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Abstract—This work provides an insight into positron emission
tomography (PET) joint image reconstruction/motion estimation
(JRM) by maximization of the likelihood, where the probabilistic
model accounts for warped attenuation. Our analysis shows that
maximum-likelihood (ML) JRM returns the same reconstructed
gates for any attenuation map ( -map) that is a deformation of a
given -map, regardless of its alignment with the PET gates. We
derived a joint optimization algorithm accordingly, and applied it
to simulated and patient gated PET data. We first evaluated the
proposed algorithm on simulations of respiratory gated PET/CT
data based on the XCAT phantom. Our results show that indepen-
dently of which -map is used as input to JRM: (i) the warped
-maps correspond to the gated -maps, (ii) JRM outperforms
the traditional post-registration reconstruction and consolidation
(PRRC) for hot lesion quantification and (iii) reconstructed gated
PET images are similar to those obtained with gated -maps. This
suggests that a breath-held -map can be used. We then applied
JRM on patient data with a -map derived from a breath-held
high resolution CT (HRCT), and compared the results with PRRC,
where each reconstructed PET image was obtained with a cor-
responding cine-CT gated -map. Results show that JRM with
breath-held HRCT achieves similar reconstruction to that using
PRRCwith cine-CT. This suggests a practical low-dose solution for
implementation of motion-corrected respiratory gated PET/CT.

Index Terms—Attenuation correction, attenuation mismatch,
direct motion estimation, gated PET, image reconstruction, max-
imum-likelihood.

I. INTRODUCTION

P ATIENT respiratory motion during positron emission to-
mography (PET) acquisition not only degrades image res-

olution [1] but also results in reconstruction errors due to pos-
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sible mismatch of PET data with the sequentially acquired com-
puted tomography (CT) attenuation map ( -map) [2].
One approach to overcome this issue is to reconstruct from

a single motion-free PET gate that is aligned with CT data ac-
quired at the same respiratory phase [3], [4]. This approach can
readily avoid the effects of respiratory motion but the limitation
to a single gate reduces the number of usable counts which re-
sults in noisy PET reconstruction.
4-D CT images can be obtained following a “cine” protocol,

i.e., by performing repeated axial acquisitions during one (or
sometimes more) respiratory cycle(s) [5], [6]. Acquired data
are then regrouped according to their respiratory phases, either
using the CT data themselves, or using a respiratory-motion
tracking system (see [7] for a review). This approach, combined
with gated PET, allows 4-D attenuation-corrected (AC) PET re-
construction, but is vulnerable to artifacts in the gated CT due
to variation in the breathing cycle [8].
Another way to tackle this issue consists of deriving a motion

model from non-AC reconstructed PET gates and applying this
model to a single CT image [9], [10] in order to generate a 4-D
-maps sequence. However, motion estimation from individu-
ally reconstructed gated non-AC PET images is subject to noise
and low contrast, leading to motion estimation errors that can
propagate to the deformed CT image and eventually to the final
PET reconstruction.
Along similar lines, a pre-estimated motion model can be es-

timated from the PET data [11], [12] or from another imaging
modality such as CT [13]–[15] or magnetic resonance imaging
(MRI) [16]–[18], and then can be directly incorporated into the
PET system matrix and the attenuation correction factors.
Nuyts et al. [19]–[21] have demonstrated the potential of joint

estimation of the activity distribution and the attenuation map/
coefficient factors from emission data. This class of methods
could allow one to perform AC reconstruction from PET gated
data with the -maps reconstructed at each gate. However, it is
a very ill-posed problem on non time-of-flight (TOF) PET data
[20], and TOF data only allow to reconstruct the activity up to
a constant factor [22].
A completely different type of method consists of performing

a penalized maximum-likelihood (PML) joint image recon-
struction/motion estimation (JRM), where the probabilistic
model accounts for an unknown motion applied to both the
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activity volume and -map. This approach has the advantage
of allowing one to estimate the motion directly from the raw
data (without having to pre-register the volumes) and to utilize
only one -map, warped alongside the activity. JRM has al-
ready been used in the past [23], [24] but these papers ignored
attenuation. This is mainly for two reasons: (i) the derivation
of an optimization algorithm proved to be challenging; (ii)
the -map used in the likelihood function normally needs to
be aligned to the motion-free activity volume. As the activity
distribution is unknown, it is unclear how the attenuation map
should be chosen.
This paper is an extension of [23], [24], with incorporation of

the attenuation in the likelihood term, and follows the work we
initiated in [25]. Similarly to [24], the estimated activity volume
is a “virtual” image that is not associated to a particular gate.
The main result of this paper is that in such a setting, JRM re-
constructs the same gated activity distribution regardless of the
-map input, provided the input can be derived as deformations
of a unique -map. This means that JRM can be potentially used
with a breath-held CT-derived -map that is not synchronized
with any of the PET gates.
The objective of this work was to assess the feasibility of

using JRM with attenuation and its ability to deal with mis-
aligned -maps. We implemented an algorithm for PML recon-
struction that accounts for the necessary transformations of the
-map, based on the discretization scheme proposed in [23].
We evaluated JRM using both simulated and patient data.

Simulations included -map misalignment correction and
reconstruction of gated PET data. We compared JRM with
post-reconstruction registration and consolidation (PRRC),
where each PET gate was reconstructed with the corresponding
exactly aligned -map. We also reported an initial evaluation
on patient data, where JRM was applied with a breath-held
high resolution CT (HRCT) derived -map and the results
were compared with PRRC, where each gate was reconstructed
using cine-CT gated -maps.

II. THEORY

A. Attenuated PET Measurement Without Motion

The activity distribution and attenuation map can be modeled
as functions and respectively, where de-
notes the set of non-negative continuous functions on . The
activity and attenuation at position are and .
Although is unknown, we assume that an attenuation map is
obtained from a separate measurement such as an X-ray CT ac-
quisition. The PET measured counts are modeled as a Poisson
random vector with independent entries ,

, being the number of detector bins:

where is the scan duration, is the expected number of
counts per unit of time in absence of attenuation and background
events,

(1)

is the attenuation factor along the segment connecting
the detectors of bin ,

(2)

and is the expected number of background events (scatter/
random coincidence) at bin . The function in (1) is the PET
system response at bin and is a compact set repre-
senting the field of view.

B. Attenuated PET Measurement With Motion

In presence of patient motion, both activity and attenuation
are deformed. The set of diffeomorphic functions on is de-
noted . A deformation is modeled by a diffeomorphism
, yielding a warping operator defined as

is invertible on with and
.

Under the assumption that patient respiratory motion is quasi-
cyclic, acquired data are regrouped into gates.We will ignore
intra-gate motion and assume that on each gate
the patient is static. At gate , the activity distribution and at-
tenuation map are deformed versions of and with a diffeo-
morphism . In the gated case, the measured data are
a Poisson random vector with independent entries

,

(3)

where and were defined in (1) and (2), is the duration
of gate and is the expected number of background events
at bin , gate .

C. Joint Maximum-Likelihood

Omitting terms independent on and , the -likelihood
of the observables is

(4)

with , ,
. Joint PET image reconstruction/motion estimation

(JRM) by maximum-likelihood (ML) consists of estimating a
pair that explains the measurements by solving
the following optimization problem:

(5)

At each gate , the resulting estimated activity
image is and is obtained by warping the “virtual”
activity image estimated from the entire dataset .
In fact, it can be seen that the log-likelihood only indirectly

depends on and , i.e., via and . This observation
leads us to consider the gated images as the final output of the
estimation problem, with the virtual image and the deforma-
tion only as intermediate objects. This shift in emphasis leads to
the main result of this paper, as described in the next section.
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D. On the Attenuation Map Dependency

Statistical model (3) suggests that and should correspond
to the same patient state. In fact, we can see that the recon-
structed gated images obtained by solving (5) are identical for
all -maps resulting from deformations of a common -map.
We denote for all ,

.
Proposition 1: Let , and
be a maximizer of , then

is a maximizer of and
for all :

(6)

Reciprocally, if is a maximizer of
, then is a maximizer of

and (6) is also verified.
Proof: We have the following identity for all ,

and :

(7)

Let be a maximizer of :

(8)

Combining (7) and (8) leads to

and is a maximiser of
. We also have

and similarly . The converse is demonstrated the
same way.
Proposition 1 does not assert the existence nor the uniqueness

of a maximizer, but it can be interpreted as follows: if
is a likely candidate for (5), then
is an equally likely candidate for (5) with , and satisfies (6).
In practice, this result means that the JRM-reconstructed gated
images are the same when using the attenuation map or a
deformed version . For example, can represent the
mismatch between the attenuation acquired with a deep breath-
hold X-ray CT scan and the attenuation map during the PET
scan.

III. JOINT IMAGE RECONSTRUCTION/MOTION
ESTIMATION ALGORITHM

A. Discretization

Instead of discretizing (3) directly, we adopted the “warp and
project” discretization scheme from Jacobson & Fessler [23].
This approach allows one to perform deformation and projec-
tion separately, and thus, simplifies implementation.
1) Warping Matrix: We assume that an image function and
can be decomposed on basis functions centered on a voxel

grid that coincides with the
voxel centers:

(9)

where is an interpolating function of the form
, , and is

positive, symmetric and continuously differentiable. The dis-
cretized activity image and attenuation map are represented by
the non-negative coefficients and .
Deformation of is performed with a deformation of the con-
tinuous images followed by a re-sampling on : for all

,

(10)

where the warping square matrix is defined by
. The warped discrete activity and

attenuation map are and .
2) B-Spline Model for Deformation: Similarly to [23],

we use a B-spline representation for . Let
be a uniform sub-grid of comprising

control points. The motion model is parametrized by
, where is the number

of warping parameters and , ,
are the motion B-spline coefficients along each

axis , and :

(11)

with , ,
is the cubic B-spline function and is the distance between

control points. For notation compactness, is denoted .
At each gate , the motion B-spline coefficients vector is denoted
. The deformed activity and attenuation map are and

.
3) PET and CT Projector: The unattenuated PET system is

modeled by a matrix where is the prob-
ability that an annihilation occurring at voxel is detected in
detector pair . Similarly, the X-ray line integral operator used
in (2) is a matrix where is the length
of the intersection of with voxel .

B. Discrete Penalized Log-Likelihood

The expected number of detected events at bin , gate , in-
troduced in (3) is redefined as a function of , and :

(12)

with

The vectorial writing of (12) is

(13)
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where is a diagonal matrix defined by
for all , and is the vector

of expected background events at gate . We also define the
attenuation-corrected (AC) PET system matrix

(14)

and the ACmotion-compensated (AC-MC) PET system matrix:

(15)

An alternative formulation of (13) is

The entire collection of motion parameters is denoted
. The log-likelihood (4) is redefined as

a function of , and :

where was defined in (4).
In order to control noise, two quadratic penalty terms

and are introduced:

with

where and are the neighborhood of in and of in
respectively, is the inverse distance between voxel and
, is the inverse distance between control points and .
Note that and can be replaced by edge-preserving penalties
[26]. The penalized log-likelihood is

(16)

JRM by penalized-ML (PML) is performed by solving the op-
timization problem

Although it is not optimized, is present as a hyper-parameter
in order to assess the effect of a deformed attenuation map.
The maximization of is performed in alternation between
and .

C. Motion Update

The motion estimation part consists of maximizing the penal-
ized log-likelihood (16) with respect to . We used a quasi-
Newton (QN) approach with an approximated Hessian matrix.
Most efforts are focused on the derivation of the Jacobian of the
expected projection, which is detailed in Appendix A. The gra-
dient is similar to [24] with inclusion of the warped attenuation
map .
Given a fixed , is maximized with respect to

. For notation compactness, ,
and are temporarily rewritten , and

respectively, and is omitted. We rewrite as function of
only:

Let be a current estimate of at iteration . The
next estimate is obtained by performing a maximization
along a gradient ascent search direction :

with solution of

(17)

The search direction is of the form ,
where is a negative-definite matrix approximating the
inverse of the Hessian . It can be obtained at each
iteration using a Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm (see Chapter 6 in [27]). Because of the large dimen-
sion of , we computed using a “limited-memory” BFGS
(L-BFGS) algorithm (see Chapter 7 in [27]), which computes
the matrix/vector product without
storing . At this stage, any line-search method can be used
to solve (17). We followed the approach described in [28] and
its Fortran implementation [29] to compute and . The
step length is computed to satisfy the Wolfe Conditions
[30], which guarantee sufficient increase of and discard
unacceptably short steps.
The gradient equals to , and is a con-

catenation of its sub-gradients which are obtained by the
chain rule,

where denotes the Jacobian matrix of a vector with respect
to and . The derivation of is
given in Appendix A, (21).

D. Image Update

In absence of a penalty term (i.e., ), maximizing
with respect to is performed with an ML expectation-max-

imization (ML-EM) algorithm [31], where the observable is
the collection of the gated PET data , associated to
their background event vectors , and the system matrix
is formed with the concatenation of all AC-MC PET systemma-
trices:

...

The activity image at iteration is obtained from
as follows:

(18)
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where we denoted . For a fixed
, a sequence generated with (18) converges to a
maximizer of [32], [33].
Modified ML-EM algorithms (M-MLEM) to maximize the

penalized log-likelihood have been proposed [34]–[37]. All
cited work directly or indirectly require computation of the EM
update (18). We followed De Pierro approach
[35] which consists of maximizing a surrogate function
instead of . The surrogate depends on the previous iterate

and separates the voxels, so that the image can be updated
at each voxel independently. When is a quadratic prior,
maximizing reduces to finding the unique positive root of a
second order polynomial, for each voxel . For non-quadratic
priors, separable paraboloid surrogates can be employed [36].
A complete description of our implementation can be found in
Appendix B.

Algorithm Summary

We summarized the method in Algorithm 1. Some of the no-
tations, such as the differentiated warping operator and
the regularized image , are introduced in the appendices.
The motion parameter is initialized by . The image coeffi-
cient vector is initialized by M-MLEM reconstruction from
the first gate , using the system matrix and the back-
ground . The attenuation map does not need to be aligned
with (cf. the discussion in Section II-D). In order to avoid
artifacts on the image due to incomplete motion estimation,
is reinitialized to a blank image every iterations. We used

, except for Evaluation 2 (Section IV-B) for which we
used . The L-BFGS computation of the line search
direction requires the gradient and the estimates of at
several previous iterations, but they were omitted for compact-
ness.
Proposition 1 requires the warping operators to be in-

vertible. In practice, is not invertible, not only because
the B-spline mapping is not invertible, but
also because of the interpolating function in (10). Thus the
equality (6) does not hold in the discrete case. The presence of
the penalty terms and also affects this result as Propo-
sition 1 applies to the likelihood without penalty. Therefore,
one of the objective of the evaluation is to verify that

and
satisfy

(19)

for small values of and .

IV. EVALUATION

Some images in this section contain a horizontal line, in order
to help motion/mismatches visualization. These lines are not
related to reconstruction profile plots.

A. Reconstruction Methods

In this section we briefly summarize the method we utilized
for evaluation. The methods used differ for each experiment.
The interpolating function used for the
finite-dimensional representation (9) were the same B-splines
functions used for in (11), although the

former is defined on the voxel grid and the latter is defined on
the sub-grid .
1) JRM: We performed JRM by maximizing the penalized

log-likelihood with two different -maps: , consistent
with the first gate (JRM1) and with , misaligned with each
gate (JRM2):

The reconstructed activity volumes at each gate
are denoted and ,

2) PML Reconstruction of Each Gate Independently: This
approach assumes that a collection of -maps corre-
sponding to the gated PET data is available. Each gate
is independently obtained by PML reconstruction (M-MLEM
algorithm, [35]) from , using the systemmatrix (14)
and the background vector :

(20)

The reconstructed images depend on the parameter .
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Fig. 1. Evaluation 1: phantoms for -map realignment experiment: (a) ; (b)
; (c) .

3) Post-Reconstruction Registration and Consolidation
(PRRC): PRRC also requires and consists of 4 steps:

(i) PML reconstruction following (20) to obtain
(ii) Selection of a reference gate and registration of the re-

constructed volumes to . The registered

volumes are denoted , .

(iii) Consolidation by averaging a single volume :

(iv) Re-warping of at each gate using
the inverse motion. The output images are denoted

.
PRRC utilizes all -maps, whereas JRM needs only one ( or
). Therefore, PRRC should have a potential advantage over
JRM.
4) JRM With Fixed -map (JRM-FM, Simulations Only):

This approach consists of maximizing a modified version of ,
denoted , obtained by replacing with in the ex-
pression of (12):

The gradient used for motion update is obtained using the Ja-
cobian (21) without the first term. The reconstructed gates are

denoted .
5) No Motion Compensation: This approach consists of a

PML reconstruction of a single volume from the entire dataset
, ignoring the motion and using a single attenuation map.

The reconstructed volume is denoted .
6) Motion-Free Data (Simulations Only): For this approach,

data are simulated without motion with the same number of
counts. The reconstructed image, denoted , is obtained
using PML with a consistent -map.

B. Evaluation 1: JRM -map Realignment On Noise-Free
Simulated Data

To verify the analysis of Section II-D, we applied JRM in a
single gate noise-free experiment. The activity (Fig. 1(a)) and
the corresponding aligned -map (Fig. 1(b)) are volumes gener-
ated from the XCAT phantom, cropped to a box
containing the chest (3.125 mm edge cubic voxels). A deep in-
spiration -map, denoted (Fig. 1(c)), was also generated. The
PET projector models a 5 mm FWHM point spread function
for resolution. The same projector was used for (projection of
the -map). A noise-free sinogram was generated by projec-

Fig. 2. Evaluation 1: from top left to bottom right: warped estimated activity
at iterations 0 ( ), 1, 5, 10, 30 and 100.

Fig. 3. Evaluation 1: from top left to bottom right: -maps relative difference
at iterations 0 ( ), 1, 5, 10, 30 and 100.

tion of with a system response attenuated by and a uniform
background :

This model is a sub-case of (13) with (identity matrix).
The motion parameter is a single B-spline coefficient vector
. We estimated from and with and set to a
small value. We used a control points grid
for the B-spline motion parametrization, and was re-initial-
ized after each iteration (i.e., ). Our aim is to verify
whether the approximation (19) holds. In this particular case, it
reduces to

Figs. 2 and 3 show the warped estimated activities and
the relative differences at iterations 0 (reconstruction
with ), 1, 5, 10, 30 and 100. Each iteration corresponds to
one realization of the outer loop in Algo-
rithm 1. Results show that after 100 iterations the -map mis-
alignment artifacts present in the initialization (near the liver
and the myocardium) have disappeared. Also the warped atten-
uation is similar to , with some discrepancies on organ
boundaries which can be attributed to partial volume effects,
and also on the ribs due to the inability of the B-spline motion
model to describe discontinuities in the motion field. These re-
sults show that JRM is a viable method for misaligned -map
correction.
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Fig. 4. Evaluation 2: (a) top to bottom: XCAT phantom activity gates
; (b) top to bottom: corresponding XCAT phantom -maps .

C. Evaluation 2: Gated PET/CT Simulated Data

We generated XCAT activity volumes and
their corresponding -maps (Fig. 4). Each volume cor-
responds to one gate of the respiratory cycle ( : inspira-
tion, : expiration). Cardiac contraction was not simulated.
In addition, a deep inspiration -map, (Fig. 5(b)), was gen-
erated. This -map differs from (see Fig. 5(c)) and from
all other . A hot lesion was added to the activity vol-
umes. We used same projectors and B-spline motion model as
in Section IV-B.

independent realizations of the PET gated projec-
tions were simulated with for all as

the background being set to a uniform vector. A single
realization of totals counts (including background
events). The activity volume was first reconstructed without
motion correction ( , Fig. 5(d)) and from motion-free data
( , Fig. 5(e)). was obtained by PML reconstruction
from the motion-free data from gate 1, generated as

The former suffers from both motion and attenuation mismatch
artifacts whereas the latter is artifact-free. JRM-FM first and
fifth gates, and , are

shown in Figs. 5(g) and 5(h) respectively. and more par-
ticularly suffer from severe attenuation mismatch artifacts.
This demonstrate that the -map needs to be warped alongside
the activity.

Fig. 5. Evaluation 2: (a) attenuation map ; (b) misaligned attenuation map
; (c) relative difference ; (d) : reconstruction using all the gates
without motion compensation; (e) : reconstruction frommotion-free PET
data; (f) : JRM reconstruction with (gate 1) at iteration 0 (initialization);

(g) : JRM-FM gate 1; (h) : JRM-FM gate 5.

We processed the realizations of with JRM1
and JRM2 , as well PRRC, with , 0.01,

0.02, 0.03 and 0.1. The number of iterations was
for JRM1 and 30 for JRM2 (more iterations are necessary for
JRM2 to correct for attenuation mismatches). The estimated
activity volumes and motion are denoted and .
Because JRM2 was initialized with a PML reconstruction from
the first gate dataset with the AC system matrix
(Fig. 5(f)), the initial reconstruction suffers from misalign-
ment artifacts on the liver and the myocardium. The PRRC

reconstructed gates, were obtained using the same
B-spline deformation model as JRM for post-reconstruction
registration.
JRM and PRRC volumes (reconstructed with and

respectively to match the variance, see Fig. 8) at

each gate , , and are shown
in Figs. 6(a)–6(c). The 3 volume sequences appear similar,
and the misalignment artifacts present in the initialization
of (Fig. 5(f)) have vanished. Reconstruction profiles were
plotted along a section of the first gate within the coronal plane
intersecting the lesion (Fig. 7). Results show that both JRM
volumes and are similar. It can be noticed on Fig. 7 that

has somewhat better defined organ edge boundaries
compared to and . This is because and used only

one -map warped alongside the activity whereas uses
the entire exact sequence. As observed in Fig. 5(g), JRM-FM
shows a sudden drop of activity near the liver.
We assessed the performance of JRM1, JRM2 and PRRC on

the hot lesion on the first gate by plotting the mean square error
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Fig. 6. Evaluation 2: reconstructed volumes at each gate (from
top to bottom). (a) (using an aligned -map); (b)

(using a misaligned -map); (c) PRRC reconstructed gates .

Fig. 7. Evaluation 2: reconstruction profiles along a section within the coronal
plane (foot to head) intersecting the lesion (gate 1).

(MSE), in a small region containing the lesion, against the
total image variance (based on the realizations of ),
for each value of :

with

where is either , or and the superscript de-
notes the noise realization. The 3 curves in Fig. 8 show that
JRM1 achieves lower MSE for any variance level. JRM2 per-
forms somewhere in between JRM1 and PRRC.
The performance of JRM can also be assessed by inves-

tigating the warped -map with the estimated motion field.
Fig. 9 shows the warped -maps and . Both
volume sequences appear similar to the ground truth (right
column), which is consistent with the analysis of Section II-D.

Fig. 8. Evaluation 2: MSE vs variance in the lesion for , 0.01, 0.02, 0.03
and 0.1.

Fig. 9. Evaluation 2: warped -maps at each gate (top to bottom).
(a) ; (b) ; (c) ground truth (for comparison).

D. Evaluation 3: Patient Data

Patient data for a clinical FDG PET/CT study were acquired
on a GE Discovery STE [38]. 315 MBq of -FDG was in-
jected 1 hour before the scan start according to normal clinical
protocol. A cine-CT scan was performed to cover the lung PET
bed position (140 kVp, 60 mA, 4 s duration, 0.5 s rotation pe-
riod, 0.45 s time between reconstructed images, 9 bed positions,
8 axial slices (thickness 2.5 mm) per bed position), followed by
a PET scan with list mode enabled. The patient was monitored
with the Varian RPM system.
PET data were binned into 5 gates according to the value of

the RPM signal at the detection time of the event. Gated CT im-
ages were obtained by using a weighted average of the cine-CT
images where the weight was determined from the amount of
overlap between the time interval during which the cine-CT
slice was acquired and the time period that the RPM signal
was in the range for each gate. Matching ranges were used for
the gating of the cine-CT and PET data in an attempt to ob-
tain spatially matched gated PET and CT data. The gate (frac-
tional) durations were , , ,

and .
The cine-CT derived -maps, are shown in

Fig. 10(a). The -maps were down-sampled to the PET volume
sizes . A -map, denoted (Fig. 11(b)), was
derived from the High Resolution CT (HRCT), acquired at full
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Fig. 10. Evaluation 3: (a) gated cine-CT -maps, ; (b) relative dif-
ference between gated cine-CT and HRCT-derived (Fig. 11(b)).

Fig. 11. Evaluation 3: (a) HRCT reconstruction of the chest; (b) : HRCT-
derived -map.

inspiration in helical mode (140 kVp, 148 mA, 0.8 s rotation
period, pitch 1.375, slice thickness 3.27 mm) (Fig. 11(a)).
This -map differs from the cine-CT -maps at each gate (see
Fig. 10(b)).
We used the GE proprietary software for offline data pro-

cessing (projection/backprojection, scatter/random estimation).
Scatter was estimated using the cine-CT gated attenuation maps
for PRRC and PML, and using the HRCT only for JRM. We
proceeded with PRRC and individual PML reconstruction of

each gate. The reconstructed volumes and are
shown in Figs. 12(a) and 12(b). The gate with largest duration

was chosen as reference for PRRC. We used the same
control point grid for PRRC and JRM. JRM was

achieved by maximization of with . The reconstructed
gates, i.e., are shown in Fig. 12(c). PML volumes
suffer from noise as the gates were reconstructed individually.
Both PML and PRRC also suffer from “partial volume effects”
on the organ edges (liver and stomach) that can be attributed to
the poor quality of the cine-CT -maps. In contrast, organs in
JRM volumes (reconstructed using the HRCT-derived -map)
appear sharper. A reconstruction profile along a section within
the coronal plane and intersecting the hot lesion is shown in
Fig. 13. It can be observed that the uptake on the hot lesion is
higher with JRM. A non motion-corrected profile was plotted
for comparison.

Fig. 12. Evaluation 3: reconstructed activity volumes at each gate
(top to bottom): (a) individually PML reconstructed gates (using

cine-CT sequence, see Fig. 10(a)); (b) PRRC reconstructed gates (using
cine-CT sequence, see Fig. 10(a)); (c) JRM reconstructed gates (using ,
see Fig. 11(b)).

Fig. 13. Evaluation 3: reconstructed volume profiles (gate ) along a sec-
tion within the coronal plane (foot to head), intersecting the hot lesion.

For these patient data, there is no real approach to assess the
JRM ability to warp to the correct position because the true
attenuation at each gate is unknown. We compared the warped
-maps obtained with JRM with the gated cine-CT -maps
(Fig. 14), but these are not completely reliable as mentioned in
the introduction. Nevertheless, it can be noted that none of the
JRM reconstructed gates seem to suffer from -map misalign-
ment artifacts, suggesting that warps appropriately.

V. DISCUSSION

The major information is that the actual object of interest is
not but . It was mentioned in [39], Section 7.2.1, that in-
corporating the attenuation map is challenging because the co-
efficients vector is “virtual” (only the warped version
matters) and therefore there is no corresponding -map. In fact,
JRM estimates a “virtual” activity image and a deformation op-
erator that accounts for both misalignments and patient mo-
tion. When the reconstruction is performed using a misaligned
-map , the “virtual” activity image is reconstructed in the
“ -space”. Applying the estimated warping operator re-
aligns to the unobserved and performs the motion correc-
tion to gate . This is a direct consequence of Proposition 1, (6)
and (7).
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In this paper, JRM with misaligned -map requires a large
number of iterations, indicating that for non-TOF-PET data the
problem is ill-posed. However, since JRM uses a known -map,
it is does not suffer from the same cross-talk issues as for joint
reconstruction of activity and attenuation in non-TOF-PET
[20]–[22]. TOF-PET data would likely accelerate convergence
of JRM but we leave this for future work.
In our results based on the simulated data, the reconstructed

gates with JRM appear free from motion/attenuation misalign-
ment artifacts. Our quantitative analysis of MSE and variance
shows that JRM outperforms PRRC in the quantification of a
hot lesion. The fact that the deformed -map follows the de-
formed activity shows that gated CT is not necessary. With a
misaligned -map, the reconstructed gates are the same, con-
firming the analysis of Section II-D, although reconstructing
with a -map which is not aligned with any of the PET gates re-
quires additional iterations. This result is important as in many
PET/CT studies, a diagnostic CT is acquired during breath-hold.
The result using a single PET gate suggests that JRM can be
used for attenuation/PET mismatch correction in situations be-
yond respiratory gating.
The assessment of JRM on real data is more problematic be-

cause of the absence of ground-truth. The only references are
the cine-CT gated -maps but they are prone to gating errors due
to inter-cycle variation [8]. However, JRM with an HRCT-de-
rived -map leads to artifact-free images, thus showing that

warps both the activity volume and -map appropriately.
As it can be seen in Fig. 11(a), the lesion appears smaller in the
HRCT than in the cine-CT, probably because of motion during
the acquisition. However, this seems to have had a negligible
effect on the PET reconstruction.
It should be noted that for real data, an accurate approxima-

tion of the background term (scatter and coincidences) is of
major importance. Ignoring this term leads to mismatches be-
tween (observed counts) and (expected counts) that JRM
will try to compensate with . For example, if is under-
estimated, JRM tries to compensate for the missing counts by
enlarging the lungs (low attenuation) to artificially increase the
number of expected counts. Accurate gate durations is also
important for the same reasons.
We have not investigated the motion smoothness parameter
. In preliminary experiments (results not shown), JRMwith too
small values led to an irregular motion field and “broken”
images . Nevertheless, the product was largely unaf-
fected, as well as the warped attenuation. This is another illus-
tration that the warped images are the final result of the image
reconstruction, not the “virtual” image.
The proposed algorithm is monotonic by definition, in the

sense that each iteration increases the penalized likelihood
. However it is not possible to demonstrate strict convergence
(existence and uniqueness of a limit ) because of the
non-concavity of .

VI. CONCLUSION

We demonstrated that it is possible to extend existing JRM
methods [23], [24] to a more complete model that includes an
attenuation map affected by the same motion. We demonstrated
that the reconstructed gates are independent of the choice of

Fig. 14. Evaluation 3: gated cine-CT -maps and JRM-warped at each gate
(top to bottom): (a) gated cine-CT -maps ; (b) warped

, i.e., .

the input -map, provided it results from the deformation of a
common -map. We proposed an algorithm to monotonically
maximize the penalized log-likelihood of the complete model.
Results on XCAT simulated data showed that it is possible to
use JRM to correct for misaligned attenuation and to reconstruct
the activity from the entire dataset. Our algorithm applied on pa-
tient data successfully warped the breath-held HRCT -map and
achieved similar reconstruction to PRRC reconstructions using
cine-CT gated -maps. These results suggest that JRM can re-
move the need for cine-CT data for PET attenuation correction,
with a corresponding reduction of patient dose.

APPENDIX A
PROJECTION AND IMAGE JACOBIAN

The Jacobian of with respect to is

(21)

where denotes the diagonal matrix generated from
vector , and are the AC and AC-MC system matrices
defined in (14) and (15) respectively, and

are the Jacobian matrices of the warped
image coefficients and respectively. When , (21) is
equivalent to (28) and (29) in [24]1.
The Jacobian matrix (and similarly ) was

already derived in [40], Chapter 5. We re-derived it with our
notations. Recall the definition of (10):

1In [24], is the system response at bin and should not be mistaken
with , the attenuation corrected PET system matrix.
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with defined in (11), and recall
the definition of :

Note that , and only depends on , and
respectively. By the chain rule, we have

where denotes the first-order derivative of . The partial
derivative of w.r.t. is

(partial derivatives with respect to and are similarly ob-
tained). Introducing the matrix defined as

and , and defined as

we can derive a matrix formulation:

APPENDIX B
SEPARABLE SURROGATES FOR PML IMAGE RECONSTRUCTION

We adopted the methodology from [41]. As in Section III-C,
is rewritten and is omitted:

is strictly concave if and for at
least one (see [37], Section II-A1), so it has a uniquemaximizer
in .
A function is a surrogate for if it

verifies the following axioms:
1) ,
2) ,
where is the gradient with respect to the vector on the left
of the semicolon. If for all the mapping
has a (possibly non-unique) maximizer in , then condition
1) guarantees that a sequence satisfying

automatically verifies

Condition 2) serves to demonstrate convergence to a limit
satisfying the Karush-Kuhn-Tucker condition for . We now
summarize the framework proposed in [35] to derive separable
surrogates for and .
Using the convexity inequality on (see [35], (25)), it can

be shown that defined as

where and
are defined in Section III-D, is a surrogate for .
Using another convexity inequality on the regularizing term
(see [35], (31)), it can be shown that defined as

and , is a surrogate for . It has been noted

in [41] that can be seen as a
regularized version of . Thus,

is a surrogate for . More importantly, is a sum of terms de-
pending on only, so maximizing each of these terms with
respect to provides a maximizer for . If

, is the unique strictly positive root of a

second order polynomial in . If ,
is the unique positive maximizer of a (different) second order
polynomial in . It is demonstrated in Section III of [35] that
such a sequence converges to the unique maximizer
of .
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