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Abstract8

In the present work an effort is made to determine the suspension speed of microcarriers in

an orbitally shaken bioreactor of cylindrical geometry, and to assess the associated two-phase

flow by means of Particle Image Velocimetry (PIV). Microcarrier technologies are commonly

used in the bioprocess industry to culture adherent-dependent cells in three dimensional flow.

Commercial GE Cytodex microcarriers were employed throughout this study to best mimic the

flow conditions occurring in a bioreactor under standard operating conditions. Suspension speed

measurements were obtained at different solid concentrations, that are typical for cell cultures,

and for different combinations of orbital to cylinder diameters’ ratio, do/di (c = 2.5 - 12.5 g/L;

do/di = 0.2 - 0.7; N = 0 - 200 RPM). The current two-phase PIV results show that mean flow

dynamics occurring in the cylindrical bioreactor are not significantly affected by the presence of

the microcarriers, and that their suspension is directly associated to the flow transition reported

by Weheliye et al. (2013). The flow scaling law included in their study can be successfully

employed to predict the full suspension speed across bioreactors of different scales and working

under different operating conditions (i.e. inner diameter of the cylinder, di, orbital diameter,

do, and filling volume, Vf ).

Keywords: Orbitally shaken bioreactor, microcarriers’ suspension speed, PIV, two-phase flow.9

1. Introduction10

Stem cells represent attractive therapeutic agents for a wide range of diseases due to their ca-11

pacity to differentiate into a specialized cell type. The large number of cells required for clinical12

trials (up to millions cells/kg of body weight) demands a fast and reproducible expansion pro-13

tocol. Stem cells are adherent-dependent cells, as they are able to grow and differentiate only14

if attached to an appropriate support. Two-dimensional (2D) static culture methods rely on15

the use of disposable multi-layer vessels and have rapidly become the most common route for16

stem cells expansion (Simaria et al., 2014). However, these methods do not seem appropriate for17

stem cell large scale production because of the limited cell productivity, labor intense handling18

procedures and long cultivation times. For example, recent studies proved that commercial19

requirements would be satisfied only with the production of up to 1013 cells per batch, and20

the use of 105 layered vessels per lot, which is not a feasible process (Simaria et al., 2014). In21
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addition, these systems are not able to supply reproducible batch culture conditions (Mohamet22

et al., 2010). A cost-effective approach which has demonstrated to overcome many of the limi-23

tations of 2D cultures is represented by three-dimensional (3D) dynamic culture methods based24

on microcarriers suspension technologies (Frauenschuh et al., 2007; Sart et al., 2009; Storm25

et al., 2010). Microcarriers are generally spherical beads with an ideal size of 100-300 µm, and26

can be made of different materials (plastics, glass, silica dextran, collagen). Cell attachment is27

promoted through electrical charges or collagen coating. In microcarriers culture cells grow as28

monolayers on the surface of the beads or as multilayers in the pores of macroporous structures,29

that are usually suspended in culture medium by gentle stirring (GE Healthcare Life Sciences,30

2013). With this technique the physiological microenvironment of stem cells can be easily mon-31

itored and reproduced, with significant advantages towards large scale production (King and32

Miller, 2007; Liu et al., 2014). The use of microcarriers in cell cultures allows an increase in33

the surface area (SA) per unit volume (cm2/mL), improving product consistency and decreasing34

costs (Frauenschuh et al., 2007; Sart et al., 2009; Schop et al., 2008, 2009; Ferrari et al., 2012).35

Most studies have focused on investigating the optimal medium components, the microcarrier36

type and concentration, however only a few considered the engineering aspects, the quality of37

the microcarriers suspension and their impact on the liquid phase flow and turbulence levels.38

Conditions that promote efficient attachment and uniform distribution of the cells over the mi-39

crocarriers population must be sought and optimized, and from this point of view, the flow40

and mixing dynamics occurring in the bioreactor must be thoroughly investigated and carefully41

selected. Efficient flow dynamics is crucial to achieve complete suspension of the microcarri-42

ers, thus preventing particle agglomeration and enhancing the available adherence area for the43

cells, while mixing is essential to promote mass transfer within the environment and to avoid44

spatial gradients in culture parameters (e.g. dissolved gases, nutrient concentration, pH), that45

can directly affect cell growth (Lara et al., 2006). At laboratory scale, adherent-dependent cell46

cultures are often grown on microcarriers in orbitally shaken reactors (OSRs), which offer an47

effective solution in the early stages of bioprocess development. Once the process is optimized, it48

is then scaled-up to traditional stirred tank reactors (STRs), where the velocity characteristics49

and turbulence levels are different from those found in shaken cultures. To overcome the scaling50

up/down limitations due to the different types of bioreactor, current bioprocess strategies have51

seen the development of miniature stirred tanks (for example the Ambr15 cell culture, 10-1552

mL), to be employed in bioprocess development, while large scale shaken systems up to a scale53

of 1000 L have recently become available in the market, and studies have demonstrated their54

mixing effectiveness and oxygen transfer capabilities (Zhang et al., 2009).55

56

Recently a few studies have focused on the mixing and fluid dynamics of shaken bioreactors.57

The works of Weheliye et al. (2013) and Ducci and Weheliye (2014) have provided a detailed58

understanding of the single-phase flow generated in an orbitally shaken bioreactor at different59

operating conditions (e.g. shaker rotational speed, N , and medium height inside the tank, h),60

geometrical characteristics (e.g. cylinder inner diameter, di, and orbital shaking diameter, do)61

and fluid viscosity, ν. A Fr-Re flow transition map was derived, where four types of mean62
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flow were identified depending on the combination of Froude and Reynolds numbers selected.63

A transition from a toroidal to a precessional vortex configuration was detected with increasing64

Froude number, Fr, for fluids of water-like viscosity close to those employed in cell culture (high65

Re range). At low Fr the free surface exhibited an elliptic shape in phase with the shaker table66

orbital movement, while an increasing degree of out-of-phase and a highly three-dimensional free67

surface characterised the high end of shaker speeds investigated (Weheliye et al., 2013). A flow68

scaling law was derived to predict the occurrence of this flow transition based on the Froude69

number, Fr, the fluid non-dimensional height, h/di, and the orbital to cylinder diameter ratio,70

do/di. More specifically it was found that for h/di ≤
√

do/di the critical Froude number can71

be obtained from Equation 1, and it is associated to the toroidal vortex reaching the bottom72

of the cylindrical bioreactor before transition occurs, while for h/di ≥
√

do/di transition takes73

place without the toroidal vortex expanding all the way to the reactor bottom, and the critical74

speed/Froude number can be found from Equation 2.75

Frdo =
1

aow

h

di

(

do
di

)0.5

(1)

Frdi =
1

aow
(2)

Where aow is a constant depending on the fluid employed (1.4 for water), and the Froude number76

is defined as the ratio of the centrifugal to the gravitational accelerations, Frd = 2π2N2d/g,77

with d being either the orbital (d = do, Equation 1) or cylinder (d = di, Equation 2) diameters.78

The flow scaling law of Weheliye et al. (2013) was successfully applied to the mixing time exper-79

iments of Rodriguez et al. (2013, 2014) obtained by means of a base-acid colorisation technique80

in shaken bioreactors of cylindrical geometry. Rodriguez et al. (2014) compared their data to81

those obtained by Tissot et al. (2010) for very different operating conditions (do, Vf ) and biore-82

actor sizes (di), and found out that the two sets of data scaled well when the mixing number83

was plotted against the ratio of Fr/Frcr, and achieved a constant value after flow transition84

occurred (Fr > Frcr).85

86

Recently Mancilla et al. (2015) compared the mean flow and turbulence levels in orbitally shaken87

flasks with conventional, coiled, 1 and 3 baffle geometries. The 2D-PIV results obtained on a88

horizontal plane of measurements for increasing rotational speed, N , indicate that the config-89

uration with a single baffle is characterised by turbulence levels 25% higher than in the other90

configurations investigated, and should be employed for production of bacterial cultures. Nu-91

merical simulation studies of the flow dynamics in shaken systems have been carried out by92

Zhang et al. (2005) and Zhang et al. (2008) for 250-ml Erlenmeyer flasks and for 24-well and93

96-well bioreactors with water-like viscous fluids, respectively, while Kim and Kizito (2009) sim-94

ulated the flow in a cylindrical shaken bioreactor for different fluid viscosity. Discacciati et al.95

(2012) developed a pressure correction method to best capture the free surface deformation and96

assess the shear stress levels in an orbitally shaken cylindrical container for a high viscous fluid,97

while Reclari et al. (2014) compared the free surface wave measurements in a shaken cylinder98

against those predicted by a potential sloshing model, and identified the presence of different99
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modal responses inducing different flow regimes.100

101

Little information can be found in the literature regarding the flow and mixing dynamics102

taking place in bioreactors when microcarriers suspensions are considered. Collignon et al.103

(2010) investigated the suspension of microcarriers for TTP Mixel, A325-A320 Lightnin, three104

streamed-blades VMI-Rayneri, and Elephant Ear Applikon impellers in a stirred tank reactor,105

and compared the flow characteristics, shear rate and power consumptions of the different im-106

pellers at the corresponding just suspended speed, Njs. Their results indicated that the TTP107

Mixel and the Ear Elephant Applikon impellers produced the lowest mechanical constraints at108

their just suspended speed. PIV measurements in a spinner flask were carried out by Ismadi109

et al. (2014) to assess to what extent flow shear stresses can affect cell culture of mouse induced110

pluripotent stem cells (iPSC) attached to microcarriers. They show that optimum number of111

cells was achieved over 7 days in 25 RPM suspension culture, corresponding to a maximum112

shear of 0.0984 Pa. Nienow et al. (2014) developed a new method for the harvesting of human113

mesenchymal stem cell (hMSC) in a spinner flask. The cells were cultured in dimple-bottomed114

spinner flasks equipped with a magnetic horizontal stir bar and a vertical paddle at a working115

volume of 100 mL and at 30 RPM (NJS). After expansion, harvesting was implemented by116

adding trypsin-EDTA and agitating the microcarriers suspension for 7 mins at 150 RPM. Their117

study indicates that intense agitation for a short period (7 mins) under the presence of a suitable118

enzyme can promote cell detachment without damaging the cells or affecting their attributes.119

The overall harvesting efficiency was above 95 %.120

121

Recently Olmos et al. (2015) determined the critical agitation speed for microcarriers’ sus-122

pension in orbitally shaken Erlenmeyer flasks and cylindrical reactors. They stained the micro-123

carriers with Trypan blue and used a camera rigidly moving with the shaker table to assess their124

suspension at increasing speed. The Vachy-Buckingham theorem was employed to obtain the125

non-dimensional model of Equation 3.126

Ns
√

g/do
=

√

Frs
2π2

= A

(

h

di

)0.5 (

do
di

)0.25

(ρ∗)

(

dp
di

)

−0.07

(3)

Where A is a constant depending on the type of geometry used (1.39 for cylinder, 0.12 for127

Erlenmeyer flask), and ρ⋆ and dp are the relative density and diameter of the microcarriers,128

respectively. It should be noted that in Equation 3 they considered a Froude number which is129

defined as a velocity ratio, and it is related to the one defined in this work by the square root130

of Fr. Direct comparison of Equations 1 and 3 shows that the critical Froude number, Frcr,131

associated to the flow transition reported by Weheliye et al. (2013), is related to the suspension132

Froude number, Frs, obtained from the model of Olmos et al. (2015), with the non-dimensional133

fluid height, h/di and orbital to cylinder diameter ratio, do/di, terms having the same exponents.134

It is interesting to point out that their model showed a very good agreement also for Erlenmeyer135

flasks, implying that a similar flow transition to the one reported by Weheliye et al. (2013) could136

take place also in this geometry.137
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138

In the present study a different approach has been developed, where the “just-suspended” speed139

is estimated from the light scattered by the microcarriers on a laser plane parallel to the bot-140

tom of the cylindrical bioreactor, while vertical plane measurements were obtained to assess the141

homogeneity of microcarriers across the tank volume. Furthermore, two-phase Particle Image142

Velocimetry experiments were carried out to better comprehend the flow and mixing dynamics143

in the presence of microcarriers, and to assess how their concentration affects the mean flow144

characteristics.145

2. Materials and methods146

Depending on the measurements being carried out, two different experimental rigs were em-147

ployed. Figure 1 (a) shows the experimental set-up used to obtain the “just suspended speed”,148

where a 300 mW continuous diode laser, a mirror, a Net iCube camera with Macro Lens, and149

a cylindrical bioreactor with a flat bottom, were all rigidly mounted on a Lab LS-X Kühner150

shaker table. The laser-light was directed horizontally in order to illuminate the plane located151

immediately over the vessel bottom, while a camera gained optical access to the measurement152

plane through a mirror located underneath the bioreactor. The camera was equipped with a153

macro lens with a shallow depth-of-field, that allowed to capture any small variation of the image154

brightness, which was directly related to the light scattered by the microcarriers sitting at the155

bottom of the bioreactor, as the shaking speed was varied. For each orbital speed investigated,156

50 images were captured, and analysed by home-built Matlab routines to obtain a quantitative157

average result of the suspension conditions of the system. Before capturing a set of images a158

sufficient time was given to ensure steady-state condition was achieved at each speed investi-159

gated. Experiments were carried out in a borosilicate glass cylindrical bioreactor of size di = 7160

cm, for different ranges of orbital diameters, do = 1.5− 5 cm, and shaker speeds, N = 60− 140161

RPM. The working liquid was distilled water with a fluid height h = 3 and 5 cm (Vf = 115.5,162

192.5 mL). Commercial microcarriers, GE Cytodex 1 (ρ = 1.03 kg/L, d50 = 190 µm) and GE163

Cytodex 3 (ρ = 1.04 kg/L, d50 = 175 µm), were employed at concentrations typically adopted164

for stem cell cultures: 2.5, 7.5, 12.5 g/L (0.25, 0.75, 1.25 wt%). Their settling velocity was165

approximately 0.6 mm/s. More information on the characteristics of the microcarriers employed166

can be obtained in GE Healthcare Life Sciences (2013).167

168

The two-phase PIV system is shown in Figure 1 (b), where a larger Kühner shaker table (1× 1169

m2, SR200-X shaker) is used to hold two cameras sharing the same field of view by a 50 %-170

transmission/50 %-reflection mirror and an optical guiding arm shining the laser onto a mirror171

positioned underneath the reactor. Contrary to the suspension speed experiments, in this case172

the measurement region consisted on the vertical plane bisecting the bioreactor into two halves.173

Each camera was equipped with a different light filter (either green, λ = 532 nm, or orange λ174

= 570 nm) to distinguish between the solid and liquid phases. To improve the image quality of175

the solid phase, fluorescent Rhodamine B isothiocyanate was employed to stain GE Cytodex 3176
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microcarriers, by exploiting the strong bond occurring between the dye and the thin collagen177

layer that coats the microcarriers’ surface. The staining protocol consisted in mixing 2 mg of178

Rhodamine in 50 ml of deionized water for a 200 mg sample of GE Cytodex 3. Staining was done179

at room temperature for 12 hrs and a 45 µm sieve was used to filter the stained particles. After180

this procedure the two-phase measurements could be carried out up to a solid concentration of181

0.75 g/L (0.075 wt%). Above this threshold the image quality decreased due to the laser at-182

tenuation across the measurement plane induced by the presence of the microcarriers. Distilled183

water seeded with 1-40 µm flakes of painting was used as the continuous phase. Experiments184

were performed in a glass cylindrical bioreactor of size di = 10 cm, with an orbital diameter,185

do = 5 cm, and a fluid height h = 5 cm (Vf = 392 mL) for different shaker speeds, N = 80−130186

RPM.187

188

Phase-locked measurements were obtained by a magnetic encoder coupled to the Kühner shaker189

table. The origin of the angular coordinate, φ, was set when the system reaches its position190

furthest to the left as the clockwise orbit is viewed from above. To fully resolve the large scale191

flow structures the measurement spatial resolutions of the liquid and solid phases were ∆xi=1.66192

mm and 1.84 mm, respectively, while the time interval between PIV image pairs was ∆t=1-2 ms.193

The time interval, ∆t, was selected according to the optimisation protocol developed by Gomez194

et al. (2010). In the rest of the article a cylindrical coordinate system r, φ, z is employed with the195

origin positioned on the cylinder axis at the bioreactor base. As mentioned in the introduction196

the Froude number based on the orbital diameter is an essential parameter to control the flow197

dynamics inside the bioreactor, and will be referred to here after either as Frdo or, to simplify,198

as Fr. A comprehensive list of the operating conditions investigated for the suspension speed199

and PIV experiments is provided in Table 1.200

201

SUSPENDED SPEED SOLID-LIQUID PIV

di = 7 cm di = 10 cm

do = 1.5, 2, 2.5, 3, 4, 5 cm do = 5 cm

N = 0 - 200 RPM N = 80, 90, 96, 110, 130 RPM

h = 2, 3, 4, 5 cm (Vf = 76.9 - 192.5 mL) h = 5 cm (Vf = 392.5 mL)

c = 2.5, 7.5, 12.5 g/L (0.25, 0.75, 1.25 wt% ) c = 0.25, 0.5, 0.75 g/L (0.025, 0.05, 0.075 wt%)

Table 1: Geometrical details of the shaken systems and operational conditions investigated for the two-phase

measurements.

3. Results and discussion202

In the following sub-sections the three parts of the investigation, that is, microcarriers’ suspen-203

sion speed (§ 3.1), microcarriers’ dispersion (§ 3.2), and two-phase flow dynamics (§ 3.3), are204
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discussed in sequence. In brief, the rationale for the selection of these three parts of the work205

was to identify the range of speeds over which suspension occurs for different operating condi-206

tions, to assess the microcarriers’ suspension and dispersion mechanisms as the shaker speed is207

increased, and to determine the flow dynamics and transition of the two-phase system as well208

as compare them against those obtained for a single-phase (Weheliye et al., 2013).209

3.1. Microcarriers suspension speed210

The just suspended speed was estimated from the brightness of the images taken on the horizon-211

tal measurement plane, which is directly proportional to the amount of particles sitting at the212

bottom of the reactor. The image brightness, IB(N), at a given shaking speed, N , is defined in213

Equation 4 by adding the pixel greyscale, pij, across the area delimited by the bioreactor walls214

on the horizontal plane of measurement:215

IB =
∑

Ntot

pij (4)

where Ntot is the total number of pixels across the area.216

217

The microcarriers’ suspension process and its correlation to the brightness percentage index,218

IB(N)/IB(0), for increasing shaking speed, N , can be gained from Figure 2, where steady-state219

images of the microcarriers’ concentration over horizontal planes are coupled to the IB(N)/IB(0)220

curve at key speeds. This set of experiments was carried out for an orbital diameter do = 2.5221

cm and a microcarriers’ concentration c = 2.5 g/L. At low shaking speeds the microcarriers are222

uniformly distributed over the vessel bottom, and the brightness index is approximately con-223

stant up to a speed of 110 RPM, when the particles start being arranged in a spiral pattern on224

the bioreactor base and a drop of IB(N)/IB(0) occurs. As the orbital speed is further increased225

a nearly constant value of the brightness index is attained above 150 RPM, implying that the226

“just-suspended” condition is achieved.227

228

To better compare the results obtained for the different conditions analysed, the normalised229

brightness index, I∗, of Equation 5, which is scaled with the zero-speed, IB(0), and final-speed,230

IB(∞), brightnesses, is used in the rest of the work.231

I∗ =
IB(N)− IB(∞)

IB(0) − IB(∞)
(5)

The suspended speed is associated to a 95 % decrease of the brightness index with respect to the232

zero-speed condition, and it is identified as the speed at which I⋆ = 5%. Based on the statistical233

error of the brightness index, ≈ 3 %, and the non-linear regression method used to fit the data234

points, the uncertainty affecting the just suspended speed was found to be ≈ 5 %.235

A video showing the particle suspension dynamics is also provided in the supplementary materi-236

als (JS-Video.avi). In this case however the shaker table was started from still conditions and,237

similarly to standard operating procedures, was gradually accelerated to a final speed of 140 rpm238

by the controller mounted on the shaker system (i.e. steady-state conditions were not achieved239
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at intermediate speeds). As a consequence the instantaneous velocity associated to each frame240

is unknown, and the following discussion is made in terms of number of revolutions of the shaker241

tray (i.e. the encoder was used to acquire a frame per revolution). In agreement with the data242

reported in Figure 2, darker zones start appearing at the periphery of the bioreactor (t = 3− 5243

s of the video), with microcarriers being more concentrated at the centre for increasing speed.244

This is well captured in Figure 3 (a), where the radial profiles of the normalised brightness index,245

I∗(r), are shown for selected time instants, counted in number of revolutions, n, of the shaker246

tray, and corresponding to increasing shaking speed. After 100 revolutions, the shaker table has247

not gained a speed high enough to lift the particles, and the index I∗ is nearly constant across248

the bioreactor diameter and close to unity. As the shaker table is accelerated a drop of I∗ occurs249

after 110 revolutions, with the micriocarriers being suspended for r/R ≥ 0.6, while the center of250

the bioreactor, r/R ≤ 0.3, is still unaffected after 130 revolutions. It is worth noticing that also251

the rate of suspension is lower in proximity of the bioreactor axis. For example, a 10 revolutions252

increment (n = 120 − 130) for r/R ≥ 0.6 determines a variation of the normalised brightness253

index of ∆I∗ ≈ 0.45, while a similar drop (≈ 0.5) occurs at r/R = 0.3 over a larger range of254

shaker revolutions, ∆n = 30 (n = 140 − 170).255

256

The spiral pattern, described in Figure 2 and shown in the supplementary video, is further257

analysed in Figure 3 (b), where the azimuthal profiles of I∗ are plotted at r/R = 0.8 for an in-258

creasing number of shaker table revolutions (n = 100−135). It is evident that for n = 110−122259

the profiles show a cyclic variation in the azimuthal direction, with 5 peaks over the range of260

θ considered. As expected the intensity of the profiles is decreasing as more microcarriers are261

lifted with increasing speed (i.e. number of revolutions), and the profiles are randomly shifted262

with respect to each other along θ, because the instants considered were taken far apart in time,263

and the spiral structure might have rotated with respect to the bioreactor. However an estimate264

of the spiral inclination can be gained from Figure 4 (a), where a single cycle of I∗ has been265

obtained through a phase-average, 〈〉, along the azimuthal direction with a period ∆θ = 20◦.266

This analysis was performed at different radii for a single frame, n = 117. The phase-averaged267

profiles were normalised by their maximum variation 〈∆IB〉, so that the final brightness param-268

eter assumed a maximum absolute intensity of ≈1 for all the radii considered (r/R = 0.6− 0.9).269

It should be noted that in Figure 4 (a) the flow direction is from right to left and opposite to that270

of θ. The peak shifts to the right as the radius increases, which means that the spiral is oriented271

towards the center in the direction of motion. The variation of the peak azimuthal coordinate,272

θmax, against the radius is shown in Figure 4 (b) for two time instants, n = 117 and 120. The273

peak azimuthal coordinate, θmax, shows a linear increase with r/R and the slope magnitude is274

nearly the same for both instants considered (i.e. 18.57◦ vs 18.86◦). A visualisation of the spiral275

locus is provided in the inset diagram, where the arrow points in the flow direction.276

277

The variation of I∗ against the shaker tray speed is plotted in Figures 5 (a) and (b) for two278

orbital diameters, do = 1.5 and 2.5, respectively. Three different microcarriers’ concentrations279

are considered, c = 2.5, 7.5 and 12.5 g/L, while the fluid height and vessel size are kept constant280
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(h = 5 cm, di = 7 cm). It should be noted that by definition the index, I∗, can assume only281

values between 0 and 1 at high and low shaking speeds, respectively. Data points are fitted with282

the model of equation 6, where in the remainder part of the work the variable x can either be283

the shaker speed, N , or the Froude number ratio, Fr/Frcr.284

I∗(x) =
1

1 + ea(x−x0)
(6)

The parameters x0 and a position the curve along the x coordinate, and control its rate of decay,285

respectively. The plots of Figure 5 (a) cross the 5 % reference line within a relative small range286

of suspension speeds, Ns = 153 − 160 RPM, and a correlation between the concentration and287

the suspension speed seems to be present (i.e. lower suspension speeds occur for lower concen-288

trations). However this correlation is not present in the data of Figure 5 (b) for do = 2.5 cm,289

where an opposite behaviour is observed (i.e. lowest suspension speed for greatest concentration290

considered). Also in this case the range of variation of the suspended speed is relatively small,291

N = 145− 152 RPM, and it is within the error of the measurement technique employed. Based292

on this consideration it was concluded that the concentration should not affect to a large extent293

the suspension of the microcarriers, at least within the range of concentration considered in this294

study, which includes those commonly employed in the bioprocess industry.295

296

On the contrary the variation of the suspension speed with the orbital diameter is significant.297

This is evident in Figure 6 (a) where the normalised brightness index, I∗, is plotted against the298

shaker speed for different orbital diameter, do = 1.5, 2.5 and 5 cm. As expected the suspension299

speed, Ns, increases with decreasing orbital diameter, and assumes values of 120 RPM, 144 RPM300

and 153 RPM for do =5 cm 2.5 cm and 1.5 cm, respectively. In Figure 6 (b) an attempt was301

made to assess whether the suspension mechanism would scale with the critical Froude number302

ratio, Fr/Frcr. In fact the three systems are associated to different do/di and therefore reach303

the flow transition at different speeds (Weheliye et al., 2013). However the plot of Figure 6 (b)304

does not support this scaling procedure with the lowest (highest) orbital diameter still being305

associated to the greatest (lowest) critical Froude number ratio. This was explained by consid-306

ering that the fluid height (h = 5 cm) of two, do = 1.5 cm and 2.5 cm, out of the three systems307

investigated is too large for the flow to fully develop to the cylinder bottom before transition308

occurs. In both cases h/di >
√

do/di (0.71 > 0.46 for do = 1.5 cm and 0.71 > 0.59 for do = 2.5309

cm) and Equation 2 shall be used to determine the critical Froude number, Frcr.310

Based on these considerations a second set of measurements was carried out to assess the sus-311

pension process when h/di ≤
√

do/di, and a critical speed exists for the flow to extend to the312

bottom of the reactor. The variation of I∗ with do is provided in Figures 7 (a) and (b) for313

increasing speed and critical Froude number ratio, respectively. In agreement with Figure 6314

(a) the plots of Figure 7 (a) intercept the 5% reference line at increasing suspension speed for315

decreasing orbital diameter. In this case however when the brightness index is plotted against316

the critical Froude number ratio (see Figure 7 b) the data tend to collapse on a single curve,317

indicating that the parameter Fr/Frcr can be successfully used for scaling across different con-318

figurations (i.e. do/di), provided that the fluid height satisfies the condition h/di ≤
√

do/di.319

9



320

The data presented in Figures 6 and 7 are summarised in Figure 8, where the suspended to321

critical Froude number ratio is plotted against the parameter h/di/
√

do/di. As indicated by the322

inset schematics values of h/di/
√

do/di < 1 identify those configurations for which the toroidal323

vortices extend to the bottom of the bioreactor when the critical speed is achieved, while this324

does not occur for h/di/
√

do/di > 1, and flow transition takes place without the flow developing to325

the reactor base. The error bars in Figure 8 are supposed to provide a reference, and correspond326

to a 2 RPM variation in the suspension speed Ns (i.e. dFrs/Frcr = 2 × (Ns/N
2
cr) dNs). From327

Figure 8, the 95 % suspension condition is achieved for Frs/Frcr ≤ 1.1 when h/di/
√

do/di < 1,328

while the suspended to critical Froude number ratio tends to drift further away from the dashed329

reference line at Frs/Frcr = 1.1 as h/di/
√

do/di increases above 1. It is interesting to note that330

the suspension speed data obtained by Olmos et al. (2015) in Erlenmeyer flasks showed a good331

scaling with the critical speed, Ncr, also for h/di/
√

do/di > 1.332

333

The coefficients a and x0 of Equation 6, used to determine the suspended to critical Froude334

number ratio (i.e. Frs/Frcr = log(19)/a + x0 for 95% suspension), are provided in Table 2.335

It is worth pointing that the range of variation of the decay coefficient for data associated to336

h/di/
√

do/di > 1 (7 < a < 14.3) is lower than that for h/di/
√

do/di < 1 (14 < a < 17.8). This337

implies that for h/di/
√

do/di < 1 suspension occurs more sharply with increasing speed.

h = 5 cm h = 3 cm

do = 1.5 cm do = 2.5 cm do = 5 cm 2 cm 3 cm 4 cm

2.5 g/L 7.5 g/L 12.5 g/L 2.5 g/L 7.5 g/L 12.5 g/L 7.5 g/L 12.5 g/L c = 2.5 g/L

a 13.1 9.8 12.8 7.1 14.3 10 14 14.13 17.57 15.39 17.83

x0 1.05 1.05 1.19 0.87 0.98 0.87 0.72 0.74 0.95 0.92 0.94

h/di/
√

do/di > 1 h/di/
√

do/di < 1

Table 2: Coefficients a and x0 obtained for all the sets of data analysed in this work.

338

3.2. Microcarriers’ dispersion339

A similar analysis to that employed in the previous section was carried out over vertical planes of340

measurement to assess the dispersion across the bioreactor of the microcarriers’ suspension. In341

this case the normalisation of the brightness index was done according to Equation 7, where the342

coefficient varies from 0 (low concentration of microcarriers’ over the volume) to 1 (homogenous343

concentration across the bioreactor volume).344

I∗ =
IB(N)− IB(0)

IB(∞)− IB(0)
(7)

The variation of I∗ with the critical Froude number ratio, Fr/Frcr, is provided in Figure 9,345

where inset snapshots provide a visual reference of the degree of dispersion. Data refer to a346
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system with di = 13 cm, do = 5 cm and h = 6.5 cm (h/di/
√

do/di < 1). The vertical and horizon-347

tal lines provide a reference of the suspended to critical Froude number ratio, Frs/Frcr = 1.1,348

found in the previous section, and of the 95 % degree of homogeneity, respectively. From Figure349

9 it can be concluded that complete dispersion is achieved at a speed slightly higher than the350

suspended one, ≈ 1.2× Frcr (95 % threshold).351

352

A closer view at the dispersion of microcarriers across the tank can be gained from the ax-353

ial and radial cumulative brightness profiles of Figures 10 (a) and (b), respectively (di = 10 cm,354

do = h = 5 cm). The axial (radial) cumulative brightness was obtained by adding the image355

brightness along the radial (axial) direction. Before proceeding with the discussion, it is worth356

mentioning that a limitation of adopting the brighness index as a reference for microcarriers’357

concentration is that in the vertical plane of measurements the laser enters the bioreactor from358

the base, and therefore complete brightness homogeneity is impossible to achieve due to reflec-359

tions. This explains why brightness maxima are always located at z = 0, even at the higher speed360

investigated, when microcarriers’ suspension has certainly occurred. Despite this the current361

data provide a reliable description of the suspension over a vertical plane for increasing speed.362

Bearing this in mind, the plot of Figure 10 (a) shows that the axial distribution of microcarriers363

is poor for N ≤ 100 with the normalised brightness index, IB(z,N)/IB(0, N), being relatively364

low for z/di ≤ 0.04, while, in agreement with the higher decay coefficients observed in Table 2365

for h/di/
√

do/di < 1, a sharp change in IB(z,N)/IB(0, N) occurs over a relatively small range of366

shaker speeds, N = 100−105 RPM. The curves of N = 105 RPM and N = 130 RPM are nearly367

parallel for z/di ≥ 0.06 indicating that a similar degree of dispersion along the axial direction368

has been achieved for both, while the lower intensity of IB(z,N)/IB(0, N) indicates that fewer369

microcarriers are suspended for the lower speed considered.370

371

Similarly to the axial profiles, the radial profiles of the cumulative brightness index, (IB(z,N)−372

IB(0, N))/IB(0, N), Figure 10 (b), show little suspension for N < 102, while at greater speeds373

the radial distribution is characterised by double crested profiles, where the peaks capture the374

higher microcarriers’ concentration already present in the top-right inset of Figure 9. The peaks375

are located close to the reactor axis and they occur in the region swept by the precessional vortex376

once flow transition has occurred. Based on these results and those in the previous section it377

can be concluded that microcarriers are pushed from the periphery towards the centre of the378

reactor base, and they are then sucked into the bulk flow by the depression created close to the379

axis of the bioreactor by the two-counter rotating and precessional vortices, before and after380

flow transition, respectively.381

3.3. Two-phase flow dynamics382

Two-phase Particle Image Velocimetry experiments were carried out to better understand the383

influence of the solid phase on the mean characteristics of the flow, and to assess whether the384

flow transition reported by Weheliye et al. (2013) can be extended to the two-phase system. A385

preliminary analysis was carried out to assess whether the free surface wave, which is the flow386
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driving mechanism, is affected by the microcarriers’ concentration. The study of Weheliye et al.387

(2013) showed that for a single-phase system the nondimensional wave amplitude, ∆h/di, is388

proportional to the Froude number, meaning that for selected combinations of N and do, the389

free surface will assume a fixed inclination, which is independent of the fluid height h and vessel390

diameter, di. The constant of proportionality, ao, depends on the fluid considered, and is equal391

to 1.4 in the case of water, and decreases with increasing fluid viscosity (Ducci and Weheliye,392

2014). The variation of ∆h/di against Fr (0.25 < Fr < 0.5) for different microcarriers’ con-393

centrations at h/di = 0.5, and do/di = 0.5 is provided in Figure 11. The data points are all394

located close to the reference line, which corresponds to a single-phase system with water as the395

working fluid (aow = 1.4). A small decrease of the slope might be seen for increasing micro-396

carriers’ concentrations, that is consistent with the behaviour reported by Ducci and Weheliye397

(2014) for increasing viscosity. This means that the flow dynamics of the two-phase system is398

not remarkably affected by the presence of microcarriers at the concentration considered, and399

that the applicability of the relation found by Weheliye et al. (2013) can be extended to the400

two-phase system. Lower values of the slope coefficient, ao, might imply that the critical Froude401

number for the two-phase system is slightly higher than that of the single-phase (see Equation402

1), and therefore the suspended speed data points of Figure 8 might get closer to the horizontal403

reference line of Fr/Frcr = 1.404

405

The phase-resolved velocity vector fields and tangential vorticity, ωθ/(πN), contour maps of406

the liquid and solid phases are shown in Figure 12 (a-b) and (c-d) for in-phase, prior to flow407

transition, and out-of-phase conditions, respectively. For both flow conditions the phase angle408

was φ = 0 and the microcarriers’ concentration, c = 0.5 g/L. The velocity fields of the liquid409

and solid phases for in-phase flow (Figures 12 a and b) are qualitatively similar to each other,410

and are characterised by the two vortical cell configuration already identified by Weheliye et al.411

(2013) at the same speed for single-phase flow. However, in the toroidal vortex region, the412

vorticity of the solid phase assumes values slightly higher than for the liquid one (mainly on the413

left hand side vortex), indicating that a slip velocity is present between the two phases. Similar414

conclusions can be drawn when comparing the velocity fields for the out of phase flow (Figures415

12 c and d). In this case the axial slip velocity, |uzS − uzL | < 0.02 × πNdo (0-6 mm/s). It is416

worth mentioning that this range of values is comparable to the average and maximum velocities417

of the liquid phase over the plane of measurement, 0.033 and 0.10×πNdo, respectively.418

4. Conclusions419

This study is the first one to provide insight on the two-phase flow dynamics occurring in an420

orbitally shaken bioreactor when microcarriers are used in suspension under real process condi-421

tions. The suspension dynamics of the two-phase system was investigated using a visualization422

approach, which allowed to estimate the “just - suspended” shaking speed from the light scat-423

tered by the microcarriers on a laser plane parallel to the bottom of the cylindrical bioreactor.424

The shaking system was studied varying solid concentration and orbital diameter, and the re-425

sults highlightened the correlation between the microcarriers suspension and the critical Froude426
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number corresponding to the occurrence of the flow transition identified by Weheliye et al.427

(2013) for a single-phase system. It was found that for bioreactor configurations corresponding428

to h/di/
√

do/di < 1 the suspended Froude number, Frs, is nearly constant and equal to 1.1×Frcr,429

while for h/di/
√

do/di > 1 the suspended speed tends to increase, and suspension is delayed to430

higher speeds after flow transition. From this point of view the first type of configuration should431

be sought because it achieves full suspension and at the same time minimises power consumption432

and shear rates.433

434

An analysis of the suspension mechanisms highlighted that microcarriers are pushed from the435

perisphery towards the centre of the reactor base along a spiral pattern, and then they are436

sucked into the bulk flow by the depression created close to the axis of the bioreactor by the437

two-counter rotating and precessional vortices, before and after flow transition, respectively.438

Vertical plane measurements were used to assess the homogeneity of the microcarriers across439

the reactor volume, and it was found that full dispersion is achieved at ≈ 1.2 × Frcr. A model440

was developed to fit the suspension data, and showed that suspension dynamics are faster and441

occur over a narrower range of speeds for h/di/
√

do/di < 1. The free surface experiments vali-442

dated the relation found by Weheliye et al. (2013) between the non-dimensional wave amplitude443

of the cylindrical bioreactor, ∆h/di, and the Froude number, and it was found that the presence444

of the microcarriers might reduce the constant of proportionality between the two parameters,445

and result in slightly higher critical Froude number, Frcr. The velocity fields of the liquid and446

solid phases were simultaneously measured over a vertical plane bisecting the vessel, and their447

mean flows were found to be very similar both for in-phase and out-of-phase conditions. This448

is in agreement with previous studies on stirred tank reactors where low solid concentrations449

are employed. The range of variation of the axial slip velocity, |uzS − uzL | < 0.02 × πNdo (0-6450

mm/s), was comparable in magnitude to the average and maximum velocities of the liquid phase451

over the plane of measurement, 0.033 and 0.10×πNdo, respectively.452

453

Further studies are called for to investigate the suspension dynamics of the next generation454

of microcarriers. Biodegradable materials are increasingly used to make microcarriers for cell455

adherent applications in order to avoid the need for the cell detachment and recovery steps.456

However the materials used are often characterised by densities much heavier than water, thus457

requiring considerable energy to be suspended. The flow visualisation methodology established458

in this work, as well as the simultaneous measurement of the two-phase flow characteristics,459

could be implemented for other microcarriers’ types to assess the quality of suspension, and its460

dependence on the bioreactor geometry and operating conditions.461
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Nomenclature462

Abbreviation463

2D Two-Dimensional464

OSB Orbitally shaken bioreactor465

STR Stirred Tank Reactor466

PIV Particle Image Velocimetry467

3D Three-Dimensional468

469

Greek Symbols470

ν Kinematic viscosity, m2/s471

ρ Microcarriers’ density kg/m3
472

ρ⋆ Microcarriers’ relative density, -473

φ Phase angle of the table, ◦
474

ωi Vorticity component in the ith direction, s−1
475

476

Roman Symbols477

a Decay coefficient of Equation 6, -478

aow Constant of proportionality for water, -479

di Inner diameter of the cylinder, m480

do Orbital diameter, m481

dp, d50 Microcarriers’ diameter, m482

Fr Froude number, -483

Frcr Critical/transitional Froude number, -484

Frs Suspended Froude number, -485

g Gravitational acceleration, m/s2486

h Fluid height at rest, m487

∆h Free surface height, m488

I∗ Normalised brightness index, -489

IB Brightness index, -490

n Number of shaker revolution, -491

N Shaking frequency, s−1
492

Ncr Critical shaking frequency, s−1
493

Ns Suspension shaking frequency, s−1
494

R Inner radius of the cylinder, m495

Re Reynolds number, -496

ui Velocity in the ith direction, m/s497

Vf Fluid filling volume, m3
498

x0 Position coefficient of Equation 6, -499
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(a)

(b)

Figure 1: Experimental set-ups: (a) suspended speed; (b) two-phase PIV.
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Figure 2: Visualization of the suspension mechanism and variation of the brightness percentage index,

IB(N)/IB(0), with shaking speed (do = 1.5 cm, h = 5 cm, c = 2.5 g/L).
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Figure 3: Profiles of the normalised brightness index I∗ for increasing number of shaker revolutions (do = 2 cm,

h = 3 cm, c = 2.5 g/L): (a) radial profiles; (b) azimuthal profiles (r/R = 0.8).
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Figure 4: (a) Phase-averaged azimuthal profiles of the image brightness at n = 117 for different radii (r/R =

0.6 − 0.9); (b) Radial and azimuthal coordinates of the brightness peak for n = 117 and 120 (do = 2 cm, h = 3

cm, c = 2.5 g/L).
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Figure 5: Variation of I∗ with shaker speed for different microcarriers’ concentrations (h = 5 cm, di = 7 cm): (a)

do = 1.5 cm; (b) do = 2.5 cm.
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Figure 6: Variation of I∗ for different orbital diameters (h = 5 cm, di = 7 cm, c = 2.5 g/L): (a) variation with

shaker speed, N ; (b) variation with Fr/Frcr.
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Figure 7: Variation of I∗ for different orbital diameters (h = 3 and 5 cm, di = 7 cm, c = 2.5 g/L): (a) variation

with shaker speed, N ; (b) variation with Fr/Frcr.
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Figure 8: Variation of the suspended to critical Froude number ratio, Frs/Frcr, with critical height ratio, h
di/

√

do
di
,

for all the conditions investigated.
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Figure 9: Variation of the normalised brightness index, I∗, with the Froude number ratio, Fr/Frcr, obtained from

measurements on a vertical plane (di = 13 cm, do = 5 cm, h = 6.5 cm).
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Figure 10: Profiles of the axial and radial cumulative brightness indices for increasing shaken speed (di = 10 cm,

do = 5 cm, h = 5 cm): (a) Axial profiles; (b) Radial profiles.
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Figure 11: (a) Variation of the non-dimensional wave amplitude, ∆h/di, with Froude number, Fr, for different

microcarriers’ concentrations (h = 5 cm, di = 10 cm, do = 5 cm).
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Figure 12: (a) Velocity vector fields and tangential vorticity contour maps of the liquid and solid phases before

and after flow transition (h = 5 cm, di = 10 cm, do = 5 cm, c = 0.5 g/L): (a) Liquid phase, N = 90 RPM; (b)

Solid phase, N = 90 RPM; (c) Liquid phase, N = 110 RPM; (d) Solid phase, N = 110 RPM .
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