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ABSTRACT	 		

Big	 Data	 has	 begun	 to	 create	 significant	 impacts	 in	 geography,	 urban	 and	 transport	
planning.	 This	 paper	 covers	 the	 explosion	 in	 data-driven	 research	 on	 cycling,	 most	 of	
which	has	occurred	in	the	last	ten	years.	We	review	the	techniques,	objectives	and	findings	
of	 a	 growing	 number	 of	 studies	 we	 have	 classified	 into	 three	 groups	 according	 to	 the	
nature	 of	 the	 data	 they	 are	 based	 on:	GPS	 data	 (spatiotemporal	 data	 collected	 using	 the	
Global	 Positioning	 System),	 live	 point	 data,	and	journey	 data.	We	 discuss	 the	 movement	
from	small-scale	GPS	studies	to	the	“Big	GPS”	datasets	held	by	fitness	and	leisure	apps	or	
specific	cycling	initiatives,	the	impact	of	Bike	Share	Programmes	(BSP)	on	the	availability	
of	 timely	 point	 data	 and	 the	 potential	 of	 historical	 journey	 data	 for	 trend	 analysis	 and	
pattern	recognition.	We	conclude	by	pointing	towards	the	possible	new	insights	through	
combining	 these	 datasets	 with	 each	 other	 -	 and	 with	 more	 conventional	 health,	
sociodemographic,	or	transport	data.	
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1. Introduction		

Big	 Data	 holds	 the	 promise	 to	 illuminate	 social	 processes	 that	 were	 previously	
undersampled	 or	 poorly	 understood.	 For	 those	 involved	 in	 city	 planning,	 service	
provision,	 and	 business	 intelligence,	 it	 still	 remains	 central	 to	 innovation	 and	 research.	
The	term	arose	first	from	the	large-scale	collective	efforts	of	scientists	at	the	CERN	(Conseil	
Européen	 pour	 la	 Recherche	 Nucléaire)	 particle	 accelerator,	 large	 scale	 astronomy	 and	
genomics	projects	(Marx,	2013)	–	but	for	more	than	five	years,	the	potential	for	working	
with	large-scale	social	data	has	been	grasped	by	the	commercial	sector	(Manyika,	2011)	as	
well	 as	 governments	 and	 non-governmental	 organisations	 (NGOs)	 (Hall,	 2012).	 Despite	
the	 excitement	 it	 has	 generated,	 working	 definitions	 of	 the	 term	 are	 problematic	 –	 the	
most	 widely	 adopted	 framework	 derived	 from	 Laney	 (2001)	 refers	 to	 the	 “3Vs”	 of	 Big	
Data:	Volume	(size),	Velocity	(speed	of	generation	or	collection)	and	Variety	(synthesizing	
a	range	of	sources).	Later	authors	(Kitchin,	2014)	have	added	additional	definitions	to	this	
(including	“Veracity”,	the	quality	of	the	data	–	as	a	way	to	preserve	the	alliteration	of	the	
concept),	 but	 it	 seems	 dubious	 that,	 in	 the	wider	world	 of	 Big	 Data,	many	 data	 sources	
fully	qualify	under	all	the	categories	of	the	3Vs,	or	the	wider	definitions.	Most	of	the	data	
sources	 discussed	 in	 this	 review	 qualify	 as	 Big	 Data	 under	 the	 first	 V	 (Volume),	 but	
possibly	not	the	others	–	many	are	single	source	(e.g.	a	transport	provider	or	single	app	or	
web	 platform,	 disqualifying	 them	 under	 the	 variety	 criterion)	 and	 few	 provide	 large	
velocities	of	data	in	real-time.		

It	perhaps	makes	sense	to	view	the	concept	of	Big	Data	as	representing	an	enthusiasm	for	
the	 rapid	 expansion	 of	 data	 availability.	Within	 these	 technologically-driven	 definitions,	
there	 is	no	focus	on	openness	or	accessibility.,	While	the	promise	of	 innovation	and	new	
markets	may	motivate	engineers	and	computer	scientists,	it	is	the	availability	of	data	that	
has	empowered	and	excited	new	actors	 in	policy,	politics	and	governance.	New	datasets	
have	become	widely	accessible	which	capture	the	detail	of	processes	that	previously	were	
estimated,	 under	 sampled,	 kept	 private,	 or	 simply	 poorly	 understood.	 In	 part,	 the	 Open	
Data	 movement	 can	 be	 thanked	 for	 its	 hand	 in	 not	 only	 pushing	 an	 agenda	 of	
transparency,	but	encouraging	service	providers	and	government	departments	to	provide	
usable	datasets	and	streaming	APIs	(Application	Programme	Interfaces)	that	third	parties	
can	 use	 to	 create	 commercializable	 platforms	 and	 research	 outputs.	 The	 topics	 of	 data	
released	as	a	 result	of	a	movement	 towards	Open	Government	Data	 (OGD)	arguably	has	
antecedents	 in	 census	 and	 administrative	data,	 and	 the	 transparency	 agenda	has	driven	
the	release	of	 largely	pre-existing	datasets	(see,	for	example,	Coleman	(2013)).	However,	
the	presence	of	technology	as	a	mechanism	of	automation	and	monitoring	has	generated	
new	 datasets	 with	 collection	 methods	 which	 are	 distinct	 from	 centrally-compiled	 or	
volunteered	OGD.	This	is	particularly	true	in	transport,	where	the	automated	systems	for	
ticketing	or	charging	create	a	uniquely	detailed	data	stream	–	however,	 this	data	stream	
has	 significant	 enough	 privacy	 issues	 that	 it’s	 not	 yet	 available	 in	 this	 detailed	 form.	
Transport	and	geolocated	data	has	quite	an	incredible	capacity	to	de-pseudononymise	and	
reveal	 new	 information	 about	 individuals	 (for	 example,	 the	 work	 done	 on	 open	 data	
around	New	York	taxis	to	‘stalk’	celebrities	or	identify	the	homes	of	people	who	go	to	strip	



clubs	(Tockar,	2014)),	so	there	is	a	very	clear	rationale	for	caution	about	open	data	release	
in	this	sphere.		

Perhaps	 the	 most	 notable	 example	 of	 this	 data	 boom	 is	 the	 expansion	 of	 smart	 card	
systems	 for	 public	 transport	 in	 major	 cities	 (Pelletier,	 Trépanier	 &	 Morency,	 2011)	
providing	journey	level	information	for	individual	users,	 in	systems	that	were	previously	
sampled	by	gate	counts	and	travel-to-work	questionnaires.	The	quantum	leap	from	limited	
to	almost	complete	sampling	is	unprecedented,	and	time	slices	of	this	data	are	available	to	
researchers	 or	 developers	 through	 service	 providers	 online	 (for	 example,	 Transport	 for	
London	(2014)).	Cycling	sits	in	a	nexus	where	availability	of	Big	Data	(from	quantified	self	
data,	BSP,	GPS	devices	and	mobile	tracking)	intersects	with	societal	needs	around	fitness,	
sustainability	and	air	quality,	and	service	provision	and	infrastructure	planning	for	active	
transport.	

This	review	seeks	to	survey	the	Big	Data	sources	available	to	cycling	researchers,	broadly	
split	into	GPS	data,	live	point	data,	and	journey	data.	These	data	follow	different	patterns	of	
volume	 and	 velocity,	 suggesting	 different	 problem	 domains	 and	 generating	 differing	
analysis	 approaches.		 GPS	 data	 is	 collected	 via	 smartphone,	 embedded	 devices,	 or	
specialized	 units	 –	 this	 is	 usually	 collected	 by	 individual	 users	 within	 the	 context	 of	 a	
quantified	 lifestyle	 (using	 fitness,	 health,	 and	 leisure	 apps),	 or	 contributing	 to	 a	 specific	
study.	While	 this	 could	be	 shared	 and	 acted	upon	 in	 real	 time,	 in	many	 cases	users	will	
upload	their	route	at	the	end	of	a	journey	or	at	the	end	of	the	day,	putting	it	in	the	category	
of	historical	data.	These	provide	a	high	level	of	data	density.	Typical	GPS	data	is	sampled	
every	 few	 (three	 to	 five)	 seconds,	 generating	 hundreds	 of	 data	 points	 per	 individual	
journey,	 and	 depending	 on	 the	 sample	 period,	 thousands	 per	 user,	 and	 hundreds	 of	
thousands	or	millions	in	a	typical	GPS	study	(for	example,	Hood,	Sall	&	Charlton,	(2011)).	
In	 the	 case	 of	 fitness	 apps	 and	 social	 media-driven	 systems,	 this	 can	 number	 tens	 of	
millions	of	users	and	routes	(Endomondo,	2013;	Map	My	Ride,	2014).	Working	with	GPS	
data	poses	some	challenges	with	respect	to	accuracy	(Schuessler	&	Axhausen,	2009a)	and	
volume,	but	it	has	also	been	one	of	the	more	fruitful	in	terms	of	the	application	of	models	
which	can	link	directly	to	transport	planning	policy	on	a	city	or	county	level.	

Point	data	 refers	 to	 information	collected	at	a	particular	 location	–	an	example	of	 this	 is	
the	 information	 provided	 by	 a	 docking	 station	 in	 a	 BSP	 (Froehlich,	 Neumann	 &	 Oliver,	
2009),	or	the	data	transmitted	by	a	traffic	camera	or	gate	counter	at	a	specific	intersection	
(Rogers	&	Papanikolopulos,	2000).	This	tends	to	be	smaller	in	volume,	but	the	increasing	
availability	of	 this	data	 is	 starting	 to	allow	some	extensive	 insights	 such	as	 the	 research	
conducted	by	O’Brien,	Cheshire,	&	Batty	(2013),	which	analysed	38	BSP	located	in	Europe,	
Asia,	the	Middle	East,	Australia	and	the	Americas.	Furthermore,	through	web	APIs,	BSP	can	
provide	 information	 in	 real	 time	 for	 immediate	 analysis	 and	 response.	 The	 rich	
spatiotemporal	characteristics	of	 this	data	have	 led	to	some	novel	applications	of	cluster	
analyses.	

Journey	 data	 acts	 at	 a	 coarser	 level	 than	 GPS	 data	 –	 providing	 origin	 and	 destination	
locations	 and	 times	 for	 individual	 journey,	 but	 not	 necessarily	 including	 detailed	
information	 about	 route	 choice,	 actual	 link	 speed	 and	 delay.	 A	 number	 of	 bikeshare	
programmes	 (BSP)	 have	 released	 journey	 data	 covering	 a	 period	 of	 months,	 often	
amounting	to	several	million	journeys	–	but	at	present,	with	some	exceptions	such	as	the	



Capital	Bike	Share	 initiative	(2015),	 this	data	 is	released	months	after	the	fact,	making	it	
more	 amenable	 to	 long-term	 trend	 analysis	 than	 nowcasting	 or	 rapid	 response.	 The	
origin-destination	datasets	allow	for	space-time	and	network	approaches,	and	researchers	
have	used	route	inference	to	generate	the	spatial	richness	of	GPS	tracks	on	multi-million	
journey	scale	(Zaltz	Austwick,	O’Brien,	Strano,	&	Viana,	2013),	although	few	estimates	of	
the	robustness	of	these	inferences	have	been	carried	out.		

	

2. Research	focused	on	GPS	data	

Global	 Positioning	 System	 (GPS)	 technology	 was	 originally	 developed	 in	 the	 1970s,	 but	
despite	being	available	for	civil	purposes	in	the	mid-1980s,	it	was	only	in	the	1990s	that	it	
became	 widespread	 in	 its	 integration	 into	 consumer	 devices	 (Kumar	 &	 Moore,	 2002).	
Since	 then,	GPS	data	have	been	 collected	 for	 transport	 analysis	 (Shen	&	Stopher,	 2014).	
Initially,	 the	 technology	 was	mainly	 applied	 to	 improve	 aerial	 and	maritime	 navigation	
systems,	but	since	 the	 late-1990s	 the	 largest	application	of	GPS	has	been	 land	transport.	
Over	the	last	twenty	years	GPS	data	has	been	collected	for	evaluating	system	performance	
such	 as	measuring	 historical	 congestion	 and	 flow	 levels,	 analysing	 travel	 behaviour	 and	
estimating	route	choice	models	(Rasmussen,	Ingvardson,	Halldórsdóttir,	&	Nielsen,	2013).	
In	 the	 field	 of	 mobility,	 GPS	 data	 have	 also	 been	 collected	 in	 the	 context	 of	 household	
travel	surveys,	in	order	to	complement	the	survey	responses	with	detailed	trip	reporting	
for	a	subset	of	journeys	(Bricka,	Sen,	Paleti,	&	Bhat,	2012;	Doherty,	Noel,	Gosselin,	SIROIS,	
&	UENO,	2001;	Ohmori,	2005;	Shen	&	Stopher,	2014).		

Since	2007	there	has	been	a	substantial	rise	in	the	volume	of	GPS	data,	due	in	part	to	the	
smartphone	“revolution”.	In	2009	smartphones	accounted	for	15.4%	of	the	general	pool	of	
mobile	 phones	 (Li	 et	 al.,	 2010),	 by	 2014	 it	 surpassed	 35%,	 with	 over	 175	 billion	 units	
(eMarketer,	2014).	In	the	US,	it	rose	from	44%	in	2011	to	65%	in	2013	(	The	U.S.	Digital	
Consumer	Report,	2014).	The	generalised	presence	of	GPS	technology	in	smartphones	and	
the	vast	growth	of	mobile	applications	based	on	location	and	tracking	functionalities	also	
fed	this	growth.	The	emergent	navigation	and	the	sport/fitness	app	markets	(Evans,	2013;	
Flurry	Analytics,	2014)	became	apparent	more	recently,	linking	personal	recorded	data	to	
online	platforms	where	people	can	display	and	manage	their	routes	and	information,	and	
share	and	compete	with	other	people,	creating	different	user-communities.		

In	this	section	we	focus	on	bicycle	riding	GPS	data	collected	through	mobile	applications,	
GPS	devices	and	online	platforms	specifically	created	for	each	study,	and	data	from	big	app	
companies,	only	recently	available	for	research	and	planning	purposes.	

2.1. GPS	data	collected	through	specific	research	initiatives		

The	 first	work	 analysing	 cycle	mobility	 through	 GPS	 tracks	 dates	 from	 2007	 (Harvey	&	
Krizek,	 2007).	 In	 spring	 2006,	 the	 research	 team	 launched	 an	 initiative	 to	 recruit	
volunteers	from	different	neighbourhoods	in	South	Minneapolis,	and	finally	collected	938	
trips	 from	 51	 participants	 (selected	 according	 to	 their	 age,	 gender,	 home	 location	 and	



work	location)	using	GPS	devices	in	order	to	study	commuter	cyclist	behaviour,	analysing	
chosen	routes	and	their	variations	due	to	existing	bike	facilities.	The	project	remarked	on	
the	difficulty	of	cleaning	GPS	data,	which	can	contain	significant	positional	 inaccuracies	-	
consequently,	 analysis	 of	 cycling	 behaviour	 is	 improved	 by	 mapping	 the	 recorded	 GPS	
tracks	 onto	 street	 infrastructure.	 Different	 authors	 (Wagner,	 1997;	Marchal	 et	 al.,	 2005	
and	Schuessler	&	Axhausen,	2009a)	determined	diverse	approaches	to	the	map-matching	
process	that,	with	increasing	complexity	and	sophistication,	solved	the	main	problems.	

The	 work	 of	 Harvey	 and	 Krizek	 provided	 a	 descriptive	 approach	 to	 cyclist	 behaviour.	
Subsequent	studies	focused	on	developing	cyclist	route	choice	models	from	larger	samples	
of	GPS	routes	–	typically	studying	thousands	of	cyclists	and	their	routes.	The	first	of	these	
studies,	conducted	in	Zürich	(Menghini,	Carrasco,	Axhausen,	&	Schüssler,	2010),	analysed	
nearly	2500	 journeys	 from	over	2400	cyclists.	The	sample	size	allowed	the	creation	of	a	
route	 choice	model,	 but,	 since	 this	 research	did	not	 collect	 any	data	 associated	with	 the	
cyclists	 or	 the	 trips,	 disaggregation	 by	 individual	 and	 important	 features	 of	 the	 street	
network	(such	as	slope	or	traffic)	were	omitted	in	the	model.	

The	sample	analysed	in	Zürich	was	obtained	from	an	independent	GPS	study	that	collected	
raw	 GPS	 data	 from	 nearly	 5,000	 participants	 carrying	 a	 GPS	 receiver	 for	 up	 to	 a	week,	
resulting	in	over	32	000	trips	in	the	cities	of	Zürich,	Winterthur	and	Genève.	The	raw	data	
was	 processed	 to	 identify	 different	 transport	modes	 and	 trips	 (Schuessler	 &	 Axhausen,	
2009b),	extracting	cycle	journeys	for	independent	analysis.	Modes	were	detected	based	on	
the	 average	 and	 maximum	 speed	 during	 the	 trip,	 or	 by	 investigating	 vicinity	 to	
infrastructure	 and	 stations/stops	 during	 the	 trip.	 In	 the	 latter	 case,	 geo-data	 regarding	
stops	and	infrastructure	was	linked	to	the	GPS	data	using	Geographic	Information	Systems	
(GIS).	 For	 instance,	 Stopher	 et	 al.	 (2008)	 first	 extract	 walking	 trips,	 followed	 by	 public	
transport	 trips.	Of	 the	 remaining	 trips,	 bicycle	 trips	were	 extracted	based	 on	 speed	 and	
acceleration	characteristics.	They	comment	that	GPS	 loggers	can	be	configured	such	that	
they	will	not	record	when	stationary	(to	save	the	battery).	However,	when	the	respondent	
starts	 moving	 again	 the	 logger	 needs	 some	 time	 (up	 to	 a	 few	 minutes)	 to	 locate	 its	
position,	 potentially	 leading	 to	 missing	 trip	 starts,	 which	 requires	 additional	 pre-
processing.	Broach,	Dill	&	Gliebe	(2011,	2012)	developed	a	route	choice	model	from	GPS	
data	 collected	 in	 Portland,	 Oregon,	 focussing	 on	 the	 journeys	 of	 regularly	 commuting	
cyclists.	This	was	a	smaller	study	(with	only	164	subjects	and	around	1500	trips),	but	its	
small	 scale	 allowed	 the	 research	 team	 to	 collect	 more	 detailed	 demographic	 data	 via	
questionnaire	 –	 recognising	 that	 cyclists	 are	 a	 heterogeneous	 community	 whose	 route	
choices	might	vary	significantly.	

At	approximately	the	same	time,	 in	Los	Angeles,	 	Reddy	et	al.	(2010)	had	carried	out	the	
first	 study	 using	 smartphones	 as	 a	mechanism	 for	 collecting	 GPS	 data.	With	 the	 aim	 of	
building	 a	 platform	 that	 enriched	 the	 route	 sharing	 process,	 the	 Biketastic	 project	
developed	a	mobile	application	for	Android	phone	users	and	distributed	it	online	for	free,	
recruiting	450	users	(Savage,	2010).	The	project	website	allowed	participants	not	only	to	
visualise	and	manage	their	trips	and	statistics,	but	also	to	share	their	routes,	and	visualise	
other	 cyclist’s	 journeys	 and	 other	 data.	 	 GPS	 data	 was	 associated	 with	 noise	 level	 and	
roughness	 data	 collected	 through	 the	 smartphones’	 microphones	 and	 accelerometers.	
Volunteers	 could	 also	 provide	 information	 about	 the	 route	 as	well	 as	 uploading	 photos	



and	videos	of	the	journeys	–	acting	as	a	community	resource,	but	also	providing	contextual	
data	for	researchers.	

Similar	schemes	followed	in	San	Francisco,	California	(Hood,	Sall,	&	Charlton,	2011),	and	
Austin,	 Texas	 (Hudson,	 Duthie,	 Yatinkumar,	 Larsen,	 &	Meyer,	 2012).	 	 The	 first	 of	 these	
used	 the	mobile	 application	 CycleTrack,	developed	 for	 the	 study	 by	 Charlton,	 Schwartz,	
Paul,	 Sall,	 &	Hood	 (2010)	 and	made	 available	 for	Android	 and	Apple	 iOS	 in	 an	 effort	 to	
broaden	the	volunteer	base.	The	initiative	collected	the	largest	sample	of	cycle	GPS	tracks	
to	date	for	research	purposes,	with	nearly	one	thousand	volunteers	contributing	data	over	
a	 five-month	period.	Through	 the	app,	 volunteers	provided	data	about	 their	 gender,	 age	
and	travel	purpose,	which	were	incorporated	into	the	route	choice	model.	Unfortunately,	
fewer	that	one	third	of	these	journeys	were	successfully	mapped	to	the	road	network	for	
further	 analysis.	 This	 cleaning	 and	 map-matching	 processing	 was	 improved	 by	 the	
research	 conducted	 shortly	 afterwards	 using	 the	 same	 GPS	 smartphone	 application	 in	
Austin,	Texas	(Hudson	et	al.,	2012).	Although	a	smaller	study,	they	succeeded	in	matching	
a	similar	number	of	routes.	In	both	of	these	studies,	the	participants	were	recruited	from	
the	 smartphone	 users	 community,	 raising	 the	 question	 of	 sample	 bias;	 however,	
comparing	demographic	data	from	the	smartphone	study	with	information	obtained	from	
local	 travel	 surveys	 did	 not	 reveal	 significant	 difference	 in	mean	 age,	 although	 they	 did	
reveal	 a	 gender	 bias	 towards	males	 in	 the	 smartphone	 study.	 Other	 socio-demographic	
data,	such	as	income,	were	not	collected	to	avoid	private	concerns.	Smartphone	ownership	
might	have	a	skew	in	that	regard,	but	it	has	not	been	possible	to	test	this.			

Following	 these	 pioneering	 studies,	 more	 recent	 research	 initiatives	 have	 focussed	 on	
smartphone	GPS	applications,	improving	the	online	platforms	and	websites	that	link	apps	
with	volunteers,	and	providing	new	functionalities	to	encourage	people	to	participate.	The	
initiative	 Madrid	 cycle	 track	 (Romanillos,	 2013;	 2014)	 engaged	 three	 hundred	 casual	
bikers,	as	well	as	cyclists	 for	bike-messenger	companies.	The	 initiative	collected	over	45	
000	 km	of	 GPS	 tracks	 through	 a	 free	mobile	 application,	Map	My	Tracks.	 In	 an	 effort	 to	
broaden	the	user	base,	those	without	smartphones	had	the	option	of	drawing	their	routes	
on	 an	 online	 map.	 In	 both	 cases,	 associated	 information	 about	 the	 age	 and	 gender	 of	
participants	and	the	purpose	of	 the	travel	was	collected.	 It	was	also	the	first	 initiative	to	
allow	volunteers	to	visualise	the	whole	network	of	collected	tracks	on	a	single	online	map.		

In	 the	 Netherlands,	 a	 similar	 community-focussed	 initiative	 was	 created	 to	 generate	
interest	 in	 pedelecs	 (electric	 bicycles).	 B-Riders	 in	 Noord-Brabant	 in	 the	 Netherlands	
started	in	September	2013	and	ended	December	2014,	with	the	aim	of	shifting	users	from	
car	travel	to	pedelec	use.	Participants	could	either	register	for	a	financial	compensation	-
from	 €0.10	 to	 €0.15	 for	 each	 kilometre	 registered	 in	 the	morning	 or	 the	 evening	 peak	
hours,	with	a	limit	of	€1,000	for	each	participant,	or	register	for	a	coaching	program	with	
feedback	 and	 encouragement	 on	 their	 individual	 behaviour,	 or	 both.	 To	 receive	 the	
financial	 compensation	 and	 the	 feedback,	 participants	 were	 obliged	 to	 make	 use	 of	 a	
smartphone	GPS	application	developed	 for	 the	program	–	resulting	 in	an	unprecedented	
400	 000	 GPS	 tracks	 collected	 over	 the	 period.	 Bike	 Print	 (2014),	 which	 allows	
visualisation	and	summary	of	 the	data	by	users	 (such	as	specific	 length	of	 the	 trip),	was	
developed	specifically	 for	the	task,	and	the	data	was	subsequently	used	to	predict	 future	
usage	of	the	bike	network	(Coevering,	Leeuw,	Kruijf,	&	Bussche,	2014).	



2.2. Big	GPS	Data	from	“big	app”	companies		

The	 volume	 of	 GPS	 data	 collected	 by	 studies	 increased	 significantly	 when	 researchers	
implemented	 GPS	mobile	 applications.	 The	 development	 of	 associated	 online	 platforms,	
and	advertising	campaigns	among	the	cyclist	community,	served	to	engage	larger	groups	
of	participants.	However,	 the	 sample	of	 contributors	 still	 tends	 to	be	 small	 compared	 to	
the	cycling	population	in	the	studied	locations.	The	growth	in	sports	and	fitness	apps	have	
opened	up	sampling	of	huge	numbers	of	users	(Evans	2013;	Flurry	Analytics,	2014).	In	the	
US	 nearly	 one-third	 of	 smartphones	 owners	 (46	million	 people)	 currently	 use	 health	 or	
fitness	apps	(Nielsen,	2014a),	aided	in	part	by	smart	watches	and	fitness	bands	(Nielsen,	
2014b).	These	wearable	devices	are	however	currently	mostly	appealing	 	and	affordable	
for	 a	 limited	 group	 of	wealthy	 young	 people,	 and	 even	within	 this	 group,	 two	 thirds	 of	
users	 do	 not	 use	 these	 devices	 for	 more	 than	 six	 months	 (Mitesh,	 Patel,	 MBA,	 &	 Hall,	
2015).	Among	these	fitness	apps,	GPS	sports	tracking	apps	have	been	especially	popular.	
In	2013,	7	of	these	apps	surpassed	16	million	downloads	(Comstock,	2013);		in	2013,	the	
popular	 Endomondo	 celebrated	 its	 fifth	 birthday	 and	 reached	 20	million	 users	 in	 more	
than	 200	 countries	 (Endomondo,	 2013).	MapMyFitness	 experienced	 an	 even	more	 rapid	
expansion,	surpassing	20	million	members	 in	October	2013	(Map	my	fitness,	2014).	App	
developers	ascribe	this	popularity	to	attractiveness	of	the	social	dimension	of	the	service	
as	well	as	the	introduction	of	new	features	like	training	plans	(Endomondo,	2013).		We	are	
living	in	the	era	of	not	only	Big	Data,	but	Big	Apps.	

These	 apps	 are	 widely	 used	 by	 cyclist	 for	 tracking	 sport	 activities.	 Endomondo	 has	
registered	almost	a	billion	miles	of	cycling	activities,	more	than	half	of	the	total	uploaded		
(Endomondo,	2013).	MapMyRide,	one	of	the	most	popular	together	with	Strava,	has	over	
20	million	 users	 (Map	My	 Ride,	 2014),	 who	 have	 uploaded	 over	 70	million	 routes	 (My	
fitness	pal,	2014).	Strava	does	not	disclose	its	number	of	users,	but	2.5	million	GPS-tracked	
activities	are	uploaded	to	its	website	every	week	(Strava,	2014a)	and	more	than	90	million	
rides	have	been	collected	(Albergotti,	2014).		

There	 are	 limited	 studies	 on	 these	 new	 big	 GPS	 datasets	 from	 app	 companies.	 Cintia,	
Pappalardo	&	Pedreschi	 (2013)	examined	GPS	 tracks	of	nearly	30	000	cyclists,	 collected	
via	 the	 Strava	 API	 and	 analysed	 training	 performance	 using	 average	 speed,	 duration	 of	
ride	and	cyclist’s	heart	rate.	Wamsley	(2014)	focussed	on	analysing	travel	times	collected	
through	Strava	in	order	to	generate	pacing	strategies	for	a	cyclist	to	complete	a	course	in	
the	 fastest	 time	 possible.	 Other	 research	 defined	 the	 conceptual	 architecture	 of	 data	
collection,	 management	 and	 methodologies	 for	 using	 and	 analysing	 the	 data	 (Clarke	 &	
Steele,	 2011),	 including	 data	 cleaning,	 visualisation	 and	 trajectory	 clustering	 techniques	
(Peixoto	and	Xie,	2013).	Other	work	has	instead	focussed	on	the	use,	the	motivations	and	
the	online	community	experience	for	the	people	that	use	cycling	apps	(Smith,	2014).	Very	
few	 researchers	 in	 this	 field	have	 focussed	on	 the	analysis	of	urban	 transport	 cycling	 to	
improve	 urban	 planning	 and	 design	 (Clarke	 &	 Steele,	 2011)	 or	 have	 developed	 specific	
tools	 to	 analyse	 cyclists’	 routes.	 Researchers	 in	 Reykjavik	 (Jónasson,	 Eiriksson,	
Eðvarðsson,	Helgason,	&	Sæmundsson,	2013)	have	done	work	in	this	area,	using	GPS	data	
from	Garmin	Connect	and	Strava	online	platforms	to	create	heat	map	and	analyse	cyclist	
route	choices	.	



The	research	and	planning	disciplines	are	traditionally	more	interested	in	urban	transport	
cycling	and	require	high	data	density,	and	data	which	is	representative	of	the	population	
in	their	study	region,	to	build	and	validate	models	which	big	app	data	does	not	necessarily	
provide.	This	is	beginning	to	change,	as	Strava	is	the	first	of	these	companies	to	sell	cycling	
GPS	data.	On	May	2014,	 the	company	 launched	Strava	Metro,	 a	 commercial	brand	of	 the	
company	 focussed	 on	 providing	 data	 services	 to	 local	 authorities,	 research	 institutions,	
and	 other	 interested	 parties	 (Strava	 Metro,	 2014a).	 In	 2013	 (Maus,	 2014),	 Oregon’s	
Department	of	Transportation	was	the	first	partner	to	sign	with	Strava	(Albergotti,	2014).	
Other	urban	planning	authorities	around	the	world	(including	London	and	Glasgow	in	the	
UK,	and	Victoria	in	Australia)	have	followed	suit	(Albergotti,	2014;	Sparkes,	2014).	Strava	
have	also	launched	Strava	Labs,	a	high-resolution	online	map	that	visualises	the	cycle	flow	
distribution	collected	through	the	app	around	the	world	(Strava	Labs,	2014),	representing	
over	75	million	journeys	and	220	billion	GPS	points		(Mach,	2014).	

Models	 like	 Strava	 Metro	 bring	 significant	 new	 opportunities	 for	 analysis	 and	
understanding.	First,	the	Street	map	shows	a	very	high	density	of	GPS	tracks	covering	the	
whole	 metropolitan	 area	 (although	 still	 exhibiting	 some	 degree	 of	 spatial	 and	
sociodemographic	bias).	The	data	is	processed	to	remove	users’	personal	information,	but	
summaries	 of	 basic	 demographic	 information	 (gender	 and	 age	 ranges)	 are	 provided,	
allowing	demographic	bias	to	be	estimated.	Additionally,	it	provides	not	only	information	
about	 the	 total	 number	 of	 cycle	 trips	 but	 also	 the	 number	 of	 commuting	 trips	 -	 very	
important	 information	 for	 urban	 transport	 planning.	 Strava	 Metro	 also	 provides	 cyclist	
flow	information	at	different	dates	and	times	–	e.g.	via	the	Strava	Saturday	online	heat	map	
(Strava,	2014b)-	so	it	is	possible	to	analyse	cyclist	flow	for	different	times	of	the	day	(the	
morning	and	the	afternoon	peaks),	and	study	the	evolution	across	the	whole	year,	opening	
up	the	possibility	of	detailed	spatiotemporal	and	seasonal	analyses.	

However,	Strava	Metro	data	also	presents	 limitations.	Users’	privacy	concerns	mean	that	
single	 route	 tracks	are	 typically	not	accessible	 so	 it’s	not	possible	 to	analyse	 trip	 length,	
purpose	of	 travel	or	 the	route	choice	on	an	 individual	 journey	 level.	Because	this	data	 is	
shared	in	an	aggregated	form,	 it	 is	not	possible	to	study	the	relationships	between	these	
variables;	 for	 example,	 the	 dependence	 of	 route	 choice	 on	 the	 cyclist’s	 travel	 purpose.	
Because	we	only	have	aggregated	socio-demographic	information,	there	is	limited	scope	to	
analyse	 the	 importance	 of	 basic	 factors	 like	 age	 or	 gender	 in	 route	 planning,	 journey	
length	or	purpose.	All	of	these	analyses	are	likely	to	be	important	for	planning,	designing	
and	managing	cycle	 infrastructure.	The	solution	would	be	to	have	access	to	disaggregate	
data	 and	 provide	 single	 tracks,	 a	 difficult	 proposition	 when	 maintaining	 user	 (and	
company)	 privacy.	 In	 order	 to	 not	 discourage	 user	 participation,	 shortly	 after	 opening	
Strava	Metro,	 the	 company	 offered	members	 the	 option	 of	marking	 routes	 as	 private	 –	
these	routes	are	then	not	included	in	Strava	Metro	dataset	(Wehner,	2014).	

3. Research	focused	on	point	data		

As	 well	 as	 the	 substantial	 body	 of	 research	 around	 GPS,	 there	 has	 been	 a	 significant	
interest	 in	 analysing	 cycling	 data	 gathered	 at	 specific	 locations.	 Studies	 have	 mainly	
explored	 two	 different	 data	 sources:	 point	 data	 registered	 at	 Bike	 Share	 Programmes	
(BSP)	stations	and	counts.		



3.1. Exploring	Bike	Share	Programmes	data	mines	

With	 the	 exception	 of	 studies	 based	 on	 bike	 parking	 data	 provided	 by	 specific,	 one-off	
surveys	(Rietveld,	2000),	bike	mobility	trends	have	not	been	analysed	through	large	point	
datasets	 gathered	 at	 BSP	 docking	 stations	 or	 parking	 lots	 -	 until	 recently.	 The	 biggest	
evolution	in	this	area	came	with	the	rapid	expansion	of	BSP	in	cities	around	the	world.	The	
first	generation	of	such	systems	date	from	1965	(Demaio,	2009),	but	they	remained	very	
few	and	small	in	size	till	the	early-1990s,	when	a	second	generation	of	BSP	was	born.	Still	
these	programs	 grew	 slowly	until	 the	mid-2000s,	when	 a	 third	 generation	 of	 bike	 share	
(characterised	by	electronic	management,	and	hence	a	rich	data	source)	became	popular	
in	many	countries.	Since	then,	the	number	of	such	systems	increased	exponentially	around	
the	world	(Fishman,	Washington,	&	Haworth,	2013).	By	the	end	of	2007	there	were	about	
60	cities	with	third	generation	BSP	implemented	worldwide	(Demaio,	2007);	according	to	
Fishman	(2015)	the	current	number	of	BSP	is	855,	with	nearly	one	million	bicycles	in	use.		

A	common	feature	of	this	third	generation	of	BSP	is	that	they	record	information	when	a	
bike	in	undocked	(hired)	or	docked	(returned).	This	data	was	first	explored	in	a	study	in	
the	 Barcelona	 BSP,	 Bicing	 (Froehlich	 et	 al.,	 2009),	 covering	 August	 to	 December	 2008.	
Three	 different	 kinds	 of	 data	 were	 gathered	 from	 the	 Bicing	 information	 system	 by	
scraping	 the	 website	 (using	 an	 automated	 program	 to	 find	 and	 store	 the	 relevant	 data	
elements	 presented	 by	 the	 webpage).	 This	 data	 was	 collected	 every	 two	 minutes	 and	
included	the	station	locations,	the	number	of	available	bicycles,	and	the	number	of	vacant	
parking	 slots.	Bicing	 launched	 in	 2007;	 it	 had	nearly	 400	 stations	 and	6,000	bikes,	with	
150	 000	 subscribers.	 Firstly,	 by	 applying	 clustering	 techniques,	 the	 research	 identified	
spatiotemporal	patterns,	relating	the	use	of	different	bike	stations	to	activity	clusters	over	
the	course	of	a	weekday,	when	more	regular	BSP	usage	patterns	were	identified.	Secondly,	
the	research	developed	different	predictive	models	to	analyse	the	impact	of	several	factors	
(such	 as	 time	 of	 the	 day	 or	 the	 amount	 of	 historical	 data)	 in	 order	 to	 create	 tools	 to	
estimate	bicycle	demand	for	different	stations	and	the	optimal	location	of	future	ones.	The	
research	 pointed	 towards	 the	 potential	 of	 this	 new	 source	 of	 data	 to	 identify	 not	 only	
cycling	 or	mobility	 patterns,	 but	 broader	 urban	 trends	 and	 dynamics,	 such	 as	 inferring	
urban	land	uses	(home,	office	or	leisure/retail)	by	analysing	users’	profile	over	time.	

A	 later	 study	 worked	 with	 Barcelona	 BSP	 data	 with	 more	 specific	 objectives	
(Kaltenbrunner,	Meza,	Grivolla,	Codina,	&	Banchs,	2010).	Aware	that	users	of	Bicing	often	
found	it	difficult	to	find	a	bike	to	hire,	or	a	space	to	leave	their	bike	at	their	destination,	the	
researchers	developed	a	model	 that	 could	predict	 the	 availability	 of	 bikes	or	docks,	 and	
could	 inform	 both	 users	 and	 system	 managers	 in	 advance	 so	 that	 they	 could	 respond	
accordingly.	 Even	 an	 hour	 ahead,	 their	 autoregressive–moving-average	(ARMA)	model	
was	 typically	accurate	 to	one	bicycle,	 representing	a	usable	prediction	range	 for	cyclists.	
More	 recently,	 Giot	&	 Cherrier	 (2014)	 completed	 a	 similar	 predictive	 analysis	 based	 on	
Washington,	D.C.	BSP	data,	working	with	a	suite	of	research	regression	techniques.	

There	has	been	a	range	of	effort	to	work	with	BSP	data	in	real	time,	building	new	tools	for	
system	management	 and	 to	 improve	 service.	 In	 2009	 Luo	&	 Shen	 (2009)	 developed	 an	
information	system	for	the	BSP	of	Hangzhou	(China)	that	represented	the	location	of	the	
BSP	stations	and	dynamically	displayed	the	availability	of	bikes	or	free	parking	spots.	The	
most	 remarkable	 visualisation	 of	 real	 time	 BSP	 information	 is	 The	 Bike	 Share	 Map	



(O’Brien,	2010;	2013).	Created	 in	2010	 in	order	 to	visualise	London’s	BSP	data,	 the	map	
represents	the	information	of	different	cities	around	the	globe	since	June	2013,	covering	at	
time	of	writing	107	BSP	and	visualising	the	availability	of	systems	around	the	world.	This	
global	view	was	incorporated	into	research	based	on	BSP	data	(Cheshire	&	O’Brien,	2013;	
O’Brien,	Cheshire,	&	Batty,	2013).	The	investigation	collected	data	from	38	systems	from	
Europe,	 the	Middle	East,	Asia,	Australia	and	America,	and	the	dataset	 included	 locations,	
capacity	 and	 current	 load	 factor	 of	 docking	 stations.	 After	 analysing	 the	 data,	 the	
investigation	compared	and	classified	the	BSP	according	to	variables	such	as	the	system’s	
geographical	 size,	 the	 variation	 of	 occupancy	 rates	 across	 the	 day	 or	 the	week,	 and	 the	
intensity	and	distribution	of	activity	in	relation	to	demographics.	The	paper	compared	the	
geographical	 distribution	 and	 temporal	 popularity	 of	 a	 range	 of	 different	 schemes,	
allowing	 planners	 to	 examine	 schemes	 with	 elements	 in	 common	 in	 other	 parts	 of	 the	
world.			

As	well	as	research	focussing	on	providing	useful	apps	and	interfaces	to	service	providers,	
researchers	 are	 increasingly	 taking	 more	 theoretical	 approaches	 to	 dock	 data	 to	
understand	 differing	 spatiotemporal	 patterns	 using	 signal	 processing	 and	 statistical	
methods.	 In	 2012,	 Lathia,	 Ahmed	 and	 Capra,	 (2012)	 used	 cluster	 analysis	 to	 detect	
“similar”	 stations	 in	 the	 London	 system	 based	 on	 the	 time	 profile	 of	 their	 occupation,	
resulting	in	docking	stations	which	have	similar	behaviours	over	the	course	of	a	day,	and	
examining	the	impact	of	“casual”	users.	These	users	pay	using	a	credit	card	instead	of	the	
access	 keys	 used	 by	 subscription	 users	 at	 the	 time	 of	 the	 programme’s	 launch	 -	 these	
casual	users	may	be	more	likely	to	be	tourists	or	business	visitors	.	Similar	methods	were	
applied	 by	 Côme	 &	 Latifa	 (2012)	 to	 cluster	 docking	 stations	 which	 are	 similar	 in	 their	
temporal	 patterns	 of	 occupation,	 focussing	 on	 the	 flagship	 Velib’	 system	 in	 Paris.	 This	
covered	2.5	million	trips	in	just	one	month	-	Velib’	is	the	second	largest	BSP	in	the	world.	
Working	on	the	London	system,	Padgham	(2012)	is	one	of	the	first	to	attempt	to	connect	
BSP	activity	with	that	of	 the	other	parts	of	 the	public	transport	network,	and	introduced	
spatial	interaction	model-like	approaches	to	understanding	flows	between	locations.	Many	
of	 these	 studies	 focussed	 on	 Europe	 and	 North	 America.	 Corcoran,	 Rohde,	 Charles-
Edwards	&	Mateo-Babiano	(2014)	studies	Brisbane,	Australia	and	examines	the	impacts	of	
weather	and	public	events	on	city	cycle	use.	In	Melbourne,	Fishman,	Washington,	Haworth	
and	Mazzei	 (2015)	used	data	 collected	 from	BSP	 trips	 in	 2012	 to	 visually	 represent	 the	
strength	of	the	relationship	between	different	docking	stations	and	how	this	relates	to	the	
public	transport	system	

Research	 on	 point	 data	 in	 BSP	 systems	 has	 yielded	 a	 raft	 of	 visualisations,	 apps	 and	
analyses.	 Many	 of	 the	 more	 academic	 works	 have	 employed	 specialised	 statistical	
techniques	that	are	perhaps	not	as	familiar	to	the	policymaker	or	transport	planner,	and	
joining	up	 the	 scientific	 expertise	with	 services	 and	 interventions	 amenable	 to	 the	user,	
service	 provider	 or	 policymaker	 still	 has	 a	 way	 to	 go.	 Limited	 work	 has	 been	 done	 to	
combine	it	with	journey	data,	which	in	itself	would	yield	new	possibilities.	

3.2. Other	point	data	sources:	Manual	and	automated	counts	

While	BSP	provides	detailed	and	timely	point	data	reporting,	there	are	other	sources	that	
provide	 large	and	useful	point	data	collections,	but	rarely	on	the	same	scale	and	 level	of	



detail.	Within	the	scope	of	this	review,	the	evolution	of	counts	in	the	last	years	is	especially	
interesting.		

Though	manual	counts	cannot	be	considered	as	a	source	of	Big	Data	–	they	just	meet	the	
first	V	criterion	(volume)	of	Laney’s	(2001)	classification	-	they	are	still	the	most	prevalent	
cycling	 data	 collection	 method	 (Ryus,	 Laustsen,	 Proulx,	 Schneider,	 &	 Hull,	 2014),	
producing	 increasingly	 large	 datasets	 through	 recent	 initiatives.	Many	 communities	 still	
successfully	 use	 conventional,	 lower-tech	 methods	 in	 order	 to	 collect	 point	 data	 and	
support	an	evidence	base	for	cycling	policy.	 	In	some	countries,	like	the	US,	many	cycling	
communities	(Schneider,	Patten,	&	Toole,	2005)	encourage	volunteers	to	register	cyclists	
at	 key	 locations	 in	 precise	 dates	 through	 manual	 count	 methods.	 Among	 the	 different	
initiatives,	 especially	 remarkable	 is	 the	 National	 Bicycle	 and	 Pedestrian	 Documentation	
Project	(NBPD,	2009-2015),	a	program	that	provides	to	the	volunteers	a	methodology,		as	
well	as	 training	and	documentation,	and	centralises	 the	collection	of	 surveys	and	counts	
from	cities	all	around	the	US.		

Apart	 form	 these	 massive	 manual	 counts	 initiatives,	 there	 is	 a	 substantial	 collection	 of	
cycling	 data	 through	 automated	 counts.	 The	 most	 common	 methods	 are	 based	 on	
pneumatic	 tubes,	 inductive	 loops,	 passive	 infrared,	 automated	 video	 counters,	 infrared	
cameras	and	fiber	optic	pressure	sensors	(Ryus	et	al.,	2014).	Pneumatic	and	inductive	are	
widespread,	 but	 proved	 to	 be	 accurate	 only	 when	 detectors	 are	 properly	 installed,	
calibrated,	 maintained,	 free	 of	 external	 interference,	 and	 on	 a	 dedicated	 bicycle	 lane	
(Nordback	 &	 Janson,	 2010).	 Recently,	 more	 innovative	 counts	 based	 on	 fiber	 optics	
register	cyclists	on	mixed	traffic	lanes,	offering	insight	not	only	in	the	cycling	volume	but	
also	in	the	speed	and	direction.	In	the	Netherlands,	new	traffic	light	detection	loops	have	
been	implemented	to	detect	cyclists	with	high	accuracy	by	using	a	new	methodology	with	
dedicated	 algorithms	 (Winter,	 2012;	 Rijn,	 2014).	 This	 system	 is	 being	 implemented	
extensively	in	some	cities:	Utrecht	is	currently	adjusting	170	traffic	lights	which	measure	
motorised	 traffic	 to	 also	 detect	 cyclists.	 This	 cycling	 data	 is	 being	made	 available	 in	 an	
online	open	data	platform	(Open	Data	Utrecht,	2015).	Such	efforts	could	be	facilitated	by	
the	technological	innovators	who	are	working	to	create	sensors	which	cost	close	to	$50	–	
1%	of	the	cost	of	current	sensors	(Andersen,	2015).	Knock	Software	is	one	such	innovator,	
active	 in	Portland,	OR	on	a	device	which	uses	magnetic,	 thermal	 and	 speed	detection	 to	
determine	whether	a	passing	object	is	a	bike,	a	car	or	a	pedestrian.	If	this	proves	reliable,	
coverage	of	cities	could	rapidly	become	more	comprehensive,	detailed	and	timely.		

Considering	that	count	data	is	at	the	base	of	many	studies	which	examine	travel	patterns,	
it	 is	worthy	to	highlight	 the	most	 important	advantages	and	disadvantages	 in	relation	to	
other	approaches.		Count	data	register	every	single	cyclist	at	a	specific	location	while	BSP	
or	 GPS	 data	 relies	 on	 a	 more	 segregated	 cycling	 population.	 However,	 the	 absence	 of	
sample	bias	in	count	data	is	not	guaranteed	at	all,	and	it	is	collected	on	an	aggregate	level	
such	 that	 no	 demographic	 data	 is	 captured.	 According	 to	 Ryus	 et	 al.	 (2014),	 manual	
counting	is	still	the	most	dominant	method	of	counting	cyclists	-	87%	of	total	counts	in	the	
US	-	and	still	relies	heavily	on	volunteers.	That	means	that	samples	are	usually	registered	
at	a	limited	number	of	locations	in	a	specific	date	or	period	of	time,	and	may	have	spatial	
bias	 if	 the	 count	 locations	 are	 not	 well	 distributed.	 The	 increasing	 extension	 of	 new	
automated	counts	could	allow	pattern	analysis	across	time	-	and,	if	well	distributed,	could	
reduce	spatial	biases.		



4. Research	focused	on	journey	data	from	Bike	Share	Programmes	

The	third	generation	of	BSP	not	only	record	information	about	the	number	of	bicycles	in	
docking	stations,	but	also	identify	and	register	bikes	(and	sometimes	an	identifier	for	their	
users)	at	the	start	and	end	dock	of	every	journey.	This	means	that	BSP	are	able	to	provide	
general	mobility	data	 through	the	origin-destination	matrices	associated	with	users’,	but	
also	timings	of	these	journeys	(and,	by	inference,	duration).	In	addition,	BSP	may	provide	
data	 about	 cyclists	 (age	 or	 gender,	 for	 instance)	 –	 although	 this	 is	 not	 always	 the	 case,	
either	because	 the	data	 is	not	 collected	 (from	casual,	 credit	 card	users),	 or	because	 that	
aspect	 of	 the	 data	 is	withheld	 for	 privacy	 reasons.	 Research	 on	 journey	 data	 has	 so	 far	
been	more	 limited.	BSP	 journey	data	 is	historical;	 it	 is	 typically	released	in	 large	batches	
covering	months	or	even	years	of	activity.	It	has	limited	use	for	nowcasting	or	feeding	back	
information	 to	 users	 in	 real	 time.	 Nevertheless,	 there	 has	 been	 significant	 work	 in	
visualising	this	data	(Wood,	2011;	Zaltz	Austwick	et	al.,	2013;	Bargar,	Gupta,	Gupta,	&	Ma,	
2014),	 creating	 a	 comparison	 study	of	 different	 visualisation	 techniques	with	 respect	 to	
this	data.	

The	research	carried	out	by	Borgnat	et	al.	(2011)	is	one	of	the	first	analytical	approaches	
to	these	origin-destination	datasets,	and	focussing	on	data	from	the	city	of	Lyon	in	France.	
The	 investigation	 analysed	 the	dataset	provided	by	 the	managing	 company	and	 the	City	
Hall,	 corresponding	 to	 the	 13	million	 trips	 over	 a	 two	 and	half	 year	 period.	 The	 system	
registered	the	start	time	and	departure	station,	and	end	time	and	destination	station,	for	
each	 journey.	 For	 the	 first	 time,	 researchers	 could	 examine	 individual	 mobility,	
characterising	different	groups	according	to	the	distance,	duration	or	speed	of	 their	 trip.	
While	the	research	carried	out	in	Barcelona	on	point	data	(Froehlich	et	al.,	2009),	covered	
a	 short	 period	 of	 time,	 the	 research	 conducted	 in	 Lyon	 allowed	 trend	 and	 temporal	
analysis	over	a	much	longer	period.	The	data	collection	began	at	the	opening	of	the	system	
and	covered	expansions	of	the	scheme,	allowing	the	study	to	cover	different	demand	and	
service	 scenarios	 throughout	 this	 period,	 and	 analysed	 how	 factors	 such	 as	 increasing	
numbers	of	bicycles	and	stations	affected	the	number	of	subscribers.	The	same	year,	Vogel,	
Greiser,	 &	 Mattfeld	 (2011)	 analysed	 similar	 data	 from	 Vienna’s	 BSP,	 Citibike	 Wien,	
covering	around	760	000	rides	from	2008	and	2009.	General	spatio-temporal	patterns	are	
derived	 from	 the	 analysis	 while	 an	 integrated	 approach	 of	 Data	 Mining	 and	 Operation	
Research	is	presented	in	order	to	develop	a	new	trip	model	that	anticipates	bike	activities	
for	better	long-term	location	planning.	The	researchers	were	able	to	formulate	clear	policy	
goals	from	their	analyses.	

The	first	multi-city	analysis	of	origin-destination	data	was	carried	out	by	Zaltz	Austwick	et	
al.	(2013),	which	compared	five	cities	(London,	Washington	DC,	Minneapolis,	Denver	and	
Boston),	 using	 spatial	 network	 analysis	 methods	 to	 cluster	 stations	 into	 communities	
(subnetworks	 of	 journeys	 within	 the	 wider	 network).	 The	 smallest	 of	 these	 datasets	
covered	 168	 000	 journeys	 (Denver)	 and	 the	 largest	 3.6	 million	 (London)	 and	 allowed	
comparison	of	distance	travelled	and	journey	time	distributions	between	cities.	The	paper	
also	used	inferred	routing	for	visualisation	purposes	using	Open	Street	Map	and	Routino	
(http://routino.org),	 but	 did	 not	 utilise	 this	 for	 distance	 estimation	 or	 street	 network	
loading,	 as	 there	 was	 no	 mechanism	 to	 validate	 this	 route	 choice.	 Bargar	 et	 al.	 (2014)	
builds	on	a	network	analysis	approach	(examining	data	from	Washington	DC,	Chicago	and	



Boston),	 complementing	 it	 with	 the	 spatiotemporal	 clustering	 methods	 used	 by	 other	
researchers,	 and	visualising	both	of	 these	 techniques	 via	 a	web-based	map	visualisation	
built	 using	 JavaScript	 libraries,	 integrating	 analysis	 into	 a	 more	 accessible	 visualisation	
tool.	

More	recent	work	has	expanded	its	scope	beyond	predicting	demand	or	detecting	similar	
locations,	and	has	focussed	instead	on	correlating	cycling	activities	with	wider	policy	goals	
around	 health	 and	 transport.	 The	 use	 of	 the	 London	BSP	 across	 the	 three	 first	 years	 of	
operation	 have	 been	 examined	 by	Goodman	&	Cheshire	 (2014).	 The	 study	 analysed	 the	
evolution	in	the	profile	of	users,	the	increase	in	the	number	of	trips	as	well	as	variation	in	
the	proportion	of	trips	by	registered	users.	This	covered	a	period	of	time	that	included	the	
extension	of	the	BSP	network	in	2012	and	the	rise	of	the	service	prices	 in	January	2013.	
The	 dataset	 incorporated	 the	 gender	 and	 home	 postcodes	 of	 users,	 permitting	 analyses	
that	linked	geographic	socio-economic	factors	of	the	residential	 locations,	and	evaluating	
the	demand	according	to	the	distance	from	homes	to	the	start	or	end	stations.	Defined	as	
“trips	made	by	two	or	more	cyclists	together	in	space	and	time”	data	(Beecham	&	Wood,	
2014,	p.1),	group-cycling	 journeys	on	London	BSP	were	studied	by	analysing	the	trips	of	
over	 80	 000	 members	 between	 September	 2011	 and	 September	 2012.	 The	 research	
revealed	some	plausible	patterns,	like	the	increase	of	group	cycling	journeys	at	weekends,	
late	evenings	and	lunchtimes,	and	the	 large	proportion	of	group	members	that	share	the	
same	postal	code.	However,	it	also	revealed	some	unexpected	ones,	like	sets	of	commuting	
group	 cycling	 journeys,	 and	 some	 differences	 between	 group	 and	 individual	 trips	
according	 to	 gender.	 This	 simple	 approach	 starts	 to	 connect	 BSP	 work	 with	 wider	
interests	 around	 social	 behaviour,	 health	 and	 leisure.	 Faghih-Imani,	 Eluru,	 El-Geneidy,	
Rabbat,	&	Haq	(2014)	studied	how	land	use,	urban	form,	building	environment	attributes	
and	weather	impact	on	the	bicycle	flow,	by	analysing	the	data	from	the	Montreal	BSP,	BIXI,	
between	 April	 and	 August	 2012.	 The	 research	 reports,	 unsurprisingly,	 good	 weather	
leading	 to	 high	 cycling	 flow,	 but	 also	provide	 interesting	 findings	 for	 policy	makers	 and	
urban	designers,	such	as	the	relationship	between	BSP	usage	and	urban	density,	and	the	
interaction	between	cycling	and	public	transport.	

An	 underused	 aspect	 of	 journey	 data	 is	 its	 capability	 to	 act	 as	 a	 supplementary	 and	
validating	data	source	for	the	more	current,	accessible	point	data	(which	through	APIs,	is	
typically	 updated	 on	 a	 minute-by-minute	 basis).	 Point	 data	 typically	 registers	 only	 net	
changes	 –	 so,	 for	 example,	 three	 bikes	 arriving	 and	 two	bikes	 leaving	 appears	 the	 same	
way	as	one	bike	leaving.	By	using	journey	data	to	validate	the	behaviour	of	the	system,	it	
could	be	used	to	infer	expected	traffic	at	docking	stations	(and	hence	whether	a	small	net	
change	represents	large	or	small	flows),	as	well	as	allowing	spatial	models	for	predicting	
flows	based	on	 just	 the	total	 ins	and	outs	of	each	docking	station	(in	GIS,	 interpolating	a	
matrix	from	its	marginal	sums	is	a	relatively	standard	technique	(Deming,	1940)).		

Future	work	on	BSP	will	surely	rely	on	combining	different	strands	of	data	from	within	the	
scheme,	or	with	external	datasets.	If	BSP	utilise	GPS	tracking	more	widely,	it	could	open	up	
the	 possibility	 of	 a	 linking	 of	 journey	 data	 (time-varying	 origin-destination	 matrices),	
point	data	(station	 locations	and	statuses)	and	routing	data	(the	details	of	 the	route	that	
users	take	between	origin	and	destination	on	the	street	network)	–	allowing	inference	of	
time-dependent	 BSP	 traffic	 on	 the	 level	 of	 individual	 road	 segments.	 If	 GPS	 data	 yields	
route	preference,	and	journey	data	yield	time-dependent	demand	at	an	origin-destination	



level,	 combining	 both	with	 live	 point	 data	 could	 yield	 a	 complex,	 timely	modelling	 tool.	
This	BSP	“nowcasting”	could	allow	prediction	in	very	small	time	windows	–	for	example,	
docking	 station-level	 occupation	 and	 demand	 in	 ten	 or	 twenty	 minutes	 in	 the	 future.	
Combining	 BSP	 data	 with	 complementary	 sources	 –	 health	 and	 demographic	 data,	 for	
example	–	opens	up	the	possibility	to	linking	BSP	to	a	wider	context	–	including	transport	
planning,	access	to	services	of	marginalised	groups,	and	behaviour	change.	

5. Conclusions	

This	 paper	 reviews	 the	 recent	 bike	mobility	 research	 based	 on	 the	 analysis	 of	 Big	 Data	
collected	from	sources	that	are	becoming	increasingly	accessible	to	researchers	and	policy	
makers,	offering	a	panoramic	view	on	the	growing	number	of	studies	that,	in	less	than	ten	
years,	have	evolved	as	quickly	as	the	data	itself.	Even	if	the	achievements	are	remarkable,	
there	 are	 still	 important	 limitations	 that	 are	 difficult	 to	 overcome	 using	 current	 data	
sources.	 By	 some	 estimates,	 cycling	 data	 meets	 the	 first	 of	 Laney’s	 (2001)	 “4Vs”	
classification	of	Big	Data	(that	of	volume),	given	the	size	GPS	and	BSP	data,	and	perhaps	
the	second	criterion	(Velocity),	since	some	data	is	available	in	real	time	(Luo	&	Shen,	2009;	
O’Brien,	 2010,	 2013).	 It	 is	more	 questionable	whether	 the	 other	 V	 criteria	 (Variety	 and	
Veracity)	are	met,	at	least	in	the	way	that	the	data	is	currently	being	used.	In	the	context	of	
cycling,	while	 the	data	 is	 combined	with	demographic	or	 interview	data,	 pooling	 it	with	
Big	Data	from	other	sources	seldom	occurs.	As	hinted,	there	may	be	scope	within	BSP	to	
combine	 point	 data	 (sparse,	 complete	 and	 real-time	 data)	 with	 journey	 data	 (more	
detailed,	 complete	 and	 historical	 samples)	 and	 GPS	 data	 (very	 detailed	 but	 potentially	
smaller	samples,	and	historical)	to	leverage	the	detail	of	one	dataset	against	the	timeliness	
and	sampling	power	of	the	others.		

With	 respect	 to	Veracity,	our	conclusions	differ	between	sources;	 this	 criterion	refers	 to	
possible	 biases,	 noise	 or	 any	 abnormality	 in	 data,	which	 is	 variable	 for	 each	 of	 the	 data	
types.	Research	based	on	dedicated	GPS	data	 collections	have	 typically	paid	attention	 to	
proper	sampling	procedures,	so	that	the	collected	data	is	by	and	large	representative	for	
the	 population	 studied.	 However,	 data	 from	 big	 app	 companies	 rely	 on	 volunteers	
uploading	their	cycling	tracks,	leading	to	self-selective	samples.	For	instance,	logging	bike	
trips	 in	 Strava	may	be	more	 likely	 to	 be	 carried	out	 by	 cycling	 enthusiasts	who	wish	 to	
show	off	their	cycling	achievements.	This	would	imply	a	lack	of	representativeness	of	the	
population	 in	 terms	 of	 cycling	 attitude,	 geographical	 location	 and	 socio-demographic	
characteristics.	 Groups	 with	 mobility	 impairements,	 those	 who	 are	 “afraid	 to	 cycle”,	
elderly	cyclists,	or	children	may	not	be	well-represented	in	these	accounts.	Recent	studies	
by	Buck	(2013a)	and	Dill	and	McNeil	(2013)	demonstrate	that	heterogeneity	along	these	
lines	indeed	exists,	suggesting	that	data	from	big	app	sources	will	be	biased.	However,	BSP	
point	and	journey	data	is	representative,	at	least	of	users	of	BSP.	How	representative	this	
population	is	of	wider	cyclists	and	citizens	is,	of	course,	open	to	question	(see	Buck	et	al.,	
(2013b)	for	further	discussion).	Indeed,	there	is	no	reason	to	believe	that	either	BSP	or	big	
app	 data	 provides	 representative	 samples	 of	 a	 cities’	 population	 of	 cyclists	 or	 potential	
cyclists.	

Another	reason	to	be	concerned	about	data	veracity	relates	to	data	collection	motivation	
and	methods.	 In	 cases	 in	which	data	 is	 collected	specifically	 for	academic	purposes,	 it	 is	



typically	 enriched	 with	 contextual	 information	 (such	 as	 socio-demographics,	 attitudes,	
spatial	context	or	environment).	When	data	is	collected	by	commercial	applications,	aimed	
at	 providing	 a	 service	 to	 customers	 (e.g.	 Strava,	 MapMyRide),	 privacy	 policies	 of	
companies	 make	 using	 this	 contextual	 information	 difficult	 or	 impossible.	 As	 a	
consequence,	 key	 variables	 to	 understanding	 travel	 behaviour,	 such	 as	 socio-
demographics	 or	 purpose	 of	 the	 journey,	may	 be	 absent.	 However,	 the	 size	 of	 the	 data	
gathered	 and	 its	 continuity	 over	 time	 potentially	 allows	 for	 analyses	 not	 possible	 on	
dedicated	GPS	data	(e.g.	spatial	clustering	or	the	variation	of	cyclist	flow	distribution	over	
time),	 which	 may	 deliver	 useful	 additional	 insights.	 Similarly,	 BSP	 data	 is	 collected	 for	
management	rather	than	research,	and	lacks	socio-demographic	context.	In	any	case,	BSP	
may	offer	a	rich	database	 for	analysing	regularities	 in	patterns	of	supply	and	demand	as	
well	as	longer	term	structural	developments.		

On	 a	 technical	 level,	 GPS	 accuracy	 is	 not	 an	 issue	which	 has	 been	 completely	 resolved.	
Dedicated	 GPS	 devices	 perform	 better	 than	 smartphones	 GPS	 (Lindsey,	 Gorjestani,	
Hankey,	&	Wang,	2013)	but	their	lack	of	accuracy	in	some	urban	areas	can	mean	analysts	
lack	the	fine	detail	to	precisely	distinguish	route	choice	–	one	of	the	main	reasons	the	data	
is	 of	 interest.	 The	 Galileo	 European	 Program,	which	 is	 expected	 to	 be	 in	 place	 by	 2019	
(European	 Commission,	 2014),	 promises	 improvements	 over	 the	 current	 system,	 but	
these	 improvements	 have	 yet	 to	 be	 fully	 demonstrated.	 For	 users,	 one	 barrier	 is	 that,	
historically,	GPS	apps	have	rapidly	drained	their	smartphone	batteries	–	this	is	significant	
enough	that	the	B-Riders	scheme	developed	an	app	for	an	intelligent	start	and	end	of	the	
GPS	tracking	to	minimise	this	problem.	

Despite	 these	 caveats,	 there	 are	 interesting	 research	 challenges	 and	 opportunities	 from	
the	 increasing	availability	of	new	datasets	and	the	steady	 improvements	 in	 their	quality.	
The	industries	around	sport-tracking	apps	have	seen	increases	in	the	number	of	users	of	
GPS	devices	(including	recent	wearable	devices)	(Nielsen,	2014a).		If	this	trend	continues,	
the	volume	of	data	will	increase	with	the	userbase,	and,	through	licensing	schemes,	so	will	
the	 availability	 of	 data.	 Data	 from	 BSP	will	 likely	 grow,	 due	 to	 the	 proliferation	 of	 BSP	
around	 the	 world.	 Future	 research	 will	 have	 to	 face	 the	 challenge	 of	 bias	 in	 its	 data	
collections,	and	create	robust,	scalable	mechanisms	to	account	for	it.	We	expect	more	GPS	
data	to	become	available	in	a	more	timely	fashion,	not	only	from	app	companies	(some	of	
which	are	already	offering	this	service	for	users,	like	Map	My	Tracks)	but	from	the	current	
third	generation	of	BSP.	Some	recent	systems	record	GPS	tracks	for	every	journey,	which	
may	allow	researchers	 to	analyse	bike	routes	and	 improve	 the	existing	route	choice	and	
cycling	 flow	 distribution	 models,	 as	 well	 as	 analyse	 the	 real	 use	 of	 existing	 bike	
infrastructure.	 Apart	 from	 these	 improvements	 regarding	 raw	 location	 data,	 work	 is	
needed	 on	 enriching	 these	 data	 with	 meaningful	 explanatory	 variables.	 Socio-
demographic	 data	 may	 be	 approximated	 by	 linking	 location	 data	 to	 usage	 patterns	 of	
specific	 groups.	 More	 work	 will	 also	 be	 needed	 on	 data	 fusion	 techniques	 in	 order	
accommodate	such	approximations;	however,	data	providing	spatial	context	(such	as	land	
use)	 is	becoming	 increasingly	accurate	and	more	 freely	available.	This	growth	 in	bicycle	
data	and	its	corresponding	availability,	and	 joining	up	with	data	on	transport,	health,	air	
quality,	 demographics,	 route	 choice	 and	 leisure	 promises	 a	 rich	 period	 of	 activity	 for	
researchers	in	all	of	these	areas.	



Finally,	 a	 key	 question	 remains:	 how	 will	 the	 expected	 advances	 benefit	 cyclists	 and	
potential	 cyclists,	 policy	 makers	 and	 BSP?	 And	 how	 would	 those	 benefits	 create	 wider	
impacts?	Will	 they	 encourage	more	 people	 to	 cycle,	 or	 reduce	 congestion	 or	 pollution?	
Many	BSP	users	currently	take	advantage	of	real	time	information	about	the	availability	of	
bicycles	in	different	docking	stations	so	that	they	can	plan	their	journeys.	In	a	near	future,	
we	 might	 imagine	 a	 smart	 bike	 route	 planning	 system,	 integrated	 in	 a	 multimodal	
transport	system.	Users	will	have	 information	about	the	closest	available	station	to	their	
destination	 point,	 and	 about	 the	 best	 route	 possible	 for	 getting	 there,	 incorporating	
weather,	 traffic,	 and	user	 preference	 –	 lowering	barriers	 to	 cycling	 for	 less	 confident	 or	
experienced	cyclists.	Cycling	Apps	will	continue	to	be	attractive	 to	users	of	smartphones	
and	perhaps	a	new	generation	of	wearable	 technology,	providing	 information	 to	 cyclists	
and	reports	of	 their	peers’	performance,	motivating	people	to	cycle	 longer,	 faster,	and	of	
course,	more	frequent.	

For	policy	makers,	the	range	of	benefits	may	be	more	diverse.	GPS	based	cycling	data	will	
provide	 insights	 about	 cyclists’	 route	 choice	 behaviour	 and	 their	 preferred	 and	 disliked	
route	 characteristics,	 which	 will	 support	 the	 design	 of	 cycling	 infrastructure	 networks.	
Coupling	 GPS	 based	 cycling	 data	 with	 geo-data	 (land	 use,	 facilities,	 altitudes,	 etc.)	 will	
greatly	 enhance	 their	 understanding	 of	 cyclists’	 route	 choice.	 Big	 Data	 will	 drive	 the	
assessment	 of	 cycling	 infrastructure	 at	 different	 levels,	 analysing	 the	 use	 of	 local	
infrastructures	 (such	 as	 lanes	 or	 bike	 parking),	 identifying	 the	main	 cycling	 routes	 over	
the	course	of	a	day,	or	understanding	the	obstacles,	delays	and	dangers	that	slow	or	hinder	
their	journeys.	Again,	a	key	issue	here	is	the	representativeness	of	the	pool	of	GPS	users.	
While	an	initiative	such	as	the	Dutch	BikePRINT	project	delivers	useful	insights	in	cycling	
routes	 and	 cycling	 densities,	 it	 relies	 on	 voluntary	 participants,	 leaving	 questions	 about	
reliability	of	the	outcomes	(Coevering	et	al.,	2014).	

The	recent	collaboration	between	commercial	Apps	and	planning	institutions	is	promising	
and	 will	 generate	 combined	 and	 useful	 information	 that	 will	 make	 new	 explorations	
possible.	 As	we	 have	 remarked,	 these	 new	Big	Data	will	 not	 substitute	 but	 complement	
other	more	conventional	 sources,	 since	 they	often	 lack	disaggregate	data	on	 the	cyclists,	
which	are	so	often	necessary	 to	understanding	 the	contexts	 that	 influence	many	of	 their	
decisions.	 This	 points,	 then,	 to	 a	 future	 where	 the	 fourth	 V	 –	 Variety	 –	 creates	 new	
innovations	 and	 insights	 in	 cycling	 –	 as	 Big	 App	 data,	 real-time	 BSP	 feeds,	 and	 more	
traditional,	 detailed,	 demographic	 studies	 are	 brought	 together	 –	 and	 commercial,	
municipal,	 service	provision	and	academic	partners	work	 together	 to	create	a	breathing,	
user-centred	picture	of	the	cyclable	city.		
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