typically a
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short term loan) to meet requirements originating from their own activities (or more

accurately, their balance sheet) they attempt to obtain such liquidity from other banks,

via the interbank market. As a last resort, the central bank may provide such liquidity.

When banks experience losses on their assets (which might occur when a bank makes a

loan to another bank, who subsequently defaults before repaying the loan), as occurred

during the recent financial crisis, the capital of the creditor bank is diminished (see

Fig. 1 of Arinaminpathy and May [2010] for a stylised bank balance sheet). When the

capital of a bank is totally depleted, below that of mandatory regulatory requirements,

the bank either requires a so-called bail-out from a central bank or government agency,

or defaults. In a bid to make banks, and the financial system as a whole, more re-

silient to network risks, increasing the amount of capital that banks are required to hold

(as prescribed by the Third Basel Accord [Basel Committee on Banking Supervision,

2010], colloquially known as BASEL III), has become the central policy response of

banking regulators in the aftermath of the 2008 financial crisis. In accordance with the

updated accord, banks will be required to hold 2.5% of assets as capital (known as the

mandatory capital conservation buffer) in addition to the 4.5% capital buffer, already

in effect, prescribed by the Second Basel Accord [Bank for International Settlements,

2004]. Additional variable capital requirements may be imposed by regulators of up

to 3.5% for institutions deemed to be systemically important [Basel Committee, 2011]

(also known as systemically important financial institutions (SIFIs)).

In chapter 4 of this thesis, a pulse-coupled dual-threshold cascade model is presented

that exhibits a transition from a small-cascade regime to that of a large (macroscopic)

cascade size regime, as coupling probability is increased, and surpasses a critical cou-

pling value [Wray and Bishop, 2014]. In addition, it was demonstrated that as the

threshold (K) determining the onset of pulse-coupling is increased, the capacity of the

system to accommodate connectivity amongst its components, prior to the onset of the

large-cascade regime, is increased (see Fig. 6.1). Moreover, for K > 1 tested, when the

transition does occur, at pc, it does so according to ∆m = (m(pc + ε)−m(pc)) ∝ K,

where m(p) symbolically represents the maximal cascade size (as a fraction of the total
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system) obtained at the corresponding value of p. Figure. 6.2 depicts this relationship

for 1≤ K ≤ 9 using a value of ∆p = ε ≈ 10−5. These general observations continue to

hold when the model is restricted to a single threshold, and components do not recover

as is the case for a network of banks. In this scenario, the threshold K can be identified

with the capital buffer of the banks and pulse-coupling, initiated when the capital buffer

is depleted, representing an insolvent bank defaulting on interbank loans.

Transitions of a similar nature have been documented to occur in other network sys-

tems. For example, in telephony communication networks dynamic routing [Gibbens,

1988] of calls is known to increase the working capacity of the system without dy-

namic routing, measured as the total number of calls the system can successfully si-

multaneously connect, and induce instabilities in the form of sharp transitions to a

congested regime [Gibbens et al., 1990; Kelly, 1996]. More recently, so-called explo-

sive percolation [Achlioptas and Spencer, 2009; Da Costa et al., 2014] is documented

to occur in network bond percolation models, where bond formation is determined by

an Achlioptas process [Achlioptas and Spencer, 2009]. Achlioptas processes permit a

limited amount of choice in the formation of network bonds. Instead of adding a single

bond randomly (as in standard bond percolation), two candidate bonds are randomly

selected, and the bond that minimises the subsequent connected component is chosen.

In both of the examples just described the optimisation of some key quantity delays the

transition of the system to an undesirable regime, but at the cost of a more abrupt and

comprehensive transition.
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Figure 6.1. a) Transition from small cascade regime to large cascade size regime
shown against q for K=1, 2, 3, 5, 8, 10 b) as in a) plotted against p, where p = Kq/N
and N is system size.
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Recent empirical studies conclude that higher capital buffers for individual banks pro-

mote stability [Gai and Kapadia, 2010; Anand et al., 2012], and reduce the frequency

of contagious defaults. By drawing parallels with known results from communications

networks and explosive percolation, coupled with the results of chapter 3 of this the-

sis, such a conclusion, while not incorrect, may represent only a partial description of

the effect of increasing capital buffers. From a policy perspective, there are two main

implications. The first is a need to understand more fully how optimising characteris-

tics over a network impact the dynamics of the system, and the second relates to how

monitoring, or the composition of early-warning metrics [Scheffer et al., 2009; Schef-

fer, 2010; Lade and Gross, 2012] should be performed, if the observable evidence of

systemic events is subdued.
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6.3 Asset bubbles and herding as a precursor to sys-

temic risk

The inflation stabilising policies of the UK during 1979 to 2007 viewed consumer

prices as centrally important quantities, while asset prices (of financial assets such as

real estate and housing market loans) were considered to be of secondary concern.

Indeed, the collection and reporting of financial soundness indicators, instigated and

organised by the International Monetary Fund [2006], lists real estate markets as a non-

essential (but encouraged) indicator of macroeconomic soundness. Although this non-

core view of asset markets and prices has been challenged and debated by economists

and policymakers for some time [Cecchetti et al., 2000; Bean, 2004; Detken and Smets,

2004], the pre-crisis consensus was that macroeconomic policy should not react to asset

markets [Bernanke and Gertler, 2001].

The leading report in to the financial crisis carried out by The Financial Crisis Inquiry

Commission [2011] highlights the central role played by the American housing bubble

(see Fig. 6.3), defined as a systematic deviation in price from economic fundamen-

tals [Blanchard and Watson, 1982; Tirole, 1985; Lux, 1995; Abreu and Brunnermeier,

2003], and the market for home loans (as well as other markets), in the crisis. This sug-

gests a re-evaluation of asset markets, and asset prices, as indicators of (and catalysts

for) potential macroeconomic instability and systemic risk.

While the economic theories of efficient markets [Fama, 1970] and rational expecta-

tions [Muth, 1961] virtually preclude the existence of phenomena such as bubbles, a

complexity-theoretic approach has much to offer policymakers in this regard. Being

unconstrained by the supposition of steady-states, or equilibrium dynamics, a complex

system may operate over a multitude of regimes, each of which may cause the sys-

tem to produce potentially distinct qualitative output. In such a framework an extreme

phenomenon, such as asset price bubbles, may be modelled as emerging from the un-

derlying dynamics, rather than via an exogenously imposed mechanism. Behavioural

economists, using a less stringent form of economic rationality [Thaler, 1994] com-
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pared to the rational expectations theory, have begun to explore emergence in finan-

cial markets [Hommes, 2001; Hommes and Wagener, 2009], finding that many of the

observed features of price dynamics can be reproduced by market models composed

of heterogeneous agents utilising competing trading strategies [Hommes, 2002; Brock

et al., 2005].

One route to improve the detection of market instability, or asset price bubbles, may be

to have alternative theories of the determinants of asset price fluctuations. As a starting

point, Robert Shiller’s definition of an asset bubble is recounted [Shiller, 2015; 2014]:

A situation in which news of price increases spurs investor enthusiasm

which spreads by psychological contagion from person to person, in the

process amplifying stories that might justify the price increase and bring-

ing in a larger and larger class of investors, who, despite doubts about the

real value of the investment, are drawn to it partly through envy of others
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successes and partly through a gamblers excitement.

In chapter 5 of this thesis, and in the spirit of Shiller’s asset bubble definition, the

stochastic pulse-coupled model (of chapter 4) is used to produce a stylised model of

asset price dynamics in a financial market. The model utilises the concept of infor-

mational cascades defined, at the simplest level, as the situation that occurs when per-

sonal preference is subordinated by information obtained from others, or their actions

[Shiller, 1995; Bikhchandani et al., 1998; Hirshleifer and Hong Teoh, 2003]. In the

model, price bubbles form as the result of a symmetry-breaking bifurcation that occurs

when coupling probability surpasses a critical value.

The problems asset bubbles pose for policy makers, and regulators of financial markets,

include the identification of bubble onset, on one hand, and the onset of bubble collapse

on the other. Even though the extent to which bubble onset and bubble collapse are

produced by similar (or even the same) mechanisms is unknown, the objectives of

policy makers may be different in each scenario. If macroprudential policy is to react

efficaciously to asset markets, detection of bubbles must be coupled with an assessment

of the risks posed to the wider economy, which in turn depends upon forecasting both

the size and duration of such an episode. Instigating policy interventions aimed at

curtailing bubbles that dissipate (presenting minimal implications for systemic risk)

before policies come in to effect would be costly, erode public confidence in regulators

and deter investors. On the other hand, when a bubble collapses (or market crashes),

it may not be possible, or beneficial, for policy makers to avoid entirely a fall in asset

prices, although a gradual decline in asset values may be preferable to a sudden crash.

In a complex systems approach, transitions between different regimes of the system

may be accompanied by certain bifurcations [Kuehn, 2011] (such as the fold and cusp

catastrophe). In the case of a bubble collapse, identified with sudden market crashes,

such a transition may be considered analogous to a tipping point. Researchers study-

ing systems in which such transitions occur (the extinction of an ecological population

[Scheffer et al., 2001], changes in opinion dynamics [Brock, 2006] and climate [Dakos
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et al., 2008], for example) have developed methods, and leading indicators, that aim to

detect the onset of tipping points. Such research recognises that systems very near to a

bifurcation may take a long time to recover from perturbations (so-called critical slow-

ing down [see Scheffer, 2010, for a review]) and changes to the variance of fluctuations

may result, enabling statistical indicators of tipping points to be produced [Carpenter

and Brock, 2006; Drake and Griffen, 2010; Lade and Gross, 2012]. The dynamic be-

haviour of system fluctuations near a critical point appears to be general. For instance,

Podobnik et al. [2015] study the time to network collapse when nodes undergo random

attack and recovery, and show the approach to collapse is marked by rising variance of

fluctuations.

By augmenting the network model of Podobnik et al. [2015] with a simple dynamic

edge-rewiring rule as node failures occur, the abrupt network collapse can be delayed,

and in certain instances totally avoided (see Fig. 6.4). In the context of a financial

network, the edge rewiring mechanism described here, could represent the novation of

transactions away from unsound counterparts, to those perceived as safer.

While detecting asset bubbles, and avoiding the abrupt market crash that so often fol-

lows may be notoriously difficult tasks, a complexity-theoretic tipping point approach

may provide policymakers, and regulators, with tools and models where such abrupt

behaviour can be studied in detail greater than that available using standard economic

analysis. A policy implication is then a complex systems model may provide useful

indicators of instability and augment the financial soundness indicators [International

Monetary Fund, 2006] currently used.

6.4 General comments on the use of complexity models

by policymakers

As financial markets become more integrated, and financial innovation introduces ever

more complicated products to markets and ways to create markets, it is plausible that

future financial crises may be even more comprehensive and harder to detect, than
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that of 2008. For example, many markets remain opaque, such as so-called over-the-

counter markets where a significant proportion of trades in interest rate, currency and

commodity products take place, and they appear to be growing [Bank for International

Settlements, 2013].
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While policymakers, and some economists, advocate the need to make more use of

unorthodox tools and different methodologies [Trichet, 2010], this need not supplant

existing tools. On the contrary, in recognition of the difficulties modelling socio-

economic complex systems pose, Helbing [2010] suggests a pluralistic modelling ap-

proach may offer many benefits. In particular, such a framework does not require mod-

els and tools adhere to a single theory or methodology; favouring collaboration over

conformity [see Helbing et al., 2011; Helbing, 2013, for a more detailed account of

this].
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Chapter 7

Conclusions

7.1 Summary of results

This thesis set out to understand and explore the use of complexity theoretic concepts,

tools and techniques in the study of financial systemic risk. The catalyst for this endeav-

our was in part an external one - arising from the public admission by a policy maker of

a fundamental epistemological gap in how to manage, and navigate, a financial crisis.

The study sought to answer the following question:

• How can mathematical models provide a context in which complex systems, and

financial systemic risk, come together in a coherent way to aid policy makers?

I will return to the answer after describing the main body of the thesis.

Before I could begin to answer that question, an analysis of the dynamic stochastic

general equilibrium approach was performed, in order to better understand why such

models failed to serve policy makers during the financial crisis of 2007-2008. In this

regard, the work in chapter 3 (and appendix A) was an attempt to understand why

the incumbent body of knowledge had failed to provide the useful tools that policy

makers sought. A key insight gleaned from this exploratory work, is that the general

equilibrium theory which underpins the DSGE model is firstly, too constrained by the

various requirements which components of the model must meet (households as utility
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maximisers, economic agents as rational), to the point where pertinent questions cannot

be asked of it.

Secondly, the presumption of exogenous shocks, coupled with the assumed constrained

behaviour of model components suggests, a priori, that forecasts have limited range

(which is not the same as inaccurate forecast - but there is ample evidence to suggest

DSGE forecast accuracy prior to the financial crisis was not high [Wickens, 2012]).

Moreover, prior to the financial crash, many DSGE models [Gerali et al., 2010] did

not contain financial sectors, seriously limiting what insight they could offer during a

financial crisis.

The primary aim of a DSGE model is to inform policy makers, rather than predict or

forecast. In this regard, it is difficult to draw a sharp conclusion as to whether they

failed or not. It would be disingenuous to suggest DSGE models have failed because

they did not predict a financial crisis - but it does raise the question of whether policy

makers should rely on a single model, or modelling framework, to stay informed.

In conclusion, an ensemble of models, or adapting a pluralistic approach [Helbing,

2010], would bring informational and model diversification benefits. Indeed complex-

ity science has much to offer a policy maker in this regard - for instance, an agent based

model could incorporate multiple information sources (and other models) in a coherent

way.

The latter part of chapter 3 introduced the modelling rationale that underpinned the rest

of this thesis. A broad version [Helbing, 2012] of systemic risk [compared to Fouque

and Langsam, 2013, p. xxi], incorporating herding in asset markets, was identified as

linking together collective behaviour and systemic risk, via complex systems.

I will briefly describe the results of chapters 4 to 6, and what has been gained from each

of the chapters.

In chapter 4 a stochastic pulse-coupled network [Wray and Bishop, 2014] was con-

structed, that extends the work of DeVille and Peskin [2008] and DeVille et al. [2010],

by allowing for pulse-coupling to occur at two boundaries. This adaptation enables cas-
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cade phenomena to be studied in the presence of opposing influences; a situation that

occurs predominately in socio-economic systems. The model is inherently dynamic -

which is something that has been overlooked in previous percolation type models. As

a special case, the model recovers standard bond peculation, and can generate sharper

percolation transitions by making use of the parametrised thresholds.

From a complexity science perspective, the techniques of phase transitions and net-

works have been used in the analysis of both models. In addition, by framing herding

as a systemic risk, coupled with the view of financial markets as a complex system

in which systemic risk arises endogenously, I identify herd behaviour as an emergent

feature. This is in contrast to the treatment of herd behaviour (and associated asset

bubbles and market crashes) by the dominant classical economic theory, as irrational

or anomalous.

In relation to the stylised financial market model developed in chapter 5 [Wray and

Bishop, 2015], a novel feature of my findings is that long-memory patterns observed

in financial time series may be explained by a simple threshold model. In the model,

thresholds represent economic agents’ decision making process. The model as de-

scribed in chapter 4, is extended to allow for a semi-infinite state space, and for a

distribution of thresholds over the agents. Numerical results arising from simulations,

suggest that by taking a left skewed distribution of thresholds, D (many agents with a

high threshold, and few agents with low thresholds) of the form

D(K)∼ (1+Kmax−K)−α (7.1)

volatility clustering can be generically induced. This is related to recent research de-

tailing how a small number of herd-immune agents can influence and control a larger

number of agents whom have a higher propensity to herd [Kononovicius and Gontis,

2014]. This analogy can be drawn since agents with threshold K have a probability

proportional to Kq of receiving an incoming pulse-coupling.

This analysis contributes to the literature of agent-based, or multi-agent, herding mod-
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els that aim to describe the stylised facts observed in the price returns of financial assets

using simple behavioural mechanisms. In contrast to previous studies, which predom-

inately utilise strategy switching amongst agents, or consider agents to operate over

fixed heterogeneous time scales, the model developed in this thesis utilises a minimal-

istic threshold model, which can be furnished with an economic context. In the model,

numerical analysis reveals that the simple optimising mechanism of minimising the

time spent decision making, over multiple epoch, may drive agents to self-organise to

a critical regime of the system, where long-memory patterns, emerge. In mathematical

terms, this optimising mechanism translates into the minimisation of the first passage

time to a fixed boundary in a semi-infinite domain.

Lastly, by phrasing the model thresholds, not as zones to traverse but as capital buffers

to deplete, the model can be adapted to the context of default cascades of banks.

In chapter 6, I applied my findings to the two policy areas. First, to bank capital ade-

quacy buffers, and connected an increase in buffers to how the transition in the pulse

coupled model increases in sharpness as thresholds are increased. I further linked this

resource pooling in telephony networks, where stress can build up in the system un-

recognised. Second, I argued that stability measure of the macro-economy would ben-

efit by incorporating asset markets and the associated herding and bubbles that can

result in systemic risk events.

In conclusion I have found mathematical models can contribute to the understanding

of systemic risk by utilising complexity science. In particular, by constructing models

that present emergent behaviour (in line with complex systems emergent behaviour),

plausible behavioural mechanisms for systemic risk events in asset markets can be in-

vestigated.

7.2 Extensions and future research and limitations
With regards to the numerical results of chapter 5 on left-skewed distributions of agent

thresholds, an interesting inference not covered by Kononovicius and Gontis [2014]

(and in line with what my numerical results suggest), is how a hierarchical structure of
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herd behaviour may generically generate long-memory patterns in asset return volatil-

ity. This would be an interesting result, and offer a very simple behavioural mechanism

under which long-memory patterns in volatility can arise.

Another direction would be to allow for a more satisfying network structure in the

pulse-coupled model. By generalising the model to multiplex networks a multi-asset

version could be developed, possibly offering richer phase transitions and correlations.

On a different theme, endogenous economic growth could be studied, in a similar way

to how agent interactions have been modelled in this thesis. Growth is then transmitted

between firms, much like orders for business.

A limitation of my work is that more empirical data analysis could have been per-

formed - this would have added more weight to some of my conclusions, and permitted

different analyses to be carried out.
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Appendix A

A New Keynsian DSGE model - for

chapter 3

The details presented here largely follow that of Galı́ [2009], and estimate a model fitted

to US economic data using Bayesian methods [for a review of Bayesian techniques

related to DSGE modelling, see An and Schorfheide, 2007].

After describing the model, the log-linearised model equilibrium equations and the

graphs of input-response functions (IRF) are presented. The details of standard deriva-

tions can be found in Galı́ [2009, chapter 3].

Following convention, lower-case variables denote log-linearised versions of upper-

case variables. This means for a given and sufficiently well-behaved variable Ht , we

define ht = log(Ht)− log(H), where H is the so-called steady-state of the variable Ht .

It follows that

Ht = H exp(ht)≈ H(1+ht). (A.1)

The DSGE model can be decomposed into the following parts, each one is described

separately.

• Agents: households, firms (final and intermediate goods) and a monetary author-

ity.

• Blocks: demand, supply and policy.
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• Variables: output (Yt), aggregate price (Pt) and consumption (Ct) index , infla-

tion (Πt), one-period bond (Bt) and its associated price (Qt), nominal short term

interest rate (it = − logQt), hours worked (Nt), nominal wage (Wt), lump sum

component of income (Tt).

• Constants: α , β , ε , ϕ , σ , σa, σv.

• Exogenous variables: firm technology (At), exogenous interest rate process (vt).

The preferences and technology of agents are specified as

• Households: maximise expected lifetime utility subject to budget constraints.

• Firms: intermediate good firms are monopolistically competitive and maximise

expected profit, subject to demand constraints. Each firm is subject to the same

time-varying production function.

• Monetary authority: sets a nominal interest rate, according to a specified policy

rule.

A.0.1 Exogenous variables

The basic model contains two exogenous auto-regressive AR(1) processes (known as

shocks or driving processes in the literature) describing technology (vt) and policy (at)

vt = ρvvt−1 +ηv,t , (A.2)

at = ρaat−1 +ηa,t , (A.3)

ηv,t ∼ N
(
0,σ2

v
)
, ηa,t ∼ N

(
0,σ2

a
)
, (A.4)

where ρa and ρv are constants and ηv,t , ηa,t are zero-mean normally distributed random

numbers. These processes provide the fluctuations around steady-state observed in the

economic variables of the DSGE model.
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A.0.2 Households

Households supply labour to firms, and plan when to consume the products produced

in the economy, or to defer consumption by holding bonds (savings). The preferences

of households is described by the utility function U(Ct ,Nt) =
C1−σ

t
1−σ
− N1+ϕ

t
1+ϕ

. A represen-

tative, infinitely lived, household is assumed to maximise

E0

∞

∑
t=0

β
tU(Ct ,Nt) =

∞

∑
t=0

β
tE0

{
C1−σ

t

1−σ
− N1+ϕ

t

1+ϕ

}
, (A.5)

subject to the budget constraint

PtCt +QtBt ≤ Bt−1 +WtNt +Tt . (A.6)

The aggregate consumption index is given by Ct =
(∫ 1

0 Ct(i)1−1/ε di
) ε

ε−1 , and similarly

the aggregate price index is Pt =
(∫ 1

0 Pt(i)1−ε di
) 1

1−ε . The quantity Ct(i) represents

the amount of good i consumed by the household in period t, and Pt(i) is the price of

good i. As will be confirmed in the firms section, we assume here the existence of

a continuum of goods represented by the interval [0,1]. The log-linearised optimality

condition, under rational expectations, is given by the consumer Euler equation

ct = Et{ct+1}−
1
σ
(it−Et{πt+1}) , (A.7)

where Et is the conditional (time-t) expectation. Under market clearing for goods, ct =

yt . Combining this condition with Eq. (A.7) results in the so-called forward investment

and savings (IS) equation

yt = Et{yt+1}−
1
σ
(it−Et{πt+1}) , (A.8)

where Et{πt+1}= Et{pt+1− pt}.
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A.0.3 Firms

There exists a continuum of firms, indexed by i ∈ [0,1], each producing a differentiated

good, and all using identical technology. The production function for firm i is given by

Yt(i) = AtN1−α
t . (A.9)

Each firm restates its price with a probability 1−θ , in any given period and indepen-

dently of previous update times. A firm that does not update its price in period t con-

tinues to use the price of the previous period. With Yt+k|t denoting the output of a firm

in period t + k, that last updated its price in period t; Qt,t+k a stochastic discount factor

and Ψt+k a cost function, a firm updating its price, Xt , in period t will select the price

that maximises the current market value of profit, subject to the demand constraints.

Formally,

max
Xt

∞

∑
k=0

θ
k Et

{
Qt,t+k

(
XtYt+k|t−Ψt+k

(
Yt+k|t

))}
, (A.10)

subject to demand constraints

Yt+k|t =

(
Xt

Pt+k

)
Ct+k, for k = 0,1,2, ... (A.11)

The result of considering the optimal price setting of firms in equilibrium provide a

model equation for inflation, in terms of the output-gap (yg)

yg = yt−
1/σ(1+ϕ)

1−α +1/σ(ϕ +α)
at , (A.12)

πt = βEt{πt+1}+κyg
t . (A.13)

Where κ = (1−θ)(1−βθ)
θ

1−α

1−α+αε

(
σ + ϕ+α

1−α

)
. It is also possible to rewrite Eq. (A.8) as

yg
t = Et{yg

t+1}−
1
σ
(it−Et{πt+1}− rn

t ) , (A.14)
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with rn
t the natural rate of interest

rn
t = σ

1+ϕ

σ(1−α)+ϕ +α
Et{at+1−at} (A.15)

= σ
1+ϕ

σ(1−α)+ϕ +α
(ρa−1)at , (A.16)

with the last equality following from Eq. (A.3). By consider market clearing in the

goods and labour market, we establish a relationship between output, technology and

labour supply (employment)

yt = at +(1−α)nt ⇒ nt =
yt−at

1−α
. (A.17)

A.0.4 Monetary policy

The monetary policy block of the model encapsulates the interest rate setting agent and

any policy equations. This often takes the form of a central bank that sets the short term

interest rate for the economy via the so-called Taylor rule [see Galı́, 2009]

it = φππt +φyyg
t + vt . (A.18)

A.1 Estimating the model and fitting data

The method of undetermined coefficients, described by Uhlig [1995], can be used to ob-

tain a reduced-form recursive solution of the linear rational expectations system formed

from equations (A.12), (A.13), (A.13), (A.14), (A.16), (A.17), (A.18), the total number

of which is Md , and the equations for exogenous variables, (A.2) and (A.3), of which

there are Me in total. Applying the method determines the values of matrices A,B,C in

the reduced form solution

ζt = Aζt−1 +Bzt , ζt ∈ RMd , A ∈ RMd×Md , B ∈ RMd×Me (A.19)

zt =Czt−1 +ηt , C ∈ RMe×Me , ηt ,zt ∈ RMe. (A.20)
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Where, ζt = [yg
t , yt , πt , rn

t , it , nt ]
T and zt = [at , vt ]

T . In order to facilitate Bayesian

parameter estimation, when fitting the model to economic data, a state-space represen-

tation of the reduced-form recursive solution is used.

γt = Φγt−1 +Θηt , γt = [ζt , zt ]
T . (A.21)

The matrices Φ,Θ ∈ RM×M (for M = Md +Me) are functions of the matrices A,B,C
above. As an illustration, the model is fitted to two observable economic time series,
together with shocks to production (at) and technology (vt):

• πt : UK Consumer Price Inflation (UK CPI).

• it : UK Sterling Overnight Index Average (SONIA).

Quarterly data from March 1997 to June 2013, publicly available from Office of Na-

tional Statistics-UK [2013], is used. Once a parameter fit is obtained plots of IRFs are

produced that visualise how an isolated one standard deviation shock in an exogenous

variable (either at or vt) evolve the endogenous variables through time.
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Figure A.1. An input-response function diagram showing the relations to policy
shock.
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Figure A.2. An input-response function diagram showing the relations to technology
shock.
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Appendix B

Pulse-coupled model details and proofs

- for chapter 4

Description of the stochastic model

During the diffusion phase, at time t, the state variables θu(t) update according to a

simple unbiased continuous-time random walk between nearest neighbour states, satis-

fying

1
2 = P{θu(t +δu) = s+1 |θu(t) = s}

= 1−P{θu(t +δu) = s−1 |θu(t) = s}, (B.1)

where s ∈ {1, . . . ,2K− 1}, θu(t) is the current oscillator state and δu are independent

exponentially distributed random variables, Exp(Λ) with mean 1/Λ, representing the

passage of time until the next state transition. Without loss of generality, throughout

this study we set Λ = 1. The first oscillator to transition to either of the firing states

occurs at the boundary hitting time,

τ = min
u
{t : θu(t) = 0, or θu(t) = 2K}, (B.2)
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at which time the diffusion process ends and the cascade phase begins. The existence

of finite hitting times, for this random walk between two boundaries, is guaranteed by

standard results Redner [2001]. The cascade process continues as described for the

original one sided model DeVille et al. [2010]; DeVille and Peskin [2008], with the

difference being oscillators reset to state K after firing and the cascade ending, before

the diffusion phase restarts.

Mean field model.
Let vvvi ∈ R2K+1

+ denote the i-th standard basis vector, with 1 in position i and 0 else-

where, and let S0,S+,S− be subsets of phase space, defined by

S0 = {yyy ∈ R2K+1
+ : 〈yyy,vvv0〉< 1,〈yyy,vvv2K〉< 1},

S+ = {yyy ∈ R2K+1
+ : 〈yyy,vvv2K〉 ≥ 1},

S− = {yyy ∈ R2K+1
+ : 〈yyy,vvv0〉 ≥ 1},

(B.3)

where R+ = {r ∈ R : r ≥ 0}, and 〈. . .〉 denotes the standard inner product on R2K+1.

The set S0 represents the system state during the integrate (or diffusion) phase - that is,

between firing (pulse-coupling) events. The sets S+ and S− represent the state of the

system during a cascade phase originating from either the positive pulse-coupling firing

state (S+), or the negative pulse-coupling firing state (S−). Throughout this section, all

vectors and matrices are indexed with component labels ranging from 0 to 2K.

The basis of the mean field model, is the vector of expected state occupation, which

encodes the macroscopic state of the system. Let xs(t)≥ 0 be the expected number of

oscillators in state s at time t, then xxx(t) is given by

xxx(t) = (x0(t), . . . ,x2K(t)) ∈ R2K+1
+ . (B.4)

Our aim is to use the MF system to solve for the vector xxx(t), in specific cases. For

instance, equation (4.5) shows the solution for xxx(t) when the MF system produces

singleton firings that alternating indefinitely between the upper and lower boundaries.
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Although the mean field model is deterministic, the dynamics still occur in two phases:

a continuous-time diffusion phase and instantaneous cascade phase. Since the diffusion

of each oscillator state evolves according to equation (B.1), during the diffusion phase

xs(t) evolves according to

dx0(t)
dt

= 1
2x1(t),

dx1(t)
dt

= 1
2x2(t)− x1(t),

dx j(t)
dt

= 1
2x j−1(t)+ 1

2x j+1(t)− x j(t),

dx2K−1(t)
dt

= 1
2x2K−2(t)− x2K−1(t),

dx2K(t)
dt

= 1
2x2K−1(t),

(B.5)

where j ∈ {2, ...,2K − 1}. We can write the linear equations (B.5) in the more

compact form ẋxx(t) = LDxxx(t), with solution xxx(t) = etLDxxx(0) where the matrix LD ∈

R(2K+1)×(2K+1), indexed from i, j = 0, ...,2K, has entries

(LD)i j =



1
2 for i = j−1, j = 1,2, ...,2K−1,

1
2 for i = j+1, j = 1,2, ...,2K−1,

−1 for j = i, j = 1, ...,2K−1,

(B.6)

with all other entries zero. Recall that the diffusion phase ceases as soon as an oscillator

transitions to either of the firing states. For the non-normalised mean field system, this

condition is encoded as x0(t)≥ 1 or x2K(t)≥ 1, or equivalently as

〈xxx(t),vvv0〉 ≥ 1 (negative pulse condition),

〈xxx(t),vvv2K〉 ≥ 1 (positive pulse condition),
(B.7)

We say the equations 〈xxx(t),vvv0〉= 1 and 〈xxx(t),vvv2K〉= 1 define discontinuity boundaries

Casini and Vestroni [2004]; di Bernardo et al. [2001], in the context of piecewise-

smooth dynamical systems, of which the mean field model is a simple example. As
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soon as one of the conditions in equation (B.7) is satisfied, the cascade phase begins,

with the appropriate pulse-coupling.

The action of a single oscillator firing is encoded using the pulse-coupling matrix, LC,

and the map Fp given by

Fp(xxx(t)) = (I + pLC)xxx(t)− vvv, (B.8)

where the term −vvv removes the firing oscillator from the system, after it has fired, to

satisfy the requirement that it enters a refractory state. The matrix LC describes the

effect of pulse-coupling on the remaining oscillators in the system, and can take one of

two values. For an initial positive pulse LC = LC,+ and vvv = vvv2K are used, while for an

initial negative pulse LC = LC,− and vvv = vvv0, where

(LC,+)i j =


1 for i = j+1, j = 1, ...,2K−1

−1 for i = j, j = 1, ...,2K−1
(B.9)

(LC,−)i j =


1 for i = j−1, j = 1, ...,2K−1

−1 for i = j, j = 1, ...,2K−1,
(B.10)

with all other entries zero, for both matrices. The cascade, refractory and resetting pro-

cesses continue in the same way as for the original model DeVille et al. [2010]; DeVille

and Peskin [2008], with the exception that oscillators reset to state K after firing

In order to correctly encode the cascade procedure involving multiple oscillators, the

map given by equation (B.8) must be applied to the state vector xxx(t) each time an os-

cillator fires. To do this, we use functional composition defined as follows: for an

arbitrary function f , and arbitrary integer a, the a-fold composition is denoted via an

exponent

a times︷ ︸︸ ︷
f ◦ f ◦ ...◦ f = f a. Applying the map in equation (B.8) to xxx(t) a times, we

obtain Fa
p (xxx(t)) = (I + pLc)

axxx(t)− avvv, because vvv2K ∈ ker(LC,+) and vvv0 ∈ ker(LC,−).

The cascade size, m, is defined as m = m(xxx(t)) = inf{a : Fa
p (xxx(t)) ∈ S0}, given appro-
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priate values of LC and vvv, and S0 defined by equation (B.3). Finally, the m oscillators

that fired during the cascade, and subsequently removed from the system, are added

back in and reset to level K. Hence, we can define a map

φ : S+∪S−→ S0 (B.11)

φ(xxx(t)) = Fm(xxx(t))
p +m(xxx(t))vvvK,

where S+,S− are defined by equations (B.3).

Using the above definitions, we can state the dynamics of the mean field system as

ẋxx(t) = LDxxx(t) for xxx(t) ∈ S0,

xxx(t) 7→ φ(xxx(t)) for xxx(t) ∈ S+∪S−.
(B.12)

B.1 Construction of the map G0

In the asynchronous state, isolated cascades (of size 1) occur in an alternating pattern

originating from the two firing states 0 and 2K. Therefore, we construct a map that

takes the system state vector initially in set S0 (defined by Eqn. (B.3)) and describes

the system undergoing an isolated (size 1) cascade originating from state 2K (when the

system state vector is in set S+ defined by Eqn. (B.3)), followed by a second diffusion

and an isolated cascade originating from state 0 (when the system state vector is in set

S− defined by Eqn. (B.3)).

The physical actions in detail are as follows:

1. Initially the system has normalised state vector:

xxx ∈ S0

2. The system diffuses while in set S0 (under the relevant action given by

Eqn (B.12)) for time τ1 at which point a the state vector is now in the set

S+. The state vector is now:

eτ1LDxxx ∈ S+.

3. The system undergoes an isolated cascade given by φ in Eqn. (B.11). Because
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the cascade is of size 1, φ is given by Fp defined in Eqn. (B.8), with p, LD and vvv

replaced with εKq, LC,+ and εvvv2K respectively. The state vector is now:

(I + εKqLC,+)eτ1LDxxx− εvvv2K .

4. After this cascade, the 2K-th component of the state vector is reset (mapped)

back to the K-th component of the state vector. Because we are considering an

isolated (size 1) cascade, the 2K-th component is ε , and so we must add εvvvK back

to the system state vector. The state vector is now:

(I + εKqLC,+)eτ1LDxxx− ε(vvv2K− vvvK) ∈ S0.

5. The system diffuses while in set S0 (under the relevant action given by

Eqn (B.12)) for a time τ2 at which point a the state vector is now in the set

S−. The state vector is now:

eτ2LD[(I + εKqLC,+)eτ1LDxxx− ε(vvv2K− vvvK)] ∈ S−.

6. The system undergoes an isolated cascade given by φ in Eqn. (B.11). Because

the cascade is of size 1, φ is given by Fp defined in Eqn. (B.8), with p, LD and vvv

replaced with εKq, LC,− and εvvv0 respectively. The state vector is now:

(I + εKqLC,−)eτ2LD [(I + εKqLC,+)eτ1LDxxx− ε(vvv2K− vvvK)]− εvvv0.

7. After this cascade, the 0-th component of the state vector is reset (mapped) back

to the K-th component of the state vector. Because we are considering an isolated

cascade (of size 1), the 0-th component is ε and therefore add εvvvK back to the

system state vector. The state vector is now:

(I + εKqLC,−)eτ2LD [(I + εKqLC,+)eτ1LDxxx− ε(vvv2K− vvvK)]− ε(vvv0− vvvK) ∈ S0.

The map G0 : S0→ S0 is defined as

G0(xxx) = (B.13)

(I + εKqLC,−)eτ2LD [(I + εKqLC,+)eτ1LDxxx− ε(vvv2K− vvvK)]− ε(vvv0− vvvK).

When computing the solution, up to O(ε), of the fixed point equation G0(xxx) = xxx, it is
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noted the times τ1 and τ2 are of order ε , and linearise the exponential matrix as

eτLD ≈ I + τLD. (B.14)

Furthermore, the matrix multiplications are performed while keeping careful track of

simplifications arising from the kernel of the matrices LD,LC,+ and LC,−.

B.2 Combinatorial methods for cascade probability

The composition [Stanley, 2012] of an integer, x, is the sequence of strictly positive

summands of x. That is, if x = x1 + x2 + ...+ xk then the sequence {x1,x2, ...,xk} is

called a composition of x. There are exactly 2x−1 distinct compositions of an integer x.

We use the concept of integer compositions to derive Eqns. (4.16) and (4.17). To make

it clear when we are working with compositions we use the notation x = [x1, ..,xk].

Consistent with Eqns. (4.10)-(4.12), an arbitrary (unsigned) cascade of size m > 0,

initiated by a single agent, may be written in composition form as m = [1,x1, ...,xk],

and therefore m−1 = [x1, ...,xk]. We identify xi as being the number of internal nodes

at level i in the tree representation of a cascade (see Fig. 4.7).

We proceed by enumerating the ways such a cascade can arise. Given a cascade

expressed as [x1, ...,xk], at an arbitrary level i we have xi−1 copies of a single level

(N−1− x1− ...− xi)-ary tree. We then have

xxi
i−1

(
N−1−∑

i−1
j=1 x j

xi

)
(B.15)

ways to select the xi nodes. Proceeding recursively, we form the product

(
N−1

x1

)
...xxi

i−1

(
N−1−∑

i−1
j=1 x j

xi

)
...xxk

k−1

(
N−1−∑

k−1
j=1 x j

xk

)
=

(N−1)!
(N−m)!

xx2
1 xx3

2 ...xxk
k−1

x1!x2!...xk!
, (B.16)

where the right hand side of the equality is achieved after pairwise cancellation and
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using the fact that m = 1+[x1, ...,xk]. Hence for a given composition (with k parts) we

can write the probability as

P(m | [x1, ...,xk]) =
(N−1)!
(N−m)!

xx2
1 xx3

2 ...xxk
k−1

x1!x2!...xk!
pm−1(1− p)Q, (B.17)

where p is the probability that an agent is induced to a firing state during a cascade and

Q is the perimeter of the tree representation of the cascade. By simple counting, and

using the fact that ∑i≥1, j>i xix j =
1
2

(
(m−1)2−∑i≥i x2

i
)

we can express Q = m(N −

m)+ 1
2(m− 1)2− 1

2 ∑i≥1 x2
i . By removing the composition-dependent term, 1

2 ∑i≥1 x2
i ,

from Q since it is relatively small, we can write the unconditional probability of a

cascade of size m as

P(m) = ∑
k≥1,[x1,..,xk]

P(m | [x1, ..,xk])

= pm−1(1− p)m(N−m)+
1
2 (m−1)2 (N−1)!

(N−m)! ∑
k≥1,[x1,...,xk]

xx2
1 xx3

2 ...xxk
k−1

x1!x2!...xk!

= pm−1(1− p)m(N−m)+
1
2 (m−1)2 (N−1)!

(N−m)!
mm−2

(m−1)!
. (B.18)

For large N,m
(N−1)!
(N−m)!

=

(
N−1
m−1

)
(m−1)!∼ Nm−1 (B.19)

and
mm−2

(m−1)!
=

mm−1

m!
∼ (2π)−

1
2 m−

3
2 em (B.20)

follow from Stirling’s approximation. The final equality in Eqn. (B.18) can now be

rewritten as

P(m) = (2π)−
1
2 (pN)m−1(1− p)m(N−m)+

1
2 (m−1)2

m−
3
2 em, (B.21)

and recalling p = qK/N, with K = 1 as N→∞ we obtain the asymptotic relation given

by Eqn. (4.17).
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B.3 Mixture distribution moments and negative bino-

mial density

First note that since cascade evolution is stochastic, each agent will undergo a random

number of unsuccessful attempts before they are induced to fire - if at all. It is this sim-

ple observation that motivates the choice of the negative binomial statistical model to

approximate the cascade distribution. The density of the negative binomial distribution

used is
Γ(x+ r)
x!Γ(r)

pr
NB(1− pNB)

x, x = 0,1, ..., r > 0, 0 < pNB ≤ 1. (B.22)

Recall in the K = 1 case, there is no symmetry breaking, and each cascade is an in-

dependent event occurring with equal probability either side of 0. Hence, the cascade

distribution, for fixed q, is simply the equally weighted mixture distribution of negative

binomial components: a negative tail and a positive tail. The resulting distribution, D,

is symmetric about 0 and therefore Var(D) = E
(
D2). The moments of D are obtained

using standard methods. In particular,

Var(D) =
1
2

(
2
0

)(
E2(Y1)+E2(Y2)

)
+

1
2

(
2
2

)(
E
{
(Y1−µ1)

2}+E
{
(Y2−µ2)

2})
= Var(X)+(1+E(X))2 . (B.23)

With Y1 = 1+X1 and Y2 =−1−X2, with X1,2(n, p) distributed negative binomial. For

kurtosis we follow the same procedure as above.

E
{

D4}= 1
2
(
E4(Y1)+E4(Y2)

)
+

1
2

(
4
2

)(
E2(Y1)E

{
(Y1−µ1)

2}+E2(Y2)E
{
(Y2−µ2)

2})
+

1
2

(
4
3

)(
E(Y1)E

{
(Y1−µ1)

3}+E(Y2)E
{
(Y2−µ2)

3})
+

1
2
(
E
{
(Y1−µ1)

4}+E
{
(Y2−µ1)

4}) . (B.24)
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The excess kurtosis expressed as a function of q is then,

Kurt(D) =C
(

1− (q−2)q(a1+a2q)
(q−1)2

− 4(q−2)q(q2−2q−1)(a1+a2q)(q2(a1−2a2−1)−2(a1−1)q+a2q3−1)
(q−1)8

− 6(q−2)q(a1+a2q)(q2(a1−2a2−1)−2(a1−1)q+a2q3−1)
2

(q−1)8

− (q−2)q(a1+a2q)(−3q2(a1−2a2)+(6a1+8)q−(3a2+4)q3+q4+1)
(q−1)8

)
−3 (B.25)

where

C =

((
(q−2)q(a1 +a2q)

(q−1)2 −1
)2

− (q−2)q(a1 +a2q)
(q−1)4

)−2

B.4 Power law distribution and Kolmogorov-Smirnov

test
We use the discrete power law zeta distribution, which has density

f (x) = x−α/ζ (α), (B.26)

where ζ (α) is the Riemann zeta function ζ (α) = ∑x x−α with the sum over all integers

x. The computation of the MLEs and Kolmogorov-Smirnov test statistics follow the

procedures described in Clauset et al. [2009].
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Appendix C

Complexity model of herding in

financial markets details - for chapter 5

C.1 Model description

The model consists of N agents, or traders, operating in a financial market for a single

asset, and represented as integrate-and-fire stochastic oscillators connected via an inter-

action network. For a fixed K, each agent can transition between 2K +1 states, which

is represented by a random-walk over the integers {0,1, ...,2K}. During the integrate

phase, agents accumulate information, or sentiment, unobserved by other agents. In

the absence of any structure relating to how agents accumulate such private informa-

tion, this is represented by the agents randomly transitioning between the states of the

system (so-called noise traders ). When agents have accumulated enough information

so as to reach state 0 or 2K, they execute a market transaction that reduces or increases

the market asset price, respectively. Each transaction is assumed to impact the market

price of the traded asset according to some specified price-impact function [Lillo et al.,

2003]. Since market prices are observed by all agents, for each agent that transitions

to the firing state X , where X = 0 or X = 2K, each market agent not already in one of

the firing states updates their private information by moving one state closer to state

X , independently with probability equal to p. As a result, a cascade may form with

agents inducing other agents into the same firing state. With probability (1− p), an
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agent ignores the change in the asset price and does not update their private informa-

tion. Thus, the agents form a pulse-coupled network, with coupling probability equal

to p. We assume that cascades form instantaneously, and the time between a firing

state being occupied is described by an exponential random variable with mean 1/N.

Once an agent has traded, its accumulation of private information is reset to a neutral

level, represented by the state K. The network coupling probability is parametrised as

p = Kq/N.

C.2 Recovery of the implied volatility smile
We recover the implied volatility smile from quoted option prices using a numerical

root search on the pricing formula for European call options [Black and Scholes, 1973].

Second, we use the simple empirical option pricing scheme outlined in Bouchaud and

Sornette [1994] to compute the price an option via simulations of the probability distri-

bution. From this we can again obtain the implied volatility from our model, and iterate

the process until a reasonable fit is found to the market implied volatility.

C.3 Market data: implied volatility of 1-month expiry

European call option on S&P 500 afternoon settled

index
Data for European call options written on the afternoon settled S&P 500 (SPXpm)

index as of November 25 2014, with an expiry of December 20 2014. Options with a

strike price between 2000 to 2220 are used, with the SPXpm index level at 2067.03 at

the close of November 25 2014.
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Table C.1. Implied volatility of SPXpm European call options of 1-month expiry as
of November 25 2014

Strike Price Implied Volatility

2000 11.91
2005 11.78
2010 11.6
2015 11.37
2020 11.23
2025 10.97
2030 10.78
2035 10.54
2040 10.34
2045 10.09
2050 9.87
2055 9.63
2060 9.41
2065 9.24
2070 9.04
2075 8.89
2080 8.73
2085 8.56
2090 8.43
2095 8.3
2100 8.21
2105 8.12
2110 8.12
2115 8.08
2120 8.08
2125 8.12
2130 8.23
2135 8.32
2140 8.46
2145 8.63
2150 8.82
2160 9.19
2170 9.64
2175 9.9
2180 10.14
2190 10.72
2200 11.09
2220 12.02
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Appendix D

A result on the first passage time of N

Brownian motions - a result used in

numerical programming

This brief section outlines computations that were used in the (C++) numerical pro-

gramming work in simulating some parts of the models in chapter 4 and chapter 5. In

particular, when an oscillator integrates stochastically to some boundary, by identifica-

tion with continuous Brownian motion, it is possible to view the problem in terms of

hitting times.

The result present here constructs an iterative approximation scheme for calculating the

hitting time of N Brownian motion particles traversing to the same boundary. Pulse-

coupling, then takes place at hitting times.

The theory regarding a single Brownian motion first hitting, a boundary is well studied

(see Redner [2001] for summary). In order to present the result for N Brownian mo-

tions, some notation is introduced. Let Wt denote the standard Brownian motion with,

W0 = 0. The first passage time (FPT) for b≥ 0 as

τb = inf{t ≥ 0 : Wt ≥ b}. (D.1)
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For all b, the FPT τb is a random variable and is therefore described by a probability

distribution. The Laplace transform of some function f (t) is stated in the form of an

integral operator

L [ f (t)](s) =
∫

∞

0
f (t)e−st dt, t ≥ 0, s ∈ C, (D.2)

which is denoted throughout this text by both F(s) or f̆ (s). In particular, when f is

taken to be the probability density function of a random variable X , we can make use

of the relation

F(s) = E{e−sX}, (D.3)

where E denotes the expectation of the random variable e−sX . The Laplace transform

is a useful tool when investigating FPT problems, as in many cases it is easier to com-

pute moments of the FPT distribution via the Laplace transform, rather than use direct

integration. By using Eq. (D.3), moments of a random variable X can be obtained from

E{Xn}= (−1)n
[

f̆ (n)
]
(0) (D.4)

= (−1)n
[

dn

dsnE{e
−sX}

]∣∣∣∣
s=0

. (D.5)

Revuz and Yor [1999], state the Laplace transform of the law of FPT of standard Brow-

nian motion (SBM) to a symmetric absorbing double barrier as

E{e−sTV }= 1
cosh

(
V
√

2s
) , V > 0, (D.6)

where TV is the FPT random variable to barriers at ±V . In contrast to the single barrier

case the expectation for the double barrier case is finite as can be seen by computing

the first moment using Equation. (D.5).

E{TV}= lim
s→0+

V tanh
(
V
√

2s
)

√
2scosh

(
V
√

2s
) =V 2. (D.7)
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Here we present a method to approximate the mean FPT of N-Brownian particles,

useful for small N.

The idea is to compute the FPT of the minimum of two Brownian motions, B1 and B2.

We then use the inverse Laplace transform and an iterative scheme, to transform the

initial Brownian motion B1 to B̂1
2 via a variance transform, which approximates the

mean FPT of min(B1,B2). In doing so, we have reduced the dimension by 1, and we

repeat this process via min(B̂1
2
,B3), and so on.

Let K = min(τ1,τ2) be the random variable representing the minimum of two indepen-

dent FPTs for Brownian motion. Then,

E{e−sK}= L [ fK](s) =
∫

∞

0
e−st fK(t)dt

=
∫

∞

0
e−st ∂

∂ t
GK(t)dt = sL [GK](s),

where G is the cumulative distribution function of K and the last equality follows from

standard results. Now converting back to τ variables gives

sL [GK](s) = 2L [ fτ ](s)−
s

2πi

∫
γ+i∞

γ−i∞

1
p
L [ fτ ](p)

1
s− p

L [ fτ ](s− p)d p

= 2L [ fτ ](s)−
s

2πi

∫
γ+i∞

γ−i∞

1
pcosh(V

√
2s)

1
(s− p)cosh(V

√
2(s− p))

d p,

where we have used the FPT result from Equation. (D.6) in the final equality and γ is a

vertical contour.

Using the method of residues to calculate the integral above, and Equation. (D.5), the
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expected FPT of two identical Brownian motions to the double barriers ±V is

E{TV,2}=
24V 2 sinh(w)

σ1σ2π2 cosh2(w)
, w =

π

2
. (D.8)

Starting with V = 1,σ1 = σ2 = 1, we equate Equation. (D.8) with V 2

β 2 to make the

identification to the FPT for a single Brownian motion with variance β 2, in order to

compute the implied β . Successively replacing σ1 with β whilst keeping σ2 = 1 gener-

ates the mean FPT for N = 3,4, ..., etc. See Figure. D.1 for a comparison of the method

to Monte Carlo generated values, for the case V = 1.
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Figure D.1. Comparison of FPT for N Brownian motions computed using Monte
Carlo and analytic approximation.
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for dynamic asset pricing. Proc. R. Soc. A Math. Phys. Eng. Sci., 468:1778–1798,

2012.

J. Brogaard. High frequency trading and its impact on market quality. Working paper,

Northwestern University Kellogg School of Management, 2010.

J. Brogaard, T. Hendershott, and R. Riordan. High-Frequency Trading and Price Dis-

covery. Rev. Financ. Stud., 27(8):2267–2306, 2014.

N. Brunel. Dynamics of sparsely connected networks of excitatory and inhibitory spik-

ing neurons. J. Comput. Neurosci., 8(3):183–208, 2000.

S. V. Buldyrev, R. Parshani, G. Paul, H. E. Stanley, and S. Havlin. Catastrophic cascade

of failures in interdependent networks. Nature, 464(7291):1025–8, 2010.

N. Cai and S. G. Kou. Option Pricing Under a Mixed-Exponential Jump Diffusion

Model. Manage. Sci., 57(11):2067–2081, 2011.

L. E. Calvet and A. J. Fisher. How to Forecast Long-Run Volatility: Regime Switching

and the Estimation of Multifractal Processes. J. Financ. Econom., 2(1):49–83, 2004.

P. R. Carlile. Transferring, translating, and transforming: An integrative framework for

managing knowledge across boundaries. Organ. Sci., 15(5):555–568, 2004.

S. R. Carpenter and W. Brock. Rising variance: a leading indicator of ecological tran-

sition. Ecol. Lett., 9(3):311–318, 2006.

P. Casini and F. Vestroni. Nonstandard bifurcations in oscillators with multiple discon-

tinuity boundaries. Nonlinear Dyn., pages 41–59, 2004.

169



C. Castellano and R. Pastor-Satorras. Thresholds for epidemic spreading in networks.

Phys. Rev. Lett., 105(21):1–4, 2010.

S. G. Cecchetti, H. Genberg, J. Lipsky, and S. Wadhwani. Asset prices and central bank

policy. Geneva Rep. world Econ., 2(2), 2000.

C. Cella, A. Ellul, and M. Giannetti. Investors’ horizons and the amplification of market

shocks. Rev. Financ. Stud., 26(7):1607–1648, 2013.

A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: II.

Agent-based models. Quant. Financ., 11(7):1013–1041, 2011a.

A. Chakraborti, I. M. Toke, M. Patriarca, and F. Abergel. Econophysics review: I.

Empirical facts. Quant. Financ., 11(7):991–1012, 2011b.

D. Challet and M. Marsili. Phase transition and symmetry breaking in the minority

game. Phys. Rev. E, 60(6):6271–6274, 1999.

D. Challet, A. Chessa, M. Marsili, and Y.-C. Zhang. From Minority Games to real

markets. Quant. Financ., 1(1):168–176, 2001a.

D. Challet, M. Marsili, and Y.-C. Zhang. Stylized facts of financial markets and market

crashes in Minority Games. Phys. A Stat. Mech. its Appl., 294(3-4):514–524, 2001b.

S.-K. Chang. Herd behavior, bubbles and social interactions in financial markets. Stud.

Nonlinear Dyn. Econom., 18(1):89–101, 2014.

W. Chen, J. Nagler, X. Cheng, X. Jin, H. Shen, Z. Zheng, and R. M. DSouza. Phase

transitions in supercritical explosive percolation. Phys. Rev. E, 87(5):052130, 2013.

S. Cincotti, D. Sornette, P. Treleaven, S. Battiston, G. Caldarelli, C. Hommes, and

A. Kirman. An economic and financial exploratory. Eur. Phys. J. Spec. Top., 214(1):

361–400, 2012.

M. Cipriani and A. Guarino. Estimating a Structural Model of Herd Behavior in Finan-

cial Markets . Am. Econ. Rev., 104(1):224–251, 2014.

170



A. Clauset, C. R. Shalizi, and M. E. J. Newman. Power-Law Distributions in Empirical

Data. SIAM Rev., 51(4):661–703, 2009.
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