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Highlights
 Model-based design of experiments is proposed for electrodialysis modelling. 

 A dramatic reduction of the experimentation time is obtained.

 This approach can be used for development and assessment of electrodialysis 

models.
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Abstract

The Nernst-Planck approach, previously used to model the electrodialytic 

recovery of uni-, di or tri-valent electrolytes, was used to accomplish the desalination of 

concentrated brines with an initial NaCl concentration up to 4.6 kmol m-3. The 

complexity of the proposed model is such that an extensive experimentation is required 

for a statistically sound estimation of the relevant model parameters, including solute 

(tB) and water (tW) transport numbers through the ion-selective membranes; solute (LB) 

and water (LW) transport rate by diffusion; average electro-membrane resistance (R). A 

model-based design of experiments (MBDoE) approach is proposed in this paper to 

minimise the number of trials and resources required for model identification. The use 

of this approach in an experimental case study allowed for a dramatic reduction of the 

experimentation time from 1080 min (corresponding to a classical experimentation with 

multiple batch desalination trials) to 30-60 min corresponding to a single optimal batch

desalination experiment. The results obtained show the potential of MBDoE for quick 

development and assessment of electrodialysis models, where highly predictive 

capability can be achieved with the minimum experimental time and waste of resources.     

1. Introduction

Electrodialysis (ED) is a unit operation for the separation or concentration of 

electrolytes in solutions based on the selective electro-migration of ions through 

semipermeable anionic and cationic membranes forced by a direct electric voltage 

applied to the electrodes [1,2]. 

Its main area of application is the desalination of brackish water [2,3] and de-

ashing of milk whey to obtain valuable raw materials for baby-foods [4].  In the food 
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industry, ED is gaining growing importance with large-scale industrial installations for 

the tartaric stabilization of wine, fruit juice de-acidification, and molasses desalting [5].

A sector where the application of ED is potentially interesting is that of the fermentation 

industry, especially when the main product of the microbial metabolism is an electrolyte

[5].

In a previous study [6], a mathematical model for ED, derived from the Nernst-

Plank equation for ion electro-migration, was used in combination with an experimental 

procedure to determine all the independent ED process and design parameters. The 

procedure consisted of five sets of experiments: (i) zero-current leaching, osmosis, and 

dialysis; (ii) electro-osmosis; (iii) desalination; (iv) current–voltage with the stack 

installed with either cationic or anionic membranes only; and (v) validation tests. This 

allowed us reconstructing accurately the performance of an ED stack during the 

recovery of a target strong electrolyte (i.e., sodium chloride) up to a salt concentration 

of about 1.7 kmol m-3 when two identical model solutions were initially used to fill the 

concentrating and diluting compartments [6].

In a more recent work [7], the above experimental procedure was simplified to 

assess only the engineering parameters (e.g., the transport numbers and rates, as well as 

the membrane resistances) that control ED desalination of concentrated brines having a 

higher initial NaCl content of 1.44-3.00 kmol m-3 when using a concentrating stream at 

about 0.40 kmol m-3 of initial NaCl. The experimental procedure was simplified to three 

sets of experiments: i) desalination according to a 2×2 factorial experiment added with a 

replicated centre point with electric current and initial NaCl concentration in the diluting 

stream in the intervals of 2.5-6.5 A and 1.5-3.0 kmol m-3, respectively; (ii) current–

voltage with the stack equipped with cationic and anionic membranes installed in 
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alternating fashion; and (iii) validation tests. However, a clear drawback of the above

approach is that a significant number of experiments is required for achieving a 

statistically sound estimation of the model parameters. Furthermore, the definition of 

the electric current profiles to be used in the identification experiments is experience-

driven and this occurrence may lead to sub-optimal and/or poorly informative 

experiments for the identification of ED models.  

In the field of process systems engineering, model-based design of experiments 

(MBDoE) techniques have been developed to maximize the amount of information from 

dynamic experiments to the purpose of discriminating between rival model structures 

[8] and/or for estimating the model parameters with the greatest possible precision [9].

According to MBDoE, the experiment design problem is formulated as an optimal 

control problem where the experiment decision variables (time varying and/or time 

invariant inputs, sampling times on measured responses, experiment initial conditions 

and duration) can be designed optimally. This allows minimising the number of trials, 

with great benefit in terms of time and cost required for model development. The 

effectiveness of MBDoE was demonstrated in several case studies (also in 

electrochemistry for creating optimal test sequences for the identification of battery cell 

models [10-11]) as discussed, for instance, in the review by Franceschini and 

Macchietto [12]. In general, over the last years, several studies have appeared to 

improve numerical robustness [13], to exploit parallel equipment [14], to adapt the 

experiment design online [15], to incorporate uncertainty effects [16,17], to choose 

among different design criteria [18], and to optimize sampling decisions [19].

Just to consider few recent applications, MBDoE was successfully exploited for 

the optimal design of drug delivery profiles for the identification of pharmacokinetic-
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pharmacodynamic (PK-PD) models [20], and the development of models for the 

description of liquid-liquid equilibria [21].

The aim of this paper is to show how the experimental effort to estimate the 

engineering parameters needed to design ED systems can be dramatically reduced by 

using an MBDoE approach, according to which experiments are dynamically excitated

so that measurements can provide the maximum amount of information for model 

parameter estimation. Thanks to the application of optimal experiment design 

methodologies, a single optimally informative batch desalination experiment can be 

designed for the efficient estimation of all the relevant parameters of a detailed ED 

model. Optimally designed experiments involve the determination of an appropriate 

time profile for the current intensity and of initial concentrations and volumes, as well 

as the minimisation of the experiment duration.

The effectiveness of the proposed methodology is demonstrated in the parameter 

identification of an improved ED model based on the original model by Fidaleo and 

Moresi [7], where the differential water mass balance was modified to account for the 

variation of the density of the solution as a function of NaCl concentration.   

2. Materials and Methods

2.1. Preparation of feed solutions

The feed solutions were prepared by dissolving analytical grade sodium chloride 

in de-ionised water.

2.2.   Analytical Methods
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During the ED experiments, the NaCl concentration was indirectly estimated from 

electric conductivity data.

2.3. Equipment

ED experiments were carried out by using a laboratory-scale electrodialyser 

(model EUR2, Eurodia Industrie SA, Wissous, France) previously described (Fidaleo 

and Moresi, 2011) whose scheme is shown in Figure 1. The ED stack consisted of 9 

cation- (Neosepta CMX-Sb) and 8 anion- (Neosepta AMX-Sb) exchange membranes 

(Tokuyama Soda Co, Tokyo, Japan), separated by sheet flow spacers and gaskets and 

assembled in parallel in alternate fashion between platinum (anode) and titanium 

(cathode) electrodes. The mash of the net-type spacers could be approximated with a 

rhombus (diagonal lines 3 and 6 mm, wire diameter 0.3 mm). Each electrode was 

separated from the membrane pack by a 9.7-mm thick plastic base with 89 circular 

openings (diameter of 11.9 mm), resulting in overall exposed surface areas of electrodes 

(aE) of about 99 cm2, while the geometrical surface area of any membrane (amg) was 200 

cm2. The main characteristics of the electro-membranes used and ED stack are reported 

in Table 1.

The direct current (D.C.) generator Mod. N5767A (Agilent Technologies Inc., 

Santa Clara, CA, USA) could supply voltage (E) and current (I) in the ranges of 0-60 V 

and 0-25 A, respectively. A Visual Basic based Excel macro

(Microsoft Excel 2003, Microsoft Visual Basic 6.3, Microsoft Corporation, Redmond, 

WA, USA) was developed to control the generator connected to a computer through 

USB connection and allowed also recording of time, electric current and voltage on an 

Excel spreadsheet.  
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The dilute (D), concentrate (C) and electrode rinsing solution (ERS) were re-

circulated through the ED stack by means of 3 polypropylene centrifugal pumps and 

were stocked into three 1.6-dm3 PVC tanks. Both C and D tanks were equipped with a 

2-m high Plexiglas tube provided with a millimetre scale to assess precisely any volume 

variation in the C and D tanks. 

The electric conductivity () of the solutions flowing out of D and C 

compartments was measured on-line using two continuous cell flow units (model 

Tetracon DU/T, WTW, Germany) connected to a WTW Inolab Cond Level 1 

conductivity meter or to a WTW multi-parameter instrument model Inolab pH/Cond 

740, respectively. The latter instrument was connected to a computer and allowed the 

electric conductivity and temperature of C stream as a function of time to be recorded

by using the Multilab pilot software (WTW, Germany). The conductivity of the solution 

flowing out of the electrode rinsing compartments was measured using a discontinuous 

WTW cell model Tetracon 325, fitted on-line and connected to a WTW Inolab Cond 

Level 1 instrument.

The membranes were routinely cleaned-in-place by performing a series of re-

circulation cycles with de-ionised water. The stack was filled with NaCl 0.5 kmol m-3

when not operated.

2.4. Experimental procedure and operating conditions

All the experiments were operated in a batch mode at 20 °C by recycling 

continuously both the dilute (D) and concentrate (C) at a flow rate of 148.2 dm3 h-1 and 

the electrode rinsing solution (ERS) at a nominal flow rate of 300 dm3 h-1.



Page 9 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

Before the start of each experiment, the ED membrane pack was equilibrated with 

a 0.5-kmol m-3 NaCl solution for at least 12 h. This solution was then discarded and the 

apparatus rinsed with deionised water. The hold-up of the C and D compartments was 

estimated to about 0.17±0.07 and 0.24±0.09 dm3, respectively, in all experiments. 

Electrode rinsing was carried out by recirculating an aqueous solution containing 

0.32±0.01 kmol m-3 of NaCl for all the experiments. 

A slight difference is present between the actual and desired (target) values of 

liquid volumes in D and C due to the different liquid hold-ups, given by the water 

retained in D or C circuit after cleaning of the plant. After re-circulating such solutions 

through the ED stack and corresponding reservoir under a constant flow of about 148.2 

dm3 h-1 (this involving a superficial feed velocity in each compartment of 6.07 cm s-1) 

until a constant electric conductivity was monitored in both tanks, the Excel macro for 

the control of the DC generator was run allowing regulation of the current as a function 

of time and data recording (current, voltage, time). At the same time, the software for  

recording conductivity and temperature of the C stream was started. The experiment 

duration varied with the chosen operating conditions and ranged from 0.50 h to 2 h . 

2.5 Data analysis

A preliminary data analysis has been carried out to screen out potential outliers in 

the available measurements and to define the measurements errors through the use of 

appropriate variance models (see Section 4.2). Process simulation, optimal design of 

experiment and parameters estimation tasks were carried out by using the software 

gPROMS® (PSE Ltd., London, UK) [22]. 
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3. Modelling of the ED desalting process

The ED model used in this study was previously presented and described in detail 

by Fidaleo and Moresi [7]. A modification was introduced here to take into account the 

dependency of the solution density on salt concentration (see Section 3.2 for further 

details). 

3.1 Physical properties of water-NaCl solutions

Density (), osmotic pressure (), and electric conductivity (B) of sodium 

chloride solutions were extracted from technical handbooks and correlated as a function 

of solute molar concentration by Fidaleo and Moresi [7]. The regression equations

obtained by the abovementioned authors together with the regression coefficient 

estimates were used in this work to predict density, osmotic pressure and electric 

conductivity in a larger range of salt concentration compared to the original one, the 

difference between the data extracted from literature [23] and predicted by the 

regression equations being less than 0.24%, 5.20% or 0.78%, respectively. 

3.2. Salt and water mass balances in an ED system

By assuming pseudo-steady state conditions in any compartment, the differential 

solute and water mass balances in the diluted (D) and concentrated (C) reservoirs of an 

ED system can be written as follows [7]:

BcellmgBBcell
BBDBC WNaΔcLNI
F

t

dt

)d(n

dt

)d(n
 (1)

WcellmgWcell
WWDWC WNa  ΔπLNI
F

t

dt

)d(n

dt

)d(n
 (2)
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where nBk and nWk are the instantaneous amounts of solute and water in the k-th 

reservoir; t is the process time; F is the Faraday constant; tB is the effective cation- (= t+c

- t+a) or anion- (= t-a - t-c) transport number; LB is the membrane constant for solute 

transport by diffusion; tW is the water transport number; LW is the membrane constant 

for water transport by diffusion; cB(=cBD-cBC)and (=D-C) is  the difference in 

solute concentrations and osmotic pressure, respectively, in compartments D and C 

provided that the polarisation effect is negligible; Ncell the overall number of cell pairs;; 

amg the geometric membrane surface; I is the electric current intensity (=j ame); j the 

electric current density; ame the effective membrane surface area as viewed by the 

electrodes themselves; WB and WW the overall molar flow rate of solute and water, 

respectively.

In a previous work [7], integral forms of  Eqs. (1) and (2) were used to fit the 

experimental net increment (or decrement) in the k-th reservoir of solute (nBk) or water 

(nWk) masses as a function of time. In particular nWk was estimated from the variation 

of the liquid volume in the k-th reservoir (Vk) on the assumption that its density was 

constant and corresponding to that of water. In this study we did not make use of this 

simplifying assumption, considering the wider salt concentration range investigated.

By expressing the instantaneous amounts of solute and water in the k-th reservoir

as nBk= cBk Vk and nWk=cWk Vk, where cBk and cWk are the molar solute and water 

concentration in the k-th reservoir, Eq.s (1-2) can be rearranged as a system of four 

differential equations:

C

C
BCB

BC

V

dt

dV
cW

dt

dc






 

 (3)
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D

D
BDB

BD

V

dt

dV
cW

dt

dc






 

 (4)

BCBC

C
B

C
BCBWW

C

cM-ρ

)
dt

dρ
)(M

dt

dV
c(WWM

dt

dV







 
 (5)

BDBD

D
B

D
BDBWW

D

cM-ρ

)
dt

dρ
)(M

dt

dV
c(-WWM-

dt

dV






 

 (6)

where MW and MB are the water and solute molar mass, respectively, and k is the 

density of the solution in the k-th reservoir. In particular, the first derivative of the 

density was obtained by differentiating the corresponding regression equation in order 

to include the effect solution density on the volume expressions.  

Eq.s (3-6) can be solved numerically once the initial conditions 

are known.

3.3. Overall potential drop across an ED stack

The overall voltage applied to the ED stack (D), in the absence of any polarisation 

effect, can be calculated from the following equation [6]:

(7)

with

(8)

where all symbols are defined in the Nomenclature section.

It is worth noting that ame, the effective membrane surface area as viewed by the 

electrodes themselves, depends on the stack and spacer geometry. For the stack under 
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use, Fidaleo and Moresi [7] estimated a value of ame equal to 106.7 cm2, just 8% greater 

than the exposed surface area of the electrodes (aE=99 cm2) and about half of the 

geometrical membrane surface area (amg=200 cm2). This discrepancy can be attributed 

partly to the so called shadow effect of the spacers and party to the fact that the bases 

separating the electrode chambers from the membrane pack have a small degree of open 

area (aE= 99 cm2).

The electric resistances of the cationic (Rc) and anionic (Ra) electromembrane 

under use in contact with sodium chloride solutions can be assumed approximately 

equal (Ra ≈ Rc), in line with the manufactures’s data, and practically independent of 

solute concentration [7]. Thus we used the symbol R to refer to the electric resistance of 

both the cationic and anionic electromembrane resistance. In general, when the two 

resistances differ in magnitudes, only the equivalent resistance  can be 

determined from experiments carried out with the ED stack equipped with cationic and 

anionic membranes installed in alternated fashion.

3.4 Limiting current intensity in an ED stack

The limiting current density (jlim) is the first value at which current density is 

diffusion limited [24], that is the current density associated with an electrolyte 

concentration at the anion- (jlim,a) or cation-exchange membrane surface (jlim,c) falling to 

zero.

In the industrial practice, ED stacks are operated at current intensities (I=ame j)

lower than 2/3 of the limiting one (the smallest value between Ilim,c and Ilim,a). In this 

case, any polarization effect can be neglected and the current–voltage relationship of the 

ED stack is practically linear (the stack operates in the ohmic region) [6, 7].
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4. Model-based design of experiments

The set  of parameters to be estimated for model identification is summarized in 

Table 2. Note that it is assumed that all model parameters are independent of solute 

concentration, electric current, voltage and time (additionally, the temperature does not 

change during the experiment). In fact, previous studies demonstrated that, under this 

assumption, the model can successfully represent the ED recovery of the sodium salts of 

some weak mono-, di- or tri-protic acids of microbial origin (e.g., acetic [25], propionic 

[26], lactic [27], itaconic [28] and citric acid [29]).

Ideally, experiments to collect data for model identification should be as 

informative as possible, i.e. vector y(t) of the measured variables of the outputs should 

be maximally sensitive to the model parameter values. However, in the experimental 

practice this issue is often neglected, and experiments are typically designed to only 

explore the operability of the specific piece of equipment, and process dynamics is 

poorly exploited. For example, in continuous systems, experiments are carried out at a 

few different steady-state conditions, whereas in batch system only initial conditions are 

assigned and the system is left to evolve dynamically at fixed operating conditions. 

Stated differently, the experimental trials are not designed taking into account the 

relationship between y and  so as to excite the system effectively and to collect the 

measurements where they are most informative. On the other hand, MBDoE techniques 

are conceived to specifically achieve this goal: namely, they find the optimal initial 

conditions, the optimal profile of manipulated inputs and the optimal measurement 

sampling instants that maximize the sensitivity of all measurements to the set of model 

parameters to be estimated, thus making the parameter estimation job much more 
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effective. This is achieved by exploiting the dynamic Fisher information matrix [30], 

which is calculated from the sensitivity matrix of the system; see also Appendix A).

Note that a necessary prerequisite to the applicability of MBDoE techniques is 

parameter identifiability. In this study parameter identifiability and estimability have 

been assessed using the formal approach described in [20]. Additional details on the 

procedure used for testing parametric identifiability are given in Appendix B. MBDoE 

involves the sequential interaction between three key activities: i) design of the dynamic

experiment; ii) experiment execution; iii) parameter estimation. The theoretical 

framework of MBDoE can be found elsewhere [12,14]. Figure 2 illustrates the 

procedure. Here it is important to describe how the technique is applied practically in 

the specific case study. The electrodialysis model (Eq.s 3-8) is described by a set of 

differential and algebraic equations (DAEs) of the following general form:

       0t,,t,t,t θuxxf                                                                                                      (9)   

    ttˆ xgy    

where f(.) and g(.) are nonlinear vector functions, x is the vector of states, u is the vector 

of inputs that can be manipulated (dynamically) by the experimenter. Note that in Eq. 

(9) the symbol ^ is used to indicate the estimate of a variable (or of a set of variables): 

thus, y(t) is the vector of measured values of the outputs, while ŷ is the vector of the 

corresponding values estimated by the model. In the current ED study, the vector of 

measured outputs y includes concentration (cBD, cBC), volume (VD, VC) and voltage (E) 

measurements.

The experiment design optimisation for estimating the set of unknown model 

parameters θ is carried out by acting on the experiment design vector φ:

    T

0 , t , , τsp   φ y u t                                                             (10)
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in order to minimise some metrics of the expected variance-covariance matrix of model 

parameters (see Appendix A). The suitable metrics are represented by the so-called 

alphabetical design criteria, A-, D-, E-optimal criteria (minimising, respectively, the 

trace, the determinant and the maximum eigenvalue of the variance-covariance matrix) 

[30] or criteria based on singular value decomposition [14].

The optimal experiment (i.e. the dynamic experiment returning the most 

informative outputs for the estimation of ) is given by:

 a set of initial conditions y0 on the measured variables. In the current study they 

are the concentration of salt ( 0
BDc   and  0

BCc ) and the volume ( 0
DV   and  0

CV ) in 

the diluted and in the concentrated reservoirs;   

 a vector of time dependent manipulated inputs u(t), which is here constituted by 

the electric current intensity profile I, modelled as a piecewise constant input 

variable characterised by five switching times and six switching levels (i.e. we 

assume that, after its initial setting, the current intensity profile may be changed 

five times so as to obtain six constant levels). Note that the intensity current 

dynamics is much faster than the dominant system dynamics. Therefore, perfect 

control of the manipulated inputs can be assumed during the experiment design 

activity;  

 the set of time instants tsp at which the output variables are sampled. Thus, in 

general the optimal experimental design also comprises the measurement 

optimal allocation in time. However, since here volume, concentration  and 

overall voltage measurements are available very frequently, it is assumed that 

120 samples, equally distributed along the experiment duration, are used; 
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 the duration of the experiment τ; here the impact of the experimental duration τ is 

evaluated by fixing an upper bound (τMAX) for this design variable in each 

proposed MBDoE configuration.  

The measurement readings are affected by noise, which is assumed to be Gaussian 

(zero mean and a constant standard deviation). Standard deviations were estimated from 

the replicated centre point of Fidaleo and Moresi [7]: 

 .

Note that experiments can be designed so as to account for some constraints on 

design variables. In this case, constraints involve bounds on E, VD and VC, cBD and cBC

and I. The maximum voltage supplied by the DC generator was 60 V (Emax≤60 V); the 

volume of solution in each tank had to be in a range that allowed correct pump working 

and reading of solution volumes (1.0 dm3 ≤VC ≤ 2.5 dm3; 2.1 dm3 ≤VD ≤ 2.5 dm3); the 

solute concentration had to be less than the solubility value of NaCl (cBC, cBD ≤ 5.30 

kmol m-3 at 20°C). In order to assure operating at a current intensity lower than the 

limiting one, Fidaleo and Moresi [7] performed current-voltage studies for the system 

under investigation by using the stack equipped with anionic and cationic membranes 

installed in alternating fashion. From their data a region of the electric current –

electrolyte concentration plane can be established in which the stack works in the 

absence of polarization, that is at I<Ilim. This allowed to set an upper bound on the 

applied electric current intensity (Imax) as a function of electrolyte concentration in the 

diluting stream (cBD) to be used in experiment designing:

BD2

BD1max

ck

ck
I


 (11)
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The initial guesses θ0 of the parameter vector ]REtLtL[ elWWBBθ  is 

given by ]0.0262.010.081043.10.96910[1.38 -780  θ , where the initial 

guesses (with appropriate units) are derived from literature values [7]. 

5. Results and discussion

Two different design approaches are compared for the estimation of the model 

parameters: 

1. A standard DoE approach following extensive experimentation (7 batch desalination 

experiments); 

2. An MBDoE approach, where a single experiment is designed according to the 

following design configurations:

O1: optimally designed experiment  with τ = τMAX = 120 min (2 h);

O1*: optimally designed experiment with τ = τMAX = 60 min (1 h);    

O2: an MBDoE with an additional objective function including the minimisation

of the amount of salt used (nB [mol]), evaluated from the following expression: 

DBDCBCB VcVcn  .   (12)

The duration was fixed to τ = τMAX = 30 min (shorter duration).   

An A-optimal design criterion was applied in all the MBDoE configurations, given the 

fact that a limited correlation is present between the model parameters (see Section 5.1 

for further details). Results for each design approach are compared in terms of estimated 

value and related statistics obtained after a maximum likelihood parameter estimation

[31] is carried out. Further details on the parameter estimation technique used in this 

paper are given in Appendix C. In particular, the precision of the estimate is assessed by 
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evaluating for each parameter the interval of estimation confidence and the t-value 

statistic:

  

            i = 1…Nθ ,                                                            (13)

where vii is the i-th diagonal element of V . For a reliable parameter estimation the t-

value of each parameter must be greater than ξ, the computed reference value derived 

from a Student t-distribution with nsp–Nθ degrees of freedom (reference t-value).

5.1. Parameter estimation under extensive experimentation

Fidaleo and Moresi [7] used a 22 factorial design with replicated centre points to 

assess the effect of the electric current and initial NaCl concentration in the diluting 

stream in the range of 2.5-6.5 A and 1.5-3.0 kmol m-3, respectively, on water and solute 

fluxes. A total of seven batch desalination experiments carried out at constant electric 

current were run (four factorial runs and three replicated centre runs). By using an 

integrated and simplified form of Eq.s (1-2), the authors fitted the predicted decrement 

in the amount of electrolyte in tank D (nBD) and the increment in the amount of water 

in tank C (nWC) to the data from the designed experiments and estimated the

parameters LB, tB, LW, tW.

In this study, a modified form of the differential mass balance equation for water 

was used to take into account density variation with solute concentration, the 

concentration of solute in the diluting stream being higher. Thus the abovementioned 

parameters were re-estimated by using Eq.s (5-8) on the experiment set of Fidaleo and 
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Moresi [7] (all the experiments were used, except trial D5). Results obtained after 

parameter estimation are shown in Table 3. They show that some parameters (tB, tW) are 

estimated with great precision, but the design configuration fails on estimating the 

membrane constant LB in a statistically sound way, as underlined by the low t-value 

achieved. 

Table 4 reports the correlation matrix of the parameters associated with the model 

and the experimental design, as obtained by the software gPROMS®. It can be observed 

that the degree of correlation among parameter estimates is low (|r|≤0.7), thus 

confirming that the model parameters can in principle be identified from the 

experimental data. However, the design is not robust because, as a result of the 

uncertainty on volume measurements, the parameter estimation obtained (together with 

the estimate of Eel, R and ame obtained by Fidaleo and Moresi [7] from independent 

current-voltage experiments) is such that information appears to be oriented to the 

estimation of a specific subset of model parameters. More importantly, the experiment 

execution is rather demanding in terms of both time (the overall time dedicated to the 

experiments is approximately 18 h) and experimental effort (experiments must be 

performed sequentially and the apparatus has to be re-set for each new experiment).  

5.2. Parameter estimation under optimal experimental designs

Optimal experiment design results are summarised in Table 5 in terms of optimal 

design vector φ, while the actual experimental conditions realised in the ED equipment 

are shown in Table 6. According to O1, a sudden increment of the electric current 

intensity after 45 min is scheduled in order to optimise the information content of the 

experiment. After 60 min the current intensity is decreased and suddenly increased after 
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89 min. In optimal experiment O1* the same excitation pattern of O1 for the electric 

current intensity is maintained by MBDoE optimisation, but the experiment duration is

shorter and set to τ = τMAX = 60 min.  

A similar excitation pattern with a sudden increment in the electric current after 

10 min is obtained for design configuration O2. In both design settings, the initial 

concentration of solute in the concentrate tank is practically set to zero, while in the 

dilute one it is close to its upper bound, i.e. the salt solubility limit (about 5.3 kmol m-3

at 20 °C). Intuitively, it seems that the optimal design settings are such that the system 

is controlled by the maximum allowable diffusion driving force in the first part of the 

experiment, before switching to high current intensity when the maximum allowable 

electro-migration driving force predominates (corresponding to the upper bound of the 

electric current predicted by Eq. (11)).

Figures 3 and 4 report the time course of the input variable (I) and the 

experimental and simulated outputs (cBD, cBC, VD, VC, E) for optimal experiments O1 

and O2, respectively. In particular, it can be noted that the water flux changes direction

when the electric current is increased: in the first part of the experiment the osmosis 

contribution predominates, while in the second part electromigration gives the larger 

contribution to the flux. It is evident that the mathematical model fits the data 

accurately. Note that the continuous lines plotted in Figure 3 were obtained by using 

the parameters set estimated from the data of the first hour (according to optimally 

designed experiment O1*), but provide excellent predictions also in the second part of 

the experiment (experiment O1), after the vertical grey line time point, thus validating 

the model.Results after parameter estimation from optimally designed experiments O1, 

O1* and O2 are given in Table 3. The results in terms of parameter estimation precision 
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are quite interesting. The experimental conditions and optimal excitation pattern on the 

manipulated input I provided by O1* provide a statistically sound estimation of the full 

set of model parameters after a single trial, lasting only 1 h. If the experiment is 

prolonged to 2 h (configuration O1), the parameter estimation precision is improved 

significantly, in particular for the estimation of tw, which is the critical parameter to be 

estimated.

Both O1 and O1* require to use a significant amount of salt in order to be able to 

identify the full set of model parameters. This problem can be overcome by minimising 

the amount of salt by optimal design according to Eq. (12). The significant result in this 

case is that it is possible to reduce the experiment duration to only τ = 30 min, achieving 

at the same time a statistically sound parameter estimation of the full set of model 

parameters, as underlined by the t-values in Table 3. 

From an engineering point of view, the parameter estimates obtained from the 

optimal designs practically match the values estimated from the thorough experimental 

study. The estimates of tB, LW, tW, Eel or R obtained from the two optimal designs O1 

and O2 differed from the true values by 2.5 and 11.3%, 0.9 and 2.8%, 10.1 and 3.2%, 

18.3 and 5.7% or 7.7 and 3.8%, respectively. Furthermore, the parameter confidence 

intervals estimated from the two optimal experiments include in many cases the 

estimate obtained from the thorough experimentation, thus showing that there is no 

evidence of significant differences among estimates. 

Thus, the significant achievement of these experiments designed by MBDoE is 

that they allow for a precise estimation of the full set of parameters with a single trial, 

and the duration of this trial can be reduced to τ = 30 minutes (against at least 18 h 

required by a standard DoE).
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A validation test (trial V1 whose experimental conditions are reported in Table 6), 

was carried out to check for the accuracy of the model parameters estimated from 

optimally designed experiments (in particular, we used the parameter values as 

estimated after experiment O1 and reported in Table 3). Figure 5 shows a substantially 

good agreement between the time profiles of the experimental and calculated values of 

the solute molar concentrations (cBD and cBC), volumes of concentrate (VC) and dilute 

(VD), and voltage applied to the electrodes (E), thus demonstrating the effectiveness of 

the experimental design approach.

We believe that the case study shows how MBDoE techniques can be successfully 

applied for identifying models in ED applications. They allow reducing the overall 

experimental effort in terms of time and materials. On the other hand, they require the 

availability of an experimental equipment where dynamic experiments can be handled 

quite accurately. In fact, it is essential to guarantee that the designed initial conditions 

and input profile can be actually reproduced in the experimental apparatus. Similarly, 

the prescribed sampling schedule should be achievable practically. Although the 

experiment design problem can be formulated in such a way as to account for the actual 

characteristics of the experimental and measurement, it is clear that advanced design 

techniques are most effective within a properly instrumented and controlled 

experimental environment. For instance, uncertainty in initial conditions, imprecise 

(noisy) measurements, (auto-) correlation effects may hinder the MBDoE efficacy [32] 

and make it equivalent to more traditional experimental design approaches.
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6. Conclusions

A model-based design of experiments (MBDoE) approach was proposed to 

minimise the number of trials and resources required for identification of electrodialysis 

models. As a case study, an ED model previously developed for the desalting of highly

concentrated NaCl brines [7], based on Nernst-Plank derived equations, was improved 

to extend its validity to initial NaCl concentration (cBD0) up to 4.6 kmol m-3, close to the

solubility limit. The model was fit to a large literature data set from several batch 

desalinations carried out according to a standard 2x2 factorial with added centre point 

[7] and all the relevant model parameters including solute (tB) and water (tW) transport 

numbers through the ion-selective membranes; solute (LB) and water (LW) transport rate

by diffusion; and the cationic and anionic electro-membrane resistance (R) was

estimated. As a comparison, two single batch desalination experiments were designed 

by using the MBDoE approach. Both experiments resulted in a statistically sound 

estimation of the model parameters matching the estimates obtained from standard (but 

much more demanding) experimental practice. This approach allowed for a dramatic 

reduction of the experimental time corresponding to the overall duration of the batch 

desalination experiments from 1080 minutes (without considering the time needed to 

reset the ED system for each trial) for the extensive experimentation, to 60 and 30 

minutes for the two design configurations examined. The results achieved confirm the 

high potential of MBDoE for quick development and assessment of electrodialysis 

models describing both mass transfer and electric current – voltage relationship, where 

highly predictive capability can be achieved with the minimum experimental time and 

waste of resources. Future work will include the application of the MBDoE approach to 
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the ED recovery of the sodium salts of week monocarbossilic acids, such as acetic, 

lactic and propionic acid (some preliminary tests show very promising results).

Appendix A: Mathematical formulation of MBDoE 

MBDoE techniques aim at decreasing the model parameter uncertainty region by 

identifying the optimal experiment design vector (Eq. (10)) as the solution of the 

optimisation problem:

     opt 1
θ θarg min ψ , argmin ψ ,      V θ H θ

 
        (A.1)  

subject to the model equations (Eq. (9)) and to a nφ-dimensional set of constraints on 

design variables, usually expressed as:

u
i  i

l
i              i = 1 …nφ               (A.2)

with lower (superscript l) and upper (superscript u) bounds on the elements of . In 

general, the experiment design procedure needs to take into account also the existence 

set of equality and inequality constraints on state variables in the form:

    0GθxC  tt,,:                     (A.3)

where C is an admissible set of design vectors satisfying the set of constraint conditions 

expressed through the vector G(t) of (possibly time-varying) active constraints on the 

state variables x(t). Vθ and Hθ are the variance-covariance matrix of model parameters 

and the dynamic Fisher information matrix, respectively, defined by  

     
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1...Nml,
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kj

l

ki
ij

0
θ θ

tŷ

θ

tŷ
s, HθH θ            (A.4)

In Eq. (A.4), sij is the ij-th element of the Ny×Ny inverse matrix of measurements error 

and 0
θH  is the prior dynamic information matrix, taking into account the preliminary 
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statistical information about the parametric system before each trial is carried out. For 

more information see, for instance [9,31].

Appendix B: Procedure for testing parametric identifiability

A three-step procedure [20] coupling structural local identifiability (SLI) and structural 

global identifiability (SGI) analysis was used in this paper for testing the parametric 

identifiability of the proposed ED model. The scheme of the proposed procedure is 

shown in Figure B1. 

Figure B1

Procedure used for testing parametric identifiability.

SLI Test
(Eq. B2)

D-optimal 
MBDoE

Det
(Hθ

*)=0
?

Model 
reformulation

Test 
passed

?

SGI Test 
(Eqs. B3-B5) END

Yes

Yes
No

No

θ0, φ0

Σ0

φ

The procedure started given the model equations (Eqs. 3-8 in the main text) and prior 

knowledge on the parametric set in terms of initial guesses (θ0), preliminary variance-

covariance matrix of model parameters (Σ0) and experimental conditions (φ0) as derived 

from literature [7].

In the first step of the procedure, a SLI test was carried out. The SLI test is based on the 

definition of local identifiability proposed by Shaw [33]:  



Page 27 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

Definition (local identifiability, SLI test): the model M with output trajectory y is 

locally identifiable if, in an open neighborhood of Θ , for the set of system 

inputs u and the initial conditions y0, the Ny Nsp × Nθ estimability matrix PE

   

θ0 0

y y
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y y
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(B1)

has full rank. In (B1) Sy(ti) is the Ny × Nθ sensitivity matrix evaluated at the 

sampling time ti.   

The SLI test performed in this paper is based on the evaluation of the Fisher information 

matrix: if the Fisher information matrix is non-singular, the model is deemed locally

identifiable [34]. In fact, under the hypothesis of constant measurement errors

y yN N
* T T
θ ij i j E E

i 1 j 1

s
 

  H Q Q P P            (B2)

and a D-optimal MBDoE can be carried out where the experimental conditions aiming 

at maximising the determinant of *
θH are the ones producing the lowest correlation for 

PE. Conversely, experimental conditions providing high correlation among PE columns 
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leads to singularity of H matrix with the information related to specific subsets of 

model parameters becoming close to zero [34]. The SLI test is used to test the 

applicability of a D-optimal MBDoE acting on (B2) where the maximisation of the 

expected information is realised by maximising the determinant of *
θH . In this phase, if 

the determinant is null, the model is locally not identifiable and its structure has to be 

modified before a suitable design vector can be determined adopting MBDoE 

techniques. For the ED model, the proposed structure was SLI for all the set of 

experimental conditions investigated in [7], thanks to the high sampling frequency 

realised in the experiments. However, the relatively small values of the determinant 

realised in these experiments (ranging from 10-6 to 10-5) was such that the practical 

identifiability of the model parameters (i.e. the precise estimation of the model 

parameters) was not possible with the preliminary experimental design. 

In the second step, after the SLI test was performed, a D-optimal MBDoE was carried 

out where a set of optimal experimental settings (φ) was evaluated ensuring the local 

identifiability of the model at the currently available information on the parametric set 

(θ0). This MBDoE optimisation provided the same results in terms of manipulated 

inputs of the O1 design (A-optimal MBDoE) described in the main text. 

In the final step, once φ was determined, the global identifiability of the model was 

tested by performing a SGI test on the variability domain of model parameters (Θ), 

identified by θ0 and by the preliminary variance-covariance matrix of model parameters 

(Σ0). In this way the SGI of the ED model was tested at the experimental settings φ

satisfying the SLI conditions. SGI test verifies that different parametric sets do not 

provide the same model response in the entire variability domain of model parameters. 
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The SGI test adopted in this paper follows the optimisation-based approach to test 

global identifiability suggested by Asprey and Macchietto [35]: 

Definition (global identifiability, SGI test): the model with structure M and 

output trajectory y is globally identifiable if, for any two parametric sets Θ*, , 

and a time horizon of interest  t 0, τ , for the set of system inputs u0 and the same 

initial conditions y0 for the measured outputs, the distance I between two 

parameter vectors θ and θ* providing the same model output is such that

     I  =    T* *
θ θ

, *
max ε  

θ θ
θ θ W θ θ   (B3)       

      subject to 

                         
τ

T

0 0 y 0 0 y

0

, , , , dt ε   * *y u θ y u θ W y u θ y u θ  (B4)

                 0, , , , t 0f x x u θ                   (B5) 

where θθ NN
θ

W and yy NN
y

W are two proper weighting matrices and εθ and 

εy are arbitrarily small numbers. 

The test (B3-B5) implies the direct numerical evaluation of SGI over the entire 

variability domain of model parameters Θ for the set of manipulated inputs provided by 

MBDoE ( 0, yu ) as determined from SLI test, stating that the SGI of the ED model 

can be guaranteed if the distance between two parameters vectors providing the same 

model response is arbitrarily small. The optimisation problem (B3-B5) was solved using 

the SQP-based dynamic optimisation solver available in the gPROMS® environment. 
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Appendix C: Parameter estimation

The estimation of model parameters was carried out adopting a maximum likelihood

parameter estimation approach. The benefit of using such an approach is that it allows 

using the existing information on the variability of measurements in terms of standard 

deviation for each measured response providing a-posteriori statistics on model 

parameters in terms of variance-covariance matrix Vθ. The objective function Φ being 

optimised during the parameter estimation is the log-likelihood function as proposed by 

Bard [31]: 

     exp y spN N N
ijk ijk2

ijk 2
i 1 j 1 k 1 ijk

ˆy yN 1
ln 2 min ln

2 2 
 


  

        
    

   .        (C1)

In (C1) N is the total number of experimental points, Nexp is the number of experiments, 

Ny is the number of measured responses and Nsp is the number of sampling points in 

each performed experiment; yijk and 2
ijk  represent, respectively, the measured value and 

the variance of the k-th measurement related to the j-th response in the i-th experiment, 

while ijkŷ is the corresponding model response. Note that in the current study the values 

of standard deviation for the j-th measured response were known from preliminary 

experiments performed in the ED system [7] (
BC BDc c  0.07 kmol/m3; 

C DV V  5∙105 m3; 
VE  0.2 V) and for this reason were kept constant during the 

parameter estimation activities (i.e. a constant variance model was used). The parameter 

estimation tool of gPROMS® ModelBuilder [22], exploiting a modified SQP routine for 
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the optimisation of (C1), was used in all the activities related to the estimation of model 

parameters, as well as for the analysis of statistics obtained after each parameter 

estimation session has been carried out.   

Nomenclature

Model-based design of experiments

f  differential and algebraic system implicit function

g measurements selection function

nsp number of samples

Nu number of manipulated inputs

Nx number of state variables

Ny number of measured variables

Nθ number of model parameters

Nc number of constraints

n number of design variables

sij ijth element of the inverse matrix of measurements errors

t time

ti ith t value

x generic state variable

y generic measured output

Greek Symbols 

i ith element of the design vector

θi ith model parameter
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τ experiment duration

τMAX experiment duration upper bound

ψ measurement function of Vθ

i standard deviation of ith measurement

  reference value of t-distribution with nsp-N degrees of freedom

Vectors and Matrices [dimension]

C set of constraint functions [Nc]

G set of active constraints [Nc]

Hθ dynamic information matrix [Nθ x Nθ]

Hθ
0 preliminary information matrix [Nθ x Nθ]

y0 vector of initial conditions [Ny]

y measurements vector [Ny]

vector of estimated responses [Ny]

tsp vector of sampling points [nsp]

u vector of manipulated inputs [Nu]

Vθ variance-covariance matrix of model parameters [Nθ x Nθ]

x vector of state variables [Nx]

x0 vector of initial states [Nx]

vector of derivatives on state variables [Nx]

 design vector [n]

θ vector of values of true model parameters for the system [Nθ]

vector of estimated values of model parameters [Nθ]

θ0 vector of initial guesses of model parameters [Nθ]
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Modelling of the ED desalting process

Ame overall effective membrane surface area (=ame Ncell, m
2)

Amg overall geometric membrane surface area (=amg Ncell, m
2)

aE exposed surface area of the electrodes (cm2)

ame effective membrane surface area (m2)

amg geometrical membrane surface area (cm2)

c molar concentration (kmol m-3) 

cERS solute molar concentration in the electrode rinsing solution (kmol m-3) 

E voltage applied to the ED electrodes (V)

ED Donnan potential difference across membranes of any ED cell (V)

Eel thermodynamic potential and overpotential of electrodes (V)

F Faraday’s constant (96,486 C mol-1)

h channel interval or membrane gap (m)

hERS thickness of the electrode compartment (m)

I electric current (A)

Ilim limiting electric current (A)

j electric current density (A m-2)

LB membrane constant for solute transport by diffusion (m s-1)

LW membrane constant for water transport by diffusion (mol m-2 s-1 bar-1)

MB solute molar mass (kg kmol-1)

MW water molar mass (kg kmol-1)

Ncell overall number of cell pairs (dimensionless)

Nk overall number of the k-th electro-membrane (dimensionless)

n number of moles (mol)



Page 34 of 49

Acc
ep

te
d 

M
an

us
cr

ip
t

R average electric resistance of any electro-membrane (

RG gas-law constant (= 8.314 J mol-1 K-1)

Rk electric resistance of the k-th electro-membrane ()

T absolute temperature (K)

t process time (s or h)

t±k cation or anion transport number in the k-th electro-membrane 

(dimensionless)

tB effective solute transport number (=tc
+ - ta

+=ta
- - tc

-; dimensionless) 

tW water transport number (dimensionless) 

Vk volume solution in the generic k-th tank (m3)

WB solute molar flow rate (kmol s-1)

WW water molar flow rate (kmol s-1)

Greek Symbols

cB difference in solute concentration in compartment D and C (=cBD-cBC, kmol   

m-3)

t duration of batch mode experiments (h)

 trans-membrane osmotic pressure difference (=D-C, bar)

B electric conductivity (S m-1)

 osmotic pressure of solution (bar)

 density of solution (kg m-3)

Subscripts

a referred to the anion-exchange membrane
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B referred to solute

C referred to the concentrate 

c referred to the cation-exchange membrane

D referred to the dilute 

ERS referred to the electrode rinsing solution 

f referred to the boundary layer 

k referred to the generic k-th membrane or solute

W referred to water

0 initial
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Figure 1

Scheme of the electrodialyser. 
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Figure 2

MBDoE procedure and information flux.
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Figure 3

Time course of  trial O1 carried out using the operating conditions listed in Table 6: a)

electric current (I: dashed line) and voltage applied to the ED stack (E: ○) as a function 

of time (t); b) solute concentration in the concentrate (cBC: ○) and dilute (cBD: ) and 

their corresponding volumes (VC: ∆; VD: ◊) vs. tAll the continuous lines () were 

calculated using the mathematical model and the engineering parameters determined by 

fitting the data corresponding to the first 60 minutes and reported in Table 3 (optimal 

design O1*). All the data points used in the fitting procedure are reported on the plot.  
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b)

∆ VC

◊  VD
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Figure 4

Time course of  trial O2 carried out using the operating conditions listed in Table 6: a)
electric current (I: dashed line) and voltage applied to the ED stack (E: ○) as a function 
of time (t); b) solute concentration in the concentrate (cBC: ○) and dilute (cBD: ) and 
their corresponding volumes (VC: ∆; VD: ◊) vs. t All the continuous lines () were 
calculated using the mathematical model and the engineering parameters determined 
from experiment O2 (Table 3). Fewer points than used for fitting are shown for a better 
visualization.  
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Figure 5

Time course of  trial V1 carried out using the operating conditions listed in Table 6: a)
electric current (I: dashed line) and voltage applied to the ED stack (E: ○) as a function 
of time (t); b) solute concentration in the concentrate (cBC: ○) and dilute (cBD: ) and 
their corresponding volumes (VC: ∆; VD: ◊) vs. tAll the continuous lines () were 
calculated using the mathematical model and the engineering parameters determined 
from experiment O1 (Table 3). 
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Table 1 Specifications of the ED stack used in this work (model EUR2, Eurodia 

Industrie SA, Wissous, France) and manufacturer’s data on membrane 

properties.

Membrane type Cationic Anionic Unit

Neosepta 

CMX-Sb

Neosepta 

AMX-Sb

Thickness 0.14-0.20 0.12-0.18 (mm)

Burst Strength ≥ 0.40 ≥ 0.25 (MPa)

Electric resistance at 0.5 M NaCl and 25°C 2.0~3.5 2.0~3.5 ( cm2)

Perselectivity 1.0/0.5 M KCl 92 95 (%)

Electrode Dimensions 117 x 177.2 (mm x mm)

Membrane overall size 148 x 280 (mm x mm)

Geometric membrane surface area (amg) 200 (cm2)

Number of membranes (Nc or Na)            9                       8            -

Number of cell pairs (Ncell) 8 -

Overall membrane surface area (Amg) 0.16 (m2)

Intermembrane channel (h) 0.7 (mm)

Electrode compartment  thickness (hERS) 9.7 mm
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Table 2 Vector of model parameters estimated in this work.

Parameter Description Unit

LB membrane constant for solute transport by diffusion m s-1

tB effective solute transport number (=tc
+ - ta

+=ta
- - tc) dimensionless

LW membrane constant for water transport by diffusion mol m-2 s-1 bar-1

tW water transport number dimensionless

Eel thermodynamic potential and overpotential of electrodes V

R average electric resistance of k-th electro-membrane 

(=(NaRa+NcRc)/(Na+Nc))


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Table 3 Results obtained after parameter estimation. Estimated values ( ) including 95% confidence interval semi-widths (sw95%) and t-values 
(parameters failing the t-test are shown in boldface) from standard DoE following extensive experimentation (data of batch desalination 
experiments reported in reference [7]) and obtained from optimally designed experiment O1, O1* and O2 (see Table 5 for optimal 
experimental conditions). 

Parameter estimation results

Experiments from [7] Optimal design O1 Optimal design O1* Optimal design O2

Unit
Parameter

 ± sw95% t-value  ± sw95% t-value  ± sw95% t-value  ± sw95% t-value

LB
2.32·10-8

± 3.80·10-8 0.6
9.81· 10-8 ±2.76· 

10-8 3.6
1.00·10-7

±0.40·10-7 2.5
9.81· 10-8 

±1.38· 10-8 7.1 m s-1

tB

0.98
±0.01 98.3

0.92
±0.06

15.2
0.96

±0.15
6.3

0.87
±0.04

20.7 dimensionless

LW

1.06·10-7

±0.12·10-7 8.8
1.04·10-7 

±0.12·10-7 9.0
1.05·10-7

±0.18·10-7 6.0
1.03·10-7 

±0.37·10-7 2.8 mol m-2 s-1 bar-1

tW

8.08
±0.25 32.3

8.54
±1.21

7.1
8.89

±3.29
2.7

7.82
±1.89

4.1 dimensionless

Eel

2.4
±0.3 12.0

2.99
±0.09

33.4
2.84

±0.15
18.8

2.26
±0.09

25.7 V

R
2.6·10-2 ± 
0.8·10-2 3.3

2.3·10-2 ± 
0.07·10-2 30.5

2.4·10-2

± 0.09·10-2 27.2
2.5·10-2

±0.05·10-2  

trif 1.65 1.66 1.66  

Tot. duration 
[min]

1080 120 60  
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Table 4    Correlation matrix of parameters LB, tB, LW and tW estimated from experiments 

labeled D1-D7 (excluding trial D5) of Fidaleo and Moresi [7] by using Eq.s 

(5-8).   

LB LW tB tW

LB 1.000

LW -0.187 1.000

tB -0.700 0.111 1.000

tW -0.202 0.684 0.179 1.000
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Table 5 Results from model-based design of experiment (O1, O1* and O2 optimal design configurations) in terms of optimal 

design vector (elements y0, u and τ) and total amount of salt (nB) used for each designed experiment. 

Design vector elements

Optimal design O1 Optimal design O1* Optimal design O2

Switching 
time  [min]

Current 
intensity [A]

Switching time  
[min]

Current 
intensity [A]

Switching time 
[min]

Current 
intensity [A]

u I
0

46

60

89

0.5

11.5

2.5

8.0

0

46

0.5

11.5

0

10

0.5

11.4

y0

0
BCc [ kmol m-3]

0
BDc [kmol m-3]

0
CV [dm3]

0
DV [dm3]

0.01

5

1

2.46

0.01

5

1

2.46

0.01

3.8

1.5

2.1

τ [min] 120 60 30

nB [mol] 12.3 12.3 8.0
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Table 6 Outline of the actual ED experimental conditions used for parameter identification and validation: I, range of direct electric 

current applied; cBD0 and cBC0, initial solute molar concentration (in tank D and C respectively); VC0 and VD0, initial solution 

volume in tank C and D, respectively; cERS, solute molar concentration in the electrode rinsing solution. The design values are 

indicated in brackets.  

Experimental conditions

I cBD0 cBC0 VD0 VC0 cERS

(A) (kmol m-3) (kmol m-3) (dm3) (dm3) (kmol m-3)

Optimal design (O1) 0.5-11.46 4.40 (5.00) 0.03 (0.01) 2.64 (2.46) 1.16 (1.00) 0.34

Optimal design (O2) 0.5-11.40 3.51 (3.80) 0.00 (0.01) 2.24 (2.10) 1.77 (1.50) 0.32

Validation (V1) 0.5-11.45 4.60 0.00 2.21 1.21 0.31




