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Abstract 

 

       Gingivitis a gum disease, affects 50-90% of the adult population worldwide, if left 

untreated gingivitis can lead to periodontitis. However, even though gingivitis is highly 

prevalent, the pathogenicity of the disease is still poorly understood; highlighting the need 

for a reliable and reproducible in vitro gingivitis model which could help elucidate clinically 

important questions and provide a better understanding of gingivitis aetiology. In this study 

the original Constant Depth Film Fermentor (CDFF) was modified to create a Triple-CDFF (T-

CDFF) allowing concurrent growth of oral biofilms that can be treated separately in a 

controlled, flexible environment. Several mechanical changes were implemented to increase 

the model’s reliability, reproducibility and manoeuvrability; including improving air-

tightness of the model by applying better seals, re-shaping model parts to increase 

portability. A standardised experimental methodology was devised; this included sampling 

procedures to allow reliable and reproducible growth of oral biofilms across the individual 

units of this system. Biofilms obtained from T-CDFF under health and disease conditions 

were screened for eight bacteria; using qPCR primers for S. sanguinis, V. dispar, N. subflava, 

S. mutans, L.casei, F. nucleatum, P. intermedia, and A. naeslundii. To investigate the 

presence of other bacteria associated with gingivitis such as T. denticola, P. gingivalis, a 

trypsin-like-protease assay was applied. Next generation sequencing combined with 

metabolomics gave a better understanding of the bacterial changes occurring during 

simulated disease progression. In conclusion, this study has successfully (i) developed and 

validated a new complex in vitro T-CDFF system and also (ii) showed great potential for 

modelling gingivitis in vitro; although further verification needed. The system was 

considered reliable and shows a great potential for being used as a standardised model for 

testing dentifrices and antimicrobials. 
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List of Figures 

Figure 1.1 presents two periodontal diseases: A) gingivitis and B) periodontitis 

(adapted from Scannapieco 2013). A – red, tender and swollen gums and 

bleeding; B – swollen and red gums, bleeding receding gums, loose teeth 

etc 

Figure 1.2 Scheme of ecological plaque hypothesis (modified from Marsh 1994) 

Figure 1.3 Close-up of the Modified Robbins Device (MRD) (adapted from Coenye et 

al. 2011). 

Figure 1.4 Schematic diagram of the multiple Sorbarod Device (adapted from McBain 

et al. 2005). 

Figure 1.5 The CDC reactor (A) (adapted from Lewis et al. 2010) and its experimental 

set-up (B), where two CDC reactors are coupled with a medium bottle 

(adapted from Coenye & Nelis 2010). 

Figure 1.6 CDFF system (adapted from Wilson 1999). 

Figure 2.1 A) The standard CDFF - the prototype of T-CDFF, B) Top plate with 3 liquid 

inlets, gas inlet and sampling port. C) Turntable with 15 gaps for pans. D) 

Bottom plate with a waste output and a spindle to attach the gear box to. 

Figure 2.2 The comparison of the two models. A) CDFF model, B) T-CDFF units on the 

right Three liquid inlets encircled in red. Gas inlet encircled in yellow and 

Sampling port encircled in green. 

Figure 2.3 shows the T-CDFF model housed on the motor. 

Figure 2.4 Figures A – I present the CDFF set-up. Figure J presents the tools used with 

the CDFF set-up and sampling process. 

Figure 2.5 presents the experimental set-up of the T-CDFF model 

Figure 2.6 presents a simplified T-CDFF set-up. Inoculation flask and pumps for 

inoculum delivery are encircled in green; the same pumps were re-used for 
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artificial saliva delivery. GCF flasks and pumps are encircled in pink. 

Figure 2.7 Generalised T-CDFF experimental conditions. 

Figure 3.1 The T-CDFF model with the major modifications. A) T-CDFF model with 3 

units housed on a single motor housing, B) The enlargement of a single unit 

with the mechanical modifications highlighted and explained below. 

Figure 3.2 The total number of S. sanguinis (blue line) and A. naeslundii (red line) in 

each unit of the T-CDFF model. Error bars represent the standard error 

calculated on n=6. *n=6 refers to two biological and three technical 

replicates 

Figure 3.3 A) Lack of seals on screw caps and faulty waste output seals were 

responsible for the lack of air tightness. B) Domed nuts were responsible 

for the lack of air-tightness of the glass vessel, replaced by the non-domed 

nuts. 

Figure 4.1 The experimental design of T-CDFF experiments. The health conditions 

were run for 9 days and then switched to 14 days of gingivitis conditions. 

Figure 4.2 shows the experimental set-up with a new multi-channel pump which 

substituted the single pumps used in delivering the inoculum and the 

artificial saliva to each T-CDFF unit. 

Figure 4.3 shows the T-CDFF sampling pan with 5 discs, each designated for different 

analysis. 

Figure 4.4 presents the viable counts for the total number of anaerobes and aerobes 

in each T-CDFF unit during two individual experiments across health and 

disease conditions. The data from two sampling points in health (day 5 and 

day 7) and two sampling points in disease (day 18 and day 23) were 

averaged to present the change in viable counts for each unit in time in two 

T-CDFF experiments (n=2). *n=2 refers to two technical replicates. 

Figure 4.5 presents the viable counts for the total number of Actinomyces spp. and 

Streptococcus spp. in each T-CDFF unit in two individual experiments across 

health and disease conditions. The data from two sampling points in health 
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(day 5 and day 7) and two sampling points in disease (day 18 and day 23) 

were averaged to present the change in viable counts for the total 

Actinomyces spp. and Streptococcus spp. for each unit in time for both T-

CDFF experiments (n=2). *n=2 refers to two technical replicates. 

Figure 4.6 shows the alkaline phosphatase activity of P. gingivalis over time. The axis 

on the left shows the total bacterial counts [CFUs / mL]; the right-hand axis 

shows the optical density change over time that represents the metabolic 

activity of P. gingivilis (n=2). *n=2 refers to two technical replicates. 

Figure 4.7 shows the trypsin-like-protease activity of P. gingivalis over time. The axis 

on the left shows the total bacterial counts [CFUs / mL]; the right-hand axis 

shows the optical density change over time that represents the metabolic 

activity of P. gingivilis (n=2). *n=2 refers to two technical replicates. 

Figure 5.1 shows the experimental design of the CDFF experiment. 

Figure 5.2 presents the sampling pan with 5 discs, each designated for different 

analysis. 

Figure 5.3 The total number of bacteria detected in the biofilm and the effluent 

samples collected throughout the simulated health, transition and gingivitis 

conditions in the CDFF experiment. Health conditions are shown in red, 

transition in green and gingivitis in blue. Blue line shows the total number 

of cells in the effluent samples; green line shows the total number of cells 

in the biofilm samples (n=3). *n=3 refers to three technical replicates. 

Figure 5.4 shows the total numbers of F. nucleatum detected in the biofilm and the 

effluent samples collected throughout the simulated health, transition and 

gingivitis conditions in the CDFF experiment. Health conditions are 

encircled in red, transition in green and gingivitis in blue. Blue line shows 

the total number of cells in the effluent samples; green line shows the total 

number of cells in biofilm samples (n=3). *n=3 refers to three technical 

replicates. 

Figure 5.5 shows the total numbers of P. intermedia detected in the biofilm and the 

effluent samples collected throughout the simulated health, transition and 
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gingivitis conditions in the CDFF experiment. Health conditions are 

encircled in red, transition in green and gingivitis in blue. Blue line shows 

the total number of cells in the effluent samples; green line shows the total 

number of cells in biofilm samples (n=3). n=3 refers to three technical 

replicates. 

Figure 5.6 shows the total numbers of L. casei detected in the biofilm and the effluent 

samples collected throughout the simulated health, transition and gingivitis 

conditions in the CDFF experiment. The health conditions are encircled in 

red, transition in green and gingivitis in blue. Blue line shows the total 

number of cells in the effluent samples; green line shows the total number 

of cells in the biofilm samples (n=3). n=3 refers to three technical 

replicates. 

Figure 5.7 presents the cell numbers for A. naeslundii (blue line) and S. sanguinis 

(green line) detected in the biofilm samples collected throughout the 

simulated health, transition and gingivitis conditions from the CDFF 

experiment. The health conditions are encircled in red, transition in green 

and gingivitis in blue (n=3). n=3 refers to three technical replicates. 

Figure 5.8 presents the cell number for A. naeslundii (violet line) and S. sanguinis 

(light green line) detected in the effluent samples collected throughout the 

health, transition and gingivitis conditions from the CDFF experiment. The 

health conditions are encircled in red, transition in green and gingivitis in 

blue (n=3). n=3 refers to three technical replicates. 

Figure 5.9 shows the PCA analysis applied to the biofilm and the effluent samples. 

Two biofilm samples (health and disease) are marked as ‘New’ and 

highlighted in orange. The effluent samples are highlighted in red, green 

and blue according to the experiment phase (1-red=health, 2-

green=transition, 3-blue=gingivitis). PCA analysis and this Figure were 

performed by Dr Michael Canon (Procter & Gamble). 

Figure 5.10 shows the PCA analysis applied to the effluent samples only. Samples are 

highlighted according to the experimental phase (1-black=health, 2-

red=transition, 3-blue=gingivitis). PCA analysis and this Figure were 
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performed by Dr Michael Canon (Procter & Gamble). 

Figure 5.11 shows the orthogonal PLS analysis applied to the effluent samples and how 

the analysis is growth dependent. Samples are highlighted according to the 

experimental phase (1-red=health, 2-green=transition, 3-blue=gingivitis). 

OPLS analysis and this Figure were performed by Dr Michael Canon 

(Procter & Gamble). 

Figure 5.12 presents the change in propionate levels across the experimental phases. 

Health conditions – red line, transition conditions – green line, gingivitis 

conditions – blue line.  The averaged health, transition and gingivitis lines 

represent the differences among the conditions. 

Figure 5.13 presents the change in butyrate levels across the experimental phases. 

Health conditions – red line, transition conditions – green line, gingivitis 

conditions – blue line. The averaged health, transition and gingivitis lines 

represent the differences among the conditions. 

Figure 5.14 presents the change in ethanol levels across the experimental phases. 

Health conditions - red line, transition conditions - green line, gingivitis 

conditions - blue line. The averaged health, transition and gingivitis lines 

represent the differences among the conditions. 

Figure 6.1 presents the experimental conditions for each of the T-CDFF units. Unit 1 

served as control and underwent the health conditions for 30 days. Unit 2 

was run under health conditions for 9 days and then under enhanced 

gingivitis conditions (gingivitis+) by providing anaerobic gas conditions 

instead of micro-aerophylic gas conditions that were used in chapter 4 and 

5 (Chapter 2, Section 2.3.4 and Chapter 4, Section 4.2.2). Unit 3 was run 

under health conditions for 9 days and then under ‘gingivitis++’ 

methodology that was defined by higher levels of the artificial GCF (130 µL 

/ min) and anaerobic gas conditions (Chapter 2, Section 2.3.4). 

Figure 6.2 A) presents the data for total bacteria and the total cell number of S. 

sanguinis detected in the biofilm samples collected over time in T-CDFF 

experiment 1 and B) experiment 2. The violet line (Universal) represents 
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the total bacteria detected in unit 1; the yellow line (Universal) represents 

the total bacteria in unit 3. The blue line represents the total amount of S. 

sanguinis detected in unit 1; green line represents the amount of S. 

sanguinis in unit 3. Dotted line represents the conditions change from 

health to extended health or gingivitis introduced at day 9*. Standard 

errors are presented as error bars (n=6); n=6 refers to two biological and 

three technical replicates. 

Figure 6.3 A) presents the data for total bacteria and the total cell number of S. 

sanguinis detected in the effluent samples collected over time in T-CDFF 

experiment 1 and B) experiment 2. The violet line (Universal) represents 

the total bacteria detected in unit 1; the yellow line (Universal) represents 

the total bacteria in unit 3. The blue line represents the total amount of S. 

sanguinis detected in unit 1; green line represents the amount of S. 

sanguinis in unit 3. Dotted line represents the conditions change from 

health to extended health or gingivitis introduced at day 9*. Standard 

errors are presented as error bars (n=6); n=6 refers to two biological and 

three technical replicates. 

Figure 6.4 presents the phyla composition of the biofilm samples retrieved from T-

CDFF experiment 1, unit 1 and unit 3. Figure 6.4 A) presents the data from 

experiment 1, unit 1 across the health and the extended health conditions. 

Figure 6.4 B) presents the data from experiment 1, unit 3 across the health 

and gingivitis conditions. Blue represents the TM7, red represents the 

Firmicutes, green represents the Actinobacteria and violet the 

Proteobacteria. Dotted line represents the change in conditions from the 

health to the extended health or gingivitis conditions introduced at day 9. 

N=1 refers to one biological sample. 

Figure 6.5 presents the phyla composition of the biofilm samples retrieved from T-

CDFF experiment 2, unit 1 and unit 3. Figure 6.5 A) presents the data from 

experiment 2, unit 1 across the health and the extended health conditions. 

Figure 6.5 B) presents the data from experiment 2, unit 3 across the health 

and gingivitis conditions. Blue represents the TM7, red represents the 

Firmicutes, green represents the Actinobacteria and violet the 
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Proteobacteria. Dotted line represents the change in conditions from the 

health to the extended health or gingivitis conditions introduced at day 9. 

N=1 refers to one biological sample. 

Figure 6.6 presents the phyla composition of the effluent samples retrieved from T-

CDFF experiment 1, unit 1 and unit 3. Figure 6.6 A) presents the data from 

experiment 1, unit 1 across the health and the extended health conditions. 

Figure 6.6 B) presents the data from experiment 1, unit 3 across the health 

and gingivitis conditions. Blue represents the TM7, red represents the 

Firmicutes, green represents the Actinobacteria and violet the 

Proteobacteria. Dotted line represents the change in conditions from the 

health to the extended health or gingivitis conditions introduced at day 9. 

Figure 6.7 presents the phyla composition of the effluent samples retrieved from T-

CDFF experiment 2, unit 1 and unit 3. Figure 6.7 A) presents the data from 

experiment 2, unit 1 across the health and the extended health conditions. 

Figure 6.7 B) presents the data from experiment 1, unit 3 across the health 

and gingivitis conditions. Blue represents the TM7, red represents the 

Firmicutes, green represents the Actinobacteria and violet the 

Proteobacteria. Dotted line represents the change in conditions from the 

health to the extended health or gingivitis conditions introduced at day 9. 

Figure 6.8 
presents the results of the OPLS analysis on NMR data retrieved from unit 

1, experiment 1.  

Figure 6.9 
presents the OPLS analysis performed on the effluent samples retrieved 

from the health and gingivitis conditions in unit 3, experiment 1. Health is 

represented as blue; gingivitis is represented as green. Sample collected at 

day 7 was an outlier and was removed from the analysis. 

Figure 6.10 
presents the components discriminating between the health and gingivitis 

clusters. Trimethylamine is presented in blue; Pyruvate in red; Propionate 

in green and Butyrate in violet. Dotted line represents the change in 

conditions from the health to the gingivitis conditions introduced at day 9. 

Figure 6.11 
presents the levels of formate that were discriminating across the health-

disease phase. Dotted line represents the change in conditions from the 

health to the gingivitis conditions introduced at day 9. 
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Figure 6.12 
presents the levels of alanine that were discriminating across the health-

disease phase. Dotted line represents the change in conditions from the 

health to the gingivitis conditions introduced at day 9. 

Figure 6.13 
presents the levels of lactate that were discriminating across the health-

disease phase. Dotted line represents the change in conditions from the 

health to the gingivitis conditions introduced at day 9. 

Figure 6.14 
presents the levels of ethanol that were discriminating across the health-

disease phase. Dotted line represents the change in conditions from the 

health to the gingivitis conditions introduced at day 9. 

Figure 6.15 
presents the OPLS analysis equivalent to the one performed on the NMR 

data from unit 3, experiment 1 shown in Figure 6.9 and unit 3, experiment 

2 shown in Figure 6.16. Samples retrieved from health conditions are 

represented in blue and samples from the extended health are represented 

in green. 

Figure 6.16 
presents the OPLS analysis performed on the effluent samples retrieved 

from the health and the gingivitis conditions in unit 3, experiment 2. Health 

is represented as blue; gingivitis is represented as green. This figure is 

equivalent to Figure 6.9 (unit 3, experiment 1). 

Figure 6.17 
presents the levels of succinate that were discriminating across the health-

disease phase. Dotted line represents the change in conditions from the 

health to the gingivitis conditions introduced at day 9. 

Figure 6.18 
presents the levels of trimethylamine that were discriminating across the 

health-disease phase. Dotted line represents the change in conditions from 

the health to the gingivitis conditions introduced at day 9. 

Figure 6.19 
presents the levels of formate that were discriminating across the health-

disease phases. Dotted line represents the change in conditions from the 

health to the gingivitis conditions introduced at day 9. 

Figure 6.20 
presents the levels of acetate that were discriminating across the health-

disease conditions. Dotted line represents the change in conditions from 

the health to the gingivitis conditions introduced at day 9. 
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conditions at day 9. 
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1 and 2, units 1 and 3 in health (H), extended health (EH) and gingivitis 

conditions (G). The biofilm samples collected from health/extended 
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1.1 Oral cavity 

The human body is composed of approximately 1014 cells of which about 10% are 

mammalian. The remaining are the resident microorganisms of the host (Marsh 2003; 

Marsh et al. 2011). The human mouth is one of the richest and most diverse 

communities, where the number of bacteria exceeds the human population on earth 

(Olsen 2006). They are found either on distinct mucosal surfaces such as lips, cheek, 

tongue, palate or external hard non-shedding surfaces such as teeth, all of which 

support microbial colonisation. Each of these surfaces is environmentally different; 

therefore the bacteria associated with these sites differ in metabolism and thus the 

sites vary in microbial composition (Marsh 2003; Marsh et al. 2011).  

Predominantly, our knowledge of the microbial diversity in the oral cavity has been 

shaped by culture methods, which have estimated that there are approximately 250 

species present in the mouth (Paster et al. 2006). The technological shift from culture 

based methods to next generation sequencing has revealed much higher richness than 

previously anticipated. It is estimated that there are approximately 700 different 

species in the oral cavity, roughly 400 of which have been found in periodontal pocket 

while the remaining ones are present in other niche areas within the mouth. 

Additionally, of the estimated 700 species approximately 100-200 are common 

between individuals; thus there can be significant differences found among the 

individuals (Paster et al. 2006; Dewhirst et al. 2010).  

The microorganisms present in the oral cavity have been referred to as the oral 

microflora or oral microbiota; recently, a new term of oral microbiome was introduced 

by Joshua Lederberg “to signify the ecological community of commensal, symbiotic, 

and pathogenic microorganisms that literally share our body space and have been all 

but ignored as determinants of health and disease” (Dewhirst et al. 2010). The 

relationship between humans and their respective oral microbiome, comes into being 

early on in our existence (Jenkinson & Lamont 2005). Vertical transmission from the 

mother to the child occurs first at birth, and the delivery method determines which 

microorganisms will be encountered first by the new-born (Dominguez-Bello et al. 
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2010). It has been reported that vaginally born infants show higher taxonomic diversity 

at 3 months than caesarean Section deliveries and that caesarean Section babies 

acquire S. mutans approximately 1 year before vaginally born babies (Li et al., 2005). 

As the child grows, it develops new habitats for microbial colonization such as tooth 

surfaces and gingival tissues; nonetheless horizontal transmission from people sharing 

the same environment also contributes to oral diversity (Kohler & Andreen 1994; Li et 

al., 2005).  

The mouth has two major types of surfaces which can be colonised by bacteria, 

shedding and non-shedding surfaces. The first are mucosal surfaces and the second are 

mineralised tooth surfaces. Due to this, the bacteria which colonise these two 

distinctly different regions differ in concentration and nature. As with all microbial 

communities, the health and species composition of the community is dependent on 

the supply of nutrients, the environmental pH, the supply of oxygen and the 

relationships within the community (Kolenbrander et al. 2002; Marsh 2003; Olsen 

2006; ten Cate 2006). All of the mouth’s surfaces are covered in bacterial biofilms, 

which are called dental plaque when formed on the non-shedding surfaces of the 

teeth. Dental plaque has been recognised as the main aetiological factor in periodontal 

disease progression and was extensively investigated in the 19th century (Miller 1891; 

cited by Zarco et al. 2012; cited by Wade 2013). Its formation and complex structure 

are explained below. 

1.2 Dental plaque formation  

Plaque is a complex multi-microbial community embedded in extracellular 

polysaccharide matrix (Marsh 2004; Marsh 2005). It is a dynamic and heterogenous 

community formed by initial colonizers, that adhere tightly to the pellicle present on 

the tooth surface, followed by secondary and late successors that form the multi-

species community (Marsh 2004; Marsh 2005; Shao and Demuth 2010). Development 

and maturation of the dental community is driven by microbial competition as well as 

the interspecies communication (Kolenbrander et al. 2002; Marsh 2004; Marsh 2005; 

Kolenbrander et al. 2006; Zarco et al. 2012). There are a number of hypotheses as to 

why bacteria form biofilms. The primary reason is defence, the adage ‘safety in 
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numbers’ goes someway to explaining this as biofilms exhibit a resistance to 

mechanical forces, such as experienced during mastication, and show resistance to the 

natural washing action of saliva. The microorganisms inside the biofilm matrix are able 

to withstand the antimicrobial agents in some cases to a concentrations 100 times 

higher than those required to kill planktonic forms (Jefferson 2004). Existing as a 

biofilm also allows microorganisms to withstand antimicrobial penetration (Stewart & 

Costerton 2001; Gilbert et al. 2002; Toole & Stewart 2005), host immune responses 

such as phagocytosis (Hentzer et al. 2003; Costerton et al. 2003; Hall-Stoodley et al. 

2004) and as a community they can endure changes in pH and starvation of nutrients 

(Marsh et al. 1983; Jenkinson & Lamont 2005; Olsen 2006; Strelkova et al. 2013). The 

formation of dental biofilms comprises several stages that are explained below.  

1.2.1.1 Enamel Pellicle Formation 

The first step of plaque development is the formation of a salivary pellicle on the 

enamel surface of the tooth. The pellicle is formed between seconds and minutes after 

exposure to saliva and is primarily composed of mucinous glycoproteins (Liljemark 

2000; Bowen & Koo 2011). Secondary constituents derived from saliva that adhere to 

the tooth surface include proline-rich proteins, lysozyme, perioxidase, amylase, 

cystatins, statherin, IgA, IgG, glucosyltransferases and mucin (Bennick 1982; Rölla et al. 

1983; Rykke et al. 1990; Liljemark 2000; Bowen & Koo 2011). All of these substances 

create a layer of 0.1-1.0 µm thickness that is attached to the enamel by hydrogen 

bonds (Liljemark 2000). It acts as a specific and selective surface for binding of 

indigenous oral bacteria, therefore only bacteria with high affinity to the pellicle are 

found as a pioneer species (Liljemark 2000; Bowen & Koo 2011).  

1.2.1.2 Initial colonization 

The above mentioned constituents of the pellicle are recognised as receptors by the 

initial colonisers. Therefore, bacteria which are transported to the enamel surface 

vicinity either by fluid flow, chemotaxis or Brownian motion (Kolenbrander et al. 2002; 

Kolenbrander et al. 2006; Samaranayake 2002), bind to the receptors present in the 

pellicle via Van der Waal’s forces, electrostatic and hydrogen bonds. Bacterial 
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colonisation often starts with aerobic pioneer colonisers such as streptococci, in 

particular Streptococcus salivarius, S. mitis and S. oralis (Liljemark 2000) which 

constitute between 60% to 90% of the bacterial community in the first 4 hours of 

colonisation. Other early colonisers include Veilonella spp., Actinomyces spp., 

Haemophilus spp., and Propionibacterium spp. (Kolenbrander et al. 2002; 

Kolenbrander et al. 2006). These organisms provide a suitable environment for 

successors by adjusting the local conditions by their metabolic activity, for example 

they adjust the local pH and Eh and produce nutrients or by-products needed by 

subsequent microorganisms. Nowadays, it is known that bacterial colonisation and co-

aggregation is based on bacterial adhesion-receptor signalling, which is vital to 

bacterial communication and leads to a spatiotemporal development that can 

eventually result in a diverse bacterial community and biofilm maturation 

(Kolenbrander et al. 2002; Samaranayake 2002; Olsen 2006; Kolenbrander et al. 2006; 

Marsh et al. 2011). 

1.2.1.3 Biofilm maturation 

An abundant multi-layer bacterial structure is formed within 8-12 hours (Liljemark 

2000) and is based on co-adhesion between pioneer species that act as a substratum 

to successive colonisers. Fusobacterium nucleatum seems to play an important role in 

bridging the early and late colonisers as it co-aggregates with both (Kolenbrander et al. 

2002; Kolenbrander et al. 2006); all the late colonisers including Porphyromonas 

gingivalis, Treponema denticola, and Aggregatibacter actinomycetemcomitans 

coaggregate with F. nucleatum but not necessarily with each other (Samaranayake 

2002; Kuboniwa & Lamont 2010). This would explain why fusobacteria are often found 

in both healthy and diseased sites (Kolenbrander et al. 2002). These bacteria-to-

bacteria interactions are based on recognition of specific adhesins by receptors found 

on microbial surface. This allows the creation of connections either between identical 

or different species. Single bacteria can have more than one receptor or adhesion. 

However, they tend to bind to metabolically compatible species. This leads to the 

formation of a complex three dimensional multi-species bacterial community in which 

bacteria are related metabolically and embedded in an extracellular polysaccharide 
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(EPS) matrix that protects them from detrimental environment or antimicrobial agents 

(Liljemark 2000; Kuboniwa & Lamont 2010; Marsh et al. 2011).  

1.3 Periodontal diseases and the oral microbiota 

Periodontal diseases are widespread and a serious problem among the adult 

population worldwide, affecting approximately 32% of all adults in USA (~33 million 

people/per annum) (Brown et al. 2000). It has been hypothesized that they’re might be 

a link with other illnesses such as heart disease, diabetes or arthritis; therefore the 

prevention and treatment of periodontal diseases are crucial for the quality of life and 

well-being of an individual (Pihlstrom et al. 2005). From a pathological point of view, 

periodontal diseases are defined as any inherited or acquired disorder which results in 

inflammation of the tissues surrounding and supporting the teeth including the gingiva 

or periodontal ligaments. However, the term periodontal disease generally refers to 

the two most common conditions: periodontitis and gingivitis (Loesche & Grossman 

2001; Armitage 2003; Pihlstrom et al. 2005).  

 
 Figure 0.1 presents two periodontal diseases: A) gingivitis and B) periodontitis 
(adapted from Scannapieco 2013). A – red, tender and swollen gums and 
bleeding; B – swollen and red gums, bleeding, receding gums, loose teeth etc  

1.3.1 Gingivitis 

Gingivitis is a highly prevalent periodontal disease affecting 50-90% of adults 

worldwide. It is reversible and the mildest form of periodontal disease that is 

principally-caused by lack of oral hygiene resulting in dental plaque accumulation on 

the surfaces of teeth adjacent to gingiva. It does not affect the supporting structures of 

the teeth but can itself proceed to periodontitis (Trombelli et al. 2004; Pihlstrom et al. 

A B 

1 
2 
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gums Receding 

gums, loose 
teeth 
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2005). Gingivitis is clinically defined by the presence of gingival inflammation without 

the loss of the connective tissue while periodontitis is defined by inflammation of the 

gingiva with additional pathological detachment of collagen fibres from cementum, 

junctional epithelium and finally bone resorption (Loesche & Grossman 2001; Armitage 

2003; Pihlstrom et al. 2005).  

Gingivitis is the most prevalent disease of the periodontum with the two most 

common forms being chronic marginal gingivitis and plaque-induced gingivitis. As 

stated above, gingivitis begins with a lack of oral hygiene, which leads to plaque 

increasing in both thickness and coverage eventually leading to gingival inflammation. 

The gingival sulcus increases in depth (becoming a periodontal pocket) allowing more 

space for bacterial accumulation in the presence of nutrient-rich gingival crevicular 

fluid. It is thought that gingivitis is caused by an imbalance among resident microbiota 

which leads to environmental changes and alterations in gene expression. The overall 

results of these changes are that the gingivitis inducing pathogens are able to 

outcompete the health associated bacteria (see also Section 2.5). However, the exact 

mechanism is not well characterised yet (Olsen 2006; Paster et al. 2006). Although the 

plaque accumulation is thought to be a major causative factor for gingivitis, there are 

several systemic factors that can trigger or modulate gingivitis progression. These can 

be divided into metabolic, environmental, genetic or other factors. The metabolic 

factors are usually associated with endocrine changes. Therefore, the hormonal 

changes that occur during puberty or pregnancy can have an impact on plaque-

gingivitis relationship. Environmental factors include smoking or tobacco usage, 

vitamin C deficiency or excessive use of antibiotics. The individual differences in terms 

of genetics and immune response to infection may also play a role. As an example, 

several clinical studies have associated the MMP-9, IL-1, IL-6, IL-18 polymorphism with 

increased susceptibility to gingivitis (Goodson et al. 2000; Trombelli et al. 2004; 

Moreira et al. 2007; Scapoli et al. 2007; Holla et al. 2008; Vokurka et al. 2008). 

However, the significance of genetic factors in modulation of the individual’s 

susceptibility to gingivitis remains to be established. Other factors include infections 

such as HIV/AIDS, physiological or emotional stress, Down’s syndrome (Trombelli et al. 

2004).   
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The clinical assessment of gingival inflammation is based on several clinical 

parameters. A visual assessment includes observing the physical status of gingiva by 

assessing the colour change, surface anatomy and bleeding tendency. To aid the 

process several indices have been introduced for the clinical evaluation of gingival 

inflammation. These include papilla, marginal, attached index (PMA), the papillary 

bleeding index (PBI) and the gingival index (GI) introduced by Loe & Silness (1963). The 

use of the above mentioned indices have demonstrated the extent of severity between 

plaque deposits and the severity of gingivitis (Tatakis & Trombelli 2004).   

The main therapy for gingivitis patients is aimed at removing the aetiological factors to 

reduce or eliminate the inflammation and then subsequently allow the gingival tissues 

to heal (He & Shi 2009). As dental plaque is the primary aetiological factor for disease 

progression, mechanical or chemical plaque removal techniques can be successfully 

used as a preventative approach (Lamster 2006). The removal of dental plaque and 

calculus can be performed by regular daily hygiene applied by hand, sonic, ultrasonic 

instrument, and supplemented by professional cleaning and supragingival scaling (Van 

Der Weijden et al. 2002; Santos 2003). The addition of topical anti-plaque agents in the 

form of dentifrices or mouthwashes to a gingivitis-treatment programme for patients 

with inadequate plaque control can help reduce the problem (Allaker & Douglas 2009) 

(Santos 2003). These active substances include thymol, menthol, eucalyptol, methyl 

salicylate, triclosan and chlorhexidine digluconate (Santos 2003; Allaker & Douglas 

2009).  

1.3.2 Periodontitis 

Periodontitis is a complex chronic infectious disease which affects the supporting 

tissue of the teeth. The onset of disease occurs through bacterial infection which if left 

untreated can result in irreversible loss of tissue and bone (Loos et al. 2005). 

Periodontitis can be defined as the presence of gingival inflammation at sites where 

there has been a pathological detachment of collagen fibres from the cementum and 

the junctional epithelium has migrated apically. The inflammatory events which are 

associated with connective tissue attachment loss also lead to the resorption of 

coronal portions of the tooth supporting alveolar bone (Savage at al, 2009). Recent 
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refinement of the above definition included an inflamed pathological pocket ≥4 mm 

deep with a presence of bone loss (van der Velden 2005). However, this definition 

does not account for the number of inflamed sites.  

The symptoms associated with periodontitis described above, such as gingivitis, 

bleeding, loss of connective tissue and bone attachment are generally assessed by a 

set of measurements including bleeding on probing (BOP), pocket probing depth (PPD) 

and bone loss assessed radiographically (van der Velden 2005; Savage et al. 2009). In 

terms of age, epidemiological studies have reported periodontitis to affect a 

substantial number of adults under the age of 20 years, and a greater number of adults 

after the age of 35-40 years (Timmerman & Van der Weijden 2006). Susceptibility to 

periodontitis can be increased by particular risk factors: pre-existing and long standing 

gingivitis, smoking or tobacco use, gender, age, hormonal changes, diabetes, 

pregnancy, and genetic susceptibility (Haber et al. 1993; Genco 1996; Loos et al. 2005; 

Timmerman & Van der Weijden 2006). Several clinical studies have suggested that 

genetic factors can modulate host susceptibility and can be linked with an effect on 

disease progression. Examples include the IL-1, IL-2, IL-4, IL-10, TNF-alpha and TLR4 

polymorphisms that were reported to be associated with periodontal diseases 

(Trombelli et al. 2004; Kinane et al. 2005; Kinane et al. 2006; Scapoli et al. 2007; Nibali 

et al. 2009). However, there is no definite answer whether these factors are 

predisposing to periodontitis or not. It rather seems that periodontitis might be caused 

by cumulative effect of the above gene variants. For example, the polymorphism in IL-

1, IL-6 and neutrophil (Fc gamma receptor) showed an effect on inflammatory 

responses in patients during periodontitis (Kinane et al. 2005; Nibali et al. 2009). 

Treatment options available to patients suffering from periodontitis are dependent on 

the individual disease pattern, which can include attachment loss, type of disease or 

(Wirthlin et al. 2005) anatomical variations; the aim of any therapy aimed at 

periodontitis is to stop inflammation and inhibit disease progression. Although, the 

treatment is predominantly patient dependent, there are two main approaches which 

are available: (i) anti-infective treatment which is focused on stopping the progression 

of periodontal attachment loss by removing the aetiological factors; (ii) a regenerative 
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therapy which includes an anti-infective treatment, and also restoration of the 

structures destroyed by disease progression (Anon 2001).  

1.3.3 Plaque hypotheses of periodontal diseases  

Much of our current understanding of periodontal diseases comes from intensive 

culture-based studies performed in 1970s and early 1980s which revealed some 

significant differences in the composition of microbiota in oral health and disease 

(Slots 1977a; Slots 1977b; Socransky 1977; Tanner et al. 1979). This led to the 

development of a “specific plaque” hypothesis by Loesche in 1976 who proposed that 

only a small number of oral species (specific pathogens) are directly responsible for 

disease progression (Loesche 1976). Problems with this hypothesis arise, when trying 

to explain the cases when disease is diagnosed in the absence of the putative species 

or when pathogens are present but there is no evidence of the disease (Marsh 1994; 

Marsh 2003). Alternatively, the “non-specific plaque” hypothesis introduced by 

Theilade (1986) purported that the overall mixture of oral organisms and their 

interactions with the host instead of only a few pathogens are recognised as the 

causative agent in development of periodontal diseases. However, if this was entirely 

true we would not observe the evidence of specificity, i.e. higher abundance of specific 

species in sites burdened by disease (Marsh 1994; Marsh 2003). To address the 

arguments surrounding the “specific” and “non-specific” hypotheses, an “ecological 

plaque” hypothesis was introduced by Marsh (1991) to bridge them and unify the 

laboratory and clinical findings (Marsh 1989; Marsh 1991; Marsh 2003). This new 

paradigm stated that key environmental factors trigger a shift in the balance of the 

oral microbiota to the disease-associated species composition (Marsh 1989; Marsh 

1991; Marsh 2003). The presence of potentially putative bacteria as minor constituents 

of resident community would be consistent with this hypothesis. In health conditions, 

there is a balance between the host and microorganisms thus these pathogens would 

be either weakly competitive or suppressed by antagonisms from other oral species. 

Therefore, they account for a small proportion of a community and lack clinical 

significance. However, when specific factors such as for example a lack of oral hygiene, 

aging, genetic factors or immune changes affect the environment, there is an 



Chapter 1: Introduction 

44 

 

environmental perturbance that has a direct effect on the resident microbiota, host 

immune system and plaque composition (Marsh 1989; Marsh 1991; Marsh 2003). 

Additionally, host susceptibility is one of the factors necessary for the disease initiation 

as it can strongly affect disease patterns and severity. Therefore, a triad of factors are 

needed to instigate disease and these include susceptible host, periodontal pathogens 

and a perturbance in the local environment. Under new, perturbed environmental 

conditions, the plaque accumulates at gingival margins and instigates an inflammatory 

response (Marsh 1991; Marsh 2003; Filoche et al. 2010). As a result the pH rises and 

the flow of gingival crevicular fluid (GCF) is elevated which leads to the introduction of 

new protein rich nutrients. Such a shift has an impact on plaque biomass, metabolism, 

and virulence of oral bacteria and encourages proliferation of the obligate proteolytic 

anaerobes associated with periodontal diseases such as (Marsh 1994; Marsh 2003) F. 

nucleatum, P. intermedia, Prevotella nigrecens, Prevotella micros, Prevotella vincentii, 

Prevotella periodonticum, Campylobacter rectus, C. gracilis, T. denticola, P. gingivalis, 

and T. forsythia (Hajishengallis & Lamont 2012). This process is further detailed in 

Figure 1.2.  

 
Figure 0.2 Scheme of ecological plaque hypothesis (modified from Marsh 1994) 

Further research in this field in the last decade suggests that that the aetiology of 

periodontal diseases is even more complex and multifactorial than previously 

anticipated. It is dependent on bacteria-bacteria interactions, bacterial-viral co-

infections, immunological factors and a combination of genetic variants that alter the 

response to microbiota and subsequently predispose to disease (Hajishengallis & 

Lamont 2012; Nath & Raveendran 2013; Nibali et al. 2014). Therefore, the 
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pathogenicity of periodontal diseases can be explain by polymicrobial synergy and 

dysbiosis (PSD) model that built on previous hypotheses and states that periodontitis is 

initiated by a dysbiotic microbial community as a whole. According to this hypothesis, 

the inflammation (host-microbes imbalance) starts with the alteration in relative 

abundance among the oral bacteria compared to their abundances in health which can 

change the host-microbial cross-talk (Hajishengallis & Lambris 2012; Hajishengallis & 

Lamont 2012). The underlying mechanism involves susceptible host, series of microbial 

events together with predisposing environmental factors and key pathogens 

(described further below). One of the requirements is that the bacteria present in the 

community are compatible and can resist the host innate and acquired immune 

responses while contributing to the inflammation by e.g. the proteolytic activity or 

cytokine induction. Another requirement is the presence of the key pathogens that 

express virulence factors (i.e. adhesins, proteases etc) to elevate and remodel the 

phenotype of the entire community to more virulent. For example, P. gingivalis 

expresses approximately 500 proteins differently when grown in a biofilm community 

with F. nucleatum and Streptococcus gordonii (Kuboniwa et al. 2009). In this context, 

the key pathogens (P. gingivalis, T. denticola etc.) are not directly linked with the 

disease progression but with reshaping the normal symbiotic community into dysbiotic 

one that disrupts the homeostatic relationship with the host (Hajishengallis & Lambris 

2012; Hajishengallis & Lamont 2012). Other periopathogens, previously 

underappreciated, include Falifactor alocis, Peptostreptococcus stomatis, and other 

species from Selenomonas, Desulfobulbus, Prevotella and Megasphaera genera 

(Lamont & Hajishengallis 2014). Key pathogens and the virulence factors they produce 

can also modulate the host response, impair immune surveillance, tip the balance from 

homeostasis to dysbiosis, impair the immune system and subsequently lead to 

sequence of events explained in the ecological plaque hypothesis; which is the 

increase of the dysbiotic community leading to GCF flow increase and tissue break-

down products (haemin, degraded proteins) that creates the favourable environment 

for other disease-provoking microbiota (Nibali et al. 2014; Jiao et al. 2014; Lamont & 

Hajishengallis 2014).  
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1.3.4 Oral microbiome 

Comprehensive 16S rDNA high-throughput sequencing analysis performed on the 

human oral microbiome has revealed that there are 15 bacterial phyla frequently 

detected in the oral cavity of which 11 are considered as commensals: Actinobacteria, 

Bacteroidetes, Chloroflexi, Firmicutes, Fusobacteria, Proteobacteria, Spirochaetes, 

Synergistetes, Tenericutes, SR1 and TM7 (Dewhirst et al. 2010; Aagaard et al. 2013; 

Wade 2013). The 6 main phyla including Firmicutes, Actinobacteria, Bacteroidetes, 

Proteobacteria, Fusobacterium and Spirochaetes represent 96% of all the species 

present in oral microbiome (Lazarevic et al. 2010; Griffen et al. 2011; Wade 2013). 

Griffen and colleagues have showed in their 16S rDNA sequencing study on healthy 

and periodontitis cohort of subjects that the most predominant genera in the healthy 

microbiome are Streptococcus, Heamophilus, Granitucella, Rothia, Actinomyces, 

Moraxela, Arthrobacter, Lautropia, Acinetobacter, and Gemella (Griffen et al. 2012). A 

study by Bik and colleagues (Bik et al. 2010) listed the most prevalent bacterial species 

in healthy oral microbiome which included Streptococcus oralis, Haemophilus 

parainfluenzae, Granulicatella adiacens, Veillonella parvula, Veillonella dispar, Rothia 

aeria, Actinomyces naeslundii, Actinomyces odontolyticus, Prevotella melaninogenica, 

and Capnocytophaga gingivalis. In spite of the relative compositional similarities in oral 

microbiome shown by the above studies, there are high interpersonal differences 

among individuals at both the species and strain level (Lazarevic et al. 2010; Ursell et 

al. 2012). Some oral communities were mostly dominated by Streptococcus while 

others by Neisseria, Prevotella, and Veilonella species (Bik et al. 2010). At the same 

time, many species are not shared between the subjects and these can include 

Fusobacterium, Neisseria and Corynebacterium (Bik et al. 2010; Ursell et al. 2012). 

Further to this, there was much less difference in the composition of the oral 

microbiota at different geographical locations than among the individuals (Nasidze et 

al. 2009; Wade 2013). This suggests that diet has little influence on the bacterial 

composition, especially when taken into account that food is quickly removed from the 

mouth (Beighton et al. 1986).  
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1.3.4.1 Gingivitis microbiome 

Identifying species associated with gingivitis is not a simple task as the oral microbiome 

is a dynamic system influenced by many environmental factors including high-

interpersonal differences. Furthermore, many bacterial species are found in either 

health or disease what even further distorts the distinction (Kistler et al. 2013). 

However, Huang et al. stated that the differences between the healthy and diseased 

microbiome is greater than the interpersonal differences, therefore the differences 

may be elucidated (Huang et al. 2014). Many studies including these based on 

cultivation or molecular techniques have attempted to determine the healthy and 

gingivitis microbiome (Zaura et al. 2009; Huttenhower et al. 2012; Wang et al. 2013) 

and the results of these studies are presented below.  

Experimental gingivitis studies have shown that there is an increased taxonomic 

richness in plaque samples from patients with gingivitis when compared to oral health 

and also a general shift in prevalence from Gram-positive to Gram-negative species 

(Slots 1977a; Slots 1977b). Some of the genera and species linked to gingivitis include 

Actinobacillus, Campylobacter, Eikenella, Fusobacterium and Prevotella and species 

such as P. intermedia, P. nigrecens, P. oralis, F. nucleatum, Veillonella parvula, A. 

naeslundii, A. odontolyticus (Slots 1977a; Slots 1977b; Moore et al. 1982; Moore et al. 

1986; Savitt et al. 1987; Socransky & Haffajee 1994; Huang et al. 2011). Further to this, 

it has been reported by many that increased numbers of Actinomycess spp. are 

associated with mature dental plaque and gingivitis onset (Ellen 1976; Slots 1977a; 

Slots 1977b; Syed & Loesche 1978; Moore et al. 1984; Tanner et al. 1996). Species such 

as A. naeslundii and A. israelii were shown to be the dominant cultivable organism in 

patients with gingivitis (Moore & Moore 1994; Tanner et al. 1998) and associated with 

bleeding gingivitis (Syed & Loesche 1978). Apart from Actinomyces spp., certain 

fusobacteria species were associated with gingivitis progression. These include F. 

nucleatum which was found in increased numbers in gingivitis (Slots 1977a; Slots 

1977b) and was reported as a periopathogen that bridges the initial colonisers with 

late colonisers and also facilitates the attachment of black pigmenting anaerobes 

(Kolenbrander et al. 2002; Kolenbrander et al. 2006). Certain species such as T. 
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denticola, T. vincentrii and T. socranskii from Treponema genus have also been 

associated with periodontal diseases. However, their presence is more linked to 

periodontitis than gingivitis due to their virulence factors (e.g. gingipains etc) that can 

penetrate epithelial cells and lead to connective tissue loss (Fenno & McBridge 1998; 

Chan & McLaughlin 2000). Other species involved in gingivitis progression belong to 

Capnocytophaga spp. and Eubacterium spp. and include e.g. C. rectus or E. corrodens 

(Moore et al. 1982; Moore et al. 1986; Marsh & Martin 1999; Gmur et al. 2004).  

The emergence of next generation sequencing allowed us to increase our knowledge 

of healthy and diseased microbiome. To date, most next generation sequencing 

studies have focused on periodontitis and only a few investigated the composition of 

gingivitis microbiome in depth. The latter are presented in this paragraph. The 

pyrosequencing study on 3 healthy and 3 gingivitis patients performed by Huang et al. 

(2011) showed that all the detected sequences were distributed in 11 bacterial phyla 

with the 6 most predominant including Firmicutes, Proteobacteria, Bacteoidetes, 

Actinobacteria, Fusobacteria and TM7. Among the above 6 phyla, Bacteroides and 

Actinobacteria were less abundant in gingivitis, while the remaining 4 were elevated. 

Further to this, 26 out of 70 genera detected in this study were found to be differently 

distributed between health and gingivitis. Genera including Streptococcus, Veillonella, 

Prevotella, Lautropia and Haemophilus decreased in abundance in gingivitis, while 

remaining 21 increased (Leptotrichia, Selenomonas, Lachnospiraceae, Eubacterium, 

Cardiobacterium, Peptostreptococcus, Tannerella, Catonella, Synergistes, Filifactor, 

Peptococcus, Solobacterium, SR1, Syntrophomonas, Johnsonella, Chloroflexus, 

Olsenella, Propionivibrio, Peptoniphilus, Desulfomicrobium, Pseudoramibacter) (Huang 

et al. 2011). Another study performed by Huang et al. (2014) used the 454 platform to 

sequence the plaque samples collected from 50 participants that underwent 

controlled transition from naturally occurring gingivitis to health and then to 

experimental gingivitis. This study has shown relatively similar results to his previous 

study. 27 genera were differently expressed in health and gingivitis; 5 of which 

(Streptococcus, Rothia, Actinomyces, Haemophilus, Lautropia) were associated with 

oral health and remaining 22 with gingivitis (Leptotrichia, Prevotella, Fusobacterium, 

TM7, Porphyromonas, Tannerella, Selenomonas, Lachnospiraceae, Comamonadaceae, 
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Peptococcus, Aggregatibacter, Catonella, Treponema, SR1, Campylobacter, 

Eubacterium, Peptostreptococcus, Bacteroidaceae, Solobacterium, Johnsonella, 

Oribacterium, Veillonellaceae) (Huang et al. 2014). Same was reported by Kistler et al 

who found that species associated with gingivitis include Tannerella forsythia, F. 

nucleatum, P. gingivalis, Prevotella spp., Filifactor alocis, Mogibacterium timidum, 

Dialister pneumosintes, Parvimonas micra, Peptostreptococcus stomatis, Synergistetes 

spp., Eubacterium saburreum, Eubacterium saphenum, Kingella oralis, Selenomonas 

sputigena, Capnocytophaga granulosa, Campylobacter gracilis, and Leptotrichia spp. 

(Kistler et al. 2013).  

The above studies demonstrated significant differences in species composition 

between the oral health and gingivitis. However, in neither of the studies mentioned 

above is there a clear and distinctive boundary between health and gingivitis. It also 

indicates that periodontal diseases have far more complex aetiology than previously 

anticipated. Furthermore, all the studies used different methodologies, different 

subject recruitment procedures or different techniques are applied to analyse either 

saliva or dental plaque etc. All these lead to differences among the studies and 

hardship with the comparison. However, the recent findings from high-throughput 

next generation sequencing presented above helped broaden the existing knowledge 

on bacterial composition in oral health and disease based on cultivation and molecular 

methods.  

1.3.5 Reductionist approach 

For a long time the main approach in understanding the complex oral biofilm was 

based on a methodological reductionist approach which was aimed at identifying the 

key pathogens responsible for oral microbial pathogenesis (He & Shi 2009). The 

reductionist concept assumes that a complex biological system or phenomenon can be 

understood or explained by a simplified model or analysis of their simpler components. 

This philosophical idea dates back to 17th century when Bacon proposed that principles 

derived from specific cases can be used to successfully formulate predictions (Fang & 

Casadevall 2011). An example of a reductionist approach in oral microbiology can be 

growing a single- or multi- species biofilm in vitro to investigate the aetiology of oral 
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diseases. This approach enabled microbiologists to understand the complexity of oral 

biofilms and identify the species involved in oral health and disease. Yet, it still has its 

methodological limitations which may prevent scientists from recognising the 

important relationship among organisms in their natural environment (He & Shi 2009; 

Fang & Casadevall 2011).  

1.3.6 Cultivation methods 

The principal method of characterising oral microbiota in periodontal diseases has 

been culture on artificial media; this has allowed determination of the changes in 

microbial populations associated with health and gingivitis (Aranki et al. 1969; Gordon 

et al. 1971; Slots 1977; Tanner et al. 1979; Wade 2011; Wade 2013). Many 

experimental gingivitis studies were solely based on this approach with the initial 

assessment of the microbial population based on non-selective media such as 

Columbia Blood Agar (CBA), Fastidious Anaerobe Agar (FAA), Tripticase Soy Agar (TSA) 

or Nutrient Agar (Syed & Loesche 1978; Moore et al. 1982; Moore et al. 1983; Moore 

& Moore 1994). To allow the growth of oral species with more complex nutritional 

requirements, supplements such as blood, serum, haemin or menadione were added 

and the environmental conditions during incubation were changed by providing 

different gas formulations. To enumerate specific species or genera many selective 

media have been developed. These include Mitis-Salivarius (MS) agar for the isolation 

of Streptococcus spp. (Gold et al. 1973), Cadmium Fluoride Acriflavine Tellurite (CFAT) 

agar for the isolation of Actinomyces spp., all of which involve the addition of selective 

agents such as antibiotics or toxins (Zylber and Jordan 1982). However, this approach is 

not a simple undertaking as some oral bacteria are typically slow-growing, nutritionally 

fastidious and many are sensitive to changes in oxygen concentration (Syed & Loesche 

1978; Moore et al. 1986; Siqueira & Rôças 2013). Therefore, the samples have to be 

collected carefully, transported in a manner which maintains the viability and then 

must be cultured promptly; a further problem is the complexity of the cultivable 

bacterial community. There are approximately 350 cultivable species and the 

identification process is both time consuming and difficult (Wade 2011; Wade 2013). 

While these techniques have been an invaluable tool in isolating certain species 
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responsible for disease progression (Socransky et al. 1963; Rosebury & Reynolds 1964; 

Newman & Sockransky 1977; Slots et al. 1980) with recent advances in molecular 

techniques, the current trend in the field of oral microbiology is shifting towards 

culture-independent techniques that provide information on both cultivable and 

uncultivable species in the oral microbiome (Wade 2011; Wade 2013). 

1.3.7 Culture independent methods 

Approximately 40-60% of species of oral bacteria cannot be grown in vitro and 

identified using conventional physiological techniques (Kroes et al. 1999; Aas et al. 

2005; Siqueira & Rôças 2013). Since uncultivable bacteria may play a role in disease 

progression, methods have been developed for culture-independent analysis of 

complex bacterial communities. These techniques have primarily been based on the 

analysis of the small subunit (16S) ribosomal DNA (Paster et al. 2001; Kumar et al. 

2003; Kumar et al. 2006; Paster et al. 2006;) and are described below.  

1.3.7.1 PCR 

Polymerase chain reaction (PCR) is a reliable and rapid way of detecting even a small 

amounts of DNA (Dieffenbach 1993) that was invented by Kary Mullis in 1983 for 

which he won a Nobel Prize in 1993 (Powledge 2004). It is a very sensitive method and 

often used for detecting specific bacteria in biological samples based on the 16S rRNA 

gene which is present in every bacterium. The gene contains conserved, variable and 

hypervariable regions which, when sequenced, can be used to identify bacterial 

species. This method is particularly beneficial for detection of bacteria which are not 

cultivable or easily distinguished in culture (Ashimoto et al., 1996). However, screening 

large numbers of samples is difficult, time consuming and costly. Its main drawback 

though is its inability to produce quantitative data on the bacteria present in a sample 

as it only confirms its presence or absence (Ashimoto et al. 1996; Sockransky & 

Haffajee 2005). A few examples of this technique in the field of oral microbiology 

include the study by Ashimoto et al. who used PCR method to determine the 

prevalence of orange and red complex periodontal pathogens in 50 patients with 

advanced periodontitis and gingivitis (Ashimoto et al. 1996). Meurman et al. screened 
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the samples retrieved from periodontal patients for T. forsythia, a bacterial species 

that is positively correlated with recurrent periodontitis. In his study, T. forsythia was 

successfully cultured in 22 out of 58 periodontitis patients; while PCR confirmed the 

presence of this bacterium in 52 out of 58 cases (Meurman et al. 1997).  

1.3.7.2 Quantitative PCR (qPCR) 

A modification of end point PCR is a quantitative PCR (qPCR) and this technique has 

been adopted for a number of studies using the 16S rRNA gene as the target 

(Pozhitkov et al. 2011). It allows the amplification of the low amounts of DNA and a 

reliable detection of the product generated during each cycle of the PCR reaction, 

which is directly proportional to the DNA template prior to the start of the PCR 

reaction (Dieffenbach 1993; Powledge 2004; Ranasinghe & Brown 2005; Saunders 

2009; Smith & Osborn 2009). Quantitative PCR has been extensively used in a wide 

range of microbial applications including the characterisation of the dental plaque and 

identification of bacterial pathogens associated with gingivitis (Colucci 2000). A qPCR 

technique was used by Shelburne at al. to quantify the amount of T. forsythia in 

samples collected from patients with advanced periodontitis (Shelburne et al. 2000). 

Saygun and colleagues have shown that species including P. intermedia, P. gingivalis, T. 

forsythia, F. nucleatum and C. rectus were present in higher numbers in saliva from 

patient with gingivitis and periodontitis than healthy ones (Saygun et al. 2011). 

Furthermore, Becerik et al. used qPCR method to examine the effectiveness of 

chlorhexidine mouthrinse (CHX) against the untreated gingivitis. This study has proven 

that the patients treated with CHX mouthwash showed a significant decrease in 

periodontal pathogens such as P. gingivalis, P. intermedia, T. forsythia and F. 

nucleatum (Becerik et al. 2011).  

1.3.7.3 Fluorescence In Situ Hybridisation (FISH) 

Fluorescent in situ hybridisation, in the field of oral microbiology, has been used to 

determine spatial distribution, microbial diversity and to identify or quantify 

periodontal pathogens (Gersdorf et al. 1993; Ouverney et al. 2003). This technique 

allows the detection of certain species in a mixed community by hybridising 
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fluorescently labelled DNA probes to a complementary target within the intact cell of a 

targeted bacterium (Amann et al., 2000). Gersdof et al. (1993) successfully used this 

technique for direct detection of Gram-negative anaerobes such as P. gingivalis and T. 

forsythia in periodontal samples (Gersdorf et al. 1993). Ouverney et al. (2003) used 

this technique for detection of uncultivable TM7 species in dental plaque (Ouverney et 

al. 2003). While, Thernheen et al. (2001) focused on identification and enumeration of 

health associated bacteria and the initial colonisers of dental plaque such as S. mitis, S. 

anginosus and S. sobrinus (Thurnheer et al., 2001). Studies by Loeshe et al. (1992) and 

Savitt et al. (1987) on prevalence of periodontal pathogens in dental plaque have also 

shown that using DNA probes showed higher detection rates and accuracy when 

compared to culture method (Savitt et al. 1987; Loesche et al. 1992). Therefore, the 

DNA probes can be an effective way of bacterial detection in periodontal studies. 

Despite a few drawbacks which include non-specific labelling, low-throughput, 

laborious and time consuming probe development (Moter & Göbel 2000; Ouverney et 

al. 2003).  

1.3.7.4 DNA – DNA hybridisation checkerboard 

The checkerboard DNA-DNA hybridisation technique for oral bacteria was developed 

by Sockransky et al. (1994) and was intended to be used for rapid detection of the oral 

species in periodontal samples (Papapanou et al., 1997). This method uses digoxigenin-

labeled whole genomic DNA probes targeted at different oral species and a 

checkerboard DNA-DNA hybridisation format where probes are fixed in parallel lanes 

on a nylon membrane that allows detection of 40 species at once on a single 

membrane (Socransky et al. 2004). The technique allows screening of multiple samples 

for specific pathogens in a relatively inexpensive, specific and rapid manner (Socransky 

et al. 2004; Sockransky & Haffajee 2005). This technique has been used in several 

studies to characterise the oral communities of dental plaque (Siqueira et al. 2000; 

Wall-manning et al. 2002; Salvi et al. 2005; Dahle & Leonhardt 2006; Nelson-Filho et al. 

2011). However, one of the main examples mentioned should be the work of 

Socransky et al. (1998) who characterised the periodontal microbial communities and 

grouped them according to the colour coded classes. Each class had a different level of 
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correlation to health / gingivitis / periodontitis based on the cluster analysis performed 

(Socransky et al. 1998). The gingivitis and periodontitis associated bacteria were 

grouped as orange and red complex bacteria and included P. intermedia, P. nigrescens, 

P. micros, F. nucleatum, P. gingivalis, T. forsythis, and T. denticola (Socransky & 

Haffajee 2005). On the other hand, Teles et al. used checkerboard DNA-DNA 

hybridization to analyse the bacterial succession in supra- and subgingival plaque in 

healthy and periodontitis patients after professional teeth cleaning. His study 

confirmed that there is a defined order of succession in biofilm redevelopment with no 

significant differences between the groups (Teles et al. 2012).  

1.4 Holistic approaches 

Microorganisms are more than just the sum of individual parts; they possess complex 

cellular processes which are intimately networked with many feedback loops, and 

complete understanding of these networks certainly presents big challenges (Strange 

2005). This realisation has led to systems biology and a more holistic approach which 

bridges the genotype-to-phenotype gap (Goodacre 2007) by applying a wide range of 

inter-disciplinary techniques such as proteomics, transcriptomics, genomics and 

metabolomics, that have given a better understanding of the complex human-

microbiota interactions (Grant 2012). 

1.4.1 Proteomics 

Proteomics is the study of all proteins in a given sample. As a field it was revolutionised 

with the advancement in mass spectrometry in 1990s that enabled a relatively fast 

identification of proteins in a given biological sample (Grant 2012). Gingival crevicular 

fluid (GCF) is a tissue fluid heavy in proteins which include break down products of 

connective tissues, products derived from host or microbial plaque (Carneiro et al. 

2014). Thus, the proteomics approach could potentially serve as a novel tool for the 

identification of potential biomarkers linked to periodontal diseases (Tsuchida et al. 

2012; Grant et al. 2010). For example, Grant and colleagues identified 16 bacterial and 

186 human potential protein biomarkers associated with gingivitis (e.g. methylase, 

glycosyl transferase) when investigating the proteomic patterns of GCF fluid from 
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gingivitis patients (Grant et al. 2010). Conversely, Wu et al. used whole unstimulated 

saliva to investigate the proteomic profiles of healthy and periodontitis patients. This 

study determined 11 proteins (e.g. serum albumin, immunoglobulin (Ig) α2 chain C 

region, zinc-α2 glycoprotein, salivary α-amylase) which were elevated in periodontitis 

patients and could potentially serve as biomarkers (Wu et al. 2009). Similar studies on 

whole saliva from healthy and periodontitis patients were performed by Gonçalves 

(2010) and Salazar (2013). The study by Goncalves revealed that periodontitis patients 

have increased levels of blood proteins (serum albumin and haemoglobin) and as well 

as immunoglobulin. Salazar et al. identified 20 proteins (e.g. ceruloplasmin, catalase, 

neutrophil collagenase etc.) that were more abundant in periodontitis patients than in 

healthy ones and stated that proteomic analysis of whole saliva is a useful tool in 

differentiation between oral health and periodontitis (Gonçalves et al. 2010; Salazar et 

al. 2013) 

1.4.2 Transriptomics  

Transcriptomics is the study of complete RNA transcripts (mRNAs, non-coding RNAs 

and small RNAs) produced by cells in a particular set of conditions. The aim of 

transcriptomics is to catalogue the RNA transcripts to determine the transcriptional 

differences and to quantify the change in gene expression levels under certain set of 

conditions (e.g. disease) (Fábián et al. 2008; Grant 2012). Various techniques are 

available including hybridisation or sequence based approaches. Hybridisation is based 

on incubating the fluorescently labelled cDNA with microarrays and is still the golden 

standard in transcriptomics. The most recent technological advances into the field of 

transcriptomics include the high-throughput RNA sequencing (RNA-seq), also termed 

as whole transcriptome shotgun sequencing (Wall et al. 2009; Chu & Corey 2012). 

Although it is a relatively novel method under constant development, it shows several 

advantages over the existing hybridisation method. These include, for example, not 

being limited to detection of transcripts corresponding to already existing genomic 

sequences, high reproducibility for either technical or biological replicates and also less 

amount of sample required (Wang et al. 2009). Some examples of trancriptomics in 

the field of periodontal diseases are presented below.   
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Jonsson et al. investigated the gene expression in gingiva of healthy and gingivitis 

patients. The study has shown that 373 genes were differently regulated and 184 

genes were up-regulated by at least 1.5 fold. Some of the upregulated genes include 

CXCL13, a CXC chemokine involved in migration of B cells or CXCL6, a granulocyte 

chemoattractant reported by others to be significantly upregulated in periodontal 

lesions (Jönsson et al. 2011). Jorth et al. investigated the gene expression of healthy 

and periodontal samples at high resolution, i.e. examining the expression of 160,000 

genes simultaneously. This study has shown that the diseased periodontal microbiome 

exhibits distinctively different metabolic gene expression compared to the healthy 

microbiome and includes increased expression of genes coding for proteins involved in 

butyrate and pyruvate metabolism (Jorth et al. 2014). These studies show the 

usefulness of transriptomics in understanding the pathobiology of periodontal 

diseases.  

1.4.3 Genomics 

Genomics is the study of the whole genome of a single organism or a whole 

community (Grant 2012). Since the emergence of next generation sequencing (NGS) in 

2005, which offered unprecedented sequencing speed, the field of genomics has 

grown rapidly and enabled scientists to move from conception to obtaining a full data 

set in a matter of hours or days (Di Bella et al. 2013; Illumina Inc. 2015). In 2007 single 

sequencing runs were producing approximately one gigabase (Gb) which was followed 

by nearly a 1000x increase to around one terabase (Tb) by 2011 (Illumina Inc. 2015). 

Additionally, NGS techniques provide a high degree of flexibility regarding the 

resolution required. This means that the coverage can be tuned according to the 

experimental needs, with higher resolution on particular regions of the genome or a 

more expansive view with lower resolution (Di Bella et al. 2013; Grant 2012).  

1.4.4 Next generation sequencing 

The NGS technologies encompass three different platforms introduced by different 

companies such as Roche with 454, Life Technologies with the SOLiD platform and 

Illumina with its MiSeq / HiSeq platform (Shendure & Ji 2008; Metzker 2010; Liu et al. 
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2012). All three platforms allow high-throughput and parallel analysis at reduced cost 

and led to improvements in the depth and scale of 16S rDNA sequencing studies 

(Shendure & Ji 2008; Metzker 2010; Liu et al. 2012). An overview of the most popular 

next generation sequencing techniques currently available on the market is presented 

in table 1.2.  

Sequencer 454–GS FLX 
system 

MiSeq v3 SOLiD v4 

sequencing 
mechanism 

Emulsion PCR + 
Pyrosequencing 

Bridge 
Amplification+ 
Sequencing By 
Synthesis (SBS) 

Emulsion PCR + 
Ligation and 
two base coding 

Read length 700 bp 2x300 bp 2x35 bp 
Accuracy 99.99% 98%  99.99%  
Time/run 23 Hours ≈56 hours 8-9 days  
Advantage Read length, fast high-

throughput; fast 
accuracy 

Disadvantage high error rate in 
poly-bases longer 
than 6bp; high 
cost of reagents 

short read  short read; 
assembly 

Table 0.1 Mechanism and advantages/disadvantages of NGS sequencers (Claesson et al. 2010; 
Zhang et al. 2011; Quail et al. 2012; Liu et al. 2012; Life Technologies Inc. 2014; Illumina Inc. 
2015; Roche Inc. 2015).  

1.4.4.1 454 platform using pyrosequencing 

The first step in 454 pyrosequencing is emulsion PCR where clonal amplification is 

performed. In this step an oil-water system is agitated to create an emulsion which 

consists of aqueous droplets. Each droplet contains PCR reagents, DNA template, 

primers and magnetic beads. The first primer is complementary to one of the adapter 

sequences used in the library construction, while the other one is present in the 

solution. The emulsion amplification yields multiple copies of a unique DNA template 

on a single bead in each droplet. When the emulsion is broken, the DNA is denatured 

and transferred to a picotiter plate where the pyrosequencing reaction starts by 

depositing sequencing reagents into each well. When a single dNTP is being 

incorporated into ssDNA catalysed by DNA polymerase, a phosphodiester bond is 

formed and pyrophosphate (PPi) is realsed. The pyrophosphate is converted to ATP by 

ATP sulfurylase. ATP production is detected by light which is produced by using ATP to 

convert luciferin into oxyluciferin. The light detected is directly correlated with the 
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number of nucleotides incorporated. As one dNTP is incorporated at a time, the 

strength of the signal seen on the pyrogram determines which nucleotide was 

incorporated at the given time (Shendure & Ji 2008; Petrosino et al. 2009; Claesson et 

al. 2010; Siqueira et al. 2012; Liu et al. 2012; Harrington et al. 2013).  

Keijser et al explored the composition of the oral microbiome by sequencing the 16S 

rRNA hypervariable V6 region of saliva and supragingival plaque samples collected 

from healthy individuals. The 197,600 sequences generated represented 22 different 

taxonomic phyla and showed that Firmicutes (Streptococcus and Veilonella genera) 

and Bacteroidetes (Prevotella genus) were the most predominant phyla in saliva 

samples. While Firmicutes and Actinobacteria (Corynebacteirum and Actinomyces 

genera) were the predominant taxa in supragingival plaques (Keijser et al. 2008). A 

study performed by Griffen and colleagues which compared the healthy subgingival 

community with the one of periodontitis patients using 454 sequencing showed that in 

general the diversity is higher in the disease state with 123 species being more 

abundant than in health. These species belonged to the Spirochaetes, Synergistetes 

and Bacteroidetes phyla, whereas the Proteobacteria were found at higher levels in 

healthy controls (Griffen et al. 2012). Further to that, Abusleme and colleagues 

showed that the periodontitis community is associated with higher proportion of 

Synergistetes, Spirochetes, Firmicutes and Chloroflexi when numbers of Actinobacteria 

were higher in health (Abusleme et al. 2013).  

1.4.4.2 SOLiD platform based on Ligation 

The SOLiD technology uses two-base sequencing based on ligation and is similar to 454 

pyrosequencing in respect that it also uses emulsion PCR to clonally amplify the DNA 

bound to beads before the actual sequencing starts. After the emulsion PCR 

amplification is broken, the beads with amplified DNA fragments are captured on the 

glass slide. This allows for high densities of beads per slide so increasing the level of 

high-throughput sequencing. The SOLiD technology uses fluorescently labelled 

octamers with di-base complement sequences; the flow cell is flushed with these 

which compete for ligation to the primer. The annealing sequence is ligated to the 

primer, fluorescence is detected and then the fluorophore is cleaved. The sequencing 
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occurs by performing seven cycles of ligation, detection and cleavage; then the second 

sequencing primer is hybridised to the template. As a result, the 35 base query DNA is 

sequenced twice to improve the accuracy of the sequencing process. This system is the 

most complicated sequencing technology and requires complex labelled 

oligonucleotides and complicated algorithms to analyse and interpret the output data 

(Liu et al. 2012; Di Bella et al. 2013).  

1.4.4.3 Illumina platform based on sequencing by synthesis 

Illumina-based sequencing strategies include MiSeq and HiSeq (version 500, 2500 and 

X) platforms which are able to generate a large amount of sequence data at a very cost 

effective price (Caporaso et al. 2010; Quail et al. 2012; Liu et al. 2012). The platforms 

also vary in their sequencing throughput, with HiSeq X being capable of generating 1.8 

Tb using paired 2x150 bp reads (i.e., 3 billion reads per flow cell) and HiSeq 2500 

generating up to 1000 Gb using paired 125 bp reads (i.e., 2 billion reads per flow cell). 

On the other hand, MiSeq, a benchtop sequencer, can generate up to 15 Gb output 

using paired 300 bp reads (i.e., 25 million reads per flow cell) (Illumina Inc. 2015). 

Therefore, HiSeq platform has become the standard approach for shotgun 

metagenomic sequencing because of its increased read depth. However, MiSeq has a 

greater potential for use with 16S rRNA gene sequence studies, because it generates 

longer sequence reads, and its performance and cost are tractable to the needs of 

individual investigators. Until recently, the most significant problem with the Illumina 

platforms has been the ability to sequence samples with low genetic diversity, such as 

that commonly found with 16S rRNA gene amplicons. To artificially increase the 

genetic diversity, it has been common to mix in a control library of genomic DNA from 

the phage PhiX, such that 50% of the DNA was from PhiX. During the course of this 

study, Illumina upgraded their image analysis software to overcome this challenge, 

such that only 5 to 10% PhiX is needed to sufficiently increase the genetic diversity. 

Another factor that can affect data quality is the amount of DNA loaded onto the flow 

cell, as this affects the cluster density and the ability of the image analysis software to 

discriminate between clusters (Caporaso et al. 2010; Caporaso, Lauber, Costello, et al. 
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2011; Caporaso et al. 2012; Caporaso, Lauber, Walters, et al. 2011; Liu et al. 2012; 

Quail et al. 2012).  

The next generation sequencing typically consists of 3 steps: DNA library preparation, 

library amplification and sequencing. The library is constructed by amplifying the 

region of interest of 16S rRNA gene with custom primers that have attached barcode 

(for identification of individual amplicons) and adapter sequences complimentary to 

oligonucleotide fragments on the flow cell. Then, the DNA templates are immobilised 

on a flow cell surface to present the DNA in a manner that facilitates access to 

enzymes while ensuring high stability of surface-bound template and low non-specific 

binding of fluorescent labelled nucleotides. The DNA library amplification starts with a 

bridge amplification, a novel solid phase amplification which creates up to 1,000 

identical copies of each single template molecule in close proximity. The amplification 

starts with dsDNA looping over to form a bridge by binding to oligonucleotide 

sequence present on the flow cell. The dsDNA is denatured, re-annealed and then the 

process is repeated. Each cycle of displacement and re-annealing creates clusters of 

clonal DNA available for sequencing. The sequencing process starts with blocking the 

free 3’ end of the molecules attached to the flow cell. An iterated process of single 

base extension occurs in which the flow cell is flooded with fluorescently labelled and 

chemically modified nucleotides able to terminate the DNA chain synthesis. After 

washing of the flow cell and excitation of the incorporated label, the emitted light is 

captured as an image identifying which of the four nucleotides have been 

incorporated. In order to repeat this, the incorporated nucleotide is chemically 

unblocked and the process is repeated. Thus, by sequentially analysing each cluster, it 

is possible to derive the sequence of the molecules within the cluster. After the 

sequencing is finished, the analysis can be directly performed on the MiSeq 

instrument. MiSeq reporter (MSR), a Illumina’s free software, performs a downstream 

analysis after a run is complete and reports the data down to the species level 

(Caporaso et al. 2010; Caporaso, Lauber, Costello, et al. 2011; Caporaso, Lauber, 

Walters, et al. 2011; Caporaso et al. 2012; Liu et al. 2012; Illumina Inc. 2015). Caporaso 

et al. conducted pioneering work on microbial community identification of 

environmental bacteria using new Illumina platform (Illumina GAIIx platform) at the 
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time (Caporaso, et al. 2011). This was followed by others, for example, Li et al 

investigated the bacterial composition of dental plaques from healthy and 

periodontitis patients using Illumina MiSeq platform. His findings demonstrated a clear 

difference between health and disease with Fusobacterium, Porphyromonas, 

Treponema, Filifactor, Tannerella showing higher relative abundances in periodontitis 

(Li et al. 2014).  

1.4.5 Metabolomics 

Metabolomics aim to quantify and characterise the metabolites of a living system in a 

given sample (Nicholson & Lindon 2008). This term was first coined by Nicholson, 

however, the correlation of certain metabolites with disease dates back to ancient 

times. Urine charts were used in Middle Ages to predict diseases based on urine smell 

or colour (Nicholson & Lindon 2008). With the development of high-throughput and 

powerful techniques such as nuclear magnetic resonance spectroscopy (NMR) and 

mass spectrometry (MS), this field has started intensively evolving (Xu et al. 2014; 

Mashego et al. 2007). Today, it is possible to study the metabolite composition 

produced by a living system to get an accurate snapshot of its actual physiological 

state (Grootveld & Silwood 2005; Dunn et al. 2005; Xu et al. 2014). This approach can 

complement genomic studies by relating the species abundance to their potential 

function.  

There is a range of techniques available to study metabolite fingerprinting. However, 

the most widely used ones include nuclear magnetic resonance spectroscopy and mass 

spectrometry combined with gas or liquid chromatography (GS-MS, LC-MS) (Lenz & 

Wilson 2007; Goodacre 2007). NMR spectroscopy and MS based platforms gained 

popularity due to the fact that they offer high sensitivity, simplicity of performance, 

and fast high-throughput processing (Lenz & Wilson 2007; Goodacre 2007; Barding et 

al. 2013). Additionally, they can be coupled with complex pattern recognition tools 

such as principal component (PCA) and partial least square (PLS) analyses to enable the 

pattern recognition identification, non-linear mapping and then the interpretation of 

the metabolic profiles (Wishart 2008; Fonville et al. 2010; Smolinska et al. 2012). 

Consequently, metabolomics has been used for determination of health and disease 
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(Jenkinson & Lamont 2005) and identification of potential biomarkers associated with 

periodontal diseases (Sugimoto et al. 2012). Barnes and colleagues have successfully 

used biochemical profiling to analyse the metabolite composition of samples from 

healthy, gingivitis and periodontitis sites. They have shown significant composition 

differences among the sites which confirms that metabolite fingerprinting can be a 

powerful tool for determining periodontal diseases (Barnes et al., 2010; Barnes et al., 

2011). 

1.4.5.1 1H NMR spectroscopy 

Nuclear Magnetic Resonance spectroscopy in the field of metabolomics started 

evolving in the 1980s (Lenz & Wilson 2007). The technique enables detection and 

structural identification of the organic metabolites simultaneously and non-invasively 

(Simmler et al. 2014). NMR spectroscopy is a study of a physical phenomenon of 

resonance transition between magnetic energy levels, happening when atomic nuclei 

are immersed in an external magnetic field. The NMR instrument consists of the 

magnet, detector, frequency generator, recorder and probe. The magnet is a 

superconductor which consists of wire coil through which the current passes and 

generates the electromagnetic field (Dunn et al. 2005; Serkova & Niemann 2006; 

Wishart 2008; Bharti & Roy 2012; Simmler et al. 2014). The sample is placed in the 

magnet and spins around its axis to ensure equal exposure to the electromagnetic 

field. NMR spectrometry depends on the nuclear spin of the nuclei of the atom; the 

atoms which act as mini-magnets align themselves with the field or against it. When 

the electromagnetic radiation is applied, the nuclei with the lower energy state can 

absorb the energy and jump to the higher energy state. Subsequently we can observe 

either the absorption of the energy or the subsequent release when the nucleus goes 

back to the lower energy state. This reemission of energy is recorded, amplified and 

processed to give an NMR spectrum (Dunn et al. 2005; Serkova & Niemann 2006;  

Wishart 2008; Bharti & Roy 2012; Simmler et al. 2014). Today, it is the most often 

applied platform for structure elucidation of micro- or macro- compounds of unknown 

natural or synthetic origin (Simmler et al. 2014). Its popularity over other 

metabolomics techniques, despite lower sensitivity, is a simple methodology, virtually 
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no sample preparation, short analysis time that provides metabolite fingerprinting in 

both a qualitative and quantitative manner (Dunn et al. 2005; Emwas et al. 2013). 

Furthermore, it is a well proven and powerful technique for biofluid profile 

identification, e.g. saliva, providing comprehensive and highly reproducible data 

(Grootveld & Silwood 2005; Lenz & Wilson 2007; Fidalgo & Renata 2013; Santone et al. 

2014). The potential disadvantage of this platform is a requirement for a trained 

operator and the high cost of apparatus. Though, the costs per sample are relatively 

low (Dunn et al. 2005; Xu et al. 2014).  

A study by Fidalgo et al. on metabolic profiles of saliva obtained from children with and 

without caries lesions revealed that children with lesions had higher levels of the 

metabolites n-butyrate, acetate and lactate (Fidalgo & Renata 2013). Aimetti et al. 

(2011) applied 1H NMR fingerprinting to saliva samples collected from healthy and 

periodontitis patients and identified that there is an increase in certain biomarkers 

such as succinate, trimethylamine, butyrate and propionate which are related to host-

microbe interactions occurring in the progression of periodontal diseases (Aimetti et 

al. 2011).  

1.4.5.2 Mass spectrometry based techniques 

1.4.5.2.1 Liquid chromatography – mass spectrometry 

Liquid chromatography-mass spectrometry (LC-MS) is a well-known analytical 

technique that combines the physical and mass separation capabilities of liquid 

chromatography and mass spectrometry. The main advantages offered by this 

platform include broader range of molecules that can be analysed when compared to 

gas chromatography-mass spectrometry, satisfactory range of sensitivity and ability to 

handle complex compounds and mixtures. Therefore, this technique is often used in 

the field of metabolomics to identify the metabolite profile of various biological 

samples (Pitt 2009).  

The process of separation starts with a mixture under identification being dissolved in 

a fluid termed ‘mobile phase’. Solvent typically used as mobile phase include e.g. 

water, methanol and chloroform etc. Next, the sample is forced by the mobile phase 
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under pressure through the stationary phase. At this stage the sample is separated 

based on its physical properties, retention in the stationary phase. Different 

compounds have different retention times, thus they arrive at the mass spectrometer 

at different times. As the compounds arrive, they are ionised and identified based on 

their mass-to-charge ratio (Pitt 2009; Wang et al. 2011; Gika et al. 2014). A periodontal 

example of using this technique includes the study by Hager et al that investigated the 

lipid mediator precursors as the potential biomarkers for periodontitis. His study has 

showed that the ratios of precursors of pro-resolution/pro-inflammatory lipid 

mediators in GCF fluid of periodontitis patients are lower when compared to healthy 

individuals (Hager et al. 2013).  

1.4.5.2.2 Gas chromatography – mass spectrometry (GC - MS) 

The GC-MS platform is often a platform of choice for identification of apolar, volatile 

and semi-volatile analytes of molecular weight lower than 600-700 amu. This is also 

the major disadvantage of this technique. Especially since it does not provide 

identification of polar, non-volatile, large or thermolabile compounds without previous 

derivatisation which is laborious and time consuming. Not only derivatisation, but also 

extensive sample preparation, low-throughput and long time analysis makes it less 

favourite than NMR spectroscopy for the metabolomic applications (Dunn et al. 2005; 

Shulaev 2006; Lenz & Wilson 2007).   

The major technical difference between the LC/MS and GC/MS platform is that the 

liquid chromatography is substituted with gas chromatography. This means that the 

mobile phase is an inert gas such as helium and the stationary phase is a microscopic 

layer of liquid or polymer. The gaseous compounds interact with the stationary phase, 

which causes the compound to elute at different time points (different retention time) 

and then the sample is identified by a mass spectrometer based on its mass-to-charge 

ratio (Dunn et al. 2005; Shulaev 2006; Lenz & Wilson 2007). This technique has been 

used by Park et al to determine if the edible seaweed Enteromorpha linza displays 

antimicrobial activity against periodontal pathogens such as P. intermedia, P. gingivalis 

and F. nucleatum (Park et al. 2013). Study by Solmaz et al showed that Shitake 

essential oil is an effective anti-biofilm agent on oral pathogens and can be used as 
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alternative treatment for periodontal diseases (Solmaz et al. 2013). Takada et al used 

GC-MS platform to characterise the new serotype of periopathogen A. 

actinomycetemcomitans (Takada et al. 2010).   

1.5 Complex in vitro models 

The ideal situation for understanding the aetiology of periodontal diseases such as 

gingivitis is studying the host-biofilm interactions in vivo. However, the complexity of 

the oral environment, ethical issues, limited access and small quantity of samples 

available for further investigations have led to development of laboratory in vitro 

models (Edlund et al. 2013). The idea of complex in vitro models is to provide a high 

degree of flexibility in terms of the experimental conditions to help model and 

understand the complex biological phenomena. Therefore, these models simulate the 

oral environment and mimic health and disease associated bacterial shifts (Tang et al. 

2003; Greenman et al. 2005; Lebeaux et al. 2013) by enabling the provision of various 

nutrients, components or gases. Further to this, the apparatus constructed in such a 

fashion enable real-time biofilm growth, observation at various stages of biofilm 

formation using various techniques and also provide vital information on disease 

aetiology, prevention, eradication and management (Kolenbrander et al. 2002; Tang et 

al. 2003; Coenye & Nelis 2010; Lebeaux et al. 2013). 

Various in vitro systems have been developed and used to attempt to answer 

questions of clinical relevance (Sissons et al. 1991; Sissons 1997; Guggenheim et al. 

2001; Guggenheim et al. 2004; Guggenheim et al. 2009; Shaddox et al. 2010). These 

include simple batch, static systems or fed batch systems which have been used more 

or less successfully within the field of oral biofilms; but certainly have contributed to 

the progress within the field of in vitro modelling (Sissons 1997; Whiteley et al. 1997; 

Wilson 1999; Donlan et al. 2004; Goeres et al. 2005; Mcbain et al. 2005). Some 

drawbacks of these systems include lack of reliability, simplicity or difficulties in 

maintaining biofilm communities over time (Tang et al. 2003; Coenye & Nelis 2010; 

Lebeaux et al. 2013). The review presented below feature currently available complex 

in vitro systems and their contribution to our knowledge of oral diseases.  
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1.5.1 The Chemostat  

The chemostat is ideal for generating steady state cultures and thus has been widely 

used in studying human oral microbiota (Bradshaw & Marsh 1999; Greenman et al. 

2005). It gained popularity due to the fact that it is fairly simple to use and provides 

great control over environmental parameters such as temperature, pH, medium 

source, or gas regime. This flexibility helps altering the environmental conditions thus 

aids answering the cause-effect questions (Marsh 1995; Bradshaw & Marsh 1999; 

Greenman et al. 2005). Though the continuous culture approach does not attempt to 

reproduce or act as a true model of all the physical properties in the oral cavity. The 

main drawbacks of this system include inability to grow biofilms reliably and control 

their reproducibility or thickness (as further described below). 

The standard chemostat is a single stage reactor limited to bacterial growth in a 

planktonic form (Bradshaw & Marsh 1999; Greenman et al. 2005). Nonetheless, 

biofilms tend to form on surfaces inserted into the continuous cultures such as glass, 

hydroxyapatite or acrylic that provides the basis for biofilm investigation (Sissons 

1997). This single stage system is characterised by the fact that once perturbed, it is 

effectively terminated and another chemostat experiment has to be set up. Thus, 

multi-stage chemostat-based systems were used to aid the downstream treatments on 

biofilm generated in the first reactor (Marsh 1995; Sissons 1997; Bradshaw & Marsh 

1999; Greenman et al. 2005). The examples of using this system include Herles et al. 

(1994) who used the chemostat flow-cell system to test anti-plaque agents on oral 

biofilms generated on hydroxyapatite. Their study has proven that the model is 

capable of discriminating the bacterial differences in biofilm treated with placebo 

mouthwash or a mouth rinse containing 0.03% triclosan formulation. Li et al., on the 

other hand, used this system to characterise the effects of varying pH and fluoride on 

bacteria or multispecies biofilms formation on hydroxyapatite discs (Li & Bowden 

1994; Bradshaw & Marsh 1999). The chemostat system was also widely used in oral 

microbiology to grow complex oral communities (Mckee et al. 1985) and to study the 

influence of oxygen and inoculum composition (Bradshaw et al. 1996) and the pH 

change on growth of mixed oral bacterial communities (McDermid et al. 1986).  
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1.5.2 The Robbins device 

The Robbins device was developed by McCoy and colleagues at the University of 

Calgary to investigate the biofouling phenomenon occurring in industrial pipelines 

(McCoy et al. 1981). It is a rectangular block usually composed of steel with removable 

studs (Figure 1.3) placed along its length through which the inoculum and medium 

flow (McCoy et al. 1981; Greenman et al. 2005; Coenye & Nelis 2010). The biofilm 

formed on these studs grows under controlled flow and shear force and can be 

removed at any time to be investigated by various experimental techniques (McCoy et 

al. 1981; Greenman et al. 2005; Coenye & Nelis 2010). This method has been used to 

study biofilm formation including oral biofilms and their susceptibility to various 

antimicrobials and antibiotics (Khardori et al. 1991; Larsen & Fiehn 1995; Yassien et al. 

1995; Gristina et al. 1987). Further to that, Coenye et al. used it to test the efficacy of 

biofilm removal by the disinfectant NitrAdine and showed it had high activity against 

oral biofilms (2008).  

It’s main advantage is growing biofilms under controlled hydrodynamic conditions and 

it has been proven to be an effective system for biofilm formation investigation 

(Greenman et al. 2005). However, it is not particularly suited for rapid and high-

throughput susceptibility testing of various chemicals (Ceri et al. 1999; Greenman et al. 

2005; Coenye & Nelis 2010). 

 
Figure 0.3 Close-up of the Modified Robbins Device (MRD) (adapted from Coenye et al. 2011). 
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1.5.3  Calgary Biofilm Device (CBD) 

The Calgary Biofilm Device (CBD) was developed by Ceri et al. and now is commercially 

available at MBEC Biofilms Technology Ltd, Canada (Ceri et al. 1999). It consists of a 

two-part reaction vessel; the top one is a lid with 96 pegs mounted on the inside of its 

surface designed in a manner that all pegs can be removed at once or individually 

without opening the vessel. It sits in a standard 96-microtiter plate where each peg is 

lowered into its well without touching the well surface. The bottom of the microtiter 

plate allows the medium flow among the pegs and creates an equal and consistent 

shear among the pegs (Ceri et al. 1999; Coenye et al. 2011). The CBD is a simple model 

which is mostly used for high-throughput susceptibility screening of antibiotics 

(Santopolo et al. 2012; Almshawit et al. 2014), antimicrobials or metals on biofilms (Ali 

et al. 2006; Harrison et al. 2006; Pesciaroli et al. 2013). Importantly, it does not require 

tubing and pumps that makes it easier to use and minimises potential contamination 

issues. The major limitations of the CBD system are that it does not feature controlled 

dynamic conditions and biofilm growth is not evenly distributed on the surface of CBD 

peg (Mcbain 2009). Ciri et al used this system to investigate the antimicrobial 

susceptibilities of biofilm formed by clinically important species such as Pseudomonas 

aeruginosa and Staphylococcus aureus (Ceri et al. 1999). A study by Ali et al confirmed 

the suitability of CBD for assessing the efficacy of disinfectants and antimicrobials on 

biofilms (Ali et al. 2006). 

1.5.4 Multiple Sorbarod Device 

Multiple Sorbarod Device (MSD) is a fermentor system developed by McBain and 

colleagues at Manchester University in 2005. MSD was specifically developed to grow 

perfused oral biofilm of mixed oral microbiota on filters under environmental 

conditions mimicking the oral cavity. The model enables the control over several key 

factors such a substrata, oxygen and/or nutrient availability (Mcbain et al. 2005; 

Mcbain 2009). 

The fermentor system consists of two stainless steel plates (top and bottom) and a 

removable PTFE cylinder placed in between with 5 Sorbarod filters. The Sorbarod 
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filters are cellulose cylinders which are 10 mm in diameter and 20 mm in length. The 

inoculation process occurs by removing the top plate of the model and depositing the 

inoculum directly on the equilibration chamber. The medium is delivered to the model 

via the medium inlet by a peristalitic pump over the course of the experiment. The 

equilibration chambers placed above and below the filter cassettes allow medium and 

perfusate (spent culture fluid) mixing over time. This approach produces relatively 

large amounts of biomass over time to enable investigation of perfusates by different 

techniques and monitoring of the population dynamics (Mcbain et al. 2005; Mcbain 

2009). 

This system was mostly used to test various anti-plaque agents. Ledder at al. used the 

MSD and the Constant Depth Film Fermentor (CDFF) model to investigate the anti-

plaque properties of various commercially available enzymes such as protease, lipase 

and amylase (Ledder et al. 2009). Another study by Ledder and McBain used the MSD 

model to compare the antimicrobial efficacy of a triclosan-containing dentifrice with a 

stannous fluoride and zinc lactate combination. Whilst both formulations reduced 

plaque accumulation and bacterial viability, the triclosan dentifrice showed higher 

reductions on biofilm (Ledder & McBain 2012). 
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Figure 0.4 Schematic diagram of the multiple Sorbarod Device (adapted from Mcbain et al. 
2005).  

1.5.5 CDC Biofilm reactor 

The CDC Biofilm reactor was developed by Donlan et al. in 2002 and is available 

commercially at BioSurface Technologies, Bozeman, Montana, USA (Donlan et al. 2002; 

Coenye & Nelis 2010). This system consists of a glass vessel with an effluent spout 

positioned to provide approximately 350 mL operational fluid capacity. The top plate 

made of polyethylene houses 8 removable polypropylene rods, each with a medium 

inlet and a gas exchange port and holding three removable coupons on which biofilm 

grows. Each coupon is a disc of 1.27 cm width and 0.3 cm thickness. All that is enclosed 

in a glass vessel which is placed on a stir plate to provide constant mixing and shear 

forces to the biofilm on the coupon surface. In this design the medium and inoculum 

are provided by the peristaltic pump via the tubing connections. This enables biofilms 

to be grown on 24 removable coupons simultaneously under moderate to high shear 

force conditions in a continuous-flow mode. This system allows operation under a 

wide range of experimental conditions to address various research questions (Donlan 

et al. 2002; Coenye & Nelis 2010).  
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The studies performed by Goeres et al. (2005) and Honraet et al. (2005), for example, 

demonstrated that the CDC reactor can be a reliable tool for the investigation of 

biofilm formation by various bacterial species. This model was also used for testing of 

various disinfectants (Buckingham-Meyer et al. 2007) and assessment of cleaning 

procedures (Hadi et al. 2010). A study by Parra-Ruiz et al. assessed the in vitro 

activities of several antimicrobials alone or in combination against two S. aureus 

isolates (Parra-Ruiz et al. 2010). In another study by Lewis et al. assessed the 

antimicrobial activity of the nanocrystalline diamond coating intended to be used on 

medical implants (Lewis et al. 2010). 

  

Figure 0.5 The CDC reactor (A) (adapted from Lewis et al. 2010) and its experimental set-up 
(B), where two CDC reactors are coupled with a medium bottle (adapted from Coenye & Nelis 
2010).  

A B 



Chapter 1: Introduction 

72 

 

1.5.6 Constant Depth Film Fermentor (CDFF) 

The Constant Depth Film Fermentor was introduced in 1987 by Peters and Wimpenny 

(Peters & Wimpenny 1987). It is a complex in vitro model which provides a closely 

controlled environment with control over key experimental parameters such as 

nutrient source, temperature, pH, substrate and the gaseous regime used (Peters & 

Wimpenny 1987). It has been widely used to study dental plaque formation, the 

efficacy of antimicrobials and was later established as a representative model for in 

vitro modelling of oral biofilms (Wilson et al. 1996; Pratten et al. 2003; Leung et al. 

2005; Dalwai et al. 2006; Dalwai 2008).  

 

Figure 0.6 CDFF system (adapted from Wilson 1999). 

The CDFF model consists of glass vessel with a stainless steel top and bottom plate. 

The top plate has the inoculum, medium, gas inlet and a sampling port. Inside, a 

rotating stainless table holds five polytetrafluoroethylyne (PTFE) plugs that are 

recessed to grow biofilms of specific depth and scrapper blades that scrap off the 

excess of media and biofilm produced (Wilson 1999). The system construction enables 

it to be sterilized and housed in the incubator to obtain better temperature control. 
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Biofilms are produced in recessed pans, to which inoculum and medium is provided by 

inputs on the top plate. Both, medium and inoculum drip onto the rotating table 

where the liquid excess is scrapped off by scraper blades and removed from the model 

by the waste output. Biofilms that forms on the plugs can be harvested at any point 

during the experiment via the sampling port (Wimpenny 1987; Dibdin & Wimpenny 

1999; Peters & Wilson 1999).  

This system essentially allows the development of surface attached biofilms with a 

predetermined depth by mechanically removing surplus biofilm, simulating the 

movement of the tongue over the teeth (Peters & Wimpenny 1987; Wilson 1999; 

Dibdin & Wimpenny 1999). It has been extensively used in the field of oral research. Its 

applications range from investigating single-, multispecies- biofilm formation, testing 

various antimicrobials to modelling oral diseases as detailed below. The CDFF has also 

been successfully used to study the effect of surface properties such as roughness on 

biofilm formation (Morgan & Wilson 2001) and the effect of different antimicrobial 

agents, which are either externally added (Pratten, Barnett, & Wilson, 1998; Wilson, 

Patel, & Noar, 1998) or released internally from the composite tested (Leung et al. 

2005). Additionally, it has been used to study the formation and the bacterial 

composition of oral biofilms (Pratten et al. 2003) and the effects of sucrose on biofilm 

formation (Pratten et al., 2000). McBain et al (2003) and Hope and Wilson (2004) used 

the CDFF model to test the efficacy and impact of chlorhexidine digluconate 

mouthwash on oral microcosm biofilms while Spratt and co-workers at UCL 

successfully modelled both health and gingivitis associated shifts occurring in gingivitis 

progression using this system (Dalwai et al., 2007; Dalwai et al., 2008) 
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1.6 Aims of the project 

There is a wide selection of complex and simple in vitro models which have been used 

to answer the scientific questions relating to the biofilm formation or the 

understanding of bacterial interactions within a biofilm. These models have 

significantly contributed to the field of oral microbiology and increased our 

understanding of biofilm formation. However, there is no in vitro gingivitis model 

available that could serve as a direct gingivitis surrogate. One of not many complex 

models that were successfully used for modelling simple bacterial changes associated 

with gingivitis progression includes the CDFF model. Therefore, the design of a new 

triple CDFF model was based on CDFF model. 

The research focused on the development of an in vitro gingivitis model (triple-CDFF) 

which could mimic oral health and gingivitis conditions in a reliable and reproducible 

manner to allow growth of gingivitis associated biofilms. Subsequently, this would 

allow standardised testing of various dentifrices and antimicrobials as either 

preventatives or treatments of gingivitis in a cost-effective and relatively high-

throughput manner. Therefore, the aim was to construct a model that facilitates the 

concurrent and reproducible biofilm growth and that was complex enough to enable 

delivery of various nutrients and gas regimes to simulate the complex environment 

found in oral cavity. Additionally and at the same time it should be relatively simple to 

operate by an individual using a standardised operating procedure (SOP) which can be 

easily followed with the same degree of repeatability at different research institutes.  

To fulfil the aims of the project, the research was divided into 3 stages:  

(i) Development, testing and validation of the novel triple CDFF model 

(Chapter 3). 

(ii) Reproducibility testing of oral biofilms grown in T-CDFF model (Chapter 4).  

(iii) Modelling of the oral health-gingivitis progression in vitro. (Chapter 4, 

Chapter 5 and Chapter 6) 
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2.1 Triple-Constant Depth Film Fermentor model (T-CDFF) 

The CDFF model has been extensively used in oral research and is a well-established 

model (Pratten et al. 1998; Wilson 1999; Dalwai et al. 2006; Dalwai et al. 2007). 

However, it does not allow concurrent and reproducible antimicrobials testing (Dalwai 

et al. 2006). Therefore, the T-CDFF model has been manufactured to answer these 

needs and to enable the growth of reproducible oral biofilms that can be treated 

separately in a controlled but flexible environment that would be of use for dentifrices 

and antimicrobials testing.  

  

 
 
 
v 

Figure 2.1 A) The standard CDFF - the prototype of T-CDFF, B) Top plate with 3 liquid inlets, gas 
inlet and sampling port. C) Turntable with 15 gaps for pans. D) Bottom plate with a waste 
output and a spindle to attach the gear box to.  

A 

B 

C 

D 

A 
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2.2 Model description  

The T-CDFF is a mechanical model that was constructed to simulate gingivitis in vitro. It 

consists of three stainless steel units driven by a single portable motor at a constant 

speed (Figure 2.1A and 2.2A). Each unit was manufactured in the same manner and 

consists of a stainless steel base, a glass vessel, and a top plate retained by two 

polytetrafluoroethylene (PTFE) seals. Each unit’s top plate has a sampling port, 3 liquid 

inlets for inoculum, artificial saliva, artificial gingival crevicular fluid (GCF) and a 

gaseous inlet enabling us to provide different gas formulations. Each unit houses a 

turntable with 5 PTFE pans. Each pan houses five PTFE plugs with hydroxyapatite (HA) 

discs on top (5.0 mm in diameter), each recessed to the depth of 300 µm which 

replicates the gum pocket size. Two scrapper blades are there to smear the inocula 

and nutrient medium evenly over the discs and remove excess liquids or bacterial 

waste. Both models are presented in Figure 2.2 for the comparative purposes (Peters 

& Wimpenny 1987; Wilson 1999).  

2.2.1 T-CDFF construction  

Each T-CDFF unit was constructed in a relatively similar manner to its prototype, the 

CDFF (Peters & Wimpenny 1987; Wilson 1999). It consists of similar mechanical parts 

that were either upgraded or adjusted by the manufacturer to answer my 

experimental needs. Additionally, each T-CDFF unit was scaled down to enable the 

 

Figure 2.2 The comparison of the two models. A) CDFF model, B) T-CDFF units on the right 
Three liquid inlets encircled in red. Gas inlet encircled in yellow and Sampling port encircled 
in green. 

A B 
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running of three separate CDFFs on a single, portable motor in a simultaneous and 

reproducible manner. Figure 2.3 presents the T-CDFF model sitting on a motor, while 

Table 2.1 depicts the dimensions of the main mechanical parts of both CDFF and T-

CDFF model. 

 

Figure 2.3 shows the T-CDFF model housed on the motor. 
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Table 2.1 presents the specification for CDFF and T-CDFF model.  

 

Parts’ diameters CDFF diameters (mm) T-CDFF diameter (mm) 

Top & bottom PTFE seal Ext. 187, Int. 166 Ext. 135, Int. 115 

Glass vessel diameter Ext. 184.5, Int. 159 Ext. 133, Int. 105 

Glass vessel height 148 149 

Glass vessel height with seals 157 158 

Top & Bottom plate 230 152 

Sampling port width 26 26 

Inlet ports width 3 3 

Gas port width 5 5 

Waste output width 4.5 4.5 

Table width 149 94 

Pan width 19 19 

Screw cap height 19 22.5 

Screw cap width 36 63 

Turntable-sampling port 
distance 

81 82 

 Table 2.1 The specification of CDFF and T-CDFF model. 
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2.2.2 T-CDFF set-up 

This Section details the experimental set-up of T-CDFF experiments (Figure 2.4).  

  

 

Base of a single unit was 
placed on the motor. 

 

 

Bottom seal was greased with 
high vacuum grease on both 
sides to provide adequate air 
tightness. 

  

 

Greased bottom seal was 
placed firmly on the base of 
the unit. 

 PTFE pans were prepared: 1) 
Each pan was fitted with PTFE 
plugs. Plugs were greased and 
HA discs were attached to the 
surface. 2) Discs were 
recessed to a depth of 300 µm 
using a recessing tool. 3) Pan 
was ready to be fitted in T- 
CDFF. 

  

1 2 3 
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Pans were placed in turntable 
and recessed by tamping tool. 

  

 

Glass vessel was placed on the 
top and brim was greased. 

  

Greased seal was placed on 
the top of the vessel. It was 
followed by top plate that was 
screwed in to hold the whole 
construction firmly in place. 

  

Silicone tubing was attached 
to all inlets and clamped by 
autoclaveable cable ties. Then, 
female and male connectors 
were attached to finish the 
tubing connections. Tubing 
with 0.3 µm hepta-venta 
filters were attached to gas 
outlet to provide gaseous 
exchange. 
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The same connections were 
done for the remaining two 
units. Units were placed on 
the motor and were ready for 
the experiment. 

 Additional tools used with T-

CDFF 

A) tamping tool  

B) sampling tool  

C) recessing tool 

Figure 2.4 Figures A – I present the CDFF set-up. Figure J presents the tools used with the CDFF 
set-up and sampling process. 

2.2.3 T-CDFF calibration process 

The T-CDFF model was designed in a way to provide the highest possible experimental 

reproducibility among the units. Further to this, several factors that could potentially 

introduce variability were identified and addressed:  

- Reproducible inoculum, artificial saliva and artificial GCF delivery,  

- Reproducible delivery of gaseous conditions, 

To limit the potential bias, same inoculum was used among separate experiments 

(Section 2.3.1). To ensure that the same volume of inoculum was delivered to each 

unit, the same batch of inoculum was used and delivered at a constant flow rate via 

calibrated peristaltic pumps and tubing connections.  

A 

B 

C 
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The same formulation of artificial saliva was used throughout all CDFF experiments. To 

minimise the differences and to enable the same growth pattern among the units, 

medium was delivered to all units from the same 8 litre saliva batch via calibrated 

pumps and tubing connections at the same flow rate.  

To assure the highest possible reproducibility of environmental conditions, the same 

gas formulation was delivered to each unit. Gas was supplied to all units from the 

same gas cylinder via split tubing connections with the flow meters attached to ensure 

the same gas levels among the units.  

2.2.4 T-CDFF scheme of work 

The T-CDFF model was designed specifically to grow reproducible oral gingivitis 

biofilms. Each of the T-CDFF experiments comprised of several stages listed below: 

Stage I – preparation process 

This stage included the preparation of inoculation / artificial saliva / artificial GCF / 

gaseous and waste output tubing connections. To enable delivery of the above 

mentioned components, each tubing connection was assembled from 8x11 mm 

silicone tubing (VWR), 1x3 mm tubing (Fisher), 1.5 mm tubing (Fisher) and 0.8 mm 

bore pump tubing (Fisher, Watson & Marlow) joined by PTFE connectors (VWR) and 

then secured by cable ties (VWR) and finished off with the male or female connector 

(Sigma) (Figure 2.4-2.6). Prepared connections were calibrated with water to ensure 

that the expected amount of liquid was being delivered to each unit and that there 

was an absence of leakages within the tubing connections. Next, the tubing connection 

ends were wrapped up in aluminium foil and secured using autoclave tape for 

sterilisation prior to commencing the experiment. Due to the extended length and 

sophistication of all tubing connections, they had to be evenly spread in the autoclave 

chamber to ensure no pressure built-up during the process and successful sterilisation.  
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Inoculation flask with 
the attached 
inoculum tubing 
connection. 

  

 

Two artificial saliva 
bottles with the 
tubing connection 
leading to the T-CDFF 
units via the opening 
in the top of 
incubator. 

 

 

Gas tubing 
connection set-up 
leading from gas 
cylinder to each unit 
through the flow 
meters which 
regulate the flow 
rate. 
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The waste 
connection with the 
attached effluent 
collection bijou 
bottle. The waste 
connections lead 
from the units to a 
waste collection 
bottle. 

Figure 2.5 presents the experimental set-up of the T-CDFF model 

Stage II – experiment launch / inoculation process 

All of the sterilised parts were moved to an incubator that was previously sprayed with 

70% ethanol. All the connections and parts were aseptically connected in the confined 

space of the incubator by the operator complying with a set of rules during the 

experiment launch that included: wearing a mask, protective clean gown and gloves, 

using 70% ethanol spray and alcohol wipes while setting up the connections. When the 

set-up was finished, the experiment was started by inoculation to establish a bacterial 

baseline on the recessed HA discs. The inoculum was delivered via the calibrated 

tubing connections and was evenly spread over the pans in each unit by smearing it 

over the surface of the turntable by the two spreaders. After 8 hours of inoculation, 

the flask was disconnected aseptically and nutrient medium was delivered instead. The 

experimental set-up is presented in Figure 2.6.  
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Figure 2.6 presents a simplified T-CDFF set-up. Inoculation flask and pumps for inoculum 
delivery are encircled in green; the same pumps were re-used for artificial saliva delivery. GCF 
flasks and pumps are encircled in pink. 

Stage III – experimental conditions  

At this stage, depending on the exact purpose of the experiment, different 

experimental conditions can be applied. The generalized T-CDFF experimental 

conditions are shown in Figure 2.7.  

Commonly, the experimental conditions started with the health phase that was 

followed by the switch to gingivitis (Dalwai et al. 2006; Dalwai et al. 2007). An artificial 

saliva formulation is used as a medium source to provide an adequate amount of 

nutrients to sustain bacterial growth throughout the experiment, either in health or 

disease. To establish the switch from health to gingivitis conditions, additional 

components such as artificial GCF were delivered at variable concentrations together 

with altered gas conditions (Dalwai et al. 2006; Dalwai et al. 2007). 
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Figure 2.7 Generalised T-CDFF experimental conditions.  

Stage IV – experiment complete, sterilisation and clean-up process 

At the time point specified in the methodology the experiment was ended and all the 

tubing connections and flasks were disconnected from T-CDFF and sterilised before 

cleaning. The T-CDFF was disassembled, removed from the motor and sterilised. After 

the kill cycle, tubing connections were cleaned by flushing them with a 0.1% acid rinse 

(Decon Laboratories Limited), followed by water to remove the remaining product 

residuals. Connections were re-used for the next experiment. After sterilising the 

model, it was dismantled and washed with 0.1% acid rinse (Decon Laboratories 

Limited). 

2.3 Experimental protocol 

2.3.1 Standardized inoculum 

2.3.1.1 Dual-species inoculum 

Actinomyces naeslundii DSMZ17233 and Streptococcus sanguinis NCTC12279 were 

grown aerobically overnight in brain heart infusion broth (BHI, Oxoid) to a final 

concentration of approximately 1x108 CFU / mL in an orbital shaking incubator (Orbital 

incubator, Sanyo) at 200 rpm at 37°C. Aliquots of 2.0 mL from each culture was added 

to 1500 mL of artificial saliva and pumped into the T-CDFF at a continuous rate of 1.0 

mL / min for 8 hours using a peristaltic pump (Watson & Marlow, 101 U / R) (Dalwai et 

al. 2006; Dalwai 2008).  
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2.3.1.2 Microcosm inoculum 

A microcosm inoculum was obtained by collecting 1.0 mL of whole non-stimulated 

saliva from each of 21 healthy local research staff volunteers (Ethics ID number: 

1364/001). Samples were pooled, mixed well with equal volume of 40% v / v glycerol 

to obtain a homogenous solution. Thereafter, the solution was split into 1.0 mL 

aliquots and stored at -80°C. The saliva preparation was performed promptly to limit 

the cytotoxic effect of oxygen on the anaerobic species. For inoculation, two 1.0 mL 

aliquots were thawed and used to inoculate 1500 mL of artificial saliva that was 

pumped through the T-CDFF model at constant a rate of 1.0 mL / min for 8 hours ( 

Dalwai et al. 2007; Dalwai 2008). 

2.3.2 Artificial saliva 

To simulate human saliva, a previously validated standardized artificial saliva 

formulation was used (Russel and Coulter 1975). One litre of artificial saliva consisted 

of 1.0 g Lab Lemco (Oxoid), 5.0 g Proteose Peptone (Oxoid), 2.0 g Yeast Extract (Oxoid), 

0.35 g NaCl (Oxoid), 0.2 g CaCl2 (VWR), 0.2 g KCl (VWR), 2.5 g Mucin type III (Sigma), 

1.3 mL of 40% w / v Urea (Fisher chemicals). For all CDFF experiments the artificial 

saliva was pumped at a flow rate of 0.5 mL / min (Pratten et al. 1998; Dalwai et al. 

2006; Dalwai et al. 2007; Dalwai 2008).  

2.3.3 Conditions to model oral health 

To model oral health, dual-species or microcosm biofilms were grown at the 

temperature of 37 ± 1°C under aerobic conditions, which were maintained by 

delivering air through sterile 0.3 µm hepta-venta filters. The nutritional source was an 

artificial saliva delivered continuously to the system at the documented human salivary 

flow rate of 0.72 L / day (Dalwai 2008; Dalwai et al. 2006; Dalwai et al. 2007).   

2.3.4 Conditions to model gingivitis 

Gingivitis conditions were established by providing an artificial GCF, of which 1.0 litre 

medium consisted of 0.6 L RPMI (Sigma), 0.4 L Horse serum (Sigma), 50 µL Menadione 

(Sigma), 1.0 mL Heamin (Sigma), to each unit at the flow rate of 50 µL / min or 130 µL / 
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min for a fixed period of time and altering the gas conditions from aerobic to micro-

aerophilic [composition: 2% O2, 3% CO2, 95% N, at 200 bar] or anaerobic gas conditions 

[composition: 5% CO2, 95% N, at 200 bar]. Micro-aerophilic or anaerobic gas conditions 

were provided to each unit at the same time and at a constant flow rate of 200 cm3 / 

min (Goodson 2000). Additionally, artificial saliva was delivered to the system at the 

flow rate of 0.72 L / day (Wilson 1999; Dalwai et al. 2006; Dalwai et al. 2007; Dalwai 

2008).  

2.3.5 T-CDFF sampling and sample processing 

2.3.5.1 Biofilm sampling 

The sampling process started with a decontamination procedure which included 

spraying the incubator’s interior and then the top plate and sampling port of each unit 

with 70% ethanol and removing any excess ethanol by wiping the surfaces with 70% 

ethanol wipes.  

Next, the rotating table was switched off to align the appropriate PTFE pan with the 

sampling port (Wilson 1999). Each sampling port was then opened aseptically by the 

operator wearing a protective mask, gown and gloves wiped with 70% ethanol. The 

pan with 5 HA discs was removed from the system by screwing the sterilised sampling 

tool against the pan and pulling it out from the table. The sampling port was then 

closed promptly (Wilson 1999). The remaining two units were sampled straight 

afterwards using the same methodology. 

Each pan removed from the T-CDFF system was placed in a separate 50 mL screw cap 

tube (Fisher); discs were removed from each pan and placed in 2.0 mL cryo-vials with 

1.0 mL of phosphate buffered saline (PBS) and 5 glass beads each. Each cryo-vial was 

vortexed for 1.0 min to disperse the biofilm from the surface of the disc (Wilson 1999). 

After obtaining a homogenous suspension, bacterial solutions were transferred to a 

fresh sterile 1.5 mL screw cap tubes (Fisher). Each suspension was designated for 

different sample analysis techniques such as culturing, quantitative polymerase chain 
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reaction (qPCR), 16S rRNA gene sequencing, enzymatic assays or 1H nuclear magnetic 

resonance (NMR) spectroscopy as described in Sections 2-5. 

To ensure a contamination free experiment, the bacterial suspensions retrieved during 

the biofilm sampling were serially diluted and incubated anaerobically on fastidious 

anaerobe agar for 3-5 days at 37°C. The experiment was pronounced as contaminated 

when the community richness on a plate was (i) much lower than 5 morphologically 

different species and (ii) the contaminant was observed on the agar plates and (iii) also 

overgrowing the turntable and tubing connections in the model. 

2.3.5.2 Effluent sampling 

Effluent samples were collected at different time points throughout the T-CDFF. Each 

effluent sampling event started with clamping the waste output to collect enough 

waste to sample 5.0 mL of effluent from each unit. Next, the waste connection was 

unclamped and the effluent was collected in a Bijou bottle attached to the waste 

tubing. The bijou bottle was then aseptically disconnected and closed to prevent 

contamination. A new, sterile bijou bottle was aseptically attached to the waste tubing 

straight after the removal of the previous one. Effluent was collected from each unit at 

the same time.  

The collected effluents were analysed by qPCR, 16S rRNA gene sequencing, 1H NMR 

spectroscopy and by culturing. First, 1.0 mL was transferred to a new 1.5 mL Eppendorf 

and spun down for 10 min at 20,800 x g in a pre-cooled centrifuge to 4°C (Centrifuge 

5417R Eppendorf). The supernatant was removed and the pellet was stored at -20°C 

for qPCR and sequencing analysis (Section 2.5-2.6). In addition, 100 µL of the effluent 

sample, which had not been centrifuged, was serially diluted and plated on fastidious 

anaerobe agar (FAA) for total counts of anaerobes (Section 2.4). The remaining ≈ 4.0 

mL of the effluent was frozen at -20°C and analysed by 1H NMR spectroscopy (Section 

2.7.2). 

To ensure a contamination free experiment, the bacterial suspensions retrieved during 

the effluent sampling were serially diluted and incubated anaerobically on fastidious 
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anaerobe agar for 3-5 days at 37°C. The experiment was pronounced as contaminated 

when the community richness on a plate was (i) much lower than 5 morphologically 

different species and (ii) the contaminant was observed on the agar plates and (iii) also 

overgrowing the turntable and tubing connections in the model. 

2.4 Culture methods 

Throughout the T-CDFF experiments, one disc from each unit was aseptically removed 

and placed in a 1.5 mL crew cap tube (Fisher) containing 1.0 mL of PBS. The discs were 

vortexed for 1 min to obtain a homogenous suspension. Each equally resuspended 

biofilm was serially diluted and plated onto fastidious anaerobe agar supplemented 

with 5% sterile horse blood (Lab M Limited), columbia blood agar supplemented with 

5% sterile horse blood (Lab M Limited), cadmium fluoride acriflavine tellurite agar 

supplemented with 5% blood sterile horse (Oxoid) in duplicate (Table 2.2).  

Medium Non – selective 

CBA (columbia blood agar) with 5 % blood Targeting aerobes. Plates were incubated at 
37°C in a 5% CO2 incubator (Triple Red 
Laboratory) for 3-5 days. 

FAA (fastidious anaerobe agar) with 5 % blood Targeting anaerobes. Plates were incubated 
at 37°C in an anaerobic cabinet (MACS-MG-
1000-Anaerobic workstation) for 5-7 days.  

 

Medium Selective 

M-S (mitis-salivarius) agar M-S is a selective media for Streptococcus 
spp. Plates were incubated at 37°C in 5% 
CO2 incubator (Triple Red Laboratory) for 3-
5 days.  

CFAT (cadmium, fluoride, acriflavine, tellurite) 
agar (Zylber and Jordan 1982) 

CFAT is a selective media for Actinomyces 
spp. Plates were incubated at 37°C in 5% 
CO2 incubator (Triple Red Laboratory) for 3-
5 days. 

Table 2.2 Selective and non-selective media used for T-CDFF experiments.   
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2.5 Culture independent molecular methods 

2.5.1 DNA extraction - bead beating protocol 

Bacterial suspensions obtained from T-CDFF experiments were pelleted by 

centrifugation at 20,800 x g for 10 min in a pre-cooled centrifuge to 4°C (Centrifuge 

5417R Eppendorf). Supernatants were discarded, while bacterial pellets were gently 

re-suspended in 0.5 mL of cetyltrimethylammonium (CTAB). The suspensions were 

transferred to 2.0 mL screw cap tubes containing 200 µL of 0.1 mm silica / zirconia 

beads (Stratech Scientific Ltd.). A 0.5 mL aliquot of Phenol : Chloroform : Isoamyl 

alcohol (P : C : I – 25 : 24 : 1) was added to the tube and lids were tightened. The cells 

were disrupted in a Ribolyser Bead-Beater (Hybaid) for 30 seconds at the speed of 5.5 

m / s to break the cells. Then, the solutions were centrifuged at 20,800 x g for 20 min 

in a pre-cooled centrifuge (Centrifuge 5417R Eppendorf) to 4°C. Top aqueous layers 

were extracted and transferred to the new 1.5 mL Eppendorf. Next, 0.5 mL of 

Chloroform : Isoamyl alcohol (C : I – 24 : 1) was added to the tubes, and mixed well for 

a few seconds by vortexing. Subsequently, the solutions were centrifuged at 20,800 x g 

for 10 min in a pre-cooled centrifuge pre-cooled to 4°C (Centrifuge 5417R Eppendorf). 

Top aqueous layers were extracted and placed in new tubes. Then, two volumes of 

polyethylene glycol 6,000 (PEG) (Sigma) were added to precipitate nucleic acids. The 

solutions were mixed well by vortexing and refrigerated overnight at 4°C to 

precipitate. After precipitation, the solutions were centrifuged at 20,800 x g for 20 min 

in a pre-cooled centrifuge (Centrifuge 5417R Eppendorf). The supernatant was 

removed and the pellet was washed twice with 200 µL of ice cold 70% ethanol to 

remove impurities. The samples were left on the bench at room temperature to dry. 

After that, the pellets were re-suspended in 100 µL of Tris - EDTA Buffer with 10 µL / 

mL RNAse. This protocol has previously been proven to be a successful DNA extraction 

method for communities of mixed Gram-positive and Gram-negative oral bacterial 

species (Griffiths et al. 2000; Ciric et al. 2010).  
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2.5.2 Triplex quantitative Polymerase Chain Reaction (qPCR) 

The qPCR Taqman triplexes used for T-CDFF sample analysis were developed by Dr 

Lena Ciric (Ciric et al. 2010). Their design was based on the original sequences reported 

by Lane for the 16S rRNA gene (Lane 1991). Each primer and probe set was initially 

optimised to ascertain optimal oligonucleotide concentrations as shown in Table 2.3 

(Ciric et al. 2010). Then, they were combined into three triplexes and were found to 

perform at high efficiency when the Mg2+ concentration was set to 6 mM. The three 

triplex reactions were run as FLV (Fusobacterium nucleatum, Lactobacillus casei, 

Veilonella dispar), NAP (Neisseria subflava, Actinomyces naeslundii, Prevotella 

intermedia), and SSU (Streptococcus sanguinis, Streptococcus mutans, Universal) (Ciric 

et al. 2010). 
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Organism Sequence Conc
(nM) 

FL
V

 

F. 
nucleatum 

F primer F 5-ACAATCCGAACTAAGAATAGTTTTC-3 900 

R primer R 5-GTCATCATGCCCCTTATACG-3 900 

Probe P 5-6FAM-TCC[+A]CCT[+C][+A][+C]GG[+C]TTT-BHQ1-3 50 

L. casei F primer F 5-AGAGTTTGATCCTGGCTCAG-3 50 

R primer R 5-ACTCGTTCCATGTTGAATCTC-3 900 

Probe P 5-HEX-CGA[+T]CA[+T]CA[+A]CG[+A]G[+A]A[+C]TCG-
BHQ1-3 

50 

V. dispar F primer F 5-CTACAATGGGAGTTAATAGACGGAAG-3 300 

R primer R 5-CAGCCTACGATCCGAACTGAG-3 50 

Probe P 5-Cy5-AGC[+A]AA[+C]CCGA[+G]AAA[+C][+A]CT-BHQ2-
3 

50 

N
A

P
 

N. subflava F primer F 5-AACGTATTCACCGCAGTATG-3 900 

R primer R 5-TGGAGCCAATCTCACAAAAC-3 300 

Probe P 5-HEX-TGAC[+C][+T][+G]CG[+A]TT[+A]CTAGCG-BHQ1-
3 

100 

A. 
naeslundii 

F primer F 5-GAGCACGCCGCTCTGTA-3 900 

R primer R 5-ACCTTGCCGCCTCCGAA-3 900 

Probe P 5-6FAM-CCTCGTCGCCACGGTGGGTCA-BHQ1-3 300 

P. 
intermedia 

F primer F 5-GCCTAATACCCGATGTTGTC-3 300 

R primer R 5-CGCACCAACAAGCTAATCAG-3 900 

Probe P 5-Cy5-CA[+T][+C]CCC[+A]TCC[+T]CC[+A]CC-BHQ2-3 300 

SS
U

 

S. sanguinis F primer F 5-GTGTCATCAATTCCCAGAAAAG-3 900 

R primer R 5-ATTATTGGCTGATGTGGAGTC-3 900 

Probe P 5-HEX-AGA[+T]GA[+C]CA[+C]CA[+C]CGT-BHQ1-3 50 

S. mutans F primer F 5-TCACCAGAAAAGACAAAAGTTAC-3 900 

R primer R 5-AACTACTAACCAAGCCCAAC-3 300 

Probe P5-Cy5-TA[+G]CC[+G]C[+A]GC[+A]A[+T]CA[+A]TG-
BHQ2-3 

300 

Universal F primer F 5-TCCTACGGGAGGCAGCAGT-3 900 

R primer R 5-GGACTACCAGGGTATCTAATCCTGTT-3 300 

Probe P 5-6FAM-CGTATTACCGCGGCTGCTGGCAC-BHQ1-3 100 

Table 2.3 FLV, NAP and SSU triplexes consisted of: F. nucleatum, L. casei and V. dispar (FLV); N. 
subflava, A. naeslundii and P. intermedia (NAP); and S. sanguinis, S. mutans and Universal 
(SSU). Bases shown in brackets are locked nucleic acid bases. 

All triplex reactions were run in triplicate in a final volume of 25 µL. SensiMix™ Probe 

Kit (Bioline) qPCR Master Mix was used and in a Rotor-gene 6500 (QIAGEN) cycler 

using the green, yellow and red channels for data collection. Each reaction contained 

the concentrations of the oligonucleotides shown in Table 2.3 and 6 mM Mg2+. The 

reaction conditions were performed with an annealing / extension temperature 

ranging from 60°C to 64°C as shown in Table 2.4. Data collection took place during the 

annealing / extension step. Species specific primers and dual-labelled fluorogenic 

probes shown in Table 2.3 were designed for all organisms using 16S rRNA gene 
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sequences, with the exception of the Streptococcus spp. where the sodA gene was 

used, and A. naeslundii where the ureC gene was used.  Each triplex reaction was 

shown in one of 3 different fluorescent channels, red, green and yellow. The green 

channel showed F. nucleatum, A. naeslundii, Universal. The yellow channel shows L. 

casei, S. sanguinis, N. subfllava. The red channel showed V. dispar, P. intermedia, S. 

mutans. Data were collected from each channel and quantified using DNA standards 

(Ciric et al. 2010). 

Step Conditions 

Initialization step: hot – start 95°C for 10 min 

Denaturation 40 cycles: 95°C for 15 s 

Annealing / Extension step 
40 cycles: x°C for 60 s 

(60°C for FLV & SSU, 64°C for NAP) 

Table 2.4 Cycling conditions for triplex qPCR. 

2.5.2.1 Quantitative Polymerase Chain Reaction (qPCR) standards 

In order to produce standard curves for the quantification of eight bacterial species (F. 

nucleatum NCTC 10562, L. casei ATCC 334, V. dispar NCTC 11831, N. subflava DSM 

17610, A. naeslundii DSM 17233, P. intermedia DSM 20706, S. sanguinis NCTC 02863 

and S. mutans ATCC 700610), DNA extractions were performed on organisms 

previously enumerated using viable counts, making it possible to relate the number of 

cells to the DNA concentration. A mixture of the above strains’ DNA was used as 

standard DNA in the universal assay. Standard curves consisting of at least four 10-fold 

dilutions of reference DNA were run in triplex assays. The detection limits for all 8 

bacterial strains and the total bacteria were set based on qPCR standards. 

2.5.3 Duplex quantitative Polymerase Chain Reaction (qPCR) 

The qPCR taqman duplex for detection of S. sanguinis and A. naeslundii was based on 

qPCR taqman triplexes developed by Dr Lena Ciric (Ciric et al. 2010). The same primers 

and probes for A. naeslundii and S. sanguinis used in triplexes were used and each 

reaction contained the oligonucleotides concentrations shown in Table 2.3 and 6 mM 

Mg2+. Duplex reactions were run in triplicate in a final volume of 15 µL. SensiMix Probe 
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(Bioline) qPCR mastermix was used in a Rotor-gene 6500 (QIAGEN) cycler using the 

green and yellow channels for data collection. The reaction conditions were as 

mentioned in Table 2.5. The green channel showed A. naeslundii while the yellow 

channel showed S. sanguinis. Data were collected from each channel and quantified 

using DNA standards. 

Step Conditions 

Initialization step: hot - start 95°C for 10 min 

Denaturation 40 cycles of 95°C for 15 s 

Annealing / Extension step 40 cycles of 62°C for 60 s 

Table 2.5 Cycling conditions for duplex qPCR. 

2.5.3.1 Quantitative Polymerase Chain Reaction (qPCR) standards 

Duplex qPCR standards were performed according to the same methodology as in 

Section 2.5.2. In order to produce standard curves for the enumeration of S. sanguinis 

and A. naeslundii, DNA extractions were performed on organisms that had been 

enumerated by viable counts making it possible to relate numbers of cells to the 

amount of DNA. Standard curves consisting of at least four 10-fold dilutions of DNA 

were run in triplicates. The detection limits for S. sanguinis and A. naeslundii were set 

based on the qPCR standards. 

2.6 16S rRNA genomics  

The 16S rRNA genomic sequencing was performed using dual-index sequencing 

chemistry on a MiSeq platform with illumina-adapter primers containing Index 1 (i7) 

and Index 2 (i5). The combination of 12 unique Index 1 sequences with 8 unique 

sequences of Index 2 allowed cost-effective multiplexing of 96 samples (12x8). The 

dual-index PCR amplicon library was created by the amplification of the variable region 

(V5-7) of 16S ribosomal RNA gene present in each community sample. The primers 

were designed by Dr Tony Brooks (UCL, Institute of Child Health) using the original 

Kraneveld et al. (2012) design where the 454 adapters were replaced with Illumina i5 

and i7 adapter. The PCR amplification was carried out in a total volume of 25 µL using 2 

µL of DNA template, 0.025 µM MolTaq, 0.4 µM 785F and 1175R Primers (Sigma), 200 

µM dNTPs (Bioline), 1X  Molzym PCR Buffer (VH BIO, Germany) and Moltaq Water. PCR 



Chapter 2: Materials and Methods 

 

98 

 

conditions started with 95°C for 5 min, and then were followed by 25 cycles of 30 sec 

at 94°C, 60 sec at 40°C, 60 sec at 72°C with the final extension stage at 72°C for 10 min. 

The presence of the 504 base-pair amplicon was confirmed by electrophoresis on 1% 

agarose gel and then purified using AMPure XP (Agencourt BioSciences Corporation). 

Samples were normalised to 10 nM DNA using a Qubit dsDNA BR Assay Kit (Invitrogen) 

and a Quibit Fluorometer (Invitrogen). Normalized samples were pooled together and 

supplemented with 5% PhiX to diversify the library. The pooled library was analysed 

using Bioanalyser (Agilent) to confirm the absence of primer dimers and to confirm the 

correct amplicon size. Paired-end sequencing (2x251 bp) on the dual-index library was 

performed by Dr Tony Brooks and Dr Anna Tymon (UCL, Institute of Child Health and 

UCL Eastman Dental Institute, respectively) using MiSeq Reagent Kit v2 and Illumina 

MiSeq sequencer. The MiSeq Reporter v2.3 was used to de-multiplex the raw data 

with its in-built programs to analyse each sample down to the species level. This post-

run analysis started with de-multiplexing filtered indexed reads. Data retrieved from 

the pooled library was based on a mixture of short indices that each respective sample 

was consigned to. Rarefaction files and summary files of the percentage hits were 

generated by MiSeq reporter to enable further data analysis. (FASTQ files were 

generated including the information of each sample’s reads and quality scores.) The 

ClassifyReads algorithm developed by Illumina used the FASTQ files together with a 

Greengenes Database as a reference to classify each sample at the taxonomic level.  

2.7 Metabolomics  

2.7.1 Enzymatic assays 

2.7.1.1 Acid and alkaline phosphatase assays 

Acid and alkaline phosphotase assays were conducted based on modification of the 

method of Bessey, Lowry and Brock (Bessey et al. 1946). 

Both Acid and alkaline phosphatase assays started with incubating 0.5 mL of bacterial 

culture with 0.5 mL of 0.5% w / v; p-nitrophenyl disodium orthophosphate (pNPP) 

substrate and 2.0 mL of 0.1 M MES (2-(N-morpholino) ethane sulphonic acid) buffer 
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adjusted to pH 5.5 for acid phosphatase or 2.0 mL of 0.1 M Bicine (N, N-bis-[2-

hydroxyethyl]-glycine) buffer adjusted to pH 9.0 for alkaline phosphatase. The mixture 

was vigorously mixed and incubated for 120 min at 37 ± 1°C. After 1.0 min incubation, 

1.0 mL of the solution was removed and mixed with 2.0 mL of 0.2 M NaOH to stop the 

reaction. Liberated p-nitrophenol (pNP) was measured at the wavelength of 405 nm 

and used as a blank. At particular time intervals (20, 40, 80, 120 min), 1.0 mL of 

bacterial solution was taken and placed in a test tube with 2.0 mL of 0.2 M NaOH. The 

measurements were taken at the above mentioned wavelength and recorded as an 

increase of absorbance per unit of time. The temperature in the laboratory was 

controlled at 21 ± 1°C.  

2.7.1.2 Trypsin – like – protease assay 

The Trypsin-like-protease assay was performed based on modified method of 

Yoshimura et al. (Yoshimura et al. 1984).  

A 100 µL aliquot of bacterial suspension was mixed with 3.6 mL of 0.1 M MOPS buffer 

adjusted to pH 7.5, 1.0 mL of 0.2 mM Nα-Benzoyl-L-arginine-4-nitroanilide 

hydrochloride (BAPNA) and 100 µL of 10 mM L-cysteine HCl. The mixture was mixed 

rapidly and incubated at 37 ± 1°C. The activity was monitored at a wavelength of 410 

nm at certain time intervals (2, 7, 11, 20 and 40 min) after blanking the 

spectrophotometer with the same sterile solution. Measurements were recorded and 

the increase in absorbance was calculated per unit of time. The temperature in the 

laboratory was controlled at 21 ± 1°C.  

2.7.2 1H Nuclear Magnetic Resonance Spectroscopy (NMR) 

2.7.2.1 Sample preparation and processing 

Bacterial solutions, either from HA discs or effluent samples, were thawed from deep 

freeze (-20°C) and allowed to defrost. Defrosted samples were transferred to 15 mL 

screw cap tubes marked with unique identification numbers. All samples were 

prepared simultaneously to minimise batch-to-batch variability (the temperature in 

the laboratory was controlled at 21 ± 1°C). The 15 mL screw caps were centrifuged for 
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30 min at 6654 x g in a pre-cooled centrifuge to 5°C (Centrifuge 5417R Eppendorf). 

After centrifugation, the supernatant was decanted into appropriately labelled glass 

screw cap bijou bottles. The pellets were discarded. A volume of 80 μL of an NMR 

pyridazine reference standard was pipetted into an Eppendorf tube together with 880 

μL of the decanted saliva of each sample. The solutions was mixed and transferred via 

long glass Pasteur pipette to 5 mm NMR tubes. The freshly prepared samples were 

placed on a NMR carousel and then in a NMR chamber for analysis (Bruker). The post-

experimental analysis was performed by Dr Michael Cannon and included principal 

component analysis (PCA) and orthogonal partial least square analysis (OPLS). 
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3.1 Introduction 

The existence of multi-species biofilms known as "dental plaque" is the fundamental 

reason behind the aetiology of oral diseases such as caries, gingivitis or periodontitis. 

Hence, the understanding of biofilm formation, complexity and its effective eradication is 

pivotal to the maintenance of oral health and to the prevention of oral diseases. Due to 

the structural complexity of dental plaque and its formation being dependent on many 

different factors ranging from the host immune-response to daily diet, it is important to 

develop a model simulating the oral environment, including its physicochemical and 

metabolical interactions (Wilson 1999; Guggenheim et al. 2001). Several in vivo primate 

and rodent models have been effectively employed, however, for ethical reasons and due 

to the high purchase and maintenance costs of these models they are much less 

advantageous than in vitro models which offer greater control of environmental factors 

and allow high-throughput screening (Wilson 1999; Nett et al. 2010). Many different in 

vitro models have been proposed for oral disease modelling to date, ranging from simple 

flow cells, chemostats to more sophisticated models such as Constant Depth Film 

Fermentor (CDFF) (Guggenheim et al. 2001). The CDFF was developed over two decades 

ago and is currently established as a representative model for modelling diverse microbial 

populations (Peters & Wimpenny 1987; Pratten et al. 1998; McBain et al. 2003). Its main 

advantage is the ability to test many different environmental factors which can affect 

biofilm growth under controlled and aseptic conditions. All of the above mentioned 

models contributed to the understanding of biofilm adhesion, formation and kinetics, 

however, none of the models allowed (i) reproducible and simultaneous testing of oral 

biofilms under different experimental conditions and (ii) longitudinal screening of 

multiple products at once and (iii) the dose response measurements at the same time ( 

Pratten et al. 1998; Guggenheim et al. 2004).  

To circumvent the above mentioned problems, a new Triple-Constant Depth Film 

Fermentor (T-CDFF) has been developed in this project. The T-CDFF’s construction is 

based on the CDFF which underwent a few mechanical alterations (as described in this 

chapter) to allow for reproducible and simultaneous growth of oral biofilms under 

different experimental conditions. The study presented in this chapter demonstrates the 
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development and validation process of this new in vitro model with the evaluation of its 

potential for reproducible disease modelling and antimicrobials testing. 
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3.2 Materials and Methods 

3.2.1 Methodology overview 

The experimental set-up of all the CDFF experiments presented in this chapter was 

performed according to Chapter 2, Section 2.2.2-2.2.4. The methodologies applied 

throughout the validation process are presented below.  

3.2.1.1 Methodology 1 

The T-CDFF model was inoculated (Chapter 2, Section 2.2.1) with the dual-species 

inoculum (Chapter 2, Section 2.3.1.1) and maintained under health conditions for 11 days 

in the warm-room at 37°C (Chapter 2, Section 2.3.3). The nutrients source for growing S. 

sanguinis and A. naeslundii was the artificial saliva provided at the flow rate of 0.5 mL / 

min (Chapter 2, Section 2.3.2). 

3.2.1.2 Methodology 2 

The T-CDFF model was inoculated with a microcosm community (Chapter 2, Section 

2.3.1.2) and run under health conditions for 11 days in the warm-room at 37°C (Chapter 

2, Section 2.3.3) The artificial saliva was used as a nutrient source delivered at the flow 

rate of 0.5 mL / min (Chapter 2, Section 2.3.2).  

3.2.1.3 Methodology 3 

Both CDFF and T-CDFF were run simultaneously in separate incubators using the same 

experimental conditions. The models were inoculated with a microcosm community 

(Chapter 2, Section 2.3.1.2) and run for 11 days under health conditions (Chapter 2, 

Section 2.3.3) with artificial saliva as a nutrients source delivered at the flow rate of 0.5 

mL / min (Chapter 2, Section 2.3.2).  

3.2.1.4 Methodology 4 

The last set of experiments was performed using a T-CDFF model inoculated with a 

microcosm community (Chapter 2, Section 2.3.1.2) and run under health conditions for 

12 days in an incubator that fitted the model and its’ flasks with tubing connections. The 

artificial saliva was delivered at a flow rate of 0.5 mL / min (Chapter 2, Section 2.3.2). 
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Additional mechanical improvements were introduced such as new and tighter top / 

bottom seal, waste output seal, screw cap seals, and non-domed nuts.  

3.2.2 CDFF sampling and data processing 

Sampling points for the experiments using methodology 1, 2 and 3 were performed at 

day 1, 3, 6, 9, and day 11, while samples for experiments using methodology 4 were 

collected at day 2, 3, 8, 10, and day 12. Biofilm sampling and processing was performed 

according to the methodology described in Chapter 2, Section 2.3.5. DNA was extracted 

from biofilms using a bead beating protocol (Chapter 2, Section 2.5.1). The experiments 

using methodology 1 were analysed by the duplex qPCR with primers for S. sanguinis and 

A. naeslundii (Chapter 2, Section 2.5.3), while experiments using methodology 2, 3 and 4 

were analysed by triplex qPCR with primer sets for S. sanguinis, S. mutans, V. dispar, N. 

subflava, L. casei, F. nucleatum, A. naeslundii, P. intermedia and universal (Chapter 2, 

Section 2.5.2). To confirm that the experiment was not contaminated, the biofilm 

community was verified by culturing the bacterial suspensions obtained from each 

sampling point on fastidious anaerobe agar (explained in Chapter 2, Section 2.3.5).  

3.2.3 Statistical analysis 

The data are presented as the mean ± standard deviation. To investigate the growth 

patterns and the model’s repeatability, the qPCR data were subjected to log10 

transformation and normal distribution was checked by plotting the histograms. Then the 

qPCR data were paired according to the bacterial strain and unit, and analysed by 

Student’s t-test with p-value set as 0.05 (IBM SPSS Statistics 22.0). 
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3.3 T-CDFF results 

This Section presents the outcomes of the T-CDFF model validation process. 

3.3.1 Model development  

The T-CDFF model was scaled down in comparison to the CDFF (Chapter 2, Section 2.2) 

and a few mechanical changes were applied to ease portability and to allow 

simultaneous biofilm growth as well as testing of dentifrices and antimicrobials. All the 

adjustments are illustrated in Figure 3.1 and then further described in Table 3.1.  

 

4 

A 
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Scaled down units were run 
simultaneously on a portable motor 
at a constant speed. All parts such 
as the stainless steel base, the top 
plate, the glass vessel, the top and 
bottom seals were smaller in 
diameter (see specification in 
Chapter 2, Table 2.1). The main 
differences between the models are 
depicted in the picture on the left 
and listed in Table 3.1. 

Figure 3.1 The T-CDFF model with the major modifications. A) T-CDFF model with 3 units 
housed on a single motor housing, B) The enlargement of a single unit with the mechanical 
modifications highlighted and explained below. 

 

 

 

The ‘L shape’ waste 
output was 
implemented instead 
of ‘T shape’ to ease 
tubing attachment and 
manoeuvring; 
additional white PTFE 
seal was added to 
improve the air-
tightness of the joint. 

 

 

 

A white PTFE cover 
was placed on the 
gearbox to prevent 
gear box damage and 
extend its bearing life. 

3 

1 

2 

2 

1 

B 
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The turntable diameter 
was reduced so that 3 
units could be housed 
on a motor and run in 
an incubator. 
Turntable had 5 
sampling pans instead 
of 15.  

 

 

A single, portable 
motor with white 
handles on both sides 
that ease portability. 
Three units are driven 
by the single portable 
motor housing at the 
same and non-
adjustable speed. 

Table 3.1 presents the description of the mechanical modifications applied to the T-CDFF 
model. 

The need for the mechanical improvements was either identified by AC Service Ltd or 

by myself. The implemented changes improved the T-CDFF model construction and 

increased its portability. To verify whether the newly constructed model was working 

in a reliable manner, we went through the validation process described in the Section 

below. 

3.4 Model validation 

This Section provides information on the validation process of the T-CDFF model and 

broadly fits into four separate development episodes.  

3.4.1 Methodology 1 

Three unsuccessful T-CDFF experiments were conducted using this methodology. All of 

them were contaminated at the early stage of the experiment by a single species 

contaminant that outgrew the dual-species community. Regarding the contamination 

issues, experiments were interrupted and no reliable data generated. The fourth 

3 

4 
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experiment was partially contaminated, with only unit 3 being affected at the end of 

the experiment, day 11. Results from this run are presented in Figure 3.2.  
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Figure 3.2 The total number of S. sanguinis (blue line) and A. naeslundii (red line) detected by 
duplex qPCR primers in each unit of the T-CDFF model. Error bars represent the standard error 
calculated on n = 6. *n=6 refers to two biological and three technical replicates 

Figure 3.2 presents the total number of S. sanguinis and A. naeslundii in each unit of 

the T-CDFF over 11 days of health conditions. Regarding S. sanguinis, unit 1, 2 and 3 

started with the cell number of 2.10x105, 2.48x105, and 1.55x105 cells / biofilm after 24 

hours of incubation, respectively. Unit 1 and Unit 2 had a similar growth trend with a 

significant 0.76 and 0.48 logs increase over time (p<0.05) reaching the number of 

1.2x106 and 7.43x105 cells / biofilm at day 11, respectively. On the contrary, unit 3 did 

not follow the same growth trend and there was a significant 0.36 log drop of S. 

sanguinis on day 11 (p=0.034).  

The numbers of A. naeslundii in each of the unit (unit 1-3) after 24 hour incubation 

reached 1.96x106, 4.19x105 and 4.26x105 cells / biofilm, respectively and decreased 

over time. Unit 1 and Unit 2 recorded the same descending pattern with significant 

bacterial reduction of 1.37 and 1.45 log (p<0.05), respectively. In comparison to unit 1 

and 2, unit 3 showed higher reduction of 2.37 log reaching 1.83x103 cells / biofilm 

(p=0.003). 
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3.4.2 Methodology 2 

The experiment conducted using this methodology was contaminated at an early 

phase of the run. The experiment was stopped and no reliable data were generated.  

3.4.3 Methodology 3 

The CDFF and a single T-CDFF unit were run simultaneously in separate incubators 

using the same experimental conditions to investigate the potential experimental 

differences between the models. Both models were run successfully without 

contamination and provided a reliable data set presented below. The only difference 

observed between the models was that bacterial waste clogged the T-CDFF’s gearbox 

and leaked through it damaging the motor. Additionally, a leakage from the waste 

output occurred via a distorted seal. The above mentioned mechanical problems did 

not impair the experiment and reliable results were obtained from both models (Table 

3.2 and Table 3.3). The problems mentioned above were addressed in Methodology 4. 

Table 3.2 presents the total number of bacteria over 11 days of health conditions 

together with the health related bacteria: S. sanguinis, V. dispar and N. subflava. 
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MODEL Time [d] 
Total bacteria 
cells / biofilm 

S. sanguinis 
cells / biofilm 

V. dispar 
cells / biofilm 

N. subflava 
cells / biofilm 

CDFF 1 1.3E+07 1.4E+04 5.6E+03 2.1E+02 

  
(5.7E+06) (5.3E+03) (5.7E+02) (1.5E+01) 

UNIT 1 2.1E+07 4.9E+03 7.7E+03 2.6E+02 

  
(3.9E+06) (1.1E+03) (4.7E+01) (2.2E+01) 

  CDFF 3 7.5E+09 1.0E+07 2.9E+08 6.2E+06 

  
(9.8E+08) (1.7`E+06) (5.9E+05) (1.3E+06) 

UNIT 3 6.5E+09 1.6E+07 1.4E+06 2.7E+07 

  
(2.2E+08) (5.6E+05) (3.8E+03) (1.4E+06) 

CDFF 6 1.0E+10 4.5E+07 3.5E+08 2.5E+07 

  
(1.1E+09) (1.4E+07) (1.4E+08) (3.7E+06) 

UNIT 6 1.1E+10 2.8E+07 4.9E+08 1.7E+07 

  
(7.5E+08) (1.5E+06) (2.0E+08) (3.8E+05) 

CDFF 9 1.0E+10 3.3E+07 4.3E+08 1.1E+07 

  
(3.2E+08) (6.7E+06) (1.7E+08) (1.4E+06) 

UNIT 9 1.1E+10 2.2E+07 4.8E+08 1.1E+07 

  
(2.1E+09) (1.0E+06) (2.0E+08) (1.6E+06) 

CDFF 11 5.6E+09 1.3E+07 7.1E+08 7.2E+06 

  
(1.5E+08) (6.4E+05) (5.8E+06) (1.1E+06) 

UNIT 11 7.3E+09 2.3E+07 1.5E+08 1.6E+07 

  
(5.9E+08) (2.1E+06) (1.3E+06) (4.0E+05) 

S. mutans was not detected 

Table 3.2 shows the numbers for the total bacteria and the health associated bacteria detected 
by triplex qPCR primers in both CDFF and the T-CDFF’s unit. The numbers are expressed as cells 
/ biofilm with a standard error presented in brackets (n=6). n=6 refers to two biological and 
three technical replicates 
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Table 3.3 presents the numbers of gingivitis associated bacteria i.e. F. nucleatum, A. 

naeslundii and P. intermedia over the period of 11 days with sampling days at day 1, 3, 

6, 9 and day 11. L. casei and S. mutans were not detected in biofilm samples over time. 

 

MODEL Time [d] F. nucleatum 
cells / biofilm 

A. naeslundii 
cells / biofilm 

P. intermedia 
cells / biofilm 

CDFF 1 1.7E+02 5.7E+04 4.1E+04 
  (7.6E+00) (3.9E+03) (6.7E+03) 

UNIT 1 1.9E+02 5.9E+04 2.4E+04 
  (2.3E+01) (5.1E+03) (6.4E+03) 

CDFF 3 1.0E+00 6.4E+04 4.1E+02 
  (4.1E-01) (5.4E+04) (5.1E+01) 

UNIT 3 3.0E+01 5.9E+04 3.6E+02 
  (4.6E+00) (4.2E+04) (3.0E+01) 

CDFF 6 7.4E+00 5.0E+04 4.3E+02 
  (3.7E+00) (2.6E+03) (4.8E+01) 

UNIT 6 1.9E+01 5.6E+04 2.8E+02 
  (8.5E+00) (2.6E+03) (3.3E+01) 

CDFF 9 4.4E+01 5.4E+04 3.0E+02 
  (1.4E+01) (3.5E+03) (2.6E+01) 

UNIT 9 1.1E+01 6.1E+04 2.6E+02 
  (6.4E+01) (6.4E+04) (2.4E+01) 

CDFF 11 3.8E+01 5.5E+04 2.9E+02 
  (9.0E+00) (2.9E+03) (4.0E+01) 

UNIT 11 4.1E+01 5.9E+04 2.7E+02 
  (7.5E+00) (8.6E+03) (2.1E+01) 

L. casei was not detected 
 

Table 3.3 shows the numbers for the gingivitis associated bacteria detected by triplex qPCR 
primers in both CDFF and the T-CDFF’s unit. The numbers are expressed as cells / biofilm with 
a standard error presented in brackets (n = 6). n=6 refers to two biological and three technical 
replicates  

The total number of bacteria in both models was detected at around 107 cells / biofilm 

at day 1 and increased by 2.75 log in CDFF and 2.50 log in T-CDFF unit by day 3 

(p<0.05). From day 6 onwards, bacteria reached a stable number of 1010 cells / biofilm 

with a slight decrease on the last day and no major difference between the models 

(p=0.304).  

Similar growth trends were seen for the health related bacteria that increased by day 3 

and then reached stable numbers from day 6 onwards. The number of S. sanguinis was 

1.40x104 cells / biofilm in the CDFF and 4.90x103 cells / biofilm in the T-CDFF’s unit at 
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day 1 and increased by 2.86 log in CDFF and 3.50 log in T-CDFF unit by day 3 (p<0.05). 

From day 6, S. sanguinis reached a stable number of approximately 107 cells / biofilm 

in both models with no differences between them (p=0.658). A similar growth pattern 

was seen for N. subflava and V. dispar with no significant difference across the units 

(p=0.426, p=0.374, respectively).  

N. subflava started with 102 cells / biofilm in both models at day 1 and increased by 

4.48 log in CDFF and 5.02 log in T-CDFF unit at day 3 (p<0.05) and stayed at a constant 

level of 107 cells / biofilm towards the end of the experiment. V. dispar reached 

5.60x103 cells / biofilm and 7.70x103 cells / biofilm in the CDFF and the single unit of 

the T-CDFF respectively after 24 hours incubation with 4.72 log increase in CDFF and 

2.27 log increase in T-CDFF unit from day 1 to day 3 (p<0.05) followed by a stable 

number of 108 cells / biofilm from day 6 onwards. 

On the contrary, there was no growth increase over time for the gingivitis related 

bacteria. F. nucleatum reached low numbers throughout the experiment in both 

models. The starting numbers of A. naeslundii after 24 hour incubation in both models 

were 104 cells / biofilm. The bacterial numbers remained constant over time with no 

significant difference in the growth pattern between the models (p=0.286). The 

number of P. intermedia reached 104 cells / biofilm at the beginning of the experiment, 

and then decreased to 102 cells / biofilm within 3 days and stayed at this level in both 

units until the end of experiment (p=0.366).  

3.4.4 Methodology 4 

This Section presents the results obtained from the T-CDFF experiments with changed 

parts and optimized methodology. The leakage via the gearbox and from the waste 

output was addressed by attaching a PTFE cap onto a shaft to protect the gearbox 

from blockage previously caused by bacterial waste. Additionally, a new tight waste 

output seal substituted the distorted one. The model’s air-tightness was further 

investigated and improved; a distorted top/bottom seal, waste output seal, screw cap 

seal were replaced and non-domed nuts were used to enhance the air-tightness.  
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3.4.4.1 Investigation of the oral community developed in the T-CDFF model 

Table 3.4-3.6 presents the bacteria implicated in health and gingivitis over 12 days of 

health conditions, while being retrieved at different sampling points from the T-CDFF 

model.  

 

  Total bacteria S. sanguinis 

 Average [cells / biofilm] Average [cells / biofilm] 

Time [d] unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 

2 5.16E+08 8.23E+08 4.19E+08 1.88E+04 2.53E+04 2.39E+05 

 (2.59E+08) (1.42E+08) (1.76E+07) (3.49E+03) (2.17E+03) (9.03E+04) 

3 3.49E+09 8.36E+08 1.12E+09 2.32E+06 5.92E+04 1.80E+05 

 (2.16E+08) (3.57E+08) (7.36E+07) (3.79E+03) (2.48E+04) (4.43E+04) 

8 2.51E+09 8.48E+09 8.31E+09 2.00E+07 9.76E+07 3.23E+07 

 (1.43E+09) (1.03E+09) (4.76E+09) (3.02E+03) (1.43E+07) (1.85E+07) 

10 7.03E+07 1.16E+09 3.61E+09 7.33E+05 1.34E+07 1.13E+07 

 (6.40E+06) (2.94E+08) (4.82E+08) (3.30E+03) (4.91E+06) (8.65E+04) 

12 7.10E+08 9.94E+08 4.14E+09 7.59E+06 7.69E+06 1.83E+07 
 (3.94E+08) (3.39E+08) (2.25E+09) (3.70E+03) (2.36E+06) (9.41E+06) 

Table 3.4 The number of total bacteria and S. sanguinis detected by triplex qPCR primers in 
each unit of the T-CDFF. The amount of bacteria is expressed as cells / biofilm with standard 
error presented in brackets (n=6). n=6 refers to two biological and three technical replicates 

Table 3.5 present the results for N. subflava and V. dispar. L. casei and S. mutans were 

not detected in biofilm samples.   
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  N. subflava V. dispar 

 Average [cells / biofilm] Average [cells / biofilm] 

Time [d] unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 

2 7.71E+02 6.92E+02 7.92E+02 1.30E+04 1.23E+04 1.19E+04 

 
(2.59E+01) (6.88E+01) (5.97E+01) (3.61E+02) (4.34E+02) (1.84E+02) 

3 6.67E+02 8.92E+02 9.83E+02 1.47E+04 1.30E+04 1.33E+04 

 
(8.03E+01) (8.31E+01) (1.78E+02) (6.45E+02) (7.13E+02) (4.56E+02) 

8 6.92E+02 7.42E+02 8.33E+02 1.33E+04 1.63E+04 1.41E+04 

 
(9.61E+01) (5.69E+01) (7.71E+01) (1.15E+03) (4.84E+02) (1.51E+03) 

10 5.42E+02 7.17E+02 8.42E+02 1.21E+04 1.27E+04 1.56E+04 

 
(1.19E+02) (5.73E+01) (9.78E+01) (2.75E+02) (3.76E+02) (4.79E+02) 

12 7.25E+02 5.75E+02 7.50E+02 1.47E+04 1.21E+04 1.32E+04 

 
(3.10E+01) (1.34E+02) (5.00E+01) (7.61E+02) (5.54E+02) (6.67E+02) 

S. mutans was not detected  

Table 3.5 The number of cells for N. subflava and V. dispar detected by triplex qPCR primers in 
each unit of the T-CDFF. The number of bacteria are expressed as cells / biofilm with a 
standard error presented in brackets (n = 6). *n=6 refers to two biological and three technical 
replicates  

Regarding the health associated bacteria, only S. sangunis recorded a growth increase 

from 1.88x104, 2.53x104, 2.39x105 cells / biofilm (unit 1-3, respectively) at day 2 to 

7.59x106, 7.69x106, 1.83x107 cells / biofilm at day 12 for all three units, respectively. 

Due to the air-locked tubing connection, the model was on medium starvation for at 

least 16 hours before the problem was realised and solved. This resulted in a lower cell 

number for S. sangunis and the total bacteria on day 10, specifically for unit 1. The 

remaining health associated bacteria, N. subflava and V. dispar showed no growth 

increase over time and lack of significant differences among the units (as shown by the 

statistical analysis presented in Section 3.4.4.2). 
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 F. nucleatum A. naeslundii P. intermedia 

 Average [cells / biofilm] Average [cells / biofilm] Average [cells / biofilm] 

Time [d] unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 

2 7.50E+01 9.16E+01 9.16E+01 1.43E+04 1.32E+04 1.64E+04 5.63E+04 5.45E+04 5.78E+04 

 (1.1E+01) (1.5E+01) (8.3E+00) (5.3E+03) (5.0E+03) (4.6E+03) (8.1E+02) (1.0E+03) (1.1E+03) 

3 1.16E+02 7.50E+01 7.50E+01 1.19E+04 1.11E+04 1.22E+04 5.74E+04 5.38E+04 5.71E+04 

 (1.1E+01) (1.1E+01) (1.7E+01) (3.8E+03) (4.4E+03) (4.8E+03) (8.1E+02) (2.8E+03) (1.7E+03) 

8 1.0E+02 1.3E+02 8.33E+01 1.12E+04 1.10E+04 2.1E+04 5.75E+04 5.85E+04 5.72E+04 
 (1.3E+01) (1.7E+01) (1.7E+01) (3.4E+03) (3.4E+03) (3.9E+03) (2.5E+03) (7.9E+02) (2.0E+03) 

10 8.33E+01 9.16E+01 1.25E+02 1.12E+04 1.0E+04 9.93E+03 5.23E+04 5.82E+04 5.97E+04 

 (1.1E+01) (1.5E+01) (1.1E+01) (4.5E+03) (3.6E+03) (3.7E+03) (8.6E+02) (8.0E+02) (1.8E+03) 

12 1.08E+02 7.50E+01 1.0E+02 1.03E+04 1.10E+04 1.09E+04 5.98E+04 5.57E+04 5.26E+04 
 (8.3E+00) (1.1E+01) (2.2E+01) (4.1E+03) (3.9E+03) (4.7E+03) (4.8E+02) (2.0E+03) (1.3E+03) 

L. casei was not detected 

 

 Table 3.6 presents the numbers of the gingivitis associated bacteria over the period of 12 days. 

Table 3.6 The number of cells for the gingivitis associated bacteria F. nucleatum, A. naeslundii and P. intermedia 
detected by triplex qPCR primers in each unit of T-CDFF. The numbers of bacteria are expressed as cells / biofilm with a 
standard error presented in brackets (n = 6). n=6 refers to two biological and three technical replicates 
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As health conditions were maintained during the experiment, there was no growth 

increase over time for the gingivitis related bacteria. F. nucleatum reached 7.50x101, 

9.16x101 and 9.16x101 cells / biofilm after 48 hours of incubation for all three units, 

respectively and remained at this approximate level throughout the whole experiment 

with no major differences among the units across the sampling points (as shown by the 

statistical analysis presented in Section 3.4.4.2).  

The starting numbers of A. naeslundii in all 3 units after 48 hour incubation were 

1.43x104, 1.32x104, 1.64x104 cells / biofilm, respectively. The number of bacteria 

remained at this level of 104 cells / biofilm over time with no significant difference 

among the units (presented in Section 3.4.4.2). The number of bacteria for P. 

intermedia reached 5.63x104, 5.45x104, 5.78x104 cells / biofilm for all three units, 

respectively at the beginning of the experiment, and then stayed at this level 

throughout the whole experiment with no significant disparity among the units (see 

Section 3.4.4.2).  

3.4.4.2 Investigation of the repeatability of the T-CDFF model 

This Section provides the data on the model’s repeatability by applying the statistical 

analysis to the qPCR data set of 6 strains and the total numbers of bacteria (Table 3.7). 

The statistical analysis was based on the qPCR data retrieved from T-CDFF – 

methodology 4. The repeatability was tested by applying the Student’s t-test to the 

qPCR data of paired units. The p-value was set as 0.05. The results from the statistical 

testing are presented in Table 3.7. 

 

 

 

 

 



Chapter 3: Results 

 

120 

 

 

 paired units p-value outcome 

Total bacteria 

1=2 p = 0.073 no significant difference 
1=3 p = 0.018 significant difference 
2=3 p = 0.147 no significant difference 

S. sanguinis 

1=2 p = 0.005 significant difference 
1=3 p = 0.015 significant difference 
2=3 p = 0.051 no significant difference 

A. naeslundii 

1=2 p = 0.865 no significant difference 
1=3 p = 0.178 no significant difference 
2=3 p = 0.407 no significant difference 

P. intermedia 

1=2 p = 0.646 no significant difference 
1=3 p = 0.849 no significant difference 
2=3 p = 0.529 no significant difference 

N. subflava 

1=2 p = 0.476 no significant difference 
1=3 p = 0.003 significant difference 
2=3 p = 0.039 significant difference 

F. nucleatum 

1=2 p = 0.738 no significant difference 
1=3 p = 0.856 no significant difference 
2=3 p = 0.876 no significant difference 

V. dispar 

1=2 p = 0.597 no significant difference 
1=3 p = 0.888 no significant difference 
2=3 p = 0.476 no significant difference 

Table 3.7 Statistical analysis of the data set from the T-CDFF experiment (methodology 4). 
Abbreviations: 1–Unit 1, 2–Unit 2 and 3–Unit 3. 

According to the statistical analysis presented in Table 3.7, there was no significant 

difference among the units when tested for F. nucleatum, A. naeslundii, P. intermedia 

and V. dispar. However, when data for N. subflava, S. sanguinis and the total bacteria 

were paired, at least one pair fail to accepted the null hypothesis which was equivalent 

to a non-significant difference being observed for this particular pair. 
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3.5 Discussion 

3.5.1 Development process 

The multitude of benefits associated with in vitro models and their vast contribution to 

our knowledge and understanding of oral diseases have been widely reported in scientific 

literature (Guggenheim et al. 2001; Baehni & Takeuchi 2003; Silva et al. 2012). Not only 

are they a useful tool for the purpose of disease modeling but there is also a wide 

spectrum of different in vitro models to choose from depending on the research purpose 

and the experimental sophistication one would like to apply to the study (Guggenheim et 

al. 2004; Greenman et al. 2005; Wirthlin et al. 2005; Walker & Sedlacek 2007; Sánchez et 

al. 2011). Despite the variety of models available, there has been no report of a 

satisfactory in vitro model for the purpose of reproducible gingivitis modeling and 

antimicrobial testing, or a complex model which can provide a high-throughput system 

for testing oral biofilms under varied experimental conditions simultaneously (Dalwai et 

al. 2007; Hope et al. 2012).  

Until now, the Constant Depth Film Fermentor (CDFF) was the only successfully 

established in vitro model for growing oral biofilms and adequately modeling bacterial 

shifts associated with gingivitis (Wilson et al. 1996; Dalwai et al. 2006). Despite the fact, 

that the CDFF provides high experimental complexity, it does not allow for reproducible 

concurrent biofilm growth or testing various dentifrices and antimicrobials at the same 

time (Silva et al. 2012; Hope et al. 2012). 

To deliver a model that enables multiple antimicrobials to be tested in a simultaneous 

and reproducible manner, a custom made Triple-Constant Depth Film Fermentor (T-CDFF) 

was manufactured with several mechanical modifications when compared to the 

standard CDFF. To allow for simultaneous and reproducible biofilm growth and 

antimicrobials testing, the T-CDFF model was scaled down to allow the running of 3 

identical smaller CDFF units at once, side by side within the same incubator. The width of 

each triple-CDFF is 152 mm with each unit’s turntable having a 94 mm diameter width 

and housing 5 PTFE sampling pans. In comparison, the standard CDFF developed by 

Peter’s and Wimpenny was 230 mm wide and housed a 149 mm turntable with a total of 

15 sampling pans (Chapter 2, Section 2.2.1, Table 2.1) (Peters & Wimpenny 1987; Wilson 
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1999). This reduction allowed for 3 units to be placed in a single incubator to allow 

simultaneous (parallel use). Additional improvements were identified and applied to 

increase the comfort of work. The ‘L-shape waste’ output was used instead of the ‘T 

shape’ to ease tubing attachment and maneuvering in the incubator (Section 3.3.1, Table 

3.1, 1). An additional PTFE waste output seal was added to increase air-tightness together 

with a PTFE cap to protect the gearbox from clogging with bacterial waste. To ease the 

portability of the already bulky model, handles on each side of the motor unit were 

provided (Section 3.3.1, Table 3.1, 4). The new model was validated to confirm its 

reliability and to assess its potential for reproducible biofilm growth and oral disease 

modeling. The findings from the validation process are discussed below. 

3.5.2 Validation process 

In the work described in this chapter attempts to validate the new in vitro T-CDFF model 

were made. As the T-CDFF was based on the standard CDFF, the experimental set-up and 

experimental conditions were based upon the knowledge and experience of Fahra Dalwai 

(a former PhD student at the UCL Eastman Dental Institute) who established a 

satisfactory in vitro gingivitis methodology for the CDFF model (Dalwai et al. 2006; Dalwai 

et al. 2007). 

Due to the fact that the T-CDFF model is mechanically more complex and thus harder to 

operate, a simplified CDFF methodology was applied at first to limit the experimental 

complexity for the operator and to enable easier trouble-shooting (Dalwai et al. 2006). 

Methodology 1 was limited to a dual-species inoculum, health conditions, and growth for 

11 days. This approach enabled focusing on the bacterial interaction between two initial 

oral colonisers namely S. sanguinis and A. naeslundii that are involved in gingivitis 

progression. This was done as it was previously reported that the dual-species inoculum 

is easier to grow reproducibly (Verkaik et al. 2010). As reported in experimental gingivitis 

studies, Actinomyces spp. dominates over Streptococcus spp. during gingivitis progression 

and vice versa in health (Syed & Loesche 1978; Dalwai et al. 2006). Aerobic conditions 

were maintained with the inoculum being delivered for 8 hours and followed by provision 

of a nutrient source in the form of artificial saliva. These conditions were previously 
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validated and successfully used as an experimental health methodology for CDFF 

experiments by Dalwai (Dalwai et al. 2006). 

Three separate T-CDFF experiments were run using the above health methodology. The 

experiments were performed in an open space warm-room instead of an incubator as the 

model together with its flasks and extensive tubing connections did not fit in the 

incubators present within the department at the time (Chapter 2, Section 2.2.4, Figure 

2.6). Each of the first 3 experiments was severely contaminated as observed by the naked 

eye when the turntable and tubing connections were overgrown by biofilm; something 

not usual for this type of dual-species biofilm. The contamination was confirmed by 

culturing a sample. In each case, a single species overgrew a dual-species community so 

the experiments were stopped and data was not collected. The fourth experiment 

experienced only partial contamination with only unit 3 being affected by the end of the 

experiment (day 9 / 12). The data were collected and analysed by the duplex qPCR with 

primers targeting S. sanguinis and A. naeslundii to investigate the species numbers when 

affected by the contamination. 

The data presented in Figure 3.2 for unit 1 and unit 2 showed the similar growth pattern 

for both strains with 0.76 and 0.48 log increase for S. sanguinis over the time period of 

the experiment and a log decrease for A. naeslundii during the 11 day health condition. 

As previously reported by Dalwai and colleagues, the numbers of Streptococcus spp  

increased under health conditions at the expense of the gingivitis related Actinomyces 

spp., therefore the results obtained from the T-CDFF validation were satisfactory and 

followed the trend previously published in the literature (Dalwai et al. 2006).  

Furthermore, unit 3 had shown a high resemblance to unit 1 and 2 at the beginning of the 

experiment with the same bacterial numbers and a high potential for reproducibility. 

However, there was a significant decline recorded for both species from day 6 onwards 

which was attributed to the presence of the contaminant overgrowing the community.  

As the contamination affected growth of the community and hindered the model’s 

reliability it was crucial to investigate the source of contamination. The Wirthlin group 

observed that improvement in the aseptic work protocol reduced the contamination 
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issues when validating their Laboratory Model Biofilm Fermentor (Wirthlin et al. 2005). 

As the T-CDFF model is mechanically more sophisticated and much harder to operate, 

several aseptic-working precautions were introduced such as (i) wearing a clean lab coat, 

gloves and a face mask, (ii) cleaning model’s surfaces with ethanol wipes before sampling 

and (ii) spraying the surfaces with 70% ethanol when sampling or maintaining tubing 

connections. Additionally, dual-species inoculum was replaced by a microcosm 

community which provided a better representation of the oral commensal microbiota. 

The increased bacterial complexity resulted in more stable community resilient to non-

oral contamination (Hope et al. 2012). The remaining experimental conditions did not 

change.  

Despite the methodological alterations (Methodology 2), the experiment was 

contaminated at an early stage with all 3 units and the tubing connection being severely 

overgrown by single species after 24 hours of incubation. The outcome made one re-

consider experimental set-up and suspect mechanical malfunction. To address these 

questions methodology 3 was developed. 

Methodology 3 was designed to further investigate the model design, the malfunctioning 

of any parts, the flaws in the set-up or sampling techniques introduced by the operator. 

To address these questions, a reliable and well established CDFF model was run at the 

same time as one of the triple units. Both models were run simultaneously in separate 

incubators by the same operator. The same conditions as in methodology 2 were applied 

to both models.  

The outcome of this experiment was that models were not only contamination free but 

also presented the same bacterial growth trend over experimental time period, this 

confirmed good operational practice and that there were no flaws in the set-up or 

sampling techniques. Despite the lack of contamination, mechanical problems were 

observed when running the T-CDFF model. Firstly, bacterial seepage from the waste 

output seal was observed which despite running several prior T-CDFF experiments was 

not seen before. Furthermore, the bacterial waste leaked into the gearbox and clogged it 

which resulted in a dysfunctional turntable and broken motor by the completion of the 
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experiment. The above-mentioned issues did not impair my experiment and a set of 

reliable data was obtained from both models. 

Following this, my attention focused on the potential lack of air-tightness due to the 

faultiness of the seals and the malfunctioning of the other parts of the model. These 

potential issues were addressed in Methodology 4. All top / bottom, waste output or 

screw cap seals were checked for any distortions or faultiness and replaced with new 

tighter PTFE seals. Furthermore, the screw caps did not have seals or were provided with 

loose ones that were exchanged for tighter ones (Figure 3.3A). The leakage into the 

gearbox was addressed by attaching a PTFE cover onto it to protect it from bacterial 

waste seeping through it and clogging the system (Figure 3.1). The final check-up was to 

set-up the model and check its air-tightness by filling it up with gas and monitoring for 

any gas leakages. This allowed us to conclude that the domed nuts did not screw the top 

plate tight enough against the glass vessel, which in turn compromised the air-tightness. 

The domed-nuts were replaced with non-domed nuts that had better tightening 

properties (Figure 3.3B). With all the modifications, the T-CDFF model was run once again 

in an incubator using the same experimental conditions as mentioned in methodology 3. 

 

Figure 3.3A) Lack of seals on screw caps and faulty waste output seals were responsible for the 
lack of air tightness. B) Domed nuts were responsible for the lack of air-tightness of the glass 
vessel, replaced by the non-domed nuts.  

With the mechanical adjustments applied, the T-CDFF experiment did not become 

contaminated and six bacterial species were detected by triplex qPCR. L. casei and S. 

mutans were not detected which may be due to the fact that they are caries associated 

bacteria and did not have the optimal growth conditions to thrive (Arthur et al. 2013). 

Furthermore, S. sanguinis was the only bacterial species that increased in numbers over 

Currently used 
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the experimental time period and its increase in proportions may have also impaired the 

growth of S. mutans as this phenomenon has been previously reported (Kreth et al. 2005; 

Tamura et al. 2009; Arthur et al. 2013). The remaining bacterial species N. subflava, V. 

dispar, F. nucleatum, P. intermedia or A. naeslundii, regardless of their implications in oral 

health or gingivitis showed no growth increase over the duration of the experiment.  

3.5.3 Investigation of the reproducibility of the model 

It is important to stress that the T-CDFF is a highly sophisticated mechanical system for 

producing a complex biological eco-system prone to bias that can be introduced at any 

stage of the experiment either by the operator or flawed experimental methodology. As 

all these factors can directly or indirectly limit the model’s reproducibility, the T-CDFF 

units were manufactured to be identical and run on a single motor housing to limit the 

mechanical differences between them and to allow for reproducible biofilm growth and 

antimicrobials testing. Additionally, each T-CDFF experiment was performed with the 

same standardised inoculum and artificial saliva being delivered to each unit via a 

calibrated pump and tubing connections. The aim of this was to limit the experimental 

differences among the units and increase the reproducibility between them.  

The level of agreement between the three T-CDFF’s units exposed to the same 

experimental conditions was examined by applying the statistics to the qPCR data of the 

bacterial strains associated with oral health or gingivitis. The analysis was applied to six 

bacterial strains detected in biofilms by triplex qPCR. In order to perform the analysis, the 

data were subjected to log10 transformation and assessed for normal distribution. The 

data for each strain obtained from each unit were paired accordingly to strain and unit 

and then analysed by Student’s t-test.  

Despite the complexity of the model, the statistical analysis failed to reject the null 

hypothesis (“H0: there is a non-significant difference between the paired units”) in most 

cases which strongly suggested the lack of statistically significant difference between the 

paired units and thus a high potential for reproducibility. The only significant differences 

among the units were recorded for N. subflava, S. sanguinis and the total bacteria. 

However, this may have been due to the fact that model in question was temporarily 

starved of medium which may have resulted in lower counts for these particular strains 
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on day 10 and this skewed the outcome. Ensuring the stable experimental conditions, i.e. 

the lack of medium starvation, would aid the model’s reproducibility in the future. 
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3.6 Conclusion 

In conclusion, this chapter presents a new T-CDFF model designed for growing 

reproducible oral biofilms. Work within this chapter focused on model validation and 

testing to establish whether it worked in a reliable and reproducible manner or whether 

it required any further mechanical modifications.  

The contamination problems encountered during the validation process led to the 

methodological alterations and the identification of mechanical faults. The model’s 

mechanics were improved by providing new and tighter waste output seals, bottom / top 

and screw caps seals. Additionally, domed caps were replaced with non-domed caps that 

provided better compressing properties, which in turn allowed the integrity of the air-

tight compartment to be maintained. After the mechanical and the methodological 

improvements, a contamination free in vitro T-CDFF model was obtained, this model 

allowed the growth of oral biofilms with a high potential of reproducibility. Further work 

has to be performed to investigate the reproducibility of the T-CDFF model and its 

potential for establishing a health / gingivitis biofilm community in vitro. However, this 

chapter has provided important preliminary findings into the potential future advantages 

of using the T-CDFF as a tool for mimicking the environments of health and disease for 

the study of oral biofilms. 
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4.1 Introduction 

Gingivitis is a highly prevalent disease that affects around 50-90% of adults nationwide 

(Brown & Loe 1993; Pihlstrom et al. 2005) and if left untreated can lead to 

periodontitis (Marsh 1994). Although not all cases of periodontitis are preceded by 

gingivitis, it is thought that gingivitis prevention can help to reduce its incidence 

(Marsh 1994). In eradication or prevention of any disease, understanding its aetiology 

and interactions among the pathogens and non-virulent species is very important. 

After decades of using culture and molecular methods for the purpose of pathogen 

identification, certain bacteria have been acknowledged as responsible for disease 

progression: F. nucleatum (Kistler et al. 2013), F. alocis (Kumar et al. 2006), 

Actinobacillus actinomycetemcomitans, Eikenella corrodens (Darveau et al. 1997; 

Liljemark 2000), P. intermedia (Raber-Durlacher et al. 1994), Tannerella forsythia, P. 

nigrescens, T. denticola, P. gingivalis, C. rectus (Ashimoto et al. 1996). Additionally, as 

observed in experimental gingivitis studies, there is an increase of Gram-negative 

species (Moore et al. 1982) and a dominance of Actinomyces spp. over Streptococcus 

spp. during the environmental shift towards gingivitis (Sockransky 1963; Syed & 

Loesche 1978; Moore et al. 1982; Moore & Moore 1994). 

In vitro models can act as controllable systems that allow for better experimental 

control than the in vivo studies which can be burdened with subjects’s compliance and 

dropout rates. Such models can also help us understand disease progression by 

allowing to examine the effect of a particular factor/condition change on a bacterial 

community (Wilson 1999; Pratten et al. 2003; Buduneli et al. 2004; Greenman et al. 

2005). Indeed, the complexity of oral biofilms is so great that it is difficult to study 

them without any recourse to experimental laboratory models (Wilson 1999; Pratten 

et al. 2003; Greenman et al. 2005).  

Therefore T-CDFF, a complex in vitro model, can not only allow for greater control and 

reproducibility of environmental conditions, but also allow researchers to grow oral 

communities in health and disease to investigate the interactions between 

periopathogens and non-virulent species. Additionally, the model can be used to test 
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various factors such as temperature, nutrient source, oxygen availability, substrata and 

pH on biofilm development individually (Wilson 1999; Greenman et al. 2005; Dalwai et 

al. 2006). Such simplifications can help better understand plaque development. 

Therefore, modelling the ecological shifts observed in gingivitis onset using such 

models would be an indispensable tool for understanding plaque formation, testing 

individual environmental factors’, and assessing potential treatments on the 

developed communities (Baehni & Takeuchi 2003; Dalwai et al. 2007).  

In Chapter 3, the first results chapter, a new complex in vitro model was introduced, 

and its development and validation process described. The work presented in this 

chapter is focused on using this model to develop the bacterial shifts associated with 

the onset of gingivitis and also testing reproducibility. Both of these tasks were 

evaluated based on culture, molecular and functional studies (as described further). 
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4.2 T-CDFF Methodology 

4.2.1 The experimental set-up 

The experimental set-up and scheme of work of all T-CDFF experiments was performed 

according to the methodology described in Chapter 2, Section 2.2-2.3.  

4.2.2 The experimental conditions 

All the T-CDFF experimental conditions presented in this chapter were designed according to 
Figure 4.1. 

 

Figure 4.1 The experimental design of T-CDFF experiments. The health conditions were run 
for 9 days and then switched to 14 days of gingivitis conditions. 

Each T-CDFF experiment began with 8 hours of inoculation with a saliva microcosm 

population (Chapter 2, Section 2.3.1). After the inoculation process, the model was 

exposed to 9 days of health conditions by providing aerobic conditions and 

standardized artificial saliva (Chapter 2, Section 2.3.3). The gingivitis conditions were 

introduced at day 9 and established by providing an additional artificial GCF 

component and micro-aerophilic gas for 14 days (Chapter 2, Section 2.3.4). 

In terms of the experimental set-up, the single peristaltic pumps (Watson & Marlow, 

101 U / R) previously used in Chapter 3 for delivering inoculum and artificial saliva 

were replaced by a multi-channel pump (Watson & Marlow, 205 U). To enable this 

transition, the silicone 0.8 mm bore tubing (Fisher) was substituted with a special 

marprene tubing (Marlow & Watson) which was adequate to run with a 205 U multi-

channel pump (Watson & Marlow). The artificial GCF, gas and waste output 
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connections remained unchanged. The modified experimental set-up is shown in 

Figure 4.2.  

 

Figure 4.2 shows the experimental set-up with a new multi-channel pump which substituted 
the single pumps used in delivering the inoculum and the artificial saliva to each T-CDFF unit.  

4.2.3 T-CDFF sampling 

The T-CDFF experiments presented in this chapter lasted for 23 days, with 9 in health 

and 14 in gingivitis conditions. Three sampling points were executed in health 

conditions at day 1, day 5 and day 7, while the remaining two were performed in 

gingivitis conditions at day 18 and day 23 (9 and 14 days after switching to gingivitis, 

respectively). Each sampling was performed according to the methodology specified in 

Chapter 2, Section 2.3.5. During each sampling, one pan was removed from every unit 

and analysed using different techniques (detailed in Figure 4.3).  
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4.2.4 Statistical analysis 

The aim of the statistical analysis was to investigate the reproducibility of the T-CDFF 

model and the differences between the health and disease conditions developed in it.  

4.2.4.1 Reproducibility among units 

To understand whether bacteria numbers across units differed significantly from each 

other, univariate ANOVA analysis with post-hoc Bonferroni multiple comparisons 

correction (IBM SPSS Statistics 22.0) was performed by Aviva Petrie (UCL Eastman 

Dental Institute). This analysis was conducted on the qPCR data set (total bacteria, A. 

naeslundii, P. intermedia, F. nucleatum, S. sanguinis, V. dispar and N. subflava) and 

culture data (total anaerobes and aerobes).  

 

 

 

 

Yellow discs served as two biological replicates for qPCR study. Biofilm from each 
disc was centrifuged, DNA was extracted according to the bead beating protocol 
and then analysed by triplex qPCR (Chapter 2, Section 2.5.1-2.5.2).  

 

Biofilm from green disc was plated out on CBA, FAA, CFAT, M-S (Chapter 2, 
Section 2.4).  

 

Biofilm from blue disc was used for the metabolic assays such as trypsin-like-
protease and alkaline phosphatase (Chapter 2, Section 2.7.1).  

 
A spare disc. Biofilm was pelleted down, DNA was extracted according to the bead 
beating protocol and stored in -20°C (Chapter 2, Section 2.5.1). 

  

 

Figure 4.3 shows the T-CDFF sampling pan with 5 discs, each designated for different analysis. 
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4.2.4.2 Differences between health and disease 

To investigate the differences in bacterial numbers across the change in conditions 

from health to gingivitis in each T-CDFF unit, the bacterial numbers retrieved at day 5 

and day 7 (health) were averaged, logged and compared with the averaged and logged 

data from day 18 and day 23 (gingivitis). This was done to both the culture and qPCR 

data sets. The data from sampling point 1 were excluded from calculating the health 

averages, as the cell numbers collected at day 1 were usually much lower than for the 

remaining 4 sampling points collected from mature biofilm.  

ANOVA analysis (IBM SPSS Statistics 22.0) was applied to qPCR data set (total bacteria, 

A. naeslundii, P. intermedia, F. nucleatum, S. sanguinis, V. dispar and N. subflava) and 

culture data set (total aerobes and anaerobes) to investigate the differences in species 

numbers across the change from health to gingivitis by comparing the data set 

obtained from health against the data set from gingivitis.  

Data obtained from day 1 were usually different in terms of bacterial numbers (much 

lower in cell numbers) when compared to days 5 and 7. Because of this, there was a 

concern that including day 1 might skew the analysis, giving biased results. Therefore, 

the ANOVA analysis was performed on data with and without sampling point 1 to give 

more accurate insight into the bacterial changes across the condition change. If 

statistical analyses with and without the day 1 produced same output (significant/not 

significant), then the p-value from only one analysis is presented. To keep consistency, 

it was arbitrary decided to report p-values from the statistical analysis without day 1.  

The Student’s t-test (IBM SPSS Statistics 22.0) was used to investigate the differences 

between the health and disease conditions in the enzymatic data set. The significance 

level for all hypothesis tests performed in this chapter was chosen to be 0.01.  



Chapter 4: Materials and Methods 

 

139 

 

4.2.5 Functional approach to investigating the gingivitis associated shifts 

4.2.5.1 Filter assays  

The filter biofilm assay was used to test two different metabolic enzymes, alkaline 

phosphatase (Bessey et al. 1946) and trypsin-like-protease (Yoshimura et al. 1984). 

Nitrocellulose discs of 0.45 cm diameter were cut and placed on fastidious anaerobe 

agar plates (FAA). Each disc was inoculated with 10 µL of Porphyromonas gingivalis 

suspension and plates were incubated in the anaerobic cabinet (MACS-MG-1000-

Anaerobic workstation) at 37°C. The nitrocellulose discs were removed from the old 

plates and placed on fresh FAA plates every two days to ensure nutrient availability. 

The experiment was conducted for 8 days in total, with sampling points on day 1, day 

3, day 5 and day 8. At each sampling day, 10 discs were removed from the plate and 

suspended in 5.0 mL of PBS and then vortexed for 3 min. The bacterial suspension was 

tested for enzymatic activity using ALPase and TLPase assays (Chapter 2, Section 2.7.1) 

and then the suspension was cultured to obtain bacterial viable counts so that the 

metabolic activity could be correlated with the bacterial number. 

4.2.5.2 Microcosm biofilm retrieved from T-CDFF 

The biofilm from a single HA disc was re-suspended in 1.0 mL of PBS by vortexing with 

5 glass beads for 1.0 min. The obtained bacterial suspension was used for ALPase 

(Chapter 2, Section 2.7.1.1) and TLPase assays (Chapter 2, Section 2.7.1.2). The 

obtained data were presented in a form of a graph depicting the change in metabolic 

activity and viable counts over time.  



Chapter 4: Results 

 

140 

 



Chapter 4: Results 

 

141 

 

4.3 Results 

4.3.1 Bacterial shifts from simulated health to gingivitis 

4.3.1.1 Culture methods 

The composition of modelled supragingival biofilms grown under simulated health and 

disease conditions in two individual T-CDFF experiments was investigated using non-

selective and selective media for the total bacteria and the key genera such as 

Streptococcus spp. and Actinomycetes spp., respectively as presented in Figure 4.4 and 

Figure 4.5. 

  

Figure 4.4 presents the viable counts for the total number of anaerobes and aerobes in each T-
CDFF unit during two individual experiments across simulated health and disease conditions. 
The data from two sampling points in health (day 5 and day 7) and two sampling points in 
disease (day 18 and day 23) were averaged to present the change in viable counts for each unit 
in time in two T-CDFF experiments (n=2). *n=2 refers to two technical replicates  

Figure 4.4 presents the growth trend of the anaerobes and aerobes in T-CDFF 

experiment 1 and experiment 2. To investigate the differences across the simulated 

health and gingivitis, the viable counts data from day 5 and 7 were averaged, logged 
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(health) and compared against the logged average of gingivitis data from day 18 and 

day 23 (see Section 4.2.4.2). 

There was not a uniform growth pattern across the individual experiments. In 

experiment 1, there was a non-significant decrease in total anaerobes in unit 1 

(p=0.238) and a significant 0.7 log decrease in unit 3 (p=0.004); In unit 2 a non-

significant 0.19 log increase (p=0.856) was recorded under disease conditions. There 

was also an overall descending trend for aerobic counts in experiment 1 (unit 1-3: 

p=0.020, p=0.316, p=0.045) when compared to experiment 2 which recorded an 

increase from health to gingivitis (unit 1-3: p=0.067, p=0.137, p=0.119). For the total 

number of anaerobes in experiment 2 across both health and disease, there was no 

change in counts in unit 1 (p=0.754) and 0.1 and 0.3 log increases in units 2 (p=0.885) 

and 3 (p=0.083) respectively. However, none of these changes were statistically 

significant (p ≤ 0.01).  

Figure 4.5 presents the total viable counts for Actinomyces spp. and Streptococcus spp. 

detected in two individual T-CDFF experiments across the simulated health and disease 

conditions. To investigate the differences between health and gingivitis, the viable 

count data from days 5 and 7 were averaged, logged (health) and compared against 

the logged average of gingivitis data from day 18 and day 23 (see Section 4.2.4.2). 
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Figure 4.5 presents the viable counts for the total number of Actinomyces spp. and 
Streptococcus spp. in each T-CDFF unit in two individual experiments across simulated health 
and disease conditions. The data from two sampling points in health (day 5 and day 7) and two 
sampling points in disease (day 18 and day 23) were averaged to present the change in viable 
counts for the total Actinomyces spp. and Streptococcus spp. for each unit in time for both T-
CDFF experiments (n=2). *n=2 refers to two technical replicates 

In experiment 1 there were 0.65 and 0.17 log increases of Actinomyces spp. in units 1 

(p=0.007) and 2 (p=0.158) in simulated disease conditions, respectively. There was no 

particular growth change across the phases for unit 3 (p=0.977). There was an overall 

decrease in total number of Streptococcus spp. with 1.19, 1.46, and 0.47 log decrease 

in unit 1 (p=0.004), unit 2 (p=0.088), and unit 3 (p=0.064).  

In experiment 2, there were no significant changes between the simulated health and 

disease conditions. There was a 0.1 log increase of Actinomyces spp. in unit 2 (p=0.684) 

in comparison to the decrease in counts in units 1 (p=0.275) and 3 (p=0.961). Similarly, 

decrease of Streptococcus spp. was recorded in unit 1 (p=0.929) but a 0.1 log and 0.4 

log increase in units 2 (p=0.535) and 3 (p=0.227). 
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4.3.1.2 Culture independent methods  

Table 4.1 presents the cell number for total bacteria detected by the qPCR in biofilm 

samples from 6 units (two sets of T-CDFF experiments) throughout time.  

 

  Experiment 1 Experiment 2 

  Average [cells / biofilm] Average [cells / biofilm] 

strain day unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 

To
ta

l b
ac

te
ri

a 

1 8.09E+06 1.33E+07 3.93E+06 1.18E+07 1.10E+07 8.08E+06 
(2.10E+04) (5.70E+05) (4.46E+04) (3.06E+06) (1.92E+06) (2.39E+06) 

5 
6.97E+09 4.10E+09 4.69E+09 5.93E+08 1.16E+09 2.26E+09 
(1.24E+07) (1.84E+07) (3.36E+07) (2.52E+08) (4.25E+08) (6.57E+08) 

7 
2.09E+09 2.05E+09 1.09E+09 4.27E+09 2.70E+08 5.64E+08 
(1.46E+07) (4.59E+06) (4.10E+06) (1.25E+09) (5.17E+07) (8.76E+07) 

18 1.02E+09 9.68E+08 3.73E+08 1.38E+09 8.55E+08 2.08E+09 
(1.58E+06) (3.05E+06) (6.89E+05) (2.24E+08) (3.00E+08) (2.38E+08) 

23 6.03E+08 9.83E+08 5.05E+08 8.91E+08 3.28E+09 5.02E+09 
(3.77E+06) (5.54E+06) (2.30E+06) (2.32E+08) (1.87E+08) (1.06E+09) 

Table 4.1 shows the cell number for the total bacteria detected by triplex qPCR using universal 
primers in the biofilm samples collected from each T-CDFF unit over time. The standard error is 
shown in brackets (n=6). Blue line indicates the introduction of gingivitis conditions at day 9. 
*n=6 refers to two biological and three technical replicates 

The data presented in Table 4.1 shows the total number of bacteria detected in each T-

CDFF unit at different time points throughout the 23 days of the experimental 

conditions. To investigate the growth change across health and gingivitis, the qPCR 

from day 5 and 7 were averaged, logged (health) and compared against the logged 

average of the gingivitis data from day 18 and day 23 (see Section 4.2.4.2). 

The number of total bacteria after 1 day of incubation reached values between 

3.93x106-1.33x107 and 8.08x106-1.18x107 cells / biofilm in experiments 1 and 2, 

respectively (Table 4.1). After this, there was a 1.7-3.1 log increase in cell numbers 

across the six T-CDFF units. When the gingivitis conditions were introduced, there was 

a decrease in total bacteria numbers in experiment 1 (0.69 log, 0.47 log and 0.71 log 

decrease in units 1-3, respectively). After the data from sampling point 1 were 

removed (as explained in Section 4.2.4.2), these changes were significant for all units 

(p≤0.01).  

In experiment 2 there was no significant difference in bacteria numbers across the 

experimental phases for unit 1 (p=0.844) and a significant increase in numbers for 
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units 2 and 3 (p≤0.01). This was confirmed by the statistical analysis performed 

without inclusion of the data from sampling point 1, as explained in Section 4.2.4.2.  

Table 4.2 presents the cell numbers for health associated bacteria (S. sanguinis, V. 

dispar and N. subflava) detected by the qPCR in biofilm samples from 6 units (two sets 

of T-CDFF experiments). 

 

  Experiment 1 Experiment 2 

  Average [cells / biofilm] Average [cells / biofilm] 

strain day unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 

S.
 s

a
n

g
u

in
is

 

1 1.94E+04 1.69E+04 3.72E+03 1.73E+03 2.54E+03 2.43E+03 
(2.28E+03) (3.73E+03) (6.17E+02) (1.84E+02) (5.28E+03) (1.83E+05) 

5 4.45E+07 2.96E+07 4.01E+07 6.51E+05 2.14E+06 1.51E+07 
(6.76E+06) (3.08E+06) (8.31E+06) (6.50E+05) (3.12E+06) (5.20E+06) 

7 
2.24E+07 1.81E+07 1.75E+07 2.27E+07 8.67E+05 5.02E+06 
(3.98E+06) (2.17E+06) (3.82E+06) (4.55E+06) (1.16E+06) (4.40E+06) 

18 2.30E+06 2.31E+07 1.14E+07 2.83E+07 1.75E+06 8.47E+07 
(9.44E+05) (5.13E+06) (4.98E+05) (5.56E+06) (1.15E+07) (1.61E+07) 

23 4.30E+06 1.72E+07 2.11E+05 1.18E+07 2.62E+06 6.95E+07 
(1.57E+06) (3.99E+06) (4.52E+04) (2.30E+06) (1.42E+07) (6.64E+06) 

V
. d

is
p

a
r 

1 1.77E+04 5.28E+03 4.42E+03 5.23E+03 5.45E+03 4.74E+03 
(4.25E+03) (1.45E+03) (1.47E+03) (1.53E+03) (1.30E+03) (1.32E+03) 

5 2.70E+08 3.31E+07 2.08E+08 6.22E+03 4.51E+07 1.10E+07 
(2.77E+07) (1.88E+06) (8.86E+07) (1.39E+03) (2.03E+07) (3.00E+06) 

7 
1.50E+08 2.14E+07 2.39E+07 1.26E+04 7.83E+06 5.54E+07 
(6.64E+07) (2.22E+06) (1.97E+06) (5.91E+02) (7.35E+05) (2.78E+06) 

18 4.08E+07 3.78E+07 4.77E+07 1.06E+04 3.75E+07 1.25E+08 
(1.82E+07) (3.11E+06) (8.85E+06) (8.36E+02) (8.45E+06) (3.34E+07) 

23 
2.85E+07 4.17E+07 4.07E+07 1.27E+04 5.33E+07 1.80E+08 
(4.35E+06) (7.45E+06) (3.73E+06) (3.28E+02) (4.42E+06) (5.45E+06) 

N
. s

u
b

fl
a

va
 

1 1.18E+03 2.53E+03 6.85E+03 2.23E+02 1.45E+02 1.99E+02 
(3.74E+02) (8.49E+02) (3.49E+03) (8.85E+01) (8.23E+01) (7.36E+01) 

5 3.56E+03 2.81E+08 8.58E+07 7.07E+02 1.92E+08 7.44E+07 
(9.88E+02) (3.26E+07) (3.84E+07) (3.07E+02) (8.19E+07) (3.51E+07) 

7 4.26E+07 4.26E+07 1.93E+08 1.55E+06 1.08E+08 5.83E+07 
(1.91E+07) (1.98E+07) (3.14E+07) (6.95E+05) (4.34E+07) (2.15E+07) 

18 4.76E+06 1.64E+07 3.67E+06 1.03E+06 6.84E+06 3.67E+05 
(8.21E+05) (1.34E+06) (1.33E+06) (5.28E+05) (2.95E+06) (3.45E+04) 

23 2.02E+05 9.67E+06 1.85E+06 6.93E+04 3.12E+06 9.51E+05 
(5.63E+04) (9.98E+05) (7.52E+05) (3.07E+04) (1.36E+06) (3.65E+05) 

S. mutans Not detected throughout the experiments 

Table 4.2 presents the total cell number of the health associated bacteria and S. mutans 
detected by triplex qPCR primers in biofilm samples collected from each unit over time. The 
standard error is shown in brackets (n=6). Blue lines indicate the introduction of gingivitis 
conditions at day 9. *n=6 refers to two biological and three technical replicates 

Table 4.2 presents the growth pattern of 3 health associated species across health and 

gingivitis conditions in two individual experiments. S. mutans, which is a caries 
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implicated species, was not detected in the T-CDFF experiments. The growth 

maturation (in terms of cell numbers) in T-CDFF model was established after 5-7 days 

of incubation. This has been reported before in T-CDFF experiments and is shown in 

Chapter 3, Section 3.4.3.  

For S. sanguinis, once the gingivitis conditions were introduced there was a significant 

1.0 log and 1.23 log (p≤0.01) decrease in numbers in units 1 and 3 in experiment 1, and 

a non-significant 0.07 log increase in unit 2 (p=0.188). Conversely, there were 

significant 0.68 log, 0.19 log and 0.95 log increases in unit 1, 2 and unit 3 in experiment 

2, respectively (p≤0.01). After excluding the data from sampling point 1 (as explained 

in Section 4.2.4.2), the bacterial increase in disease conditions in unit 2, experiment 2 

was not significant (0.19 log, p=0.080).  

V. dispar showed 0.77 and 0.20 log decreases in numbers in units 1 and 3 of 

experiment 1 (p=0.03 and p=0.087, respectively). There was a non-significant 0.17 log 

(p=0.467) increase in numbers in unit 2. Despite these large numbers, the differences 

were not statistically significant due to high levels of variation in the data. In 

experiment 2, there were 0.12 log (p=0.022), 0.38 log (p=0.015), and 0.78 log (p<0.01) 

increases in each unit. However, only unit 3 recorded a significant change across the 

experimental conditions (as explained in Section 4.2.4.2).  

There was an overall decrease in N. subflava numbers in disease conditions across 

units in both experiments (except for unit 1 in experiment 1). In experiment 1 there 

were a 0.93 log (p<0.01) and 1.7 log (p<0.01) decreases in units 2 and 3, as compared 

with 0.15 log (p=0.773), 1.49 log (p<0.01) and 2.0 log (p<0.01) decreases in experiment 

2 in units 1-3, respectively.   
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Table 4.3 presents the total cell number for 3 bacterial species implicated in gingivitis. 

Biofilm samples were collected at five sampling events (health conditions: day 1, day 5 

and day 7; disease conditions: day 18 and day 23) and analysed by triplex qPCR. 

 

  Experiment 1 Experiment 2 

  Average [cells / biofilm] Average [cells / biofilm] 

strain day unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 

F.
 n

u
cl

ea
tu

m
 

1 4.31E+01 3.69E+01 6.38E+01 5.50E+01 7.57E+01 6.95E+01 
(9.74E+00) (7.07E+00) (1.67E+01) (1.40E+01) (1.92E+01) (1.52E+01) 

5 
4.65E+01 5.33E+06 2.82E+06 8.23E+01 1.35E+06 4.97E+05 
(1.30E+01) (6.01E+04) (1.26E+06) (1.60E+01) (6.12E+05) (4.79E+04) 

7 
1.49E+06 3.86E+06 6.88E+06 1.35E+02 9.74E+05 2.20E+06 
(6.68E+05) (9.06E+05) (3.49E+05) (1.68E+01) (7.31E+04) (3.13E+05) 

18 1.25E+02 2.71E+06 9.10E+06 1.52E+02 1.44E+06 5.58E+06 
(3.18E+01) (1.21E+06) (7.81E+05) (1.91E+01) (2.71E+05) (1.45E+06) 

23 2.96E+06 2.11E+06 3.74E+06 1.54E+06 6.01E+06 1.09E+07 
(1.33E+06) (9.58E+05) (1.53E+06) (6.46E+04) (1.48E+06) (4.22E+05) 

A
. n

a
es

lu
n

d
ii 

1 1.35E+03 1.46E+03 1.54E+03 1.34E+05 9.45E+04 1.12E+05 
(3.35E+02) (3.53E+02) (8.98E+02) (7.95E+04) (6.22E+04) (6.90E+04) 

5 
1.15E+03 1.76E+04 2.22E+05 1.32E+05 8.16E+04 9.13E+04 
(2.49E+02) (1.56E+04) (1.95E+05) (7.75E+04) (7.52E+04) (4.98E+04) 

7 
1.39E+04 2.53E+05 4.90E+03 9.09E+04 2.09E+05 1.06E+05 
(8.07E+03) (1.99E+05) (2.62E+03) (4.70E+04) (1.15E+05) (7.67E+04) 

18 4.73E+03 6.45E+03 5.72E+03 5.48E+04 1.15E+05 1.47E+05 
(2.21E+03) (1.89E+03) (3.74E+03) (2.46E+04) (5.71E+04) (6.56E+04) 

23 
8.84E+02 4.88E+03 3.03E+03 1.24E+05 1.05E+05 2.74E+04 
(1.64E+02) (1.31E+03) (2.02E+03) (6.76E+04) (6.27E+04) (1.57E+04) 

P
. i

n
te

rm
ed

ia
 

1 1.61E+04 1.61E+04 1.62E+04 1.79E+04 1.70E+04 1.71E+04 
(9.59E+02) (1.05E+03) (9.54E+02) (9.14E+02) (8.58E+02) (6.74E+02) 

5 
1.69E+04 1.47E+04 1.61E+04 1.74E+04 1.50E+04 1.74E+04 
(9.13E+02) (1.06E+03) (1.24E+03) (6.09E+02) (5.04E+02) (7.33E+02) 

7 1.58E+04 1.54E+04 1.45E+04 1.72E+04 1.60E+04 1.95E+04 
(9.69E+02) (6.76E+02) (3.21E+02) (1.48E+03) (9.69E+02) (6.60E+02) 

18 1.66E+04 1.59E+04 1.55E+04 1.79E+04 1.85E+04 1.67E+04 
(7.33E+02) (4.43E+02) (5.23E+02) (4.98E+02) (5.77E+02) (2.37E+02) 

23 
1.63E+04 1.60E+04 1.65E+04 1.58E+04 1.69E+04 1.69E+04 
(7.83E+02) (4.59E+02) (4.77E+02) (4.22E+02) (1.29E+03) (4.66E+02) 

L. casei Not detected throughout the experiments  

Table 4.3 presents the total cell number of the gingivitis associated bacteria detected by triplex 
qPCR primers in biofilm samples collected from each unit over time. The standard error is 
shown in brackets (n=6). Blue lines indicate the introduction of gingivitis conditions at day 9. 
*n=6 refers to two biological and three technical replicates 

Table 4.3 presents the gingivitis associated bacteria detected in the biofilm samples 

over time. L. casei was not detected in samples collected from the T-CDFF 

experiments.  
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When assessing the average bacterial numbers for health and gingivitis (see Section 

4.2.4.2), the numbers of F. nucleatum increased 0.3 log (p=0.758) and 0.12 log 

(p=0.114) under disease conditions in units 1 and 3, experiment 1, respectively. 

However, these changes were not statistically significant. Unit 2 recorded a significant 

0.28 log (p=0.006) decrease in disease condition. In the second T-CDFF experiment, 

there was a significant increase in the bacterial numbers in unit 1 (2.16 log) and unit 3 

(0.87 log), respectively. Unit 2 showed a 0.4 log increase across the health-disease 

phase which was not significant (p=0.017).  

With respect to A. naeslundii, there was 0.29 log (p=0.373), 1.07 log (p=0.688), and 

0.89 log (p=0.459) decrease in disease conditions in units 1-3, experiment 1, 

respectively. However, none of the above changes were statistically significant. There 

were also no significant changes across the phases for all units in experiment 2 

(p=0.905, p=0.636, p=0.842, units 1-3, respectively).  

P. intermedia presented no significant change in numbers across the experimental 

phases for all units in both T-CDFF experiments (p=0.829, p=0.182, p=0.212, units 1-3, 

experiment 1; p=0.394, p=0.027, p=0.035, units 1-3, experiment 2).  `
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4.3.2 Investigating the reproducibility of T-CDFF model 

The reproducibility of the T-CDFF model was investigated by applying a separate 

independent univariate ANOVA with a post hoc Bonferroni multiple comparisons 

correction to the qPCR and culture data. As a pre-processing step here the data were 

first log-transformed so as to look more Gaussian (as confirmed by histogram plots). 

Next, a univariate ANOVA analysis was applied using SPSS Statistics 22.0 (IBM, UK) to 

investigate reproducibility among units run concurrently in individual experiments. To 

assess validity of the assumptions underpinning ANOVA here, residuals and predicted 

values were plotted against frequencies. The results are presented below. 

Univariate Analysis of Variance performed on the total bacteria detected by the qPCR 

and presented in Table 4.4 failed to reject the null hypothesis of no significant 

difference among units within a single experiment (p=0.374). The residuals (Table 

4.4B) and predicted values (Table 4.4C) were plotted against the frequencies and 

suggest that the applied model was a reasonable selection for my experimental data 

set.   

 

Source_SPSS Statistics 22.0 Significance 

Unit 1 - 6 0.374 

 

Table 4.4 presents the statistical analysis applied to the qPCR data. A) UNIANOVA output for the 
analysis performed for 6 T-CDFF units. B) The residuals plotted against the frequency that showed a 
normal distribution as expected. C) The residuals plotted against the predicted value showed a 
symmetric distribution.    

The statistical analysis performed on the total number of A. naeslundii detected in 

each T-CDFF unit over time showed no significant difference among the units in single 

B 

A 

C 
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or individual T-CDFF experiments (p=0.658) across the experimental phases or 

sampling events.  

Conversely, the data for the total number of F. nucleatum showed a significant 

difference between experiment 1 and 2 (p≤0.01). When the analysis was performed on 

these two experiments separately, there were no significant difference observed 

among the units in experiment 1 (p=0.019), while in experiment 2 significant 

differences existed among units (p≤0.01). 

The analysis performed on N. subflava showed significant differences among the units 

in both T-CDFF experiments (p≤0.01), but no significant differences were found among 

the units in single or individual T-CDFF experiments for P. intermedia (p=0.428). S. 

sanguinis data followed the same trend and showed no significant differences among 

the units in single or individual T-CDFF experiments (p=0.693). The total numbers of V. 

dispar detected in each unit over time showed a significant difference between 

experiments 1 and 2 (p=0.001). When the analysis was performed on these two 

experiments separately, there was no significant difference observed among the units 

in experiment 1 (p=0.910); while experiment 2 has shown significant differences 

among the T-CDFF units (p<0.01).  

A univariate Analysis of Variance was also performed on culture data for total 

anaerobes and aerobes detected in each unit across the conditions change. The data 

showed no significant difference for both the total anaerobes (p=0.291) and the total 

aerobes (p=0.560) among the T-CDFF units in two individual T-CDFF experiments.  
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4.3.3 Functional approach to investigate the gingivitis associated shifts  

4.3.3.1 Filter assay 

The metabolic assays for alkaline phosphatase and trypsin-like-protease activity were 

tested on single-species biofilm of P. gingivalis. Both metabolic assays were tested in 

two separate filter assays. The results obtained for both assays are shown below in 

Figure 4.6-4.7.  

4.3.3.2 Alkaline phosphatase 

Figure 4.6 shows the change in alkaline phosphatase activity (ALPase) over time for the 

single-species biofilm of P. gingivalis.  

 

Figure 4.6 shows the alkaline phosphatase activity of P. gingivalis over time. The axis on the 
left shows the total bacterial counts [CFUs / mL]; the right-hand axis shows the optical density 
change over time that represents the metabolic activity of P. gingivilis (n=2). *n=2 refers to 
two technical replicates 

The metabolic activity presented in Figure 4.6 was detectable spectrophotometrically 

after the 24 hours of the incubation of P. gingivalis on the filter discs. The alkaline 

phosphatase activity increased over time, with its peak activity on day 5 and then 

decreased on day 8 which was reflected in bacterial viable counts.  

0 

0.005 

0.01 

0.015 

0.02 

0.025 

0.03 

0.035 

0.04 

1.0E+08 

1.0E+09 

1.0E+10 

1.0E+11 

1.0E+12 

0 1 2 3 4 5 6 7 8 9 

M
e

ta
b

o
lic

 a
ct

iv
it

y 
[Δ

O
D

/m
in

] 

C
FU

s 
/ 

m
L 

Time[d] 

ENZYMATIC 
ACTIVITY 

bacterial cell 
numbers 



Chapter 4: Results 

 

152 

 

4.3.3.3 Trypsin – like – protease 

Figure 4.7 illustrates the trypsin-like-protease activity of P. gingivalis over time for a 

single-species biofilm of P. gingivalis.  

 

Figure 4.7 shows the trypsin-like-protease activity of P. gingivalis over time. The axis on the left 
shows the total bacterial counts [CFUs / mL]; the right-hand axis shows the optical density 
change over time that represents the metabolic activity of P. gingivilis (n=2). *n=2 refers to 
two technical replicates 

As shown in Figure 4.7, there was an increase in viable counts over time with a 

relatively steady enzymatic activity increase throughout. The highest enzymatic activity 

was recorded at day 8 when there was a 2.8 fold increase in enzymatic activity as 

reflected by 0.3 log increase in counts. 

4.3.4 Enzymatic assays on biofilm samples retrieved from T-CDFF  

Table 4.5 shown below presents the alkaline phosphatase activity in the biofilms 

collected from each T-CDFF unit over time. The trypsin-like-protease activity is not 

presented here, as its activity was not detected in the biofilm samples retrieved from 

the individual T-CDFF.  
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 Experiment 1  Experiment 2  

 activity [ΔOD / h] activity [ΔOD / h] 

Time [d] unit 1 unit 2 unit 3 unit 1 unit 2 unit 3 

1 0.0028 0.0 0.0034 0.00193 0.0034 0.0 

5 0.0252 0.0 0.0177 0.0 0.0058 0.0 

7 0.048 0.0 0.0366 0.0 0.0 0.601 

18 0.0079 0.0032 0.0143 0.538 0.132 0.14 

23 0.0154 0.0029 0.0079 0.277 0.007 0.343 

Table 4.5 shows the ALPase activity in biofilms collected from three CDFF units in two separate 
experiments. The health conditions: day 1, day 5 and day 7; disease conditions: day 18 and day 
23. Blue line indicates the introduction of gingivitis conditions at day 9. 

Alkaline phosphatase activity was very low and did not show any clear pattern across 

the sampling points, units or the conditions of change from health to disease. For most 

units, there was (i) no enzymatic activity detected, (ii) the signal was very weak or (ii) 

in some instances the signal was stronger at day 5 or 7 than under gingivitis conditions. 
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4.4 Discussion 

4.4.1 Microbial trends in simulated gingivitis onset 

The key changes in the microbiota of supragingival plaque as observed by Sockransky 

et al. and Marsh et al. (Marsh 1994; Marsh 1995; Marsh 1999; Marsh 2005; Sockransky 

& Haffajee 2005) during the experimental gingivitis studies were two-fold (i) an 

increase of the anaerobic Gram-negative species belonging to the orange and red 

complex and (ii) the ascendency of Actinomcyces at the expense of the aerobic 

Streptococcus genus (Haffajee & Sockransky 1994; Marsh 1994; Marsh 1995; Marsh 

1999; Marsh 2005; Sockransky & Haffajee 2005). These changes are a sign of an 

ecological change occurring in dental plaque during gingivitis progression (Guggenheim 

et al. 2001; Dalwai et al. 2007). Dalwai et al. reported an increase of anaerobic Gram-

negative bacteria during the progression of gingivitis in vitro at the expense of the 

aerobic bacteria present predominantly in health when using the CDFF model. They 

also reported a predominance of Actinomyces spp. at the expense of Streptococcus 

spp. under controlled in vitro gingivitis conditions. The research therefore confirmed 

that these bacterial shifts can be successfully modelled using in vitro models (Dalwai et 

al. 2006; Dalwai et al. 2007).  

To investigate whether I can model the same bacterial changes as mentioned above in 

T-CDFF model, several techniques were applied to characterise biofilm communities in 

simulated health and gingivitis. These included culturing methods and qPCR. The first 

was chosen to assess changes in the total number and proportions of anaerobes and 

aerobes over time. Selective plating was chosen to focus on determining the total 

counts of Actinomyces spp. and Streptococcus spp. and to investigate previously 

published cross dependence between Actinomyces spp. and Streptococcus spp. in 

health-gingivitis progression. This association was further investigated by qPCR 

targeting A. naeslundii and S. sanguinis. The qPCR study was further complemented by 

3 bacteria implicated in disease (F. nuclatum, P. intermedia, L. casei) and health (S. 

sanguinis, V. dispar, N. subflava) and 1 oral species implicated in tooth decay (S. 

mutans). Despite the fact that S. mutans is not directly associated with gingivitis, its 
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inclusion broadened the bacterial coverage and potentially my perspective on disease 

causation.  

These two reductionist approaches were complemented by a functional study using 

enzymatic assays to investigate the biofilm’s virulence capacity and the metabolic 

change during the shift from oral health to gingivitis. It has been previously reported 

that oral communities possess proteolytic activity; it was beyond my capability at the 

time to target more than 8 bacterial species, therefore metabolic assays were applied 

as a surrogate model to track the virulence of the proteolytic enzyme producers 

associated with gingivitis and belonging to Phorphyromonas, Prevotella, Tanerella or 

Capnocytophaga genera (Soder 1972, Wei 1999).   

4.4.2 Culture methods to analyse the gingivitis associated shifts 

The aim of using the non-selective and selective plating was to investigate changes in 

the total anaerobes and aerobes and the Actinomyces spp. and Streptococcus spp. 

across the experimental conditions change in the T-CDFF model. The two T-CDFF 

experiments were run in health conditions for 9 days to establish a mature and healthy 

biofilm. Then, the conditions were changed to gingivitis and maintained for 14 days.  

 

The data obtained from the T-CDFF experiments showed a relatively high variability 

and no particular growth trend among units in the two experiments. The total number 

of anaerobes decreased in gingivitis conditions in experiment 1 (except for unit 2) but 

an increase was observed in experiment 2 (except for unit 1). A similar trend was 

observed for the aerobes on the switch from health to disease, where the number of 

aerobes decreased in experiment 1 but increased in experiment 2. However, these 

changes were mostly not statistically significant. With regard to the Actinomyces spp.-

Streptococcus spp. relationship, experiment 1 showed an overall decrease in numbers 

of Streptococcus spp. among all units under gingivitis conditions at the expense of 

Actinomyces spp. which increased in numbers (with exception for unit 3). However, 

again these changes were mostly not statistically significant. Experiment 2 showed 

much greater variability with no particular growth trend. The statistical analysis 
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showed no significant difference in bacterial numbers across the health and gingivitis 

conditions. The Actinomyces spp.-Streptococcus spp. relationship was further 

investigated by the culture independent qPCR method with a primer set for A. 

naeslundii and S. sanguinis.  

 

As reported by Zee et al. in their experimental gingivitis study, there was a significant 

increase in the proportion of Gram-negative species, up to 47% of the bacterial 

community in the gingivitis patients (Zee et al. 1996). A relatively similar ecological 

shift was established by Dalwai et al. when simulating gingivitis in vitro using the CDFF 

model (Dalwai et al. 2006). In terms of the relationship between Actinomyces spp. and 

Streptococcus spp., Dalwai and colleagues showed a 50% decrease of Streptococcus 

spp. and 60% increase of Actinomyces spp. during the in vitro gingivitis conditions 

using the CDFF model. A similar relationship between Actinomyces spp. and 

Streptococcus spp. was reported in vivo during the experimental gingivitis trials 

performed by Zee et al. and Moore et al. (Moore et al. 1982; Zee et al. 1996; Dalwai et 

al. 2006). In spite of applying the same experimental gingivitis methodology to T-CDFF 

experiments (Pratten et al. 1998; Dalwai et al. 2007), my results did not show a 

significant increase of anaerobes, which are mostly Gram-negative and gingivitis 

associated bacteria, under the gingivitis conditions (Section 4.3.1.1, Figure 4.4). 

4.4.3 Molecular methods to analyse the gingivitis associated shifts 

Molecular techniques are considered a comprehensive, fast and more precise 

approach in microbial identification than the traditional cultivation techniques as they 

do not require a microorganism to grow to be detected and can therefore allow for the 

identification of both the cultivable and non-cultivable fraction (Sánchez et al. 2011). 

The qPCR study presented in this chapter was used to investigate the microcosm 

population grown in T-CDFF using primers for 8 bacteria associated with either oral 

health or disease. The selection of these bacteria was based on the fact that they are 

considered to be the species frequently found in supragingival plaque. This selection 

also encompasses the early, intermediate and late colonisers belonging to different 

complexes described by Sockransky (Socransky et al. 1963; Socransky & Haffajee 1994; 
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Socransky et al. 1998; Socransky et al. 2004). Among them, 4 species can be 

categorised as gingivitis associated (F. nucleatum, P. intermedia, A. naeslundii and L. 

casei), 3 are health associated (S. sanguinis, V. dispar, N. subflava) and 1 species, S. 

mutans, is associated with tooth decay. These 8 bacterial species exemplify a different 

range of physical and metabolic characteristics, which effectively can represent a wider 

oral community and help me confirm whether I am dealing with a healthy or a 

diseased microbiome (Sánchez et al. 2011). 

The overall total numbers of bacteria detected in the T-CDFF model remained in a 

steady state during the gingivitis conditions whether determined by the culture or 

qPCR study. This would imply that once the community is established, the total 

numbers of bacteria are controlled by spatial rather than nutritional limitations. The 

total bacterial numbers were slightly higher when quantified by qPCR than by 

culturing; this may be explained by the detection of uncultivable and non-viable 

species using universal primers. However, this explanation may be too simple as the 

universal primers are based on the 16S rRNA gene which can be present in multiple 

copies in certain bacterial species (up to 14 copies per species) (Farrelly et al. 1995). 

Therefore, this may also account for the differences between the traditional cultivation 

quantification and the qPCR studies.  

Kolenbrander at al. (2002) stated that the development of a supragingival biofilm is a 

series of events involving early colonisers bridging the inclusion of the intermittent and 

secondary colonisers. Therefore, the Streptococcus spp. species considered as early 

colonisers decrease in numbers as Veilonella and other intermittent colonisers 

increase in numbers as the oral biofilm matures (Walker & Sedlacek 2007). In terms of 

the early colonisers detected in this study, the numbers of S. sanguinis showed 

variation among units in the individual experiments. The results obtained for V. dispar 

from experiment 2 showed an increase in numbers of V. dispar in disease among the 

units with only the change in unit 3 being considered as significant. Experiments 1 

showed a non-significant decrease between the health-disease conditions among the 

units. S. mutans was not detected in any of the biofilm samples. This may be explained 

by the fact that bacteria associated mostly with dental caries require different 
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nutritional requirements that have not been met in this experimental set-up. It has 

also been claimed by Marsh et al. that mutans streptococci have low adherence 

properties in the absence of sucrose (Marsh & Martin 1999). With regards to N. 

subflava, there was a descending pattern recorded for all units in both experiments. 

However, only changes in unit 2 in experiment 1 and 2 were considered as statistically 

significant.  

Despite the fact that previously published and successfully applied gingivitis 

methodology was followed, there was no clear separation between oral health and 

disease conditions in terms of the gingivitis associated bacteria such as F. nucleatum, 

A. neaslundi and P. intermedia. A. neaslundii also showed no significant difference in 

bacterial numbers across the change from health to gingivitis. There was an increase in 

numbers of F. nucleatum in gingivitis conditions for all of the units in both experiments 

(except unit 2, experiment 1) of which only the changes in units 1 and 3 (experiment 2) 

were statistically significant. P. intermedia was detected in low numbers and there was 

no significant difference in growth across the health and gingivitis condition in both T-

CDFF experiments.  

Generally speaking, the data obtained were inconclusive and did not follow the 

bacterial shifts previously reported by Dalwai et al. (Dalwai et al. 2006; Dalwai et al. 

2007). There was no observed ascendency of Actinomyces spp. (i.e. A. naeslundii) at 

the expense of Streptococcus spp. (i.e. S. sanginis) under gingivitis condition and Gram-

negative bacteria from the orange and red complex such as F. nucleatum and P. 

intermedia were found in low numbers. The latter could potentially be improved by 

extending the experimental duration and allowing longer exposure to gingivitis 

conditions to allow the biofilm to favour Gram-negative bacteria.  

The other possible explanation for the lack of bacterial shifts may include the 

experimental differences between the results obtained from this study and the results 

of Dalwai et al. (Dalwai et al. 2006; Dalwai et al. 2007). The main difference between 

this and the previous work was that the latter used a different experimental in vitro 

model, the standard CDFF. Also, in the study by Dalwai et al., different post-
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experimental techniques were used which included Gram-negative selective medium 

instead of non-selective media targeting anaerobes and aerobes and also different 

primer chemistry and selection (Dalwai et al. 2006; Dalwai et al. 2007).   

Regarding the T-CDFF in vitro model, the conceptual and mechanical operation is 

identical to the CDFF. However, due to the fact that T-CDFF was designed to run three 

CDFFs concurrently, it was significantly scaled down and modified to improve the 

handling and manoeuvrability of the fermentor (see Table 2.1, Chapter 2). Therefore, 

although the two models have the same cylindrical shape, they have different 

diameters and this resulted in different volumes, working areas and hydraulic 

retention times (HRT) as presented in Table 4.6 below.  

 

Model CDFF T - CDFFF 

Volume (V)   

 

Where:  
V= Volume. 
r=radius 
H=height of the cylinder 
 

Model CDFF T - CDFFF 

HRT health 

conditions 
  

 

Where: 

HRT = hydraulic retention time 

Table 4.6 present the volumes and hydraulic retention times calculated for both CDFF and T-
CDFF.  

These parameters have an unknown influence on the physio-chemical environment 

created in the model and may have influenced the outcomes and accounted for 

differences in the data. Additionally, the clearance of delivered substances and 

metabolic waste products is a function of flow rate and volume (Guggenheim et al. 

2001). In my case, both models used the same flow rates, but have different volumes 

and working areas as seen in Table 4.6. This may have directly affected the clearance 
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of the pulsed substances and then subsequently the biofilm growth. It might be the 

case that extending the incubation periods or providing a higher volume of artificial 

GCF would accelerate the process of developing gingivitis in vitro.  

Another possible difference is that, the ascendency of Actinomyces spp. over 

Streptococcus spp. in gingivitis conditions was modelled by Dalwai and colleagues 

(Dalwai et al. 2006) using different bacterial species, primer sets and different qPCR 

chemistry. Dalwai et al. used the SYBYR green primers for A. naeslundii and 

Streptococci and ABI PRISM (PE Applied Biosystems) as the qPCR detection platform 

(Dalwai et al. 2007). In the present study, I used the Taqman qPCR primers for A. 

naeslundii and S.  sanguinis with a different platform which was Rotor-gene 6500 

(QIAGEN) to model the S. sanguinis and A. naeslundii crossover. The above-mentioned 

differences may have an indirect influence on my work.  

4.4.4 Functional approach to investigate the gingivitis associated shifts 

A functional approach was applied to provide additional information about the 

ecological changes within the microbial community. Two metabolic assays, alkaline 

phosphatase (ALPase) and trypsin-like-protease (TLPase), were chosen. The activity of 

these enzymes is positively correlated with periodontal diseases (Shibata et al. 1994; 

Narang et al. 2013). Additionally, certain Gram-negative periodontal pathogens have 

been shown to have high ALPase and TLPase activity using the API ZYM System 

(Hoover et al. 1992; Shibata et al. 1994; Narang et al. 2013). As trypsin-like enzymes 

are associated with proteolytic enzyme producers belonging to red complex bacteria 

(such as Porhyromonas gingivalis or Treponema denticola and others), the TLPase 

assay was used to trace their activity and to determine the virulence of the biofilms 

produced in my models (Waddington & Embery 1994; Sockransky & Haffajee 2005). 

ALPase is considered a periodontal biomarker as it is correlated with bacterial load 

increase and gingivae inflammation. A longitudinal study on 8 patients performed by 

Binder et al. showed that bacterial ALPase has a strong correlation with inflammation 

and can be used as a diagnostic indicator for periodontal diseases (Binder et al. 1987).  
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With regard to the results presented in this chapter, trypsin-like-protease activity was 

not detected under either health or gingivitis conditions. This suggests that the 

developed microbial community is either (i) lacking proteolytic periopathogens or (ii) 

they are too small in proportion to be detected using enzyme assays or (iii) the assay is 

not sensitive enough to detect the TLPase producers in a complex community. 

Specifically, as the assays’ effectiveness was previously tested using a suspension 

containing a high concentration of P. gingivilis while the T-CDFF biofilm samples are a 

mixture of diverse bacterial species of a much lower load. ALPase activity has been 

demonstrated by a range of bacteria including P. gingivalis, P. intermedia, P. 

nigrescens, C. ochracea, S. sanguinis and S. oralis. However, the enzymatic activity data 

presented in this chapter were inconclusive as in most cases there was (i) no enzymatic 

activity detected or (ii) the enzymatic activity was very weak compared with the 

activity obtained from the ALPase assay performed on a single species biofilm of P. 

gingivalis. Additionally, there was no enzymatic activity pattern among the units and 

the differences among the health-disease phase were variable and statistically 

insignificant. Therefore, the enzymatic data showed no repeatability among the units 

in the individual T-CDFF experiments. The functional approach should be verified by 

repeating these experiments.  

4.4.5 Reproducibility of the bacterial shifts in the T-CDFF model 

The experimental T-CDFF methodology was designed so as to maintain the highest 

reproducibility among the units (Chapter 2, Section 2.2.1). In the set of experiments 

presented in this chapter, the standardised artificial saliva and a multi-channel pump 

were used to increase the reproducibility of nutrient delivery and subsequently ensure 

the most reproducible environment among the units. To investigate the repeatability 

of the T-CDFF model, complex univariate Analysis of Variance with a post hoc 

Bonferroni multiple comparisons correction was applied to the qPCR and culture data 

for total aerobes and anaerobes to verify the repeatability among T-CDFF units across 

different experimental conditions and sampling events.  
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Univariate ANOVA analysis applied to the qPCR data showed no significant differences 

among the units in single or individual experiments in terms of total number of 

bacteria present. The same results were seen for 3 bacterial species including A. 

naeslundii, P. intermedia and S. sanguinis. In terms of F. nucleatum and V. dispar, the 

T-CDFF units showed repeatability only in experiment 1; while N. subflava showed no 

repeatability among units in either single or separate T-CDFF experiment. The same 

statistical analysis applied to culture data for total anaerobes and aerobes showed no 

significant difference among units in either single or individual T-CDFF experiments.  

Despite relatively high variation in data collected from different sampling points there 

was a consistent growth trend across units for most bacterial species. Though, the 

statistical analysis confirmed no significant difference among units in most cases. 

Based on this one could postulate that the model shows a degree of repeatability. This 

assumption can be supported by: (i) there is an actual high degree of repeatability 

among units or (ii) the statistical analysis could not discriminate the difference among 

units due to high variability; leading to the statistics showing no significant difference 

between units. It is also important to mention that biological fermentors such as T-

CDFF are prone to high data variability in general; this is because they are complex 

models which are affected by many factors including experimental, environmental or 

human errors. Therefore, to obtain a better prediction and to minimise the effect of 

variability on my data, a greater number of experimental replicates would be required 

(n ≥ 3). 

Another thing worth mentioning is that reproducibility by definition is termed as 

‘degree of agreement between the measurements or observations conducted on 

replicate specimen in different locations by different people’ (Adamson et al. 2014). 

Until now only a few models have been reported as reproducible in growing oral 

biofilms including the Zurich model or CDFF (Sánchez et al. 2011). However, even these 

models, which are (i) less complicated experimentally and (ii) have been extensively 

used to model oral biofilm, have not been shown to be reproducible as per the 

definition mentioned above. According to the above mentioned definition, to 

ultimately confirm the hypothesis that the model enables the growth of the 
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reproducible oral community under health and gingivitis conditions, the reproducibility 

of this model would have to be verified by running it under the exact same 

experimental methodology by different operators and at different facilities.  
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4.5 Conclusion 

In the previous chapter, Chapter 3, the T-CDFF model was validated and proven to 

work in a satisfactory manner – all three T-CDFF units followed the same growth trend. 

The current chapter focused on the development of a reproducible in vitro gingivitis 

model. The methodology presented in this chapter was structured to investigate the 

repeatability of the T-CDFF model and its ability to model ecological shifts associated 

with gingivitis progression. Although the growth among units in the individual T-CDFF 

experiments followed similar trends, the degree of variability was relatively high. High 

variability among the sampling points and low number of repetitions (only 2 individual 

T-CDFF experiments, n=2) influenced the statistical analysis which mostly showed no 

significant differences among the units. Thus, the results presented in this chapter are 

inconclusive and it can not be stated that the model is reproducible. To allow a better 

prediction and to minimise the effect of variability, a greater number of experiments 

should be performed. Additionally, there was no clear resolution between the health 

and gingivitis phases. This might have been caused by applying insensitive/wrong 

detection tools or by using unsuitable methodology. This approach will be re-validated 

in chapter 5 by applying the health/gingivitis methodology and testing the health-

disease shift by 1H NMR spectroscopy to fingerprint the metabolites produced in the T-

CDFF model over time. 
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5.1 Introduction 

According to the Human Oral Microbiome Database (HOMD), the oral microbiome is 

composed of approximately 600 different species (Siqueira & Rôças 2013). Many of 

these bacteria are symbiotically present in varying degrees in both health and gingivitis 

(Huang et al. 2011) and there is no clear distinction between health and gingivitis. 

Despite the technological advances in the field of molecular biology that have allowed 

cost-effective high-throughput screening of oral biofilms, questions remain regarding 

the understanding of gingivitis pathogenesis (Goodacre 2007). As oral microorganisms 

live in a complex biofilm community, they are involved in a vast number of complex 

host-microbe and microbe-microbe interactions, so when environmental changes 

occur there is not only a taxonomic shift, but also metabolic and functional shifts 

(Goodacre 2007; Huang et al. 2014). All these changes have a direct effect on biofilm 

virulence and disease progression. Therefore, metabolic fingerprinting on both healthy 

and diseased microbiomes and understanding their function might be a way forward in 

understanding these complex interactions (Mashego et al. 2007; Pacchiarotta & 

Mayboroda 2012).  

The major advantage of 1H NMR metabolic fingerprinting, used in this chapter, is its 

robust, non-destructive, non-biased processing of multiple samples at once in both a 

qualitative and a quantitative manner (Serkova & Niemann 2006; Wishart 2008). The 

only disadvantages when compared with mass spectroscopy are: (i) a relatively lower 

sensitivity, (ii) higher cost and (iii) addition of deuterated solvents to adjust the pH and 

maintain the quality of the signal (Constantinou et al. 2007). Despite these few 

drawbacks, NMR has exceptional capacity to handle complex metabolite mixtures and 

simple sample preparation have made it a popular choice for metabolic profiling 

studies in the field of oral metabolomics (Cloarec et al. 2005; Wishart 2008).  

As the 1H NMR metabolomics approach provides a snapshot of the physiological state 

of the biological system, it was used in this chapter to determine the metabolites being 

produced throughout the change in environment. According to the literature search 

conducted, this is the first study using the 1H NMR metabolomics to investigate the in 
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vitro gingivitis associated shifts using CDFF model. Therefore, it was trialled in this 

chapter to verify whether this technique is applicable and can provide the desired 

research answers. A simpler and easier to operate CDFF model was used instead of a 

complex T-CDFF to test this technique before implementing it in the T-CDFF model. 

The methodology was structured to combine previously applied techniques such as 

metabolic assays and quantitative PCR together with 1H NMR spectroscopy. This 

approach allowed investigation of the usefulness of metabolomics in studying the 

physiological status of biofilm in conjunction with more traditional techniques that 

were used to study gingivitis in vitro. 
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5.2 Materials and Methods 

5.2.1 CDFF experimental set-up  

The experimental set-up and scheme of work of all CDFF experiments were performed 

according to the methodology described in Chapter 2, Section 2.2-2.3.  

5.2.2 CDFF experimental conditions 

All the CDFF experiments presented in this chapter were performed according to the 

description below in Figure 5.1.  

 
Figure 5.1 shows the experimental design of the CDFF experiment. 

Each CDFF experiment started with 8 hours inoculation with the microcosm population 

(Chapter 2, Section 2.3.1). After the inoculation, the model was exposed to health 

conditions for 7 days by providing aerobic conditions and the standardised artificial 

saliva formulation as a nutrient source (Chapter 2, Section 2.3.2). After the 7 days of 

health conditions, the model was exposed to ‘transition conditions’ that differed from 

health by providing micro-aerophilic gas [composition: 2% O2, 3% CO2, 95% N, at 200 

bar] at 200 cm3 / min instead of aerobic gas conditions. After 4 days of transition 

conditions, the model was exposed to gingivitis conditions by continuing to provide 

micro-aerophilic gas and artificial saliva and adding the artificial GCF component.  

5.3 CDFF sampling 

5.3.1 Biofilm 

Biofilms retrieved from the CDFF were sampled at fixed intervals throughout the 25 

day experiment. Three biofilm samples were taken in health conditions at days 1, 5 



Chapter 5: Materials and Methods 

172 

 

and 7; a further two samples were collected during the gingivitis conditions at day 20 

and 25 (Chapter 2, Section 2.3.5). During each biofilm sampling event, one pan was 

removed and analysed according to the description below (Figure 5.2).  

Additionally, two pans (10 discs in total) were removed in health (day 5) and disease 

conditions (day 17) for the metabolomics study using 1H NMR spectroscopy (Chapter 2, 

Section 2.7.2). The biofilms obtained from the 10 discs were pooled, resuspended in 

5.0 mL of PBS and stored at -20°C for the metabolomics study. The samples were 

processed according to the methodology described in Chapter 2, Section 2.7.2.  

5.3.2 Effluent 

The effluent from the CDFF was collected according to the methodology described in 

Chapter 2, Section 2.3.5. The effluent samples were collected every day and analysed 

 

 

Biofilm from the yellow disc was resuspended in 1.0 mL of PBS (1x) and used for 
enzymatic assays such as ALPase and TLPase assay (Chapter 2, Section 2.7.1).  

 

Biofilm from three discs was pooled and resuspended in 1.0 mL of PBS. Concentrated 
bacterial suspension (3x) was used for enzymatic assays such as ALPase and TLPase 
(Chapter 2, Section 2.7.1). 

 

Biofilm from the orange disc was resuspended in 1.0 mL of PBS. 100 µL was used for 
serial dilutions and plating on the FAA medium to determine the lack of contamination in 
the model (Chapter 2, Section 2.4). The DNA was extracted from the remaining 900 µL 
according to the bead beating protocol and then followed by the qPCR analysis (Chapter 
2, Section 2.5.1 and 2.5.2).  

Figure 5.2 presents the sampling pan with 5 discs, each designated for different analysis.  

Enzymatic assays 1x 

Enzymatic assays 3x 

qPCR / viable counts 
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by the triplex qPCR (Chapter 2, Section 2.5.2) and culture methods to determine the 

lack of contamination in the model (Chapter 2, Section 2.4). The remaining effluent 

was analysed by 1H NMR spectroscopy to investigate the metabolite profile change 

over time in relation to the microbial changes (Chapter 2, Section 2.7.2). 

5.4 Post-experimental data analysis 

5.4.1 Differences between health and disease 

To investigate the differences in bacterial numbers in biofilm across the change in 

conditions from health to gingivitis, the qPCR data retrieved at day 5 and day 7 (health) 

were averaged, logged and compared with the averaged and logged data from day 20 

and 25 (gingivitis). The data from sampling point 1 were excluded from the calculation 

of the health averages, as the cell numbers collected at day 1 were usually much lower 

than for the remaining 4 sampling points collected from mature biofilm.  

To investigate the differences in bacterial numbers in effluent across the health / 

transition / gingivitis conditions, the qPCR data generated from each phase were 

averaged, logged and compared. 

5.4.2 Statistical analysis 

The qPCR and enzymatic data were analysed by the paired Student’s t-test with the p -

value set to 0.01 to ensure stringent hypothesis testing. The qualitative PCA and PLS 

analysis on raw NMR data was performed by Dr Michael Cannon (scientist at 

Procter&Gamble) using the Simca-P programme (UmetricsAB, Sweden). The additional 

statistical analysis on 1H NMR data was not performed as only limited data were 

obtained from Procter & Gamble. Therefore, the results from this study will only give 

an indication of whether metabolomics can be used successfully for examining the 

gingivitis related shifts in the model. 
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5.5 Results 

5.5.1 Bacterial shifts  

5.5.1.1 Culture independent methods 

Figure 5.3 shows the total number of bacteria detected in the biofilm and the effluent 

samples collected across the experimental phases in the CDFF experiment.  

 

Figure 5.3 The total number of bacteria detected by triplex qPCR primers in the biofilm and the 
effluent samples collected throughout the health, transition and gingivitis conditions in the 
CDFF experiment. Health conditions are shown in red, transition in green and gingivitis in blue. 
Blue line shows the total number of cells in the effluent samples; green line shows the total 
number of cells in the biofilm samples (n = 3). *n=3 refers to three technical replicates 

The transition conditions were introduced after 7 days of health and lasted for 4 days. 

Then gingivitis conditions were introduced for another 14 days. To determine the 

differences in the total counts across the experimental condition, the data points from 

each condition were averaged and compared as explained in Section 5.4.1. Following 

the change in conditions from health to gingivitis states, there was a decrease (approx. 

0.40) in total numbers of bacteria in the biofilm samples. In terms of the effluent data, 

there was no obvious difference between health-transition, transition-gingivitis or 

health-gingivitis conditions. The variation among the effluent data points was high and 
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probably related to the problem with collecting a uniformly heterogeneous effluent 

sample.  

5.5.1.2 Bacteria implicated in gingivitis 

Figure 5.4 to 5.6 presents the total number of the gingivitis associated species such as 

F. nucleatum (Figure 5.4), P. intermedia (Figure 5.5) and L. casei (Figure 5.5) in the 

CDFF experiment.  

 
Figure 5.4 shows the total numbers of F. nucleatum detected by triplex qPCR primers in the 
biofilm and the effluent samples collected throughout the health, transition and gingivitis 
conditions in the CDFF experiment. Health conditions are encircled in red, transition in green 
and gingivitis in blue. Blue line shows the total number of cells in the effluent samples; green 
line shows the total number of cells in biofilm samples (n = 3). *n=3 refers to three technical 
replicates 

A logarithmic growth increase was observed in the first 7 days of the experiment for 

both the biofilm and the effluent samples. After the initial increase and growth 

maturation, the total numbers of F. nucleatum detected in the biofilm and the effluent 

reached approximately 1.0x106-1.0x107 cells / mL and seemed unaffected by the 

alteration of the experimental conditions from transition to gingivitis conditions.  
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Figure 5.5, presents the total number of P. intermedia across the health, transition and 

gingivitis conditions detected both in the biofilm and the effluent samples in the CDFF 

experiment. 

 

Figure 5.5 shows the total numbers of P. intermedia detected by triplex qPCR primers in the 
biofilm and the effluent samples collected throughout the health, transition and gingivitis 
conditions in the CDFF experiment. Health conditions are encircled in red, transition in green 
and gingivitis in blue. Blue line shows the total number of cells in the effluent samples; green 
line shows the total number of cells in biofilm samples (n = 3). n=3 refers to three technical 
replicates 

The numbers of P. intermedia detected in the biofilm and the effluent samples were 

low and variable across the sampling points with no particular growth trend observed. 

P. intermedia was not detected in the effluent on the last day of the experiment. 
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Figure 5.6 shows the numbers for L. casei detected in both the biofilm and the effluent 

samples collected from the CDFF experiment.  

 
Figure 5.6 shows the total numbers of L. casei detected by triplex qPCR primers in the biofilm 
and the effluent samples collected throughout the health, transition and gingivitis conditions 
in the CDFF experiment. The health conditions are encircled in red, transition in green and 
gingivitis in blue. Blue line shows the total number of cells in the effluent samples; green line 
shows the total number of cells in the biofilm samples (n = 3). n=3 refers to three technical 
replicates 

L. casei showed a similar growth pattern to F. nucleatum; it started with a logarithmic 

growth increase in cell numbers and was followed by biofilm maturation on day 7. The 

change in conditions from health to gingivitis did not seem to affect the L. casei 

numbers that stayed at the same level of around 1.0x105 cells / mL. The effluent 

followed a similar growth pattern initially but with much higher variation among the 

sampling points and no particular growth change across the experimental phases. 

5.5.1.3 The Actinomyces spp. - Streptococcus spp. cross-over 

This Section presents the data for A. naeslundii and S. sanguinis retrieved from the 

biofilm and the effluent samples throughout the different experimental phases in the 

CDFF experiment. Figure 5.7 presents the A. naeslundii - S. sanguinis growth relation 

observed in the biofilm samples collected at different time points throughout the 

health, transition and gingivitis conditions.  
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Figure 5.7 presents the cell numbers for A. naeslundii (blue line) and S. sanguinis (green line) 
detected by triplex qPCR primers in the biofilm samples collected throughout the health, 
transition and gingivitis conditions from the CDFF experiment. The health conditions are 
encircled in red, transition in green and gingivitis in blue. Error bars represent the standard 
deviations (n = 3). n=3 refers to three technical replicates 

Figure 5.7 presents the cross-over between the S. sanguinis and A. naeslundii numbers 

during the change in the experimental conditions. There was approximately a 3.73 log 

increase in numbers of A. naeslundii across the change in conditions versus a relatively 

stable growth of S. sanguinis. However, the variation in cell numbers for both species 

especially under the health conditions was noticeable.   
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Figure 5.8 presents the amount of S. sanguinis and A. naeslundii and the cross-over 

between these two species in the effluent samples retrieved from the different 

experimental phases.  

There was a high variation in cell numbers for both species across health and transition 

conditions. After the introduction of gingivitis conditions, there was an ascendency of 

A. naeslundii with an average of 1.37 log higher cell numbers in comparison with S. 

sanguinis (p≤0.01). 

 

 
Figure 5.8 presents the cell number for A. naeslundii (violet line) and S. sanguinis (light green 
line) detected by triplex qPCR primers in the effluent samples collected throughout the health, 
transition and gingivitis conditions from the CDFF experiment. The health conditions are 
encircled in red, transition in green and gingivitis in blue (n = 3). n=3 refers to three technical 
replicates 
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5.5.1.4 Bacteria implicated in oral health 

Table 5.1 and Table 5.2 show the total numbers for N. subflava, V. dispar, and S. 

mutans in both the biofilm and the effluent samples at different time intervals 

throughout the health, transition and gingivitis conditions.  

Strain N. subflava V. dispar S. mutans 

 
[cells / biofilm] [cells / biofilm] [cells / biofilm] 

Time [d] Average Average Average 

1 4.11E+00 4.81E+02 ND 

5 4.31E+01 5.81E+06 1.01E+03 

7 1.34E+01 1.24E+08 9.74E+01 

20 4.11E+00 1.13E+07 9.82E+04 

25 7.66E+00 8.14E+06 1.01E+04 
 

Table 5.1 The total number of health associated bacteria detected by triplex qPCR primers in 
the biofilm in the CDFF experiment. The average for each species is calculated based on three 
technical replicates (n=3). ND - not detected. Blue line indicates the change in conditions. 
Samples collected at day 1, 5 and 7 were retrieved from health, while samples from day 20 and 
25 were retrieved from gingivitis conditions. 

N. subflava was detected in very low numbers with no particular growth pattern across 

the phases. After the initial growth increase of V. dispar, there was a 0.45 log decrease 

in cell numbers in gingivitis conditions. S. mutans was not detected at the first 

sampling point. Its presence was recorded from day 5 onwards with a 2.0 log increase 

in gingivitis conditions versus the health.  
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Table 5.2 presents the numbers for health associated bacteria detected in the effluent 

samples over time.  

Strain N. subflava V. dispar S. mutans 

 
[cells / mL] [cells / mL] [cells / mL] 

Time [d] Average Stdev Average Stdev Average Stdev 

1 2.24E+03 6.40E+05 1.49E+07 

2 1.89E+05 2.24E+07 1.68E+07 

3 3.86E+04 4.44E+07 NDA 

4 9.43E+03 3.08E+07 NDA 

5 2.42E+04 9.61E+07 NDA 

6 1.13E+04 9.17E+07 NDA 

7 1.09E+04 3.55E+07 8.98E+07 

8 1.79E+03 1.14E+08 1.08E+06 

9 1.29E+03 4.91E+07 3.21E+07 

10 1.00E+04 4.19E+07 1.69E+08 

11 1.93E+03 3.22E+07 4.26E+07 

12 2.93E+03 2.84E+07 3.66E+07 

13 NDA 7.50E+07 1.62E+08 

14 NDA 2.67E+08 9.25E+07 

15 NDA 4.75E+07 2.13E+08 

16 1.70E+03 7.00E+07 1.49E+06 

17 6.24E+02 2.26E+07 6.58E+07 

18 NDA 3.15E+07 4.74E+07 

19 1.22E+02 1.97E+07 2.28E+07 

20 2.54E+02 1.96E+07 1.12E+07 

21 9.96E+01 3.21E+07 2.52E+07 

22 2.84E+02 2.77E+07 4.04E+07 

23 NDA 3.64E+07 1.77E+07 

24 2.47E+02 2.76E+07 8.42E+05 

25 2.41E+01 1.53E+07 6.35E+06 
 

Table 5.2 shows the total number of the health associated bacteria detected by triplex qPCR 
primers in the effluent samples. The average for each species is calculated based on three 
technical replicates (n=3). NDA – no data available. Red line indicates the introduction of 
transition conditions at day 7; Blue line indicates the introduction of gingivitis conditions at day 
12. 

N. subflava reached a relatively constant growth at day 5-7 of around 1.0x104 cells / 

mL and then generally continued to decrease under the transition and gingivitis 

conditions (not detected at day 13-15 and days 18, 23) reaching a 1.8 log decrease in 

comparison with health conditions. V. dispar reached high numbers in the CDFF 

experiment with no obvious difference between the health-transition, transition-
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gingivitis, health-gingivitis conditions. The cell number for S. mutans increased in 

transition and gingivitis phase versus the health phase.  

5.6 In vitro gingivitis modelling – a functional approach 

5.6.1 Enzymatic assays 

ALPase and TLPase metabolic assays were performed on biofilm retrieved from the 

CDFF experiment at different sampling points. The data for TLPase activity is not 

shown as no activity was detected in biofilm samples in either single or concentrated 

biofilm suspension. 

Table 5.3 presents the data obtained for alkaline phosphatase activity of a single 

biofilm suspension (from 1 disc) and a concentrated biofilm suspension (from 3 discs) 

retrieved at different time points throughout the CDFF experiment. 

 

 Alkaline phosphatase 

 activity [ΔOD / h] 

Time [d] 1x Δ 3x Δ 

1 0.048 0.06 

5 0.06 0.12 

7 0.18 1.02 

20 0.06 0.06 

25 0.0 0.06 

Table 5.3 The ALPase activity in the biofilm collected at different time points. The enzymatic assay 
was performed on a single (1x) and concentrated biofilm suspension (3x). Δ – delta activity over time 
(n=2). n=2 refers to two technical replicates 

The alkaline phosphatase activity was monitored at each sampling point. The ALPase 

activity of biofilm samples retrieved from each sampling point was monitored for 120 

min. The results [ΔOD / hour of assay duration] showed that the biofilm suspension 

retrieved from 3 discs had higher enzymatic activity than the single-disc bacterial 

suspension but the enzymatic activity was very low and showed no particular activity 

change across the conditions.  
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5.6.2 1H NMR Metabolomics approach 

The metabolite fingerprinting study using 1H NMR spectroscopy was applied to the 

biofilm and the effluent samples retrieved from the CDFF experiment. A post-

experimental qualitative PCA analysis was used to analyse the NMR profiles obtained 

from health and gingivitis state (Figure 5.9). 



Chapter 5: Results 

185 

 

 

Figure 5.9 shows the PCA analysis applied to the biofilm and the effluent samples. Two biofilm samples (health and disease) are marked as ‘New’ and 
highlighted in orange. The effluent samples are highlighted in red, green and blue according to the experiment phase (1-red=health, 2-green=transition, 
3-blue=gingivitis). PCA analysis and this Figure were performed by Dr Michael Cannon (Procter & Gamble). 
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Figure 5.9 presents the post-experimental PCA analysis applied to the NMR data. The 

biofilm samples, shown in orange, were removed from any further PCA analysis (see 

Figure 5.10), since (i) they did not follow the effluent distribution, and (ii) their 

presence skewed the PCA analysis and the separation patterns across the phases. 

After the removal of the two biofilm samples, Figure 5.10 showed an improved 

outcome for the effluent samples as they have shown a higher degree of clustering 

than previously, as seen in Figure 5.9. The within cluster variation is due to the fact 

that the change from health to disease takes the form of a gradual change in 

metabolite levels, rather than a phase transition at a specific time. Thus, the 

orthogonal PLS analysis performed on this data set showed that the clustering pattern 

is growth dependent and increases over time throughout the study (Figure 5.11). 
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Figure 5.10 shows the PCA analysis applied to the effluent samples only. Samples are highlighted according to the experimental phase (1-black=health, 2-
red=transition, 3-blue=gingivitis). PCA analysis and this Figure were performed by Dr Michael Cannon (Procter & Gamble). 
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Figure 5.11 shows the orthogonal PLS analysis applied to the effluent samples and how the analysis is growth dependent. Samples are highlighted 
according to the experimental phase (1-red=health, 2-green=transition, 3-blue=gingivitis). OPLS analysis and this Figure were performed by Dr Michael 
Cannon (Procter & Gamble). 
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The orthogonal PLS composition analysis applied to the effluent samples showed that 

the clustering is growth dependent and that the components discriminating the 

health-transition-gingivitis phases included propionate and butyrate, and ethanol. 

There was an increase in propionate and butyrate as opposed to a decrease in ethanol 

levels in disease conditions. 

Figures 5.12-5.14 presented below, show the change in propionate (Figure 5.12), 

butyrate (Figure 5.13) and ethanol levels (Figure 5.14) throughout the health-

transition-gingivitis conditions.  

 

 

Figure 5.12 presents the change in propionate levels across the experimental phases. Health 
conditions – red line, transition conditions – green line, gingivitis conditions – blue line.  The 
averaged health, transition and gingivitis lines represent the differences among the conditions. 

The qualitative data presented in Figure 5.12 showed an increase in the levels of 

propionate throughout the course of the experimental conditions with the highest 

propionate levels in gingivitis conditions. The transition phase showed similar 

propionate levels to those seen in health conditions and the introduction of micro-

aerophilic gas at day 7 had no noticeable effect on the levels of this metabolite.   
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Figure 5.13 presents the butyrate levels across the health-transition-gingivitis phases. 

 
Figure 5.13 presents the change in butyrate levels across the experimental phases. Health 
conditions – red line, transition conditions – green line, gingivitis conditions – blue line. The 
averaged health, transition and gingivitis lines represent the differences among the conditions. 

With the except of day 7 which seems to be an outlier with extraordinarily high butyric 

levels when compared to other sampling points in health, transition or gingivitis, on 

average there was an increase in butyrate levels in gingivitis conditions.  
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Figure 5.14 shows the levels of ethanol across the health-transition-gingivitis phases.  

 
Figure 5.14 presents the change in ethanol levels across the experimental phases. Health 
conditions - red line, transition conditions - green line, gingivitis conditions - blue line. The 
averaged health, transition and gingivitis lines represent the differences among the conditions. 

Throughout the course of 25 days of health, transition and gingivitis conditions, the 

ethanol levels fell constantly.  
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5.7 Discussion 

Our current understanding of gingivitis aetiology derives mostly from extensive culture 

based characterisation performed on dental microbiota in the 1970s and 1980s  (Slots 

1977a; Slots 1977b; Socransky 1977; Tanner at al. 1979; Moore et al. 1982; Moore et 

al. 1983). These studies have shown major structural and compositional differences 

between the healthy and diseased microbiome (Moore at al. 1983). This led to 

identification of periodontal pathogens and classification of them into a colour coded 

system where orange and red complex bacteria were considered as strongly associated 

with gingivitis development. These two groups included e.g. P. intermedia, F. 

nucleatum, P. gingivalis, T. denticola and T. forsythia (Sockransky & Haffajee 2005). As 

the concept of red, orange and other colour coded bacteria is still widely accepted, my 

study was based on these findings and included a primer selection for bacterial 

biomarkers classified as orange type bacteria (F. nucleatum and P. intermedia – 

gingivitis associated bacteria) (Hajishengallis & Lamont 2012). Additional biomarkers 

included S. sanguinis and A. naeslundii which are reported to have a cross depended 

relation across the health and gingivitis conditions and are indicative of gingivitis onset 

(Syed & Loesche 1978). Due to time and funding limitations, I was unable to develop 

primer sets for the red complex bacteria and other proteolytic bacteria associated with 

gingivitis. Therefore, the TLPase assay was introduced, as a surrogate for proteolytic 

producing bacteria (P. gingivalis, T. denticola, A. actinomycetemcomitans), to trace 

them and provide further  information about the virulence of developed biofilms 

(Waddington & Embery 1994; Potempa & Travis 1996; Kamaguchi 2003). Additionally, 

the ALPase assay was introduced as it is considered a good periodontal biomarker for 

gingivae inflammation (Chapple et al. 1996).  

The emergence of sequencing in the field of oral microbiology confirmed not only that 

the aetiology of gingivitis is highly complex (Caporaso et al. 2011; Caporaso et al. 2012; 

Huang et al. 2014) but also showed that (i) gingivitis associated bacteria can be found 

in both health and disease (Huang et al. 2011; Hajishengallis & Lamont 2012; Huang et 

al. 2014) and (ii) that the oral microbiota are more heterogeneous and diverse than 

previously anticipated (around 700 different species) (Dewhirst et al. 2010; 
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Hajishengallis & Lamont 2012), and (iii) that many newly recognised Gram-positive 

bacteria such as Filifactor alocis or Peptostreptococcus stomatis are showing a strong 

correlation with disease (Paster et al. 2001; Kumar et al. 2003; Kumar et al. 2006; 

Griffen et al. 2012). As I was not able to perform the NGS study at the time mainly due 

to funding constraints; it was decided to focus not only on the bacterial composition 

but also on the physiological status of the microbiome as a complementary study to 

the qPCR analysis. The question I wanted to answer was “What is the microbiome 

doing?” and how is it influencing the virulence of dental plaque (Nicholson & Lindon 

2008b). Especially that pathogenecity is related to the metabolic activity of oral 

bacteria. Having a better understanding of the metabolic characteristics of the oral 

ecosystem can increase the knowledge in this area (Takahashi 2005). To enable this to 

happen, I have performed a 1H-NMR metabolomic study to determine the metabolite 

fingerprint profile in both health and gingivitis conditions in my biofilm model.  

Metabolomics is a relatively new technique to oral microbiology and has not been 

extensively exploited in gingivitis studies. It has been mostly limited to in vivo studies 

where metabolomics have been applied for diagnostic purposes and also a few studies 

focused on finding disease associated biomarkers (Aimetti et al. 2011; Barnes et al. 

2011). Aimetti and colleagues (2011) demonstrated the power of 1H NMR metabolic 

pattern recognition in discriminating the profiles of healthy and gingivitis patients. 

They have reported that periodontal diseases can be characterised by higher levels of 

propionate, butyrate, acetate, succinate, trimethylamine, propionate and valine as 

compared to health. The metabolomic studies performed by Barnes et al (Barnes et al. 

2009; Barnes et al. 2010; Barnes et al. 2011) on GCF samples confirmed that 

metabolomics can be a useful tool in discriminating periodontal health and disease and 

they have identified 4 potential gingivitis associated biomarkers inosine, lysine, 

putrescine and xanthine and a link between the purine degradation metabolites and 

periodontal diseases. Other oral metabolomic studies performed on either whole 

saliva or GCF include the work of Takeda et al. (2009), Sugimoto et al. (2012), and 

Santone et al. (2014).  
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These examples show that metabolomics is a fast growing field in oral microbiology 

and can provide useful information about gingivitis progression and aetiology. 

However, according to the literature review performed to date, little attention has 

been paid to in vitro gingivitis studies and using metabolomics as a tool for validation 

and comparison purposes with the in vivo experimental gingivitis studies. Therefore, 

the work described in this chapter is a novel approach where metabolomics were used 

to correlate the in vitro metabolite profiles with the in vivo gingivitis pattern. 

1H-NMR spectroscopy together with complex pattern recognition of NMR spectra 

including two multivariate methods such as principal component analysis (PCA) and 

partial least squares regression (PLS) analysis was kindly performed by Dr Michael 

Cannon, Procter & Gamble. As PCA and PLS are powerful pattern recognition 

techniques in investigating NMR metabolic profiles, they seem suitable for answering 

the research questions of this nature (Fonville et al. 2010; Aimetti et al. 2011). It was 

also decided not to perform a culture study which was previously used in chapters 3 

and 4 (except for contamination testing), as it was very time consuming, expensive and 

did not bring much insight into the bacterial shifts occurring in the model over the 

change in experimental conditions.  

5.7.1 Microbial trends in simulated gingivitis onset 

The microbial composition in biofilm samples across the experimental phases was 

monitored using culture independent methods, triplex qPCR. The transition conditions 

were introduced for the first time in the gingivitis methodology and were applied to 

investigate whether the gas regime change from aerobic to micro-aerophilic conditions 

alone had a significant influence on the community composition. The qPCR study 

performed on the effluent data targeting 8 bacterial species showed that in most cases 

there was no significant difference between the health-transition conditions. The 

functional approach coupled with PCA and PLS confirmed that there was no difference 

between the health and transition conditions which indicate that gas regime alone 

does not invoke the desired environmental change (detectable change) and that 

additional nutrients such as artificial GCF are needed. The findings of this chapter 

corroborate the previous in vitro gingivitis studies performed by Guggenheim et al. 
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(2009) and Dalwai et al. (2006). These studies reported that changes in nutritional 

composition result in quantitatively different bacterial biofilm composition and that 

increase of the serum concentration at the expense of saliva lead to an increase in the 

number of Gram-negative bacteria. 

The total bacterial cell number presented in Figure 5.3, Section 5.5.1 showed no 

statistical difference throughout the health, transition and gingivitis conditions in both 

the biofilm and effluent samples, respectively. In terms of the bacterial response to the 

ecological shift, there was no increase of the gingivitis associated orange complex 

species such as F. nucleatum or P. intermedia in the gingivitis conditions. P. intermedia 

was detected in extremely low numbers, while F. nucleatum reached a stable growth 

of approximately 106-107 cells / mL after 7 days of cultivation. There was also no 

change in numbers for the L. casei after the introduction of transition and gingivitis 

conditions.  

Despite the lack of a substantial increase in the numbers of orange complex bacteria, 

there was an ascendency of A. naeslundii in disease conditions over the S. sanguinis; 

this ecological shift is correlated with the onset of gingivitis which was previously 

reported in a similar in vitro study performed by Dalwai et al. (2006). Streptococcus 

spp. and Actinomycetes spp. are both saccharolytic bacterial genera that utilise 

carbohydrates derived from saliva to form lactate, formate, acetate and succinate. 

Therefore they may change the ecological conditions which could allow colonisation by 

orange and red complex bacteria (Takahashi 2005); interestingly, the above mentioned 

metabolitic end products were not identified in my 1H NMR metabolite fingerprinting 

study (Section 5.6.2).  

The overall lack of detection of microbial change in the model, specifically from orange 

complex bacteria, might have been due to focusing on a very limited bacterial 

selection and missing the bigger picture. Given that there are a large number of taxa 

present perhaps other candidate taxa increased in numbers but were not detected 

because I did not have primers for them. Thus, additional tools that provide a more 
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holistic approach and more information about the microbiome’s metabolic / virulence 

status were applied. 

5.7.2 Functional approach  

The TLPase assay has been used to investigate biofilm virulence indirectly by tracing 

the proteolytic enzyme producers associated with gingivitis. The bacterial ALPase 

activity is associated with certain species e.g. P. gingivalis, P. intermedia, C. ochracea, 

and A. actinomycetemcomitans and thus is correlated with gingivae inflammation 

(Chapple et al. 1996). Both assays have been previously used in Chapter 4. However 

neither of these enzyme markers gave statistically significant changes in the gingivitis 

model (Chapter 4, Section 4.3.4). The main concern raised in chapter 4 was that the 

amount of biofilm used for TLPase assay was not adequate to give a strong signal and a 

clear separation across the health-disease phases. To address this issue, the 

methodology in chapter 5 addressed the problem by repeating both assays and using a 

single biofilm suspension in conjunction with a biofilm suspension from 3 discs (higher 

bacterial concentration per mL) to verify the usefulness of this method in modelling 

gingivitis in vitro. The data obtained in chapter 5 followed the same trend as previously 

observed in Chapter 4, Section 4.3.4 which showed no TLPase activity and low ALPase 

activity in either health or gingivitis conditions. This could potentially be explained by 

the fact that I either could not establish the health-disease transition (orange and red 

complex bacteria not present) or they were present in very low numbers (not 

detectable) or the selection of these two assays was not ideal due to low sensitivity.  

1H-NMR is a sensitive and holistic approach to understanding the metabolic changes 

occurring in a healthy or diseased microbiome. It was applied to both biofilm and 

effluent samples to determine whether the biofilm or effluent samples were more 

suitable for monitoring the changes which occur when shifting conditions from health 

to gingivitis in vitro. The 1H NMR data for the biofilms showed that biofilms are not 

suitable for metabolomic studies on in vitro gingivitis (as explained below). The biofilm 

samples when analysed by 1H NMR spectroscopy, first did not cluster as the remaining 

effluent samples did. Second, the analysis yielded a better separation when the biofilm 

samples were removed and more importantly no end-product metabolites were 
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recorded on increase/decrease in the biofilm samples. One potential explanation for 

this is that the collected biofilm samples (10 discs collected in health and another 10 in 

disease) are much lower in volume and metabolite concentration than the effluent 

samples and were even further diluted by re-suspending them in 5.0 mL of PBS to 

enable 1H-NMR analysis. Additionally, the gingivitis associated end-products might 

have been flushed out from the pans (on which biofilm grew) by constant provision of 

medium and removal of excess waste by scrapper blades.  

Despite the lack of detection of P. intermedia or other gingivitis associated species in 

the effluent samples, the PCA and PLS performed on T-CDFF samples from health-

gingivitis phases showed: (i) a separation between the phases and (ii) an increase of 

propionate and butyrate together with (iii) a decrease in the levels of ethanol. 

Propionate and butyrate are the main end-products of gingivitis associated bacteria 

such as Prevotella spp., Porphyromonas spp., Capnocytophaga spp. and Treponema 

spp. These species are frequently found in the active sites of gingivitis or periodontitis. 

Moore et al. reported the butyrate producing bacteria to be correlated with gingivitis 

(Moore et al. 1981). Furthermore, similar metabolite changes were reported by 

Aimetti et al. in an in vivo study on healthy and periodontal patients including gingivitis 

patients. These authors showed that diseased samples can be differentiated from 

health samples by the elevated levels of propionate, butyrate and also other 

metabolitic end products such as succinate, trimethylamine, and acetate etc (Aimetti 

et al. 2011). My findings suggest that I might have developed a gingivitis associated 

community shift. Lack of detection of the bacterial species responsible for the 

production of the above mentioned metabolites might be explained by applying 

techniques which did not have a high degree of sensitivity or provided only a limited 

insight into the community. 

The metabolomic study presented in this chapter was limited to a qualitative analysis 

only which was not followed by a statistical investigation as limited data was available 

/ obtained from Procter & Gamble. Therefore, this study is only indicative in terms of 

the metabolite changes in health and gingivitis and the potential benefits of using 

metabolomics in the in vitro gingivitis model. Metabolomics will be used in the future 
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T-CDFF experiments as it has shown the potential in modelling gingivitis associated 

bacterial shifts and samples can be easily quantified without the need for time 

consuming extractions and purifications (Harada et al. 1987). Furthermore, this 

technique provides data that can be comparable with in vivo gingivitis studies for 

verification purposes. 
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5.8 Conclusion 

As described in Chapter 4 the culture dependent and qPCR study may not have been 

satisfactory to detect the health-disease shifts as they are focused on a limited number 

of genera or species, respectively. The work in this chapter describes the use of an 

alternative method to monitor population shifts between health and disease, namely I 

applied 1H NMR metabolomics to study the shift from health to gingivitis in vitro.  

The 1H NMR metabolomics has shown potential in monitoring the health-gingivitis 

associated changes. The data presented in this chapter have shown that an increase in 

gingivitis associated metabolites was detected in the shift from heath to gingivitis 

conditions. Conversely, the molecular qPCR approach failed to distinguish between the 

health-gingivitis phases confirming the findings from the previous chapter, chapter 4. 

As the metabolomics approach proved to be useful in detecting the health / gingivitis 

associated changes, this technique will be used in future T-CDFF experiments.  
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6.1 Introduction 

Gingivitis affects between 50-90% of the adult population worldwide (Stamm 1986), yet it 

is still poorly understood (Olsen, 2006; Paster, 2006). As the most critical point in the 

eradication of any disease is the understanding of its aetiology, gingivitis has been 

extensively studied for over 4 decades using culture and molecular techniques (Rosebury 

& Reynolds, 1964; Newman & Sockransky, 1977; Slots, 1977; Moore et al., 1984; Brinig et 

al., 2003; Huang et al., 2014). The last 10 years have brought a profound technological 

shift towards ‘omics’ techniques, genomic or metabolomic, which present new holistic 

approaches to understanding the complexity of biofilm mediated diseases such as 

gingivitis. Genomic approach in a form of 16S rRNA gene next generation sequencing 

(NGS) is a high-throughput technology used for identifying the microbial phylotypes 

present within biofilms (Zaura et al. 2009; Zaura 2012; Schmidt et al. 2013). Due to the 

recent advances in sequencing technology and bioinformatics it is possible to reveal the 

previously undiscovered biodiversity of oral biofilms at much faster and cheaper rate 

(Caporaso, Lauber, Walters, et al. 2011). However, to get a real understanding of the 

aetiology and changes which occur during disease progression, it is important to bridge 

the genotype-to-phenotype gap (Barnes et al. 2009; Barnes et al. 2011). A method to 

achieve this can be 1H-NMR metabolite fingerprinting. This technique has been proven to 

be a useful tool in metabolites identification and providing an overall physiological profile 

of a biological system (Serkova & Niemann 2006). 

 

The previous chapter, Chapter 5, focused on validation of 1H-NMR spectroscopy in 

studying the metabolome in gingivitis in vitro. This study confirmed that a metabolomic 

approach was useful in determining the differences between the health and disease 

conditions established in T-CDFF model. As the cultivation and molecular techniques 

presented in Chapters 4 and 5 provided only a limited insight into microbial complexity, a 

sequencing study was introduced in this chapter to give a better understanding of the 

microbial shifts occurring during the progression from health to gingivitis in vitro. The 

work presented in this chapter describes a study were 16S rRNA gene sequencing based 
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on the Illumina platform was combined with 1H-NMR fingerprinting to understand the 

complexness of the healthy and diseased oral biofilms.  
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6.2 Methodology 

6.2.1 The experimental set-up and conditions 

The experimental methodology and set-up of all T-CDFF experiments presented in this 

chapter was detailed in Figure 6.1 and Chapter 2, Section 2.2.2-2.2.4.  

 

 

UNIT 1 UNIT 2 UNIT 3 

CONTROL GINGIVITIS + GINGIVITIS ++ 
30 days of health conditions: 
artificial saliva: 1.0 mL / min 
aerobic conditions 

9 days health conditions: 
artificial saliva: 1.0 mL / min 
21 days of gingivitis 
conditions: 
anaerobic gas conditions 
GCF at 50 µL / min 

9 days health conditions: 
artificial saliva: 1.0 mL / min 
21 days of gingivitis 
conditions: 
anaerobic gas condition 
GCF at 130 µL / min 

Figure 6.1 presents the experimental conditions for each of the T-CDFF units. Unit 1 served as 
control and underwent the health conditions for 30 days. Unit 2 was run under health conditions 
for 9 days and then under enhanced gingivitis conditions (gingivitis+) by providing anaerobic gas 
conditions (instead of micro-aerophylic gas condition used in chapter 4 and 5 - Chapter 2, Section 
2.3.4 & Chapter 4, Section 4.2.2). Unit 3 was run under health conditions for 9 days and then 
under ‘gingivitis++’ methodology that was defined by higher levels of the artificial GCF (130 µL / 
min) and anaerobic gas conditions (Chapter 2, Section 2.3.4).  

Each T-CDFF unit started with 8 hours of inoculation with saliva microcosm population 

(Chapter 2, Section 2.3.1). After the inoculation, each unit was run under health 

conditions for 9 days. The health conditions in unit 1 were extended for another 21 

days (extended health) and this unit served as a control group. The remaining two 

units, unit 2 and unit 3, were run for 21 days under ‘gingivitis+’ and ‘gingivitis++’ with 

methodology detailed in Chapter 2, Section 2.3.3 and 2.3.4, respectively.  

 

   

         

UNIT 1 UNIT 2 UNIT 3 
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6.2.2 CDFF sampling 

6.2.2.1 Biofilm 

Two biofilm samples were collected from each T-CDFF experiment at day 5, 7, 18, 23 

and day 30 (Chapter 2, Section 2.3.5). The samples retrieved from each unit at each 

sampling point were analysed by culture independent methods: triplex qPCR (Chapter 

2, Section 2.5) and comparative 16S rRNA gene sequencing (Chapter 2, Section 2.6). 

The genomic data are presented as the phylum composition at each sampling point 

and also as the species composition across the experimental phases. Non-selective 

culture methods were used to confirm the absence of contamination in the model 

(Chapter 2, Section 2.3.5 and 2.4). 

6.2.2.2 Effluent 

The effluent samples were collected according to the methodology detailed in Chapter 

2, Section 2.3.5. During the first T-CDFF experiment 18 effluent samples were taken 

out from each unit, while 15 effluent samples were collected from the second T-CDFF 

experiment. Out of 18 samples, 5 were collected in health and 13 samples in either 

extended health (unit 1) or gingivitis (unit 2 and 3). In experiment 2, four samples were 

collected in health while remaining 11 were collected in extended health (unit 1) or 

gingivitis conditions (unit 2 and 3).  

All the effluent samples were analysed by 1H NMR spectroscopy and triplex qPCR 

(Chapter 2, Section 2.5-2.7). Due to funding constraints, only a selection of the effluent 

samples collected at day 5, 7, 21, 23, and day 30 were analysed by comparative 16S 

rRNA gene sequencing to determine if there was a correlation between the effluent 

and the biofilm genomic data. The genomic study determined the phylum composition 

at each sampling point and the species composition across the health, extended health 

and gingivitis conditions (Chapter 2, Section 2.6). Non-selective culture methods were 

used to confirm the absence of contamination in the model (Chapter 2, Section 2.3.5 

and 2.4). 
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6.2.3 Statistical analysis 

The qPCR data obtained from the biofilm samples in health (day 5, and 7), extended 

health (day 18, day 23 and day 30) and gingivitis (day 18, day 23 and 30) were logged 

and averaged to compare the differences across the health-extended health and 

health-gingivitis conditions. Furthermore, a paired Student’s t-test was applied to the 

qPCR data to determine whether the differences between the phases were significant. 

The significance level for all hypothesis tests was chosen to be 0.01. 

Same as above was applied to the effluent data. The qPCR data from samples collected 

in health, extended health, and gingivitis were logged and averaged to compare the 

differences across the health-extended health and health-gingivitis conditions. 

Student’s t-test was applied to determine whether the differences between the phases 

were significant. The value was set as 0.01 to ensure a stringent hypothesis testing. 

The raw 1H NMR data were analysed by Michael Cannon (scientist at Procter & 

Gamble) by applying the principal component analysis coupled with the orthogonal 

partial least square analysis to determine the principle components discriminative 

across the health-extended health and health-gingivitis conditions in each T-CDFF 

experiment. A paired Student’s t-test was applied to determine whether the 

differences in metabolite production were significant. The significance level for the 

hypothesis tests was chosen to be 0.05. 
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6.3 Results 

Unit 2 broke down in the early stage of experiment 2 due to bacterial waste that 

leaked through the shaft and the gearbox damaging them. As this fault was not 

rectifiable at the time, unit 2 was stopped and not included in any further analysis. For 

comparison purposes i.e. to compare the same data sets from two individual T-CDFF 

experiments, the data retrieved from unit 2 in experiment 1 were also excluded from 

the analysis and are not shown in this chapter. 

6.3.1 Real-time PCR study to investigate the gingivitis associated shifts 

Quantitative PCR analysis was performed on the biofilm and the effluent samples 

collected from two individual T-CDFF experiments. The qPCR data for the biofilm 

samples are shown in Figure 6.2 and Table 6.1. The data for the effluent samples are 

shown in Figure 6.3.  

6.3.2 Biofilm 

The qPCR data retrieved from biofilm samples collected from two individual T-CDFF 

experiments are shown in Figure 6.2 and Table 6.1.  

Figure 6.2 presents S. sanguinis and the total cell number of bacteria detected in the 

biofilm samples retrieved from T-CFFF experiment 1 and experiment 2, units 1 and 3. 
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Figure 6.2 A) presents the data for the total bacteria and the total cell number of S. sanguinis 
detected in the biofilm samples collected over time in T-CDFF experiment 1 and B) experiment 
2. The violet line (Universal) represents the total bacteria detected in unit 1; the yellow line 
(Universal) represents the total bacteria in unit 3. The blue line represents the total amount of 
S. sanguinis detected in unit 1; green line represents the amount of S. sanguinis in unit 3. 
Dotted line represents the conditions change from health to extended health or gingivitis 
introduced at day 9*. Standard errors are presented as error bars (n=6); n=6 refers to two 
biological and three technical replicates.  

The total cell numbers in unit 1, experiment 1 started off with 2.21x109 cells / biofilm 

and no significant differences between the health and extended health phases 

(p=0.018). Conversely, there was a significant 0.22 log increase in cell numbers across 

the health – gingivitis phases in unit 3 (as further explained in Section 6.2.3). In 
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experiment 2, there was a significant 0.62 log decrease in total bacteria numbers in 

extended health in unit 1. On the other hand, unit 3 recorded a non-significant 0.31 log 

increase in disease conditions (p=0.017).  

The cell numbers of S. sanguinis in unit 1, experiment 1 reached 1.30x107 cells / biofilm 

at day 5 and fluctuated at around 3.03x106 - 1.55x107 cells / biofilm throughout the 

experiment. When the health data (1.42x107 cells / biofilm) were compared with the 

extended health data (4.67x106 cells / biofilm), there was a significant 0.48 log 

decrease in cell numbers (as further explained in Section 6.2.3). On the other hand, 

there was not a significant difference between the health (1.68x107 cells / biofilm) and 

the gingivitis conditions (1.77x107 cells / biofilm) in unit 3, experiment 1 (p=0.442). In 

experiment 2, there was a significant 2.1 log decrease across the health-extended 

health conditions in unit 1 and a non-significant 0.24 log increase in gingivitis 

conditions in unit 3 (p=0.102). 
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Table 6.1 presents the total amount of S. mutans, N. subflava, and A. naeslundii 

detected in biofilm in experiment 1 and experiment 2 across unit 1 and unit 3. F. 

nucleatum, P. intermedia, L. casei, and V. dispar were not detected in any of these 

experiments.  

  
Experiment 1 

Average [cells / biofilm] 
Experiment 2 

Average [cells / biofilm] 
  
strain day unit 1 unit 3 unit 1 unit 3 

S.
 m

u
ta

n
s 

5 
3.99E+04 
(1.81E+04) 

1.45E+02 
(8.94E+01) 

1.23E+05 
(1.13E+05) 

7.87E+05 
(3.49E+05) 

7 1.61E+05 
(1.00E+05) 

1.64E+05 
(1.63E+05) 

1.88E+05 
(1.83E+05) 

1.65E+05 
(6.86E+04) 

18 2.90E+01 
(1.28E+01) 

2.27E+04 
(1.94E+04) 

2.82E+04 
(2.11E+04) 

1.17E+06 
(9.06E+05) 

23 8.39E+03 
(5.43E+03) 

2.96E+03 
(1.70E+03) 

1.03E+05 
(6.65E+04) 

6.96E+05 
(6.33E+05) 

30 
7.42E+02 
(6.86E+02) 

7.32E+05 
(4.78E+05) 

4.95E+03 
(4.57E+03) 

4.34E+03 
(3.77E+03) 

N
. s

u
b

fl
a

va
 

5 2.13E+01 
(1.36E+01) 

ND 3.50E+07 
(1.44E+07) 

3.38E+01 
(1.54E+01) 

7 4.26E+01 
(2.38E+01) 

4.57E+01 
(2.19E+01) 

7.99E+07 
(1.16E+07) 

1.18E+03 
(5.23E+02) 

18 4.53E+01 
(3.23E+01) 

1.02E+02 
(5.47E+01) 

7.47E+05 
(2.38E+05) 

4.05E+04 
(1.83E+04) 

23 1.40E+01 
(8.90E+00) 

1.02E+02 
(3.31E+01) 

1.15E+05 
(1.40E+04) 

3.05E+01 
(6.98E+00) 

30 5.06E+01 
(3.20E+01) 

4.96E+01 
(1.64E+01) 

5.69E+05 
(5.18E+04) 

4.39E+03 
(3.41E+02) 

A
. n

a
es

lu
n

d
ii 

5 
7.62E+02 
(3.18E+02) 

ND 
6.02E+01 
(3.63E+01) 

ND 

7 1.74E+02 
(9.72E+01) 

1.79E+02 
(8.65E+01) 

2.88E+02 
(1.46E+02) 

ND 
 

18 1.86E+02 
(1.32E+02) 

4.11E+02 
(2.17E+02) 

1.31E+01 
(8.25E+00) 

4.17E+00 
(4.16E+00) 

23 5.69E+01 
(3.62E+01) 

4.18E+02 
(1.37E+02) 

5.96E+00 
(3.21E+00) 

2.29E+01 
(1.48E+01) 

30 2.12E+02 
(1.34E+02) 

1.53E+02 
(6.25E+01) 

1.09E+06 
(4.86E+05) 

3.18E+05 
(1.42E+05) 

 

Table 6.1 presents the total cell numbers for S. mutans, N. subflava, A. naeslundii detected in 
the biofilm samples collected from unit 1 and unit 3 in the T-CDFF experiment 1 and 2. Unit 1 
was maintained in the health conditions throughout the time; unit 3 was exposed to the 
health conditions for 9 days and then the conditions were changed to gingivitis and 
maintained for 21 days. V. dispar, F. nucleatum, P. intermedia and L. casei were not detected 
in the biofilm samples and thus are not presented in this table. Blue line indicates the 
introduction of extended health /gingivitis conditions at day 9. ND - not detected. The 
standard error is shown in brackets (n=6). n=6 refers to two biological and three technical 
replicates 

When the data for S. mutans were compared across the phases (as explained in 

Section 6.2.3); there was a decrease in cell numbers in extended health and an 
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increase in gingivitis condition in both T-CDFF experiment but these changes were not 

significant (p≥0.01). 

The numbers for N. subflava in experiment 1 (both units) were very low with no 

detection at day 5 for unit 3. Conversely, the numbers of N. subflava in both units in 

experiment 2 were much higher. The average cell number in health conditions (day 5 

and 7) in unit 1, experiment 2 was 5.74x107 cells / mL and decreased significantly 

(p≤0.01) by approximately 2.1 logs in extended health conditions to 4.77x105 cells / mL 

(see Section 6.2.3). On the other hand, there was no particular growth trend in unit 3, 

experiment 2. When the health and gingivitis data were compared, there was a non-

significant increase in cell numbers in gingivitis conditions (p≥0.01; see Section 6.2.3).  

The numbers of A. naeslundii detected in both experiments were low (exception for 

the last day of experiment 2) with no significant differences between the health-

extended health or health-gingivitis conditions (p≥0.01).   
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6.3.3  Effluent data 

This Section presents the qPCR analysis of the effluent samples collected from two 

individual T-CDFF experiments. The data for the total number of bacteria and S. 

sanguinis in experiments 1 and 2, in unit 1 and unit 3 are presented in Figure 6.3.  

 
 

 
Figure 6.3 A) presents the data for total bacteria and the total cell number of S. sanguinis 
detected in the effluent samples collected over time in T-CDFF experiment 1 and B) 
experiment 2. The violet line (Universal) represents the total bacteria detected in unit 1; the 
yellow line (Universal) represents the total bacteria in unit 3. The blue line represents the total 
amount of S. sanguinis detected in unit 1; green line represents the amount of S. sanguinis in 
unit 3. Dotted line represents the conditions change from health to extended health or 
gingivitis introduced at day 9*. Standard errors are presented as error bars (n=6); n=6 refers to 
two biological and three technical replicates. 
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To investigate the growth change across the health-extended health or health-

gingivitis phases in the two individual T-CDFF experiments, the qPCR data retrieved 

from each experimental phase were logged, averaged and compared (as explained in 

Section 6.2.3). The average cell number in health conditions in experiment 1, unit 1 

was 1.39x109 cells / mL and showed no significant difference from the extended health 

conditions which had an average of 1.38x109 cells / mL (p=0.410). The average cell 

number in health conditions in experiment 1, unit 3 reached 1.38x109 cells / mL and 

was significantly higher (0.91 log) when compared to the average cell number in 

gingivitis conditions that was 1.69x108 cells / mL (p=0.002). The average cell number in 

health conditions in unit 1, experiment 2 reached 3.91x109 cells / mL and decreased 

significantly by 0.71 log in the extended health conditions reaching 7.54x108 cells / mL 

(p≤0.01). Unit 3 reached the average of 2.16x109 cells / mL in health conditions and 

showed no significant decrease in gingivitis conditions (average of 1.87x109 cells / mL; 

p=0.238).  

The average cell number for S. sanguinis in health conditions in unit 1, experiment 1 

was 2.40x106 cells / mL and increased by 0.34 log in the extended health conditions 

but it was not statistically significant (p=0.482). The average cell number in health 

conditions in unit 3, experiment 1 reached 4.17x106 cells / mL and decreased 

significantly by 0.63 log to 9.72x105 cells / mL  under gingivitis conditions (p=0.009). 

The average cell number in health condition in unit 1, experiment 2 reached 2.03x107 

cells / mL and decreased significantly by 0.85 log to 2.87x106 cells / mL in extended 

health conditions (p≤0.01).  Unit 3 recorded an average cell number of 7.54x108 cells / 

mL in health conditions that significantly increased by 0.39 log to 1.87x109 cells / mL in 

gingivitis condition (p≤0.01).  

F. nucleatum, L. casei and P. intermedia were not detected in experiment 1 and 

experiment 2. S. mutans, N. subflava, and A. naeslundii were detected but either (i) in 

very low numbers or (ii) showed no particular growth trend across the experimental 

phases so the data were not presented in this chapter as they did not bring any 

additional insight into this project. 
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6.3.4 Genomic approach to investigate the gingivitis associated shifts 

This Section presents the comparative 16S rRNA gene sequencing data obtained from 

the biofilm and the effluent samples collected from T-CDFF experiment 1 and 2. The 

sequencing data for the biofilm samples collected from the experiment 1 and 2 are 

presented in the Figure 6.4-6.5 and Table 6.2. The sequencing data for the effluent 

samples collected from the experiment 1 and 2 are presented in the Figure 6.6-6.7 and 

Table 6.3.   

6.3.4.1 Biofilm data 

The 16S rRNA gene sequencing data for the biofilm samples collected from unit 1 and 

3 from two individual T-CDFF experiments are presented in Figure 6.4-6.5 and Table 

6.2. Figure 6.4-6.5 show the phyla composition of the biofilm samples retrieved from 

experiment 1 and experiment 2, unit 1 and unit 3, while Table 6.2 presents the species 

composition across the experimental conditions in each T-CDFF experiment.   

6.3.4.1.1 Phyla composition 

The Section below presents the phyla composition of the samples collected across 

different experimental conditions from individual T-CDFF experiments. Figure 6.4A 

presents the phyla composition of the biofilm samples collected from the T-CDFF 

experiment 1, health-extended health conditions (unit 1), while Figure 6.4B presents 

the phyla composition of the samples collected across health-gingivitis conditions (unit 

3).  
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Figure 6.4 presents the phyla composition of the biofilm samples retrieved from T-CDFF 
experiment 1, unit 1 and unit 3. Figure 6.4 A) presents the data from experiment 1, unit 1 
across the health and the extended health conditions. Figure 6.4 B) presents the data from 
experiment 1, unit 3 across the health and gingivitis conditions. Blue represents the TM7, red 
represents the Firmicutes, green represents the Actinobacteria and violet the Proteobacteria. 
Dotted line represents the change in conditions from the health to the extended health or 
gingivitis conditions introduced at day 9. N=1 refers to one biological replicate. 

Only 3 phyla out of 13 present in oral cavity (Dewhirst et al. 2010) were detected in 

samples collected throughout the time across the health-extended health and health-

gingivitis conditions in experiment 1. These included TM7, Firmicutes and 
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Actinobacteria. Figure 6.4A shows a gradual increase in Actinobacteria from 5% to 30% 

throughout the experiment at the expense of Firmicutes that decreased from 90% to 

75%. TM7 amounted to 5% of the community and stayed at this level throughout the 

time. Proteobacteria were not detected in any of the collected samples. Figure 6.4B 

presents the phyla composition in experiment 1, unit 3. The TM7 group amounted to 

5% of the community across the sampling points. Actinobacteria were only detected in 

health and at a low percentage (<5%). Firmicutes maintained a steady percentage of 

the community that was greater than 90% throughout the course of the whole 

experiment.  

Figure 6.5 presents the phyla composition of the biofilm samples collected across the 

health-extended health and health-gingivitis conditions in experiment 2.  
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Figure 6.5 presents the phyla composition of the biofilm samples retrieved from T-CDFF 
experiment 2, unit 1 and unit 3. Figure 6.5 A) presents the data from experiment 2, unit 1 
across the health and the extended health conditions. Figure 6.5 B) presents the data from 
experiment 2, unit 3 across the health and gingivitis conditions. Blue represents the TM7, red 
represents the Firmicutes, green represents the Actinobacteria and violet the Proteobacteria. 
Dotted line represents the change in conditions from the health to the extended health or 
gingivitis conditions introduced at day 9. N=1 refers to one biological replicate. 

Figure 6.5A presents the phyla composition of the samples in experiment 2, unit 1. The 

Firmicutes amounted to more than 80% of the population at each sampling point. The 

TM7 genera stayed at the constant level of 5% throughout the whole experiment. The 

Actinobacteria were detected in low percentages at day 5, 7 and 30, while 

Proteobacteria were detected only in the beginning of the experiment at day 5 and day 

7 with the percentages below 5% and 8%, respectively. Figure 6.5B presents the phyla 

composition of the biofilm samples collected in experiment 2, unit 3. The Firmicutes 

represented ≤ 90% of the biofilm community at each sampling point collected across 

the health-gingivitis conditions. The amount of TM7 stayed at the constant level of 5% 

throughout the time. Further to this, there was a low percentage of Actinobacteria 

(≤5%) detected in each biofilm samples throughout the time, while Proteobacteria 

were not detected. 
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6.3.4.1.2 Genus and species composition 

The Section below presents the genus and species composition of the biofilm samples 

collected from unit 1 and unit 3 from two individual T-CDFF experiments across the 

health, extended health and gingivitis conditions. 

The genus composition of the samples retrieved from health conditions in experiment 

1, unit 1 consisted of 51.6% Streptococcus, 27.8% Enterococcus, 7.4% Rothia, 6.5% 

Granulicatella, 4.7% TM7 and 2.1% Gemella. When the health conditions were 

extended for another 21 days, the genus composition shifted. There was a decrease in 

the proportions of Streptococcus spp. from 51.6% to 37.6%; an increase of Rothia to 

17.8%; a decrease of Enterococcus to 13.7% and an increase of Granulicatella to 10.2%. 

Gemella increased from 2.1% to 5.5%; Lactobacillus was detected only in extended 

health and amounted to 5.3% while TM7 stayed at the same level of 4.7% throughout 

the condition change from health to extended health.  

Unit 3, on the other hand, underwent 9 days of health and then a shift to gingivitis 

conditions. The genus composition in health conditions consisted of 71.3% of 

Streptococcus, 11.7% of Granulicatella, 5.4% of Lactobacillus, 5.0% of TM7, 4.2% of 

Rothia, 2.2% of Gemella and 1.4% of Enterococcus. After the introduction of the 

gingivitis conditions, Streptococcus decreased from 71.3% to 62.4%, Gemella increased 

up to 17.1% and Enterococcus increased up to 15.2%. TM7 amounted to 4.8%, while 

Granulicatella decreased to 3.2% and Rothia reached 0.7%.  

The genus composition of the samples retrieved from health in unit 1, experiment 2 

consisted of 71.7% Streptococcus, 7.9% Granulicatella, 7.7% Gemella, 6.5% Neisseria, 

4.8% TM7, 1.6% Rothia and 0.6% Enterococcus. When the health conditions were 

extended for another 21 days, the genus composition has changed with a decrease in 

the proportions of Streptococcus to 68.4%, Granulicatella increased up to 17.9%, 

Enterococcus increased up to 1.1%, Gemella recorded a small decrease in proportions 

and reached 7.4%, TM7 reached 4.9% and two additional genera were detected, 

Actinomyces 3.6% and Lactobacillus 0.7%.  
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The genus composition of samples retrieved from health conditions in unit 3, 

experiment 2 consisted of 76.2% Streptococcus, 13.2% Granulicatella, 4.8% TM7, 3.8% 

Gemella, 3.4% Rothia and 0.8% Enterococcus. When the gingivitis conditions were 

introduced at day 9, the genus composition has shifted. The Rothia was not detected, 

Streptococcus, Granulicatella, and Enterococcus decreased in proportions to 73.8%, 

8.3% and 0.7%, respectively. Gemella increased to 10.1%, Actinomyces to 3.1% and 

Lactobacillus only detected in disease conditions amounted to 0.5%.    

The species composition of the biofilm samples collected from health, extended health 

and gingivitis conditions across two individual T-CDFF experiments is presented in 

Table 6.2.  
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 Experiment 1 Experiment 2 

 Unit 1 [%] Unit 3 [%] Unit 1 [%] Unit 3 [%] 

bacterial strain H  EH  H  G  H EH  H G  

Unclassified 4.8 4.7 5.0 4.8 4.9 4.9 4.9 4.8 

Streptoccocus mitis group 

S. pseudopneumoniae 29.9 11.7 35.9 27.1 33.8 13.7 21.2 19.1 

S. australis 3.4 1.3 3.9 3.0 3.0 1.0 1.7 2.7 

S. parasanguinis 
     

1.5 
 

1.6 

S. infantis 1.5 
 

2.6 0.7 1.4 
 

0.9 
 

S. anginosus 
   

3.8 
 

32.8 2.0 21.2 

S. sanguinis 0.6 0.9 1.3 1.5 2.2 
 

1.4 0.8 

S. gordonii 0.6 6.5 2.3 4.8 1.9 5.7 23.7 8.4 

Streptococcus anginosus group 

S. intermedius 
 

7.6 
 

2.8 
 

0.7 
 

0.6 

Streptococcus salivarius group 

S. vestibularis 
      

1.5 
 

S. thermophilus 
      

1.1 
 

Streptococcus pyogenic group 

S. fryi 2.7 0.7 3.5 1.7 2.5 1.3 1.7 1.8 

S. urinalis 
      

0.7 0.4 

S. gallinaceus 
   

0.8 
   

0.4 

Streptococcus bovis group 

S. bovis 3.2 2.0 5.1 3.8 5.7 1.9 4.8 3.5 

Vagococcus teuberi 6.2 4.3 1.4 2.9 0.6 1.1 0.8 0.7 

Enterococcus  faecalis 16.9 9.3 
 

8.2 
    

Enterococcus italicus 1.3 0.5 
 

0.4 
    

E. casseliflavus 0.6 1.7 
 

1.7 
    

Granulicatella 
adiacens 

0.9 0.9 1.6 0.4 0.9 1.9 1.4 1.1 

Gamella sanguinis 
     

0.9 
  

Gemella cunicula 
 

0.7 
  

0.9 0.9 0.5 1.2 

Gemella haemolysans 0.8 2.1 1.1 6.9 3.0 2.3 1.5 4.0 

Lactobacillus 
rhamnosus        

0.5 

Lactobacillus 
fermentum  

5.3 5.1 
     

A. odontolyticus 
       

0.4 

Rothia dentocariosa 0.6 0.9 
  

0.7 
 

0.6 
 

Rothia mucilaginosa 4.7 12.8 3.0 0.7 0.9 
 

2.2 
 

Neisseria subflava 
    

2.2 
   

Neisseria mucosa 
    

3.1 
    

Table 6.2 presents the phylogenetic composition of biofilm collected from experiments 1 and 
2, units 1 and 3 in health (H), extended health (EH) and gingivitis conditions (G). The biofilm 
samples collected from health/extended health/gingivitis were averaged to compare the 
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species proportions between the H-EH and H-G phases. The numbers highlighted in yellow 
indicate that specific species was not present in all the samples used to calculate an average. 

In total only 29 bacterial species were detected and identified down to species level in 

the biofilm samples retrieved from the experiments 1 and 2.  The majority of species, 

24 out of 29, belonged to Firmicutes phyla, 3 species belonged to Actinobacteria phyla, 

and 2 to Proteobacteria phyla. In general, the abundance was very low with no visible 

trend across the experimental conditions.  

6.3.4.2 Effluent data 

This Section presents the genomic data obtained for the effluent samples collected 

from two individual T-CDFF experiments, unit 1 and unit 3, collected across the health, 

extended health and the gingivitis conditions.  

Figure 6.6 and 6.7 presents the phyla composition of the effluent samples collected 

from the T-CDFF experiment 1 and experiment 2 across unit 1 (health-extended 

health) and unit 3 (health-gingivitis). Table 6.3 present the species composition of the 

effluent samples collected from each unit in two individual T-CDFF experiments.   
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6.3.4.2.1 Phyla composition 

Figure 6.6 presents the phyla composition of the effluent samples collected from 

health, extended health and gingivitis conditions from unit 1 and unit 3 in experiment 

1. Figure 6.6A presents the phyla composition of samples collected across health-

extended health conditions, while Figure 6.6B presents the phyla composition of 

samples collected across health-gingivitis conditions.   



Chapter 6: Results 

232 

 

 

 
Figure 6.6 presents the phyla composition of the effluent samples retrieved from T-CDFF 
experiment 1, unit 1 and unit 3. Figure 6.6 A) presents the data from experiment 1, unit 1 
across the health and the extended health conditions. Figure 6.6 B) presents the data from 
experiment 1, unit 3 across the health and gingivitis conditions. Blue represents the TM7, red 
represents the Firmicutes, green represents the Actinobacteria and violet the Proteobacteria. 
Dotted line represents the change in conditions from the health to the extended health or 
gingivitis conditions introduced at day 9. 

Figure 6.6 presents the phyla detected in the effluent samples across the health, 

extended health and gingivitis conditions in unit 1 and unit 3, experiment 1. In total 3 

phyla were detected across the health-extended health conditions in unit 1, 

experiment 1 including TM7, Firmicutes, and Actinobacteria (Figure 6.6A). The TM7 
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represented 5% of the community and stayed at this level throughout the phases. 

Firmicutes gradually decreased over time from around 90% at day 5 to 70% on the last 

day of the experiment, while the Actinobacteria phylum increased in proportions from 

6% to 25% on the last sampling day.  

Figure 6.6B presents the phyla detected in the effluent samples collected from unit 3, 

experiment 1 under health-gingivitis conditions. The phyla detected included TM7, 

Firmicutes and Actinobacteria. The TM7 genera reached 5% of the effluent community 

across the experimental phases. Firmicutes decreased from 91% to 81% under health 

conditions but then increased back to <90% in the gingivitis conditions. The 

Proteobacteria phyla was not detected in the effluent samples retrieved from 

experiment 1 as opposed to the biofilm samples collected from experiment 2, unit 1 or 

the effluent samples collected from experiment 2, unit 1 and unit 3. 

Figure 6.7 presents the phyla composition of the effluent samples collected from 

health, extended health and gingivitis conditions in experiment 2, unit 1 and 3. Figure 

6.7A presents the phyla composition of samples collected across health-extended 

health, while Figure 6.7B presents the phyla composition across the health-gingivitis 

conditions. 
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Figure 6.7 presents the phyla composition of the effluent samples retrieved from T-CDFF 
experiment 2, unit 1 and unit 3. Figure 6.7 A) presents the data from experiment 2, unit 1 
across the health and the extended health conditions. Figure 6.7 B) presents the data from 
experiment 1, unit 3 across the health and gingivitis conditions. Blue represents the TM7, red 
represents the Firmicutes, green represents the Actinobacteria, violet represents 
Proteobacteria and light blue the Bacteroidetes. Dotted line represents the change in 
conditions from the health to the extended health or gingivitis conditions introduced at day 9. 

Figure 6.7 presents the phyla composition of the effluent samples retrieved from unit 1 

and unit 3, experiment 2. The phyla composition of the samples retrieved from 

experiment 2, unit 1 (health-extended health) consisted of 5% TM7 that stayed at this 

level throughout the time (Figure 6.7A). Firmicutes represented over 90% of the 

population at day 5 and declined to 40% on day 7 with a recovery to approximately 

60% on day 30. There was an increase in Proteobacteria from day 5 to day 21 where it 

reached the highest proportion of approximately 60% at day 21 and then decreased to 

35% at day 30. 

Figure 6.7B presents the phyla composition of the samples collected from unit 3, 

experiment 2 (health-gingivitis). Firmicutes amounted to ≤90% of the community at 

day 5 and were a dominating phylum. From day 5 onwards, there was a gradual 

decline in Firmicutes to just over 50% at the last day of the experiment. The 

Proteobacteria recorded a steady increase from day 7 onwards and reached 

approximately 35% of the community by the end of the experiment. Firmicutes, on the 
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other hand, recorded a gradual decrease in percentage over time from 93% to 54%. 

The TM7 maintained a steady percentage of the effluent population at around 5%. The 

Actinobacteria amounted to less than 10% of the effluent population throughout the 

time with the exception of day 7 when the percentage of Actinobacteria reached more 

than 10% of the effluent community. 

6.3.4.2.2 Genus and species composition 

The Section below presents the genus and species composition of the effluent samples 

collected from unit 1 and unit 3 from two individual T-CDFF experiments across the 

health, extended health and gingivitis conditions. 

The genus composition of the effluent samples retrieved from experiment 1, unit 1 

(health-extended health conditions) consisted of 60.5% Streptococcus, 16.8% 

Enterococcus, 8.5% Granulicatella, 7.7% Rothia, 4.8% TM7 and 2.3% Lactobacillus. 

When the health conditions were extended for another 21 days, the Enterococcus, 

Rothia, Gemella and Lactobacillus increased in proportions to 21.3%, 19.8%, 6.1% and 

3.5%, respectively at expense of Streptococcus and Granulicatella that decreased in 

proportions to 39% and 6.0%, respectively. TM7 stayed at the same level of 4.8% of 

the effluent community. In unit 3, experiment 1 that underwent health-gingivitis 

conditions, the genus composition in health consisted of 64.1% of Streptococcus, 

10.1% Enterococcus, 9.4% Rothia, 8.0% Granulicatella, 4.8% TM7, 3.1% Lactobacillus 

and 0.4% Gemella. When the gingivitis conditions were introduced at day 9, 

Streptococcus decreased to 50.6%; this was followed by a decrease of Rothia and 

Granulicatella down to 3.12% and 0.8%, respectively. Enterococcus, Gemella increased 

in proportions up to 22.2% and 3.4%, respectively. Bacillus which was not detected in 

health reached 12.7% in gingivitis conditions while TM7 stayed at the same level of 

4.8%.  

In unit 1, experiment 2 that underwent health-extended health conditions, the genus 

composition of the effluent samples in health consisted of 61.5% Streptococcus, 17.5% 

Neisseria, 6.9% Granulicatella, 6.8% Rothia, 4.8% TM7, 1.6% Gemella and 0.6% 

Enterococcus. When the health conditions were extended for another 21 days, the 
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composition shifted towards Neisseria (45.5%) at expense of Streptococcus that 

decreased to 31.0% of the community. Further to this, Granulicatella and Gemella 

increased in proportions up to 7.4% and 2.1%, respectively. On the other hand, 

Enterococcus, Rothia decreased in numbers to 0.4% and 0.8%, respectively. Genera 

previously not detected in health included Lactobacillus (1.06%), Bacillus (0.53%), 

Actinomyces (0.9%) and Lysinibacillus (5.3%).  

In experiment 2, unit 3 that underwent the health-gingivitis conditions, the genus 

composition of samples collected from health consisted of 75.1% Streptococcus, 9.3% 

Granulicatella, 7.3% Rothia, 4.8% TM7, 1.8% Actinomyces, 1.1% Lactobacillus and 0.4% 

Porphyromonas. When the gingivitis conditions were introduced the proportions of 

Streptococcus, Rothia, Granulicatella, Lactobacillus decreased to 50.7%, 2.7%, 4.9%, 

and 0.6%, respectively. Genera previously not detected in health included 

Enterococcus, Gemella and Actinomyces with proportions of 0.6%, 7.8% and 4.0%, 

respectively.  

Table 6.3 presents the taxonomic composition of the effluent samples collected from 

unit 1 and 3 in two individual T-CDFF experiments.  



Chapter 6: Results 

237 

 

 
Experiment 1 Experiment 2 

 
Unit 1 [%] Unit 3 [%] Unit 1 [%] Unit 3 [%] 

strain H EH H G H EH H G 

Unclassified 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.9 

Streptococcus mitis group 

S. 
pseudopneumoniae 30.5 17.1 33.4 23.9 29.9 9.5 26.4 20.7 

S. australis 2.4 2.2 3.4 2.1 2.3 
 

2.5 2.3 

S. parasanguinis 
     

1.0 1.1 1.6 

S. infantis 3.2 2.0 3.5 6.9 1.0 2.2 2.3 1.2 

S. sanguinis 
 

0.5 
  

0.7 
  

0.2 

S. gordonii 
 

1.0 3.6 0.8 3.7 0.6 9.2 2.1 

Streptococcus anginosus group 

S. intermedius 
 

1.6 
 

0.6 
    S. anginosus 5.6 4.6 1.6 3.2 6.3 11.0 9.3 11.0 

Streptococcus salivarius group 

S. vestibularis 
  

1.3 
 

0.7 
 

4.6 
 S. thermophilus 

  
1.0 

 
0.5 

 
3.7 

 Streptococcus pyogenic group 

S. fryi 2.2 1.7 3.3 3.3 2.3 1.2 2.1 1.9 

S. gallinaceus 
       

0.2 

Streptococcus bovis group 

S. bovis 3.3 2.6 3.3 2.6 3.8 1.7 4.0 3.1 

Vagococcus teuberi 3.5 6.3 3.4 5.7 0.7 0.4 0.6 0.6 

Enterococcus  
faecalis 10.2 11.1 5.3 10.8 

    Enterococcus italicus 
 

1.0 0.4 1.0 
    Enterococcus 

casseliflavus 1.2 3.0 1.4 3.0 
    Granulicatella 

adiacens 1.3 0.9 1.0 0.8 0.9 1.3 1.2 0.8 

Gemella cunicula 
 

1.0 
 

1.1 
   

0.9 

Gemella 
haemolysans 

 
2.4 

 
2.2 0.6 0.9 0.6 3.1 

Lactobacillus 
rhamnosus 

 
2.4 

   
1.1 

 
0.5 

Lactobacillus 
fermentum 2.3 1.1 3.1 

   
1.1 0.4 

Actinomyces 
turicensis 

       
0.2 

Actinomyces 
odontolyticus 

       
0.4 

Arthrobacter 
psychrochitiniphilus 

 
0.7 
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Arthrobacter 
stackebrandtii 

 
0.5 

      Rothia dentocariosa 
 

5.0 1.4 0.4 2.4 
 

1.6 0.6 

Rothia mucilaginosa 5.8 9.9 5.9 1.6 4.4 0.8 3.9 2.1 

Bacillus horneckiae 
   

1.4 
    Bacillus cereus 

   
2.4 

    Lysinibacillus 
boronitolerans 

     
7.3 

  Atopobium rimae 
       

0.2 

P. gingivalis 
      

0.4 
 Neisseria subflava 

    
7.4 16.4 

 
16.9 

Neisseria cinerea 
       

0.5 

Neisseria mucosa 
    

10.1 22.0 
 

2.3 
 

Table 6.3 presents the phylogenetic composition of effluent samples from experiments 1 and 
2, units 1 and 3 in health (H), extended health (EH) and gingivitis conditions (G). The effluent 
samples collected from health/extended health/gingivitis phases were averaged to compare 
the species proportions between the H-EH and H-G phases. The numbers highlighted in yellow 
indicate that specific species was not present in all the samples used to calculate an average.    

Altogether, there were 36 bacterial species detected in total in the effluent samples in 

two individual T-CDFF experiments. The 22 species out of 36 detected belonged to the 

Firmicutes, 10 to Actinobacteria, 3 species belonged to Proteobacteria and 1 to 

Bacteroidetes phylum. Despite the fact, that a slightly higher number of species was 

detected in the effluent samples than in biofilm, there was no visible pattern across 

the experimental phases and abundance was still low when compared to oral 

microbiome which was reported to comprise of around 11-13 phyla, many genera and 

hundreds of species (Aas et al. 2005; Dewhirst et al. 2010; Huttenhower et al. 2012; 

Griffen et al. 2012;).   
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6.3.5 Functional approach to investigate the health-gingivitis associated 

shifts 

6.3.6 Qualitative Analysis 

This Section presents the qualitative analysis performed on the effluent NMR data 

retrieved from experiments 1 and 2. The Principal Component Analysis (PCA) and 

Orthogonal Partial Least Square (OPLS) analysis were performed by Michael Cannon 

(scientist at Procter & Gamble).   

6.3.6.1 Experiment 1 unit 1 (simulated health conditions only) 

When the OPLS analysis with one component was forced on the raw NMR data from 

unit 1, the standard deviations were higher than the signal measured (Figure 6.8); 

therefore there were no metabolites discriminating between the health and extended 

health conditions.  

 

Figure 6.8 presents the results of the OPLS analysis on NMR data retrieved from unit 1, 
experiment 1.  
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6.3.6.2 Experiment 1 unit 3 (health – gingivitis conditions) 

Figure 6.9 presents the OPLS analysis performed on the effluent samples retrieved 

from unit 3, experiment 1.  

 

Figure 6.9 presents the OPLS analysis performed on the effluent samples retrieved from the health 
and gingivitis conditions in unit 3, experiment 1. Health is represented as blue; gingivitis is 
represented as green. Sample collected at day 7 was an outlier and was removed from the analysis. 

Figure 6.9 shows the OPLS analysis performed on the effluent data retrieved from unit 

3, experiment 1 (health and gingivitis conditions). When the OPLS analysis was applied 

to a batch of samples retrieved from unit 3, experiment 1 across the health-gingivitis 

conditions, the health associated samples (blue) clustered together. The gingivitis 

associated samples (green) were more sporadic and spread out but still distinctively 

different from the health cluster. The metabolites that were discriminative between 

the two phases included trimethylamine, pyruvate, propionate, butyrate, formate, 

alanine, lactate and ethanol: these are shown in Figures 6.10-6.14. 
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Figure 6.10 presents the first four OPLS components that were discriminative across 

the health and disease clusters in experiment 1, unit 3.  

 
Figure 6.10 presents the components discriminating between the health and gingivitis clusters. 
Trimethylamine is presented in blue; Pyruvate in red; Propionate in green and Butyrate in 
violet. Dotted line represents the change in conditions from the health to the gingivitis 
conditions introduced at day 9. 

Figure 6.11 presents the data for the levels of formate that were discriminative across 

the health and gingivitis conditions in unit 3, experiment 1.   

 
Figure 6.11 presents the levels of formate that were discriminating across the health-disease 
phase. Dotted line represents the change in conditions from the health to the gingivitis 
conditions introduced at day 9. Yellow lines represent the averaged data across the health and 
gingivitis conditions.  

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

5 7 9 11 13 15 17 19 21 23 25 27 29 31 

A
rb

it
ra

ry
 u

n
it

s 
[A

u
] 

Time [d] 

Trimethylamine 

Pyruvate 

Propionate 

Butyrate 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

5 7 9 11 13 15 17 19 21 23 25 27 29 31 

A
rb

it
ra

ry
 u

n
it

s 
[A

u
] 

Time [d] 

Formate 

Averaged health 

Averaged gingivitis 



Chapter 6: Results 

242 

 

Figure 6.12 presents the data for the levels of alanine that were discriminative across 

the health - gingivitis phases in unit 3, experiment 1. 

 
Figure 6.12 presents the levels of alanine that were discriminating across the health-disease 
phase. Dotted line represents the change in conditions from the health to the gingivitis 
conditions introduced at day 9. Yellow lines represent the averaged data across the health and 
gingivitis conditions. 

Figure 6.13 presents the data for the levels of lactate that were discriminative across 

the health - gingivitis phases in unit 3, experiment 1.   

 
Figure 6.13 presents the levels of lactate that were discriminating across the health-disease 
phase. Dotted line represents the change in conditions from the health to the gingivitis 
conditions introduced at day 9. Yellow lines represent the averaged data across the health and 
gingivitis conditions. 

Figure 6.14 presents the data for the levels of ethanol that were discriminative across 

the health - gingivitis phases in unit 3, experiment 1.   
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Figure 6.14 presents the levels of ethanol that were discriminating across the health-disease 
phase. Dotted line represents the change in conditions from the health to the gingivitis 
conditions introduced at day 9. Yellow lines represent the averaged data across the health and 
gingivitis conditions. 

Figures 6.10-6.14 present data for 8 metabolites which were discriminative between 

the health and disease phases in experiment 1. The health data were averaged and 

compared with the averaged gingivitis data to investigate the fold change across the 

experimental conditions. Analysis of the first four metabolites (Figure 6.10) showed a 

2.79 fold increase of trimethylamine, 1.40 fold increase of puryvate, 1.67 fold increase 

of propionate and 1.91 fold increase of butyrate in gingivitis conditions. Figures 6.11-

6.14 present the data for the remaining metabolites which showed a 2.76 fold increase 

for formate, 1.20 fold increase for alanine, 1.56 fold increase for lactate and 0.60 fold 

decrease of ethanol under gingivitis conditions. The Student’s t-test applied to the 

above data confirmed that only formate (p=0.016), trimethylamine (p=0.038) and 

lactate (p=0.015) recorded a significant increase in gingivitis conditions 
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6.3.6.3 Experiment 2 unit 1 (simulated health conditions only) 

When the OPLS analysis was forced on samples collected from health-extended health 

conditions in unit 1, experiment 2, they did not cluster and there were no 

discriminative components across the phases.  

 

Figure 6.15 presents the OPLS analysis equivalent to the one performed on the NMR data from 
unit 3, experiment 1 shown in Figure 6.9 and unit 3, experiment 2 shown in Figure 6.16. 
Samples retrieved from health conditions are represented in blue and samples from the 
extended health are represented in green. 

As depicted in Figure 6.15 samples were randomly distributed with no particular 

pattern across the health and the extended health conditions. This suggests that there 

was no particular difference between the health and the extended health conditions in 

unit 1, experiment 2.  

 

 

 
  

 
 

 

 

 

-15 

-10 

-5 

0 

5 

10 

-25 -20 -15 -10 -5 0 5 10 15 20 
 

  

 

Component 1 

C
o

m
p

o
n

en
t 

2
 

Health 

Extended 
health 



Chapter 6: Results 

246 

 

6.3.6.4 Experiment 2 unit 3 (health – gingivitis conditions) 

This Section presents the results from the qualitative OPLS study performed on the raw 

effluent NMR data retrieved from the health and gingivitis conditions from unit 3, 

experiment 2 and shown in Figure 6.16.  

 

Figure 6.16 presents the OPLS analysis performed on the effluent samples retrieved 
from the health and the gingivitis conditions in unit 3, experiment 2. Health is 
represented as blue; gingivitis is represented as green. This figure is equivalent to 
Figure 6.9 (unit 3, experiment 1). 

Figure 6.16 presents the data for effluent samples retrieved from unit 3, experiment 2 

across the health and gingivitis conditions. The PCA showed that there is a clear 

difference between the health and gingivitis samples as they cluster across the phases. 

The metabolites that were discriminative between the phases included succinate, 

trimethylamine, formate, and acetate and are shown in Figure 6.17 and 6.19. 
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Figure 6.17 presents the data for the levels of succinate that were discriminative across 

the health-gingivitis phases in unit 3, experiment 2.   

 
Figure 6.17 presents the levels of succinate that were discriminating across the health-disease 
phase. Dotted line represents the change in conditions from the health to the gingivitis 
conditions introduced at day 9. Yellow lines represent the averaged data across the health and 
gingivitis conditions. 

The qualitative OPLS analysis showed an increase of succinate over time across the 

health and diseases phases. The health data was averaged and compared to the 

averaged gingivitis data to investigate the fold change across the experimental 

conditions. This approach was applied to succinate and the three other metabolites 

trimethylamine, formate and acetate. The average amount of succinate in health 

amounted to 0.79 Au and increased to 1.3 Au in gingivitis conditions that was a 1.67 

fold increase (p=0.281). However the change was not significant when the Student’s t-

test was applied.   
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Figure 6.18 presents the data for the levels of trimethylamine that were discriminative 

across the health - gingivitis phases in unit 3, experiment 2.   

 
Figure 6.18 presents the trimethylamine the OPLS component discriminating across the 
health-disease phase. Dotted line represents the change in conditions from the health to 
the gingivitis conditions introduced at day 9. Yellow lines represent the averaged data 
across the health and gingivitis conditions. 

Figure 6.18 presents the qualitative OPLS analysis that showed an increase of 

trimethylamine by 1.92 fold across the phases (p=0.063). However, the change was not 

significant when analysed using a paired Student’s t-test.  
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Figure 6.19 presents the data for the levels of formate that were discriminative across 

the health - gingivitis phases in unit 3, experiment 2.  

 
Figure 6.19 presents the formate the OPLS component discriminating across the health-disease 
phases. Dotted line represents the change in conditions from the health to the gingivitis 
conditions introduced at day 9. Yellow lines represent the averaged data across the health and 
gingivitis conditions. 

Figure 6.19 presents the data obtained from the qualitative OPLS analysis for the levels 

of formate that were discriminative across the health - gingivitis phases in unit 3, 

experiment 2. When the average health was compared to the average gingivitis data, 

there was a 1.47 fold increase of formate in gingivitis conditions as shown in Figure 

6.19. However, the change was not significant when analysed using a Student’s t-test 

(p=0.208).  
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Figure 6.20 presents the data for the levels of acetate that were discriminative across 

the health - gingivitis phases in unit 3, experiment 2.  

 
Figure 6.20 presents the acetate levels across the health and disease conditions. Dotted line 
represents the change in conditions from the health to the gingivitis conditions introduced at 
day 9. Yellow lines represent the averaged data across the health and gingivitis conditions. 

There was high variability in the level of acetate in gingivitis conditions when 

compared to health. When the average health was compared to the average acetate 

level in gingivitis conditions, there was a 1.41 fold increase in gingivitis conditions. 

However, the change was not significant when analysed using a Student’s t-test 

(p=0.058).  
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6.4 Discussion 

With the today’s technological advances it is possible to look into the oral microbiome in 

depth. The richness of the human oral cavity was estimated to be over 700 species, of 

which more than a half is still uncultivable. Identifying specific bacteria provides a good 

indication of disease progression, however it does not explain the disease aetiology, nor 

does it provide adequate knowledge for complete disease eradication. Thus holistic 

approaches which have the prospect of bringing a comprehensive understanding of 

disease are gaining in popularity. The availability of cost-effective sequencing, allowing 

high-throughput and fast sample-to-data turnover has opened a new chapter of ‘omics’ 

techniques in the field of oral microbiology which allows one to take a more holistic 

approach to understanding pathogenicity.  

6.4.1 Methodology choice 

The methodology presented in this chapter was designed to determine whether the 

absence of the bacterial changes across the experimental conditions presented in chapter 

4 and 5 was due to a limited focus on only 8 bacterial species or due to inadequate 

gingivitis methodology (provision of an appropriate environment) which might have led 

to lack of the ecological shift. To address these questions, two different in vitro gingivitis 

methodologies were aimed to be tested in this chapter (gingivitis+ in unit 2, gingivitis++ in 

unit 3). However, due to the fact that unit 2 was broken at early stage of experiment 2, 

the gingivitis+ methodology was not tested in this chapter. My investigation focused on 

gingivitis++ methodology only and the use of two ‘omics’ techniques. 16S rRNA gene 

sequencing and 1HNMR metabolite fingerprinting were applied to obtain a greater 

understanding of the complex biofilm interactions and the bacterial composition across 

the experimental phases.    

The data obtained from chapter 5 showed that there was no increase in F. nucleatum and 

P. intermedia which are associated with gingivitis, despite the detection of increased 

levels of gingivitis associated metabolites which are mainly produced by the gingivitis 

associated Gram-negative bacteria (Fukushima & Ochiai 1995). To explore this 

phenomenon further and to get a better insight into bacterial shifts occurring across the 
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health-disease and health-extended health, 16S rRNA gene sequencing was introduced in 

this chapter to determine the species composition over time and across the different 

experimental conditions. This was combined with 1H NMR metabolomic study which had 

been previously validated in chapter 5 and proved to be a useful technique in gingivitis 

modelling in vitro. It provides useful information about the function of the microbiome 

that can be linked with its virulence (Emwas et al., 2013; Xu et al., 2014). A combination 

of these two techniques can potentially bring an explicit understanding regarding the 

microbial composition and the physiological status of the collected samples. Despite the 

fact, that qPCR study was focused on a limited number of species (8 bacteria associated 

with health/gingivitis) and provides only a limited insight into community changes, it was 

included in this chapter to enable a direct comparison with the qPCR data obtained from 

previous chapters.  

6.4.2 Methodology optimisation 

Alterations of the gingivitis methodology included applying different experimental 

conditions to each of three T-CDFF units.  

 Unit 1 was run under health conditions for 30 days and served as a control group 

for the remaining two units.  

 Unit 2 was run for 9 days under health conditions and then the gingivitis 

conditions were introduced for the remaining 21 days (‘gingivitis+’).  

 Unit 3 followed a similar experimental pattern with the difference being that the 

‘gingivitis++’ methodology was applied instead; this included delivering artificial 

GCF at a higher flow rate of 130 µL / min.  

The approach of applying two different gingivitis methodologies was aimed at elucidating 

whether the absence of a significant increase in the numbers of Gram-negative bacteria 

was related to a possibly inadequate gingivitis methodology applied in the past. The 16S 

rRNA gene sequencing study was used to investigate the species composition and then to 

correlate the metabolites with the bacterial producers detected by the genomic study. 

For the comparison purposes, the biofilm and the effluent sampling points in two 

individual T-CDFF experiments were arranged in the same manner. The biofilm analyses 
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were performed at day 5, 7, 18, 23 and day 30. The effluent collection from experiments 

1 and 2 was aimed to be performed at the same time intervals, however, due to technical 

constraints and operator’s sickness the sampling schedule was affected. Subsequently, 18 

effluent samples were collected from experiment 1 and 15 from experiment 2. 

6.4.3 Experimental problems encountered 

Throughout the set of two T-CDFF experiments performed in this chapter, a few 

mechanical issues were encountered which required solving. On a few occasions the 

gearbox broke down in different units; this was due to bacterial seepage through the 

shaft, causing the mechanism to cease up and stop in the middle of the experiment. This 

issue was resolved without much difficulty by substituting the broken gearbox with a new 

one. As it was fixed immediately, it did not affect the experiment or any further data 

collection or analysis.  

The majority of mechanical issues encountered were due to excessive waste leakage. As 

each T-CDFF experiment is run for 30 days, the model is continuously exposed to waste 

material that can leak through and block the shaft and turntable. This situation occurred 

on several occasions in the past and was resolved by attaching an additional PTFE cover 

to protect the shaft (Chapter 3, Section 3.3.1, Figure 3.1B2). This solution proved 

satisfactory for most experiments with the exception of the last T-CDFF experiment, 

experiment 2. During this last experiment, the waste seeped through the PTFE cover and 

blocked the shaft and turntable. Unfortunately, I was not able to substitute this unit with 

another one to revive the experiment. The mechanical fault was quite severe, and there 

was no option of repairing it without fully dismantling it and sending it off to the 

manufacturing company (AC Service group). This unit therefore was excluded from the 

study and a new solution to the problem was sought. After the consultation with AC 

Service group, the PTFE cover protection was substituted with a newly designed shaft 

which was made of stainless steel and embedded into the model’s construction. This new 

design was applied to all three units but was not tested due to time constraints of this 

project. To compare the two data sets obtained from these two individual T-CDFF 

experiments, the data retrieved from the T-CDFF experiment 1, unit 2 were also excluded 

from further analysis and are not presented in this chapter.  
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6.4.4 Real-time PCR study to investigate the health-gingivitis associated 

shifts 

Real-time PCR was initially chosen as it is a fast, reliable and cost effective method for 

identifying and quantifying bacteria associated with gingivitis onset. Additionally, this 

method permits a reliable quantitative analysis on the bacterial shift across the 

experimental conditions’ change. To enable this happen, the biofilm and the effluent 

samples collected throughout the experiment duration were screened for the 8 bacteria 

associated with oral health and gingivitis. The data for the total bacteria presented in 

Figure 6.2 showed no major differences across the phases with the exception for unit 1 in 

experiments 2 that recorded a 0.62 log decrease in extended health. One may 

hypothesise that while the total number of bacteria remained relatively constant over 

time, the proportions of certain gingivitis associated species across the phases might have 

changed due to the experimental conditions applied over time. This was further 

investigated by analysing the qPCR data obtained for the remaining 8 species.  

There were 3 health associated bacteria (S. sanguinis, S. mutans, N. subflava) detected in 

biofilm samples collected from T-CDFF experiments 1 and 2. V. dispar, F. nucleatum and 

P. intermedia, and L. casei were not detected in either experiment 1 or 2. The lack of 

detection of these 3 pathogenic species (F. nucleatum and P. intermedia, and L. casei) 

may suggest that the experimental gingivitis methodology applied in this chapter was not 

suitable to invoke a gingivitis associated community in vitro or that the species selection 

was too narrow to reflect the diverse oral population.  

The same pattern was observed for the effluent samples collected from the T-CDFF 

experiments. These four bacteria associated with gingivitis (F. nucleatum and P. 

intermedia, A. naeslundii and L. casei) were either not detected or detected in very low 

numbers. The lack of detection or increase of the gingivitis associated bacteria may 

suggest that (i) the in vitro gingivitis conditions were not established in the model or (ii) 

that focusing on only 4 gingivitis associated bacterial species may have given a very 

limited understanding of what was happening throughout the health-extended health 

and health-gingivitis transition.  
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These findings do not corroborate with the data published by Dalwai (2007, 2006). Dalwai 

and colleagues modelled gingivitis associated shifts in vitro using CDFF model and similar 

gingivitis methodology. They have established that the change from health to in vitro 

gingivitis invokes an ecological shift which results in a significant increase of Actinomyces 

spp. at the expense of Streptococcus spp. under gingivitis conditions (2006). Further to 

this, there is an increase in numbers of Prevotella spp., Fusobacterium spp. and Gram-

negative spp. (2007). Similar findings were presented in other studies (Syed & Loesche 

1978; Moore et al. 1984; Moore & Moore 1994). On the contrary, the qPCR study 

presented in this chapter showed no detection of F. nucleatum, P. intermedia, detection 

of low numbers of A. naeslundii and also lack of significant change for S. sanguinis across 

the simulated health-gingivitis conditions. To provide a better understanding of the oral 

community composition developed in T-CDFF model, 16S rRNA gene sequencing was 

applied to both the biofilm and the effluent samples to investigate the compositional 

differences across the conditions’ change.  

6.4.5 Genomic approach to investigate the health-gingivitis associated 

shifts 

The taxonomic composition of the biofilm and effluent samples retrieved from unit 1 and 

3 in experiments 1 and 2 is presented in Table 6.2 and Table 6.3. The comparison of the 

health-disease genomic data (unit 3) with the control data (unit 1) allowed us to 

determine whether or not the in vitro model reflected the in vivo oral health and 

gingivitis. A set of genomic data obtained from the biofilm samples presented in Figure 

6.4, 6.5 and Table 6.2 showed low taxonomic abundance in health, extended health or 

gingivitis conditions in two individual T-CDFF experiments and no detection of gingivitis 

associated species. The phyla detected in the biofilm retrieved from unit 1 and 3 in 

experiment 1 included Firmicutes, Actinobacteria, Proteobacteria and TM7. Out of the 11 

phyla found in oral cavity, the most predominant 6 include Firmicutes, Proteobacteria, 

Bacteroidetes, Actinobacteria, Fusobacteria and TM7 (Huang et al. 2011). My data agree 

with these findings as Firmicutes were the most abundant phylum found in my samples 

followed by TM7 and Actinobacteria. However, the data do not reflect the abundance of 

oral cavity where around 11 phyla and hundreds of species are found (Dewhirst et al., 
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2010; Wade et al., 2011). Additionally, there was a disparity in terms of phyla 

composition between the units in individual experiments and no particular pattern 

observed across the switch from health to extended health / gingivitis.  

Figure 6.6-6.7 presents the phyla composition of the effluent samples collected from unit 

1 and 3 in two T-CDFF experiments. The taxonomic data for the effluent samples showed 

low abundance as only 5 phyla were detected (Firmicutes, Actinobacteria, 

Proteobacteria, Bacteroidetes and TM7). The major difference between the biofilm and 

the effluent phyla composition was that the effluent data recorded a high percentage of 

Proteobacteria in both units in experiment 2. Importantly to mention is that the 

Bacteroidetes phylum which consists of the gingivitis associated genera such as 

Prevotella, Porphyromonas, Tannerella and Capnocytophaga was only detected in health 

conditions in experiment 2, unit 3. As shown by Huang et al (2014) in his experimental 

gingivitis study and confirmed by others (Wade 2011; Abusleme et al. 2013; Wang et al. 

2013), out of 6 most abundant phyla in oral cavity Firmicutes and Actinobacteria are 

associated with oral health while Bacteroidetes, Fusobacterium and TM7 are associated 

with gingivitis. My data, retrieved from both effluent and biofilm samples, showed a 

steady level of TM7 throughout the conditions’ change and overall lack of detection of 

Bacteroidetes and Fusobacterium. This would suggest that the bacterial composition of 

the samples collected from T-CDFF consisted of the health associated bacteria mostly. 

This is consistent with the qPCR study as P. intermedia (Bacteroidetes) and F. nucleatum 

(Fusobacteria), two species associated with gingivitis progression, were not detected in 

either biofilm or effluent samples. However, it is important to mention that I screened for 

only 4 gingivitis and 3 health associated bacteria, so the comparison between the data 

sets is limited.  

The phylogenetic data presented in Table 6.2 and 6.3 showed a total of 29 bacterial 

species detected in biofilm and 36 in the effluent samples collected from two individual 

T-CDFF experiments. Generally speaking, a lower abundance was expected due to the 

fact that I was simulating the oral conditions in an in vitro system with has a limited 

ability to provide the complex biofilm-host interactions and sophisticated nutrient 

sources which are seen in vivo (Siqueira & Rôças 2013). However, the above mentioned 
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abundances were still lower than anticipated. Further to this, the species detected in the 

biofilm and effluent across different experimental conditions (presented in Table 6.2 and 

Table 6.3) belonged to health associated genera with the exception for Bacteroidetes, 

Porphyromonas gingivalis which was detected in unit 3, experiment 2 (health conditions 

only).  

Most of the species detected (i.e. Streptococcus or Lactobacillus genera) are the major 

lactate producers thus contributed to a significant rise in lactate across the health-

gingivitis phases. Other metabolites that increased across the health-gingivitis conditions, 

but the change was not significant, included for example butyrate, acetate, and 

propionate. Although the species detected in the genomic study could not be directly 

linked with the above mentioned metabolites. The exact reason for the discrepancy 

between the metabolomic and genomic study in terms of lack of detection of Gram-

negative species (mainly from Prevotella, Fusobacterium or Porphyromonas genera) 

responsible for the production of butyrate, acetate and propionate is unknown. In the 

Section below I hypothesise what might be the most likely reason for this situation.  

In my 16S rRNA gene sequencing study I had a limited number of reads available per 

sample. Thus, if the samples contained high numbers of Streptococcus spp. and other 

health associated genera compared to relatively low numbers of Gram-negative gingivitis 

associated bacteria, they might have not been covered. It is hypothesised here that the 

proportion of Gram-negative bacteria associated with the butyrate, propionate and 

acetate production was much lower than the overwhelming numbers of Streptococcus 

spp. plus they might have been further underrepresented by bias introduced during the 

sample processing that resulted in losing them from genomic study. This may include the 

choice of the DNA extraction protocol method which can introduce bias into diversity 

studies. DNA extraction is based on cell lysis to remove the cell membrane and other 

components. If the extraction conditions including physical and chemical conditions are 

too harsh it might lead to underrepresentation of Gram-negative bacteria which are more 

susceptible to lysis than Gram-positive bacteria. The bead-beating DNA extraction 

protocol, which is a harsh chemical method, was previously validated and confirmed by 

Lena Ciric (Griffiths et al., 2000; Ciric et al., 2010) to work effectively against both the 
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Gram-negative and positive species. Therefore, it seems more probable that bias could 

have been accumulatively gained throughout the sample processing (e.g. library 

preparation).  

Another one may include poor DNA quality that have resulted from prolonged DNA 

storage (-20 oC for ≥ year) and often thawing. This might have also led to degradation of 

DNA that was already present in lower amounts (Anchordoquy & Molina 2007).  

At the time of sample processing, the Illumina MiSeq v2 had been just recently launched. 

It was chosen for the purposes of this project due to its relative low cost and long-read 

lengths in comparison to other platforms. Despite all that, Illumina’s sequence by 

synthesis sequencing is a second generation NGS which still requires library preparation 

that can introduce bias into diversity studies (van Dijk et al., 2014). There are several 

stages in library preparations that can influence the evaluation of community 

composition. PCR is recognised as the major factor contributing to biased identification of 

microorganisms due to uneven amplification efficiency - loss of specific DNA fragments 

when others are more efficiently amplified (van Dijk et al., 2014). More importantly, 

however, next generation sequencing platforms require a clean DNA product that is free 

from inhibitors and do not interfere with the sequencing reaction. The AmPure XP 

Magnetic Bead method used in this study works by binding the DNA on magnetic beads 

and creating a DNA pellet on one side of the cuvette by applying the magnet. Pelleted 

DNA is washed with ethanol to remove the contaminants. Then the beads are rinsed with 

PCR-grade water and eluted by removing the magnet. This method provided a good 

clean-up strategy but is burdened with DNA losses which might be particularly 

problematic if dealing with low concentration of DNA that can be eventually lost.  

Cleaned-up samples are quantified and pooled to create a library. At this stage the 

sample DNA is even further diluted what might results in loss of the DNA that was 

present in very low quantities when compared to overrepresentation of other species 

(e.g. Streptococcus genus). Last but not least, the post-processing stage might have also 

added to the problem. For example, the quality step that involves data de-noising and 



Chapter 6: Discussion 

259 

 

removing low abundance reads, might have further led to removal of OTUs present in low 

quantities.  

It is hard to get a full understanding of phenomenon discussed in this chapter based on 

one genomic and metabolomic study performed. If the time constraints were not in 

place, more T-CDFF experiments and sequencing runs on the data gathered would be 

done (n≥3).  

6.4.6 Functional approach to investigate the health-gingivitis associated 

shifts 

Metabolomics is a relatively new technique which brings detailed information about the 

physiological status of the biological system. It was introduced in the previous chapter, 

chapter 5, to validate its usefulness in modelling gingivitis associated shifts in vitro. As 

verified in chapter 5, metabolite fingerprinting using the 1H-NMR spectroscopy provides 

information about the metabolic end products which can be then directly related to 

pathogenicity (Aimetti, 2011).    

The metabolomic analysis was introduced in this chapter to investigate the metabolite 

fingerprint profile of the effluent samples collected from different experimental 

conditions throughout the duration of the experiment. The qualitative analysis was 

performed on raw NMR spectra obtained from each unit using the PCA and OPLS analysis 

performed by Michael Cannon using Simca-P v 22 (scientist at Procter & Gamble). The 

PCA and PLS analysis performed on the control data from unit 1 in both T-CDFF 

experiments showed no clustering across the health and the extended health conditions 

(Figure 6.8 and Figure 6.15). These results indicate that there was no differentiation 

across the health and the extended health conditions in both T-CDFF experiments. When 

the same qualitative analysis was applied to unit 3 (experiments 1 and 2) exposed to 

health - gingivitis conditions, there was a clear clustering across the experimental phases. 

Figure 6.9 and Figure 6.16 present a clear differentiation across the health-disease 

conditions in both experiments. The PCA and OPLS analysis applied to the raw NMR data 

from unit3 showed that the components discriminative across the health-gingivitis 

conditions include trimethylamine, pyruvate, propionate, butyrate, formate, alanine, 
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lactate and ethanol in experiment 1 and succinate, trimethylamine, formate and acetate 

in experiment 2.  

The T-CDFF experiment 1 showed an increase of trimethylamine, pyruvate, propionate, 

butyrate, formate, alanine and lactate under gingivitis conditions with the exception of 

ethanol which decreased over time. However, only changes recorded for formate, 

trimethylamine and lactate were considered as statistically significant. Experiment 2 

showed an increase in succinate, trimethylamine, formate and acetate under gingivitis 

conditions, with none of the changes statistically significant. The species composition 

detected across the health-gingivitis conditions in unit 3 in two individual T-CDFF 

experiments consisted mostly of health associated bacteria. These belonged mostly to 

Streptococcus genus that is the major lactate producer and contributed to high levels of 

lactate. The major producers of other metabolites detected in this study (proprionate, 

butyrate, acetate and succinate) belong to Porphyromonas spp., Fusobacterium spp., 

Prevotella spp., Actinomyces spp. but were not detected in either qPCR or genomic study. 

Aimetti and colleagues (2011) investigated a healthy cohort of patients versus gingivitis 

patients using 1H-NMR metabolomics and reported that gingivitis patients are 

characterised by elevated levels of acetate, butyrate, trimethylamine, succinate and 

propionate which are strongly correlated with gingival inflammation. In their study, they 

propose that the healthy patients can be distinguished from the gingivitis patients by a 1 

fold increase of acetate, >2 fold increase of trimethylamine and approximately 4 fold 

increase of succinate (Aimetti et al., 2011). My qualitative PCA and PLS analysis 

performed on data from experiment 1 showed 2.79 fold increase of trimethylamine, 1.4 

fold increase of pyruvate, 1.67 fold increase of propionate, 1.91 fold increase of butyrate 

across the health-gingivitis conditions. Experiment showed 1.41 fold increase of acetate, 

1.47 fold increase of formate, 1.92 fold increase of trimethylamine and 1.67 fold increase 

of succinate under gingivitis conditions. My findings show similar fold increases (in spite 

of being mostly borderline insignificant), what would suggest that there might have been 

a shift towards the Gram-negative species which are the main producers of the above 

mentioned metabolites. However, further testing and optimisation is needed to confirm 

these findings.  
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6.5 Conclusion 

The qPCR study was a satisfactory approach in validating and determining model’s 

reproducibility as presented in chapter 4. However, in terms of the investigation of the 

community shifts across the experimental conditions’ change it has given a very limited 

insight into community composition. The 16S rRNA gene sequencing study was 

introduced to investigate the community composition across the conditions’ change and 

to correlate it with the metabolites being produced. The genomic study showed a low 

bacterial abundance and a lack of detection of the gingivitis associated bacteria. This did 

not corroborate with data obtained from the metabolomic study. The metabolite 

fingerprinting showed a separation between the simulated health and gingivitis 

conditions with the components discriminating between the phases including formate, 

acetate, succinate or trimethylamine etc. These metabolites are correlated with gingivitis 

and their main producers include the Gram-negative gingivitis associated bacteria 

(Prevotella spp, Fusobacterium spp, or Porphyromonas spp. etc) that were not detected 

in my model. The results presented in this chapter were inconclusive and further 

investigation would be needed. That should involve increasing the number of repetitions 

to minimise the experimental bias and also optimising the experimental methodology to 

mimic the in vivo situation reliably. 
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7 Final Discussion 

7.1 Project background 

Periodontal diseases affect populations all over the world and are amongst the most 

prevalent human illnesses on our planet (Brown et al. 2000). Gingivitis in particular 

affects approximately 32% of adults in the USA (approximately 33 million people) 

every year (Brown et al. 2000). In a review from 1999 it was estimated that around 

$14.3 billion per visit is spent on periodontal preventive procedures in the U.S. (Brown 

et al. 2000). In another study from 2005 it was estimated that the treatment of 

patients with a primary diagnosis for periodontal diseases admitted to Emergency 

Units in the U.S. cost close to $33.3 million with a mean hospital charge of $456 per 

visit (Elangovan et al. 2011). As another example, the National Health Service in the 

United Kingdom spends around 1.6 billion on dental services per year (Marsh 2003).  

Periodontal diseases (e.g. gingivitis) may affect the quality of life and well-being of 

those affected. It is also hypothesised that they might have a link with chronic diseases 

such as diabetes (Petersen et al. 2005) and can lead to indirect costs to the country’s 

economy such as days lost at work (treatments or dentist’s visit) (Elangovan et al. 

2011). Gingivitis, for example, is a prevalent disease affecting most of us throughout 

our lifetime. Having this in mind, it is important to understand the aetiology of its 

progression, to either treat or eradicate this disease (Brown et al. 2000). In vitro 

models are useful tools in addressing these needs as they allow us to (i) gain an 

understanding of the disease progression mechanism, (ii) screen or test compounds 

with anti-gingivitis properties and (iii) predict the in vivo outcomes (Greenman et al. 

2005). The utility of in vitro models is that they mimic the phenomenon observed in 

real life (e.g. plaque formation, gingivitis onset) and offer both explanatory and 

predictive capabilities. As the aetiology of gingivitis is complex, we need laboratory 

models to investigate disease development with more flexibility than is possible in in 

vivo studies, which are usually limited by patients’ compliance and the amount of 

perturbations that can be done on oral biofilms in mouth. Therefore, it is easier to 
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study gingivitis onset in a confined laboratory system that provides greater control and 

flexible manipulation of experimental conditions. The ability to perturb biofilms with a 

wide range of experimental factors at an operator’s will and in a precise manner also 

helps to investigate the cause-effect relationship (Greenman et al. 2005). 

To date, the standard methods of gingivitis prevention or treatment are mechanical 

and chemical plaque control means (Baehni & Takeuchi 2003). Antimicrobial 

approaches represent an invaluable tool additional to mechanical plaque control and 

can be used both as prevention and/or treatment (Lamster 2006; Moran 2008). The 

products currently available on the market are based on chemical actives such as 

triclosan, essential oils or chlorhexidine and provide satisfactory means of prevention 

and gingivitis treatment (Allaker & Douglas 2009). Essential Oils (EO) are clinically 

proven to inhibit supragingival plaque up to 56% and gingivitis by up to 36% as 

reported by Loe and Schiott. The chlorhexidine based products decrease plaque by up 

to 61% and reduce gingivitis by up to 80% (Loe & Schiott 1970; Santos 2003; Allaker & 

Douglas 2009; Gunsolley 2010; Becerik et al. 2011). To prove the efficacy of any novel 

antimicrobial technique and to ascertain unwanted side effects, a large amount of 

testing needs to be performed before reaching the expensive phase of clinical trials. 

Therefore, the use of in vitro models such as the one presented in this study can also 

be used for the standardised testing of novel dentifrices and antimicrobial agents. Such 

models allow for longitudinal approach, and hence a long-term assessment of 

antimicrobial efficacy on microbial populations by reliable and cost effective means. 

Furthermore, the ability to reproducibly grow oral biofilms associated with gingivitis is 

not only useful for antimicrobial testing, but also for understanding the aetiology of 

gingivitis, as mentioned above. 
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7.2 Summary of main findings 

Chapter 3 (the first results chapter – “Development and validation of a Triple-Constant 

Depth Film Fermentor”) focused on testing and optimisation of the model’s parts and 

the experimental methodology. A simplified methodology, using only simulated oral 

health conditions and a shorter experimental duration, was used to test model 

reliability. At this stage I was facing constant contamination issues and biofilm growth 

did not seem reliable. Similar problems were encountered by Wirthlin et al. when 

developing their Laboratory Model Biofilm Fermentor model. Their issues were 

improved when a better aseptic working procedure was introduced (Wirthlin et al. 

2005). A similar strategy was applied here by implementing a stringent aseptic working 

procedure and replacing faulty parts with new, more reliable ones (new PTFE seals, 

non-domed nuts etc). Additionally, several improvements were introduced to increase 

model reliability and manoeuvrability. Specifically, an L-shaped waste output was 

added to increase portability, a PTFE cover was placed on the gearbox to prevent 

bacterial leakage and handles were added on both sides of the motor to increase 

portability. The air-tightness issues were addressed by providing new PTFE seals and 

using non-domed nuts instead of domed ones (further explanation is given in Chapter 

3). After implementing these changes, the model was able to grow oral biofilms in a 

reliable way without contamination issues.  

Planktonic cells are known to have higher susceptibility to antimicrobials than those 

grown in biofilm. In recognition of these differing susceptibilities, antimicrobial agents 

should be characterised not only by MIC (minimum inhibitory concentration) and MBC 

(minimum bacteriocidal concentration) but also by BEC (biofilm eliminating 

concentration) to provide a better measure of the characteristics of test antimicrobial 

agents. An in vitro model which is able to mimic gingivitis associated biofilms in a 

reliable and reproducible manner could be an invaluable tool in the initial testing stage 

of antimicrobials (Wilson 1996). Therefore, a reproducibility study of oral biofilms 

grown in T-CDFF was carried out, and summarised in Chapter 4. This chapter focused 

on (i) reproducibility testing of the oral biofilms and also (ii) on mimicking the gingivitis 

associated bacterial shifts which occur during the progression of a health associated 
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biofilm to a gingivitis associated one. The reproducibility study broadly showed a lack 

of significant differences among the units in single or individual experiments. As this 

might be indicative of having a reproducible in vitro model, these findings were 

questioned as the data set retrieved from each experiment was burdened with high 

variability (high standard deviation) that limited the conclusiveness of the statistical 

analysis. Similar problems with high variability and reproducibility of developed 

biofilms were encountered by others using complex in vitro systems (Kinniment et al. 

1996; Pratten et al. 1998; Wirthlin et al. 2005).  

Kinniment and Pratten used CDFFs, the closest model to the current system, to grow 

single- and multi-species biofilms and demonstrated some major variations between 

the experiments in terms of bacterial numbers or community composition (Kinniment 

et al. 1996; Pratten et al. 1998). This confirms that growing reproducible oral biofilms 

in a complex in vitro system is not easy and can be affected by many experimental 

factors, including slight differences in relative proportions of bacteria in inoculum, 

varied flow rates etc (Kinniment et al. 1996; Pratten et al. 1998). Even small 

differences in inoculum composition can lead to differences in community composition 

which can be further magnified by slight differences in conditions in the initial phase of 

biofilm formation (Hope et al. 2012). Additionally, small mutations take place in any 

growing cell populations and can affect the variability among units despite, in theory, 

having same experimental conditions (Powell 1958). Therefore, further optimisation of 

the experimental design and investigation of artificial saliva and inoculum composition 

and its handling over time would be beneficial to this study. In addition, to increase the 

power of the statistical analysis, it would be necessary to increase the number of 

experiments (n≥ 3) to obtain a larger data set.  

The second part of the research presented in Chapter 4 focused on establishing the 

bacterial shifts associated with gingivitis progression. The aim was to establish (i) an 

increase in the proportion of total anaerobes and decrease in that of total aerobes, (ii) 

an increase in orange complex bacteria (F. nucleatum, P. intermedia), and (iii) an 

increase in red complex bacteria, and (iv) the dominance of A. naeslundii over S. 

sanguinis after the transition from health to gingivitis. This attempt was unsuccessful 
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as none of the changes were observed despite using the same experimental 

methodology and similar experimental set-up as previously reported by Dalwai et al 

(Dalwai et al. 2006; Dalwai et al. 2007).  

Dalwai and colleagues used CDFFs to model gingivitis in vitro. They observed an 

increase in Gram-negative bacteria Fusobacteria spp. and Prevotella spp. as well as the 

ascendancy of Actinomyces spp. over Streptococcus spp. under simulated gingivitis 

conditions. The disparities between the current study and the two studies by Dalwai 

(Dalwai et al. 2006; Dalwai et al. 2007) led to the conclusion that either simulated 

gingivitis conditions might have not been established in the T-CDFF model or the post-

analysis techniques used were not best suited to determining the differences. This 

seems strange, as the techniques used here were more refined than those used in the 

Dalwai study. Therefore, it was decided to apply more holistic approach (1H NMR 

metabolomics) to investigate the physiological status of biofilms and the metabolites 

produced under oral health and disease. Chapter 5 investigated whether 1H NMR 

metabolomics was suitable for the purposes of this study and whether it could provide 

enough resolution when analysing biofilm and effluent samples. A simple to operate 

CDFF model was run under the health and gingivitis methodology and the analysis of 

the raw NMR data set showed an increase of propionic and butyric acid in gingivitis 

conditions. These metabolites have been reported by Aimettii et al. to be associated 

with periodontitis (Aimetti et al. 2011). Therefore, this technique was not only proven 

to work in a reliable manner when applied to the effluent samples, but also to be 

sensitive enough to discriminate between the experimental conditions.  

The 1H NMR metabolomic study was used together with comparative 16S rRNA gene 

sequencing in Chapter 6 to correlate the bacteria with the metabolites produced. The 

effluent samples retrieved from these two T-CDFF experiments were analysed by 1H 

NMR metabolomics, 16S rRNA gene genomics and qPCR. The metabolomic study 

showed an increase in metabolites associated with gingivitis progression 

(trimethyalmine, formate, pyruvate, propionate etc) as reported by Aimetti et al. 

(Aimetti et al. 2011). However, the 16S rRNA gene sequencing study did not reflect it 

as there was not any Gram-negative gingivitis associated bacteria detected (apart from 
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P. gingivalis detected only in health in unit 3, experiment 2) responsible for the 

productions of these metabolites. This indicates that there may have been problems 

with sample processing. These potential problems including DNA extraction and 

sample processing during the 16S rDNA sequencing study (mentioned in chapter 6) 

were the biggest limitation to the study and should be further investigated. Due to 

many pre-processing steps (e.g. library preparation, PCR amplification etc) this 

technique can introduce significant bias to diversity studies and is less reliable than 1H 

NMR metabolomic studies which work on raw (unprocessed) biological samples. 

Concluding, I could not say with a high degree of certainty that the shifts developed in 

the model are gingivitis related. Because of this, additional T-CDFF experiments would 

have to be performed together with further optimisation and testing of both the 

experimental design/methodology and the post-experimental techniques to verify the 

nature of the shifts and to improve the reproducibility. 
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7.3 Conclusions and future work 

This study presents a new model which at the moment can be used to grow oral 

biofilms in a reliable manner. It appears that the model has the potential to mimic 

gingivitis associated shifts in vitro in a reproducible manner, and if further optimised it 

could likely be used for standardised testing of antimicrobials in either gingivitis 

prevention or treatment. Therefore, the scope of future work should focus on 

optimising the experimental methodology and validating the post experimental 

techniques. This could include (i) using newer next generation sequencing technologies 

that give longer read lengths and do not require a PCR amplification stage, (ii) 

comparing different 16S rRNA gene regions in terms of their ability to identify different 

bacterial taxa, and (iii) investigating DNA extraction methods that are less laborious 

than the one applied in this project and can be representative for both Gram negative 

and Gram-positive species. 

 

In terms of the experimental design and methodology, it would be beneficial to 

investigate how inoculum composition influences biofilm growth and how to 

standardise it to increase reproducibility of the runs. Additionally, it would be 

important to further improve the experimental set up (tubing connections, pump 

choice or set-up etc) to increase the reproducibility of the runs. It might also be 

interesting to investigate whether an extended experimental duration and longer 

exposure to artificial GCF would have a significant impact on the bacterial shifts and 

the metabolite production over time etc.  

 

The triple-CDFF can also be used to facilitate the investigation of efficacy of novel 

therapies such as phage therapy, probiotics, prebiotics or the use of nanoparticles 

(Allaker & Douglas, 2009). Silver nanoparticles show antimicrobial and antiviral activity 

and have been already used in a wide range of medical applications including dental 

resin composites and burn dressings (Shameli et al., 2011).  

 

The systems biology approach with ‘omics’ techniques present a potential benefit for 

investigating the health/gingivitis associated changes in oral microbiome. The use of 
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various ‘omics’ techniques in health/gingivitis modelling in either in vitro or in vivo 

opens a new field of research into identification of the potential biomarkers of 

gingivitis. Combining genomics, metabolomics, transcriptomics and proteomics 

approaches together to document the biomarkers can give a strong association with 

the early detection of disease, disease presence or absence and the prediction of 

treatment outcomes. 
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