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Assessing the impact of risk allocation on Sustainable 
Energy Innovation (SEI): The case of Private Finance 

Initiative (PFI) school projects 
 

1. INTRODUCTION 

It is inevitable that innovative endeavours will entail a certain amount of risk. Indeed, innovation and 

risk often go hand-in-hand in construction projects (Raisbeck, 2008; Barlow and Köberle-Gaiser, 

2008ab). Risk is defined in the current version of the risk management standard - ISO 31000:2009 as 

‘the effect of uncertainty on objectives’ with uncertainty arising whenever the ‘understanding or 

knowledge of an event, its consequence, or likelihood’ is inadequate or incomplete (ISO, 2009). Risk 

includes both opportunities and threats and therefore can create both positive and negative deviations 

from the expected (Hillson, 2000). To Berglund and Hellström (2002) ‘risk is a factor in all innovative 

processes in so far as purposeful, goal-directed action is always directed towards an uncertain future 

with some possible reward’ (Berglund and Hellström, 2002, p. 207). The strategies to identify, 

allocate and manage those risks depend to a great extent on the type of project, the procurement route 

adopted, and the contractual arrangements between project participants (Osipova and Eriksson, 

2011).  

 

The allocation of risk between the contracting parties is often seen as important factor in the creation 

of innovation success in complex projects (Brady and Davies, 2010; Gil et al. 2012; Hobday, 1998; 

Miller and Lessard, 2000). This is particularly in relation to the great up-front investments required 

and the high level of uncertainty, and therefore risk, associated with the success of innovation. The 

management of risk is particularly important for sustainable technologies, as the risks associated with 

their development and implementation are often seen as major barriers to their successful adoption 

(Christie et al., 2011; Häkkinen and Belloni, 2011). 
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This study sought to examine the capacity of risk allocation to encourage the implementation of 

Sustainable Energy Innovation (SEI). SEI is a subset of environmental innovation which has been 

broadly defined as “novel technological products or solutions that are successfully integrated into 

buildings’ design strategies in order to prevent or substantially reduce the negative impacts of energy 

use by increasing energy efficiency, or utilising new ways of renewable energy generation” (Badi 

and Pryke, 2015, p. 412). This study concentrates on risk allocation within Private Finance Initiative 

(PFI) project delivery model. The attention given to PFI in this study is driven by the increasing call 

for greater understanding of contractual drivers of innovation in complex public sector procurement 

models (Caldwell and Roehrich, 2008; Edelenbos and Teisman, 2008; Roumboutsos and Saussier, 

2014).  

 

The study followed a research design based on four qualitative case studies of new-build PFI schools. 

Our research design emphasises one key unit of analysis: how risk allocation within the PFI contract 

(as it was adopted within Building Schools for the Future (BSF), a UK school renewal programme) 

was perceived by private sector actors to influence the energy strategy during the design development 

stage and how this may have shaped the sustainable energy innovation implemented. Our key 

contribution is a conceptual understanding of the conditions under which risk allocation can support 

sustainable energy innovation. Our findings may also lead to a greater awareness of how complex 

procurement strategies, in the form of PFI, should work to support more innovative activity in the 

construction industry and to the growth or even creation of markets for innovative sustainable 

products and services (Erdmenger, 2003). 

 

The paper begins by introducing sustainable energy innovation and explain its importance in 

addressing the formidable challenges associated with climate change. We then we discuss the concept 

of risk and how it relates to innovation. We then introduce the study’s proposition suggesting that 

SEI is supported by clear, appropriate and manageable allocation of the risks associated with the 
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project’s energy performance. In the following sections, we describe the methodology and report 

results from four PFI case studies. In the final section of the paper we discuss the findings and outline 

the managerial and policy implications.  

2. CONCEPTUAL DEVELOPMENT 

2.1 Sustainable Energy Innovation (SEI) 

The study of innovation dates as far back as 1911, and Joseph Schumpeter’s seminal work, ‘Theory 

of Economic Development’. Schumpeter (1980) described innovation as a historic and irreversible 

change in the way of doing things. The essence of Schumpeter’s definition of innovation is that it is 

an effort made by an entity that results in an economic gain, either by reducing cost or increasing 

income. Freeman and Soete (1997) defines innovation as “the actual use of a nontrivial change in a 

process, product or system that is novel to the institution developing the change” (Freeman and Soete, 

1997, p. 11). Freeman and Soete’s (1997) definition indicates that, to be considered an innovation, 

the change should be nontrivial, novel, and regarded as a significant improvement to existing products 

or practices. Innovations are ‘incremental’ to the extent that they reinforce existing products or 

processes, and are often based on current knowledge and experience (Slaughter, 1998; Taylor and 

Levitt, 2004) whilst ‘radical’ innovations are those producing disruptive changes in a specific field 

and result from entirely new approaches to understanding and problem-solving (Slaughter, 1998).  

 

Sustainable energy innovation is a particular subset of environmental innovation, which has been 

broadly defined by Dewick and Miozzo (2002) as the use of production equipment, techniques, 

procedures, products, and product delivery mechanisms that are sustainable; that is, they conserve 

resources and energy, minimise environmental impact, and protect the natural environment. Mostly, 

innovation which has the effect of promoting sustainable energy involves two main strategies: energy 

efficiency and renewable energy.  Energy Efficiency is essentially the reduction of energy inputs for 
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a given level of service, or enhancing the services for a given amount of energy inputs (National 

Science Foundation, 2009). Increased energy efficiency can lead to decrease in energy costs (for 

suppliers and consumers), as well as reduction in CO₂ emission levels (National Science Foundation, 

2009). Renewable Energy, on the other hand, is defined as ‘a flow of energy that is not exhausted by 

being used’ (Sørensen, 1991:386). Hence, renewable energy technologies are means by which such 

flows are converted into applicable devices (Sjöö, 2008). Renewable energy resources include the 

sun, wind, water currents, the heat of the Earth, and replaceable fuels such as from plants. As well as 

reducing stratospheric ozone depletion, acid precipitation, and the greenhouse effect, renewable 

energy resources are considered one of the most efficient and effective solutions (Dincer and Rosen, 

2012). Taking the definitions of energy efficiency and renewable energy into consideration, the term 

SEI is used on this research to represent novel technological products or solutions that are 

successfully integrated into building’s design strategies in order to prevent or substantially reduce the 

negative impacts of energy use by increasing energy efficiency, or utilizing new ways of renewable 

energy generation (Badi and Pryke, 2015).  

 

The focus on SEI in this study is driven by the growing calls around the Globe for sustainable energy 

and CO₂ emissions reduction (Brundtland, 1987; DEFRA, 2007). Meeting the formidable challenges 

associated with climate change will demand substantial technical progress to deliver more sustainable 

energy solutions for societal needs. Among the major strategies advocated by UK government reports 

to meet these pressing challenges for sustainable energy and CO₂ emission reduction is technological 

innovation (DTI, 2007; Stern, 2006; Thalmann, 2007). Stern (2006) emphasised the point that  

policies to encourage innovation and the implementation of low-carbon technologies are central to 

mitigating climate change. Whilst the call for SEI is evident in the preceding government reports, 

such innovations are, however, still in their embryonic stages (Bulkeley et al. 2013; Kelly, 2008). 
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2.4.  The Private Finance Initiative (PFI) 

The Private Finance Initiative (PFI) project delivery model is a specific type of Public Private 

Partnership (PPP) (HM Treasury, 2003), where a consortium of private sector firms, known as the 

Project Company (ProjectCo hereafter), assumes responsibility for designing, constructing, 

financing, and operating an infrastructure facility. The ProjectCo is contracted to provide the public 

services on a long-term concession period (typically, up to 30 years) with the relevant government 

body (HM Treasury, 2003). It has been argued that the introduction of PFI into governments’ 

procurement strategies has many benefits. These include control of public sector expenditure to curb 

inflation, overcoming the scarcity of public funds, and control over the Public Sector Borrowing 

Requirement - PFI contracts can be treated as ‘off balance sheet’ (Al‐bizri and Gray, 2010; Carbonara 

et al., 2014; McCabe et al., 2001). 

 

A major characteristic of PPP/PFI projects is the transfer of risk from the public sector to the private 

sector. Traditionally, construction projects entail the purchase of a product, largely governed by legal 

contracts, and based on fixed specifications and profit levels. The client assumes most of the risks, 

though risks related to the project end dates and construction methods are passed down the supply 

chain (Morris, 2013). A major consideration for the government in introducing PFI was the transfer 

of risk from the public sector to the private sector in order to introduce more discipline in risk analysis 

and allocation into public sector procurement (Grimsey and Lewis, 2002; Iossa and Martimort, 2012; 

Regan et al., 2011). Therefore, appropriate risk transfer is a fundamental requirement for VfM to be 

achieved in PFI project delivery models. While the contractual liability for a contractor under a 

traditional procurement contract is limited to a shorter period, usually 12 months, under PFI the 

contractor is often liable for the delivery of the assets and a wide range of other services for the 

duration of the service period spanning 25–35 years (Gruneberg et al., 2007; Robinson and Scott, 

2008). 
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2.3 The Management of Risk in Project Environments 

Construction project environments are mainly characterised by two types of risk: project-related risk 

and innovation-related risk (Leiringer, 2006). Project-related risk encompasses a wide range of 

categories all concerned with the possible events that could endanger the planned course or objectives 

of the project (HM Treasury, 1997; Grimsey and Lewis, 2002; Rintala, 2004). Innovation-related risk 

is that faced by the innovating organisation in relation to the extent to which the innovation satisfies 

various technical criteria without compromising cost or schedule (Keizer and Halman, 2009). This 

includes a number of unavoidable risks such as technical risk (Unger and Eppinger, 2011), financial 

risk (Nanda and Rhodes-Kropf, 2014) and capital cost risk (Intrachooto and Horayangkura, 2007). 

Project- and innovation-related risks are interconnected and largely affect the outcome of the attempt 

to innovate (Leiringer, 2006). 

 

Risk management is widely considered as one of the most important procedures in the field of project 

management, principally concerned with realising opportunities and avoiding threats (Royer, 2002; 

Turner, 2009). Risk management involves four fundamental processes: risk identification, risk 

assessment, risk allocation and risk mitigation. To be managed appropriately, risk has to be clearly 

identified (Akintoye et al., 2001). Following the identification of risk, its significance to project 

outcome needs to be adequately assessed. The risk assessment process may include reviewing, 

understanding and determining the importance of all the risks that can impact on the project and 

estimating the likelihood of their occurrence (Chapman and Ward, 2003). The risk impact is often 

estimated in terms of financial cost or completion time (Loosemore et al., 2006; Akintoye et al., 

2001). Risk allocation is the third step in the risk management process. Ideally, risk should be 

assigned to the party that has the greater ability to influence the probability of occurrence or the 

degree of consequence of the risk and has the best access to suitable mitigation techniques for the risk 

(Loosemore et al., 2006). However, as Chapman and Ward (2003) noted, this is by no means an easy 
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exercise. In some cases the position of risk in not evident, as risks sometimes cross organisational 

boundaries and cannot be allocated to a single party. Following the allocation of risk, risk mitigation 

is concerned with the action taken by an actor to reduce the likelihood of a risk occurring as well as 

limiting the size of the consequence should the risk occur. There are several risk mitigation strategies 

such as risk avoidance/ elimination, risk reduction, risk transfer, and risk retention/ absorption 

(Chapman and Ward, 2003). Souitaris (2001) argues that managers of innovative firms are more 

favourably inclined towards risk acceptance.  

2.4 Towards a Proposition: Contractual Risk Allocation, Incentives, and Innovation 

In recent years, there has been an increasing amount of literature on the determinants of innovation 

in both main stream management studies and the specific field of construction research. A wide range 

of drivers has been identified, such as client requirement and involvement (e.g. Mitropoulos and 

Tatum, 2000; Ling et al., 2007; Pellicer et al., 2014), communication and collaboration (e.g. Nam 

and Tatum, 1989), contractual incentives (e.g. Bossink, 2004; Intrachooto and Horayangkura, 2007), 

and risk allocation (e.g. Leiringer, 2006) which underline the importance of interdependency and 

interaction between the different organisations involved within complex projects. Of these issues, 

only contractual risk allocation is relevant to this research and is reviewed further below. 

 

Contracts are in effect a governance mechanism designed to achieve two main goals: to outline the 

structure of authority-responsibility, and share risk and reward among project partners (Giannoccaro 

and Pontrandolfo, 2004; Sen and Mitra, 2000). Contracts are safeguarding instruments against 

opportunistic behaviour, as they establish clear limits for breach of contractual specifications between 

clients and producers (Liker and Choi, 2004). In complex projects, contracts governing the 

relationships between producers and their upstream clients can range from traditional arms-length 

contracts to close cooperative relationships. Mostly, contractual incentives have their theoretical 

origin defined in the Principal-Agent Theory (Spence and Zeckhauser, 1971; Ross, 1973). The 
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Principal-Agent Theory mainly addresses the relationship between two contracting actors—the 

Principal and the Agent. The theory is primarily concerned with the difficulties that arise under 

conditions of imperfect and asymmetric information when a Principal appoints an Agent to pursue 

the Principal’s interests. The theory’s central assumption is that both actors will pursue their own 

objectives. Thus, it assumes that the Agent will adopt a strategy with which he will receive the 

maximum reward for the minimum effort (Milgrom and Roberts, 1992; Douma and Schreuder, 2008). 

Therefore, incentive-based contracts are designed to align the Agent’s objectives with those of the 

Principal.  

 

Several studies, adopting a system-oriented approach to innovation, have emphasised the importance 

of risk allocation among the contracting parties in determining innovation success (Hobday, 1998; 

Miller and Lessard, 2000). This is particularly in relation to the substantial investment required and 

the high level of uncertainty, and therefore risk, associated with the success of innovation. Thus, 

Hobday (1998) maintains that contractual incentives are needed for sharing project risks among 

clients and their producers. Construction-related studies of innovation equally underlined the 

importance of risk allocation in decision making associated with innovation (Akintoye et al., 2001; 

Loosemore et al., 2006; OECD, 2005). In their study of technology adoption decisions in mega 

infrastructure projects, Gil et al. (2012) identify that technological decisions are greatly affected by 

the project stakeholders’ attitude towards risk. Miozzo and Dewick (2002), explored the innovation 

drivers amongst the largest contractors in Europe, and concluded that innovative activities are often 

promoted by parties with both the incentive and the ability to allocate resources to investments with 

uncertain and irreversible outcomes.  

 

Three characteristics of risk allocation are considered important for innovation: clarity, 

appropriateness and manageability. In his study of technological innovations in PPPs, Leiringer 

(2006) maintains that greater clarity over the assumed risks, due to more explicit risk transfer under 
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a PPP, might benefit innovative activities as it allows the innovating organisation to make rational 

decisions. Barlow and Köberle-Gaiser (2008b) also argue that the financial and legal uncertainty 

faced by the ProjectCo may be reduced by clear allocation of risk. In addition, government guidelines 

often use the maxim that risk should be allocated to the party best placed to control and manage it 

(UNIDO, 1996; HM Treasury, 2003). Ideally, risk should be assigned to the party that has the greater 

ability to influence the probability of occurrence or the degree of consequence of the risk and has the 

best access to suitable mitigation techniques for the risk (Loosemore et al., 2006). However, Thomas 

et al. (2003), in their survey of risk allocation strategies in BOT road projects in India, have found 

that this principle is rarely observed due to the differences in the perception of risk among the project 

participants. Ng and Loosemore (2007) also underlined the problems associated with inappropriate 

risk allocation on PPP projects, such as cost and time overruns and failure to deliver value-for-money 

objectives. They concluded that the risks allocated should not only be considered clear, but also 

appropriate and manageable.  

 

Following the arguments above, it can be proposed that: 

 

Clear, appropriate, and manageable allocation of the risks associated with the project’s energy 

performance can support innovative effort in the PFI project delivery model.  

 

The energy performance of buildings is associated with several types of risk such as regulatory, 

energy consumption and planning approval risks. For the ProjectCo to be innovative, the assumed 

risks associated with the project’s energy performance should be considered clear, appropriate and 

manageable. Greater clarity over the assumed risks will allow the innovating organisation to make 

rational decisions, which may benefit innovative activities. Greater appropriateness and 

manageability will support the equitable allocation of risk among project participants, thus 
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encouraging innovative efforts. In the next section, we describe the methodology adopted to examine 

the three issues within the context of the UK government Building Schools for the Future’ (BSF).  

3.  METHODS 

3.1 Context of the Study 

The study focused on schools delivered within the context of the UK government’s Building Schools 

for the Future (BSF) programme. BSF was an immensely ambitious programme designed to rebuild 

or refurbish all secondary schools in England over 15 years at a cost of £45 billion. As well as being 

a project to improve radically the fabric of school buildings and transform the educational experiences 

of pupils, it has been actively seeking to embed sustainability (House of Commons, 2007). The need 

for SEI in BSF schools was reinforced by the fact that school buildings are responsible for about 2% 

of greenhouse gases emissions in the UK, the equivalent to 15% of the national public sector 

emissions (DCSF, 2010). In order to address this challenge, the Department for Children, Schools 

and Families (DCSF) announced in 2007 that £110 million would be allocated for sustainable school 

buildings and set the ambitious target that all new-build schools should be ‘zero-carbon’ by 2016 

(DCSF, 2007i). The target was subsequently delayed to 2019 to match the EU Energy Performance 

of Buildings Directive. PFI was the government’s preferred project delivery model for 132 new-build 

BSF schools.  

3.2 The Case Studies 

A qualitative approach was considered the best-suited for this research, given the exploratory nature 

of the study (Yin, 2014). Four new-build BSF PFI school projects were selected for investigation 

following set criteria to ensure comparability and to maximise what could be learned from the study. 

Three case studies were selected on the grounds that they showed at least one significant SEI (Case 

Studies 1, 3 and 4), and one case study was selected on the grounds that it showed no evidence of SEI 
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(Case Study 2). This was pursued to facilitate a heterogeneous sample; the technique also termed 

‘maximum variation sampling’ in qualitative enquiry (Patton, 2005). This enabled the researcher to 

capture of a wide range of perspectives relating to the conditions under which SEI is implemented, 

or otherwise, and helped in highlighting common themes that held consistent across the case study 

projects. Literal replication was sought on the three innovative projects, while theoretical replication 

was tested on the project where no innovation was implemented (Yin, 2014). Literal replication in a 

case study, tests precisely the same outcomes, principles, or predictions established by the initial case 

study. Thus, it must be selected so that it predicts similar results. In contrast, a theoretical replication, 

is a case study that produces contrasting results but for predictable reasons. Under the development 

of a conceptual framework, literal replication can explain the conditions under which a particular 

phenomenon is likely to be found, whereas a theoretical replication can explain the conditions when 

it is not likely to be found (Yin, 2014) 

 

Identifying projects with evidence of implementing sustainable energy innovation was challenging. 

Extensive review of the national press and trade journals was undertaken to verify the nature of the 

solutions implemented and whether or not they could be considered innovative. In addition, so as to 

confirm the findings arising from the interview data, the case study projects and their innovative 

solutions were described to an independent heating and ventilation (HV) design expert. This 

confirmed that the sustainable energy innovations implemented could be considered a novel change 

from standard practice. Table 1 lists the pseudonym used to represent each of the case study projects 

and provides a brief outline of the location, value and the main sustainable energy innovations 

implemented. 

 

******INSERT TABLE 1 ABOUT HERE ****** 
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Furthermore, to control as much as possible for the impact of contextual factors on innovation 

outcomes, the four case studies were early BSF schemes. This was to ensure that the projects were 

subjected to the same policy and economic environment, and followed the same BSF documentation 

and national legislation. This was the case with the first three case studies (Case Studies 1, 2 and 3), 

which were expected to offer insight into how the BSF PFI project delivery model, as it was during 

this initial period, influenced the pursuit of innovation for sustainable energy. Case Study 4 further 

benefited from the introduction of the government’s Carbon Funding and was awarded the extra 

funding of £50/m2 to meet the operational carbon target of 27Kg CO2/m2/yr. This case study may 

presented a special regulatory context and was included to maximise what could be learned from the 

research study.  

3.3 Data Collection 

Data collection for this research study was largely based on primary data, thus data gathered and 

assembled specifically for the research project at hand (Yin, 2014). The unit of analysis in this 

research study is the BSF PFI project and the key project actors involved served as the primary 

sources of data. Data was collected through semi-structured interviews with ProjectCo representatives 

from each case study. Interviewees included the ProjectCo’s Special Purpose Vehicle (SPV) bid 

managers, architects, M&E engineers, building contractors and facility managers. In total, 26 

interviews were conducted. Table 2 outlines the interview participants from each case study.  

 

******INSERT TABLE 2 ABOUT HERE ****** 

 

A Case Study Interview Protocol was developed to guide the interview process. Interviewees were 

asked about their perception of the clarity, appropriateness and manageability of risk allocation 

associated with the project’s energy performance. The developed qualitative definitions of the 

conceptual constructs are outlined in Table 3.  
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******INSERT TABLE 3 ABOUT HERE ****** 

 

Particularly, the following items were examined:  

 

1. Clarity of risk allocation: Participant’s perception of the extent to which the allocation of 

the risks associated with the energy strategy is free from confusion, uncertainty, ambiguity, 

or doubt. 

2. Appropriateness of risk allocation: Participant’s perception of the extent to which the 

allocation of the risks associated with the energy strategy is fitting for a particular entity or 

situation. 

3. Manageability of risk allocation: Participant’s perception of the extent to which the 

allocation of the risks associated with the energy strategy can be managed or controlled. 

 

All interviews were recorded and later transcribed. Data collection took place between April 2009 

and May 2010. Three of the case study projects, i.e. Case Studies 2, 3 and 4, were on-site when 

the researcher established first contact with the projects. Case Study 1 had been operational for a 

few months. 

3.4 Data Analysis 

The analysis of the transcribed interviews started by building chronological stories for each case 

study, triangulating the interpretations from the multiple ProjectCo respondents. Within-case analysis 

was then conducted using tabular displays to cluster and process the interview data. The within-case 

analysis helped to develop preliminary understanding of the main issues affecting risk allocation and 

innovation across the interdependent actors. Cross-case comparative analysis was then conducted 

using tabular displays as shown in Table 4 which helped identify the main issues that would hold 
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consistently across the units of analysis. In addition, cross-case analysis follows the advice of Yin 

(2014) in adopting an analytical strategy based on literal and theoretical replication. In this research 

study we aimed for literal replication between three innovative cases (Case Studies 1, 3 and 4) and 

theoretical replication in the case where no innovation was implemented (Case Study 2). 

 

******INSERT TABLE 4 ABOUT HERE ****** 

4.  FINDINGS 

The findings indicate that the energy strategies developed on the four case study projects were 

influenced by the allocation of two types of risk to ProjectCo actors: project-related risk, and 

innovation-related risk. Project risks, as they relate to the energy strategy, are those assumed by 

ProjectCo actors in relation to the project meeting agreed environmental and energy performance 

standards. Innovation-related risks are those assumed by the innovating organisation in relation to the 

extent to which the innovation satisfies various technical criteria without compromising the project’s 

budget and schedule. The interplay between those two types of risk shaped the energy strategies and 

the innovations implemented on the case study projects. Figure 1 outlines the main identified risks 

associated with the energy strategy, while Table 5 provides brief definitions of the main risks involved 

and the parties to whom the risks are allocated under the BSF PFI contract. The findings are presented 

under three headings: (1) clarity of risk allocation; (2) appropriateness of risk allocation; and (3) 

manageability of risk allocation. 

******INSERT FIGURE 1 ABOUT HERE ****** 

******INSERT TABLE 5 ABOUT HERE ****** 

4.1. Clarity of Risk Allocation 

In the literature, greater clarity of risk allocation is seen to reduce the financial and legal uncertainty 

faced by the innovating organisation and support rational decision making, which may benefit 
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innovation (Barlow and Köberle-Gaiser, 2008b; Leiringer, 2006). ProjectCo actors on the innovative 

projects agreed that the risks associated with the project’s energy performance were generally made 

clear early in BSF documentation. This potentially benefitted innovation efforts. However, the 

situation was different on SVC (Case Study 2), the project where no innovation was implemented. 

The building contractor lacked adequate understanding of the BREEAM ‘Excellent’ requirementii 

and its implications on the project’s costs and time constraints. Indeed, post financial close, as there 

were penalties associated with meeting the requirement, the amount of time and resources needed to 

achieve it was a considerable challenge to the building contractor. This lack of understanding was 

explained by the newness of the requirement itself to the building contractor. As the project was the 

first BSF project to the building contractor, the environmental requirements associated with it, 

including BREEAM, were clearly underestimated. The requirement was eventually met but at a 

considerable cost, in terms of time and resources. The newness of some environmental requirements 

to firms, such as BREEAM, demands sufficient assessment of their impact on the planned course and 

objectives of the project. Without such assessment, it is likely that adequate understanding of what is 

needed to deliver the requirements, and manage the associated risks, will be weak.  

4.2. Appropriateness of Risk Allocation 

Most government guidelines advocate that risk should be allocated to the party best placed to control 

and manage it (HM Treasury, 2003; UNIDO, 1996). Blayse and Manley (2004) and Leiringer (2006) 

also stress the need for equitable allocation of risk among project participants. ProjectCo actors across 

the four case studies perceived the risks associated with the project’s energy performance to be mostly 

appropriately allocated. However, concerns were raised with regards to the building contractor 

assuming the initial energy consumption risk. This was explained by the difficulty to accurately 

predict energy consumption targets during the design process; the long period of time buildings need 

to settle into their natural level of performance; and the significant influence of end-user behaviour 

on energy consumption as opposed to the actual building itself. In addition, the government’s carbon 
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target of 27kg CO₂/m2/yr was seen to be onerous and difficult to completely close down. The success 

of any mitigation strategy was seen to be difficult to predict and can only be clear after the building 

is operational for a period of time. This perceived inappropriateness of risk allocation is potentially 

damaging as the OECD (2005) considers excessive perceived risk as one of the main barriers to 

innovation. 

 

Furthermore, an important issue that was highlighted by ProjectCo actors across the four case studies 

was the conflicting environmental requirements that needed to be met under the BSF PFI contract. 

The ProjectCo was required to balance the ‘Availability Clause’ which requires teaching spaces not 

to exceed 28°C for more than 120 hr/yr during core summer hours, whilst meeting agreed standards 

for maximum annual energy consumption in the PFI contract. The strategies adopted to achieve these 

conflicting requirements were mainly to reduce the demand for the energy required to cool those 

spaces through passive design principles, whilst maintaining the efficiency of the supply as much as 

possible. However, ProjectCo actors across the four case studies argued that the Availability Clause 

and temperature tolerances forming part of its criteria were potentially harmful to the energy 

efficiency and CO₂ reduction objectives. Excessive perceived availability risk may force contractors 

to install carbon-intensive technologies, such as heating, ventilation, and air conditioning systems 

(HVAC), to ensure teaching spaces do not exceed 28°C and safeguard their long-term investment in 

the project. This is particularly detrimental in situations where penalties for non-availability 

considerably exceed penalties for not meeting annual energy consumption targets. Indeed, it can be 

argued that the temperature tolerances forming part of the Availability Clause may represent a 

considerable challenge to achieving the government’s target of zero-carbon schools by 2019 through 

PFI contracts. 
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4.3. Manageability of Risk Allocation 

The manageability of the risks allocated to ProjectCo actors was an important criterion across the 

case study projects. Importantly, the allocation of several types of risk to ProjectCo actors was found 

to have encouraged the pursuit of sustainable energy innovation as the innovations implemented were 

largely developed as strategies to manage several types of risk allocated to ProjectCo actors. This 

will be discussed below:  

 

 Perceived availability risk was a major consideration across the three innovative projects. Not 

meeting the availability criteria exposes the ProjectCo to payment deductions as part of 

performance monitoring linked to the Payment Mechanism. Availability risk was particularly 

a major consideration on BEC (Case Study 1), where the risks associated with the availability 

criteria were identified, evaluated, and the related financial penalties were deemed significant 

enough to influence the design process. The risk-averse attitude of the ProjectCo and its desire 

to protect its investment in the long-term resulted in setting challenging environmental targets 

for the design team to meet. In order to reach an extremely robust and safe design, teaching 

spaces were designed so as not to exceed 28°C for more than 20 hr/per year rather than the 

allowed 120 hr/yr under the BSF PFI contract. This was a highly ambitious target at the time 

and was pushing the boundaries of what could be achieved for sustainability. The design team 

needed to meet the target, whilst maintaining agreed standards for maximum annual energy 

consumption in the PFI contract. The target led to the development of the innovative 

ventilation chimney which ensured excellent air flow across the classrooms, minimising the 

need for mechanical ventilation and significantly reducing energy consumption during 

operation.  
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 Perceived energy consumption risk was a major consideration across the three innovative 

projects. Not meeting energy consumption targets exposes the ProjectCo to payment 

deductions as part of performance monitoring linked to the Payment Mechanism. On HGS 

(Case Study 3), energy consumption risk was particularly a major consideration. The design 

team was presented with challenging site constraints, mainly the adjacency of the site to a 

busy emergency route, which meant that 70% of the building needed to be mechanically 

ventilated. The team evaluated several energy strategies in order to increase the likelihood of 

meeting the energy consumption targets, while providing an internal environment comfortable 

to the school. The strategy adopted was to minimise the demand for energy, by increasing the 

building’s thermal mass and improving air leakage rates and U-values, as well as maintaining 

the efficiency of the supply as much as possible. The innovative energy supply strategy was 

a new combination of best available sustainable technologies in the market (mini-Combined 

Heat and Power Plant, Ground Source Heat Pump, Earth Tubes, and mini-Wind Turbine) to 

spread the risk across several technologies, energy providers, and users within the school.  

 

 Perceived operational carbon target risk encouraged the pursuit of innovation on BWS (Case 

Study 4). BWS was among the first BSF schools to bid for and be successfully awarded the 

DCSF additional funding of £50/m² to achieve the challenging target of 60% reduction in 

carbon emission (compared to a school being constructed to the energy efficiency standards 

set out in the 2002 Part L Building Regulation). The target was translated into an operational 

carbon target of no more than 27kg CO₂/m²/yr emission during core hours, which is a 

contractually binding operational obligation placed on the building contractor and linked to 

the payment mechanism. The innovative biodiesel Combined Heat and Power (CHP) solution 

was implemented to ensure that the building meets this operational target, significantly 

reducing the school’s dependence on electricity from the national grid.  
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Two key observations could be made from the above findings. First, the allocation of long-term 

energy performance risks to ProjectCo actors was successful in encouraging sustainable energy 

innovation. On PFI projects, the two specific mechanisms the Local Authority used to achieve this 

risk allocation are the Output Specification and the Payment Mechanism (Rintala, 2004). As the Local 

Authority cannot readily measure the amount of resources the ProjectCo requires producing the 

service, it heavily relies on measuring the output of the service provision and linking the Unitary 

Payment the SPV will receive from the Local Authority for providing the service to that output 

(Douma and Schreuder, 2008; Grout and Stevens, 2003). In the case of the building’s energy 

performance, the Local Authority measures the energy consumption of the building, and links the 

Unitary Payment to that performance. Not meeting energy consumption and CO₂ targets exposes the 

ProjectCos to payment deductions as part of performance monitoring linked to the Payment 

Mechanism. Therefore, the ProjectCo is incentivised to avoid penalties for non-compliance and are, 

thus, likely to ensure that the building meets agreed energy performance standards. This study finding 

provides empirical evidence to the importance of risk allocation as a driver for sustainability 

innovation. Indeed, our findings suggest that contract practices that allocate long-term energy 

performance risks to private sector actors may support innovation effort. Innovations for energy 

efficiency are directly linked to the ProjectCo future revenue as a result of the ProjectCo responsibility 

for meeting agreed energy consumption and CO₂ emission targets in the duration of the concession 

period. Energy efficiency also implies future financial savings and returns by reducing the cost of 

building operation. Therefore, sustainable energy innovations are directly linked to the long-term 

profitability of the ProjectCo and are, thus, favourably perceived.  

 

Second, ProjectCo actors on the three innovative projects were inevitably faced with innovation risks 

that needed to be managed. The findings underlined several strategies adopted by ProjectCo actors to 

manage those risks. Technical risks arising from innovation were managed across the multiple case 

studies by improving the technical knowledge base of the team. The experienced design teams of 



21 

BEC (Case Study 1) and HGS (Case Study 2) as well as the appointment of an energy consultant on 

BWS (Case Study 3) provided assurance to the ProjectCo that the developed innovations were well-

resourced. Therefore, the development of sustainable energy innovation in our case studies required 

sufficient technical and sustainability knowledge within the team for the ProjectCo to innovate 

successfully. In addition, the findings highlighted that the innovations implemented were closely 

following best practice. The chimney design in BEC (Case Study 1) was a combination of tried and 

tested technologies. HGS’s (Case Study 3) energy supply strategy was based on a new combination 

of best available technologies. BWS’s (Case Study 4) Biodiesel CHP plant, although new in UK 

school buildings, was a well-known technology and was purchased from an established German 

manufacturer. In all three case studies there was existing evidence to suggest that these technologies 

could be successfully implemented. Reliability of the technology was an important criterion as it 

reduced the uncertainty associated with the innovation and provided further assurance to the 

ProjectCo. Indeed, as our study suggests, the nature of the PFI contract often drives ProjectCo actors 

to adopt tried and tested technologies in order to minimise their risk exposure. Therefore, it can be 

argued that innovation for sustainable energy within PFI projects are more likely to be incremental 

(Lutzenhiser and Biggart, 2003; Slaughter, 1998) and exploitative (Holmqvist, 2004; March, 1991) 

rather than radical (Slaughter, 1998) or explorative (Holmqvist, 2004; March, 1991). However, this 

bias towards incremental innovation may weaken the capacity of PFI contracts to deliver the 

government’s zero-carbon objectives as more radical and system innovations are required to deliver 

such significant reductions in carbon emissions (Enkvist et al., 2008; Huesemen, 2003).  

 

Finally, the findings call attention to the negative effect of excessive perceived capital cost risk on 

the adoption of high-cost technologies with extended payback periods. Across the four case studies, 

the long-term commitment of the ProjectCos to the projects did not justify investment in high-cost 

technologies because payback periods were equally important. Being in a competitive bidding 

process, affordability was also a major consideration. In fact, the biggest challenge for sustainability 
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was seen to be cost and trying to achieve it within the allocated ‘Financial Envelope’. The study 

findings suggest that the need for the ProjectCo to reduce costs to match the approved affordability 

limits established by the Public Sector Comparator (PSC) could result in low levels of sustainability 

innovation on PFI projects. The limitations brought in by perceived capital cost risk is particularly 

damaging to sustainable energy innovation as the nature of the technology requires additional upfront 

cost and design time to develop energy-efficient buildings. Therefore, the limited acknowledgment 

of the need for such initial investment within BSF is potentially detrimental to innovation efforts. 

7.  CONCLUSION 

Innovation and risk go hand in hand in complex projects. The purpose of this study was to examine 

the influence of risk allocation on sustainable energy innovation within the context of the PFI project 

delivery model. The study responds to an important gap in knowledge as there has been no attempt 

to explore the relationship between PFI and sustainability innovation, including those for sustainable 

energy. Therefore, the descriptive case studies, and their subsequent analysis and findings should 

prove valuable to both public and private sector actors interested in the delivery of sustainable 

buildings, not only within BSF but for the PFI sector at large. 

 

The study of four new-build BSF PFI school projects provided compelling evidence to the importance 

of greater clarity, appropriateness and manageability of energy-related risks in order to support 

sustainable energy innovation. In fact, the main sustainable energy innovations were largely in order 

to manage long-term energy performance risks allocated to ProjectCo actors and safeguard their long-

term commitment to the project. In addition, the study drew attention to the incremental nature of the 

innovations implemented. Indeed, reliability of the technology was an important criterion and the 

nature of risk allocation in the PFI contract forces private sector actors to adopt tried and tested 

technologies in order to reduce their risk exposure. However, this preference to incremental 

innovation weakens the capacity of PFI contracts to deliver the government’s zero-carbon objectives 
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as more radical and system innovations are needed to meet such significant reductions in carbon 

emissions (Enkvist et al., 2008; Huesemenn, 2003). 

 

The study may have several important implications for policy makers and public authorities 

concerned with the procurement of public sector assets. Importantly, the research study highlights the 

importance of appropriate risk allocation on PFI projects. The allocation of long-term energy 

performance risks to ProjectCo actors was underlined as a successful contractual arrangement in 

providing the ProjectCo with the incentive to improve the energy performance of the project. 

However, risk management should not stop at this point. Demaid and Quintas (2006) emphasized the 

need for formal procedures for risk management to be built into the management processes for major 

projects to allow sustainability issues to be integrated into core procedures, rather than being 

considered as additional, secondary constraints. In the case of PFI projects, efforts to address the 

conflicting requirements placed on the ProjectCo and to reduce the perceived limitations of other 

risks, such as capital cost risk, may work to induce further innovation for sustainable energy.  

 

The study also called attention to the detrimental impact of perceived capital cost risk as a major 

inhibitor for innovation. This accentuate the need for the sustainable energy requirement to be clearly 

reflected in the Public Sector Comparator (PSC). Our findings indicate that many of the conflicts of 

interest among the different parties on PFI project arrangement would be reconciled if there was more 

specific funding channelled toward integrating sustainable energy innovations. Indeed, the method 

by which the PSC is calculated is crucial if sustainable buildings are to be delivered through PFI. For 

example, if the PSC has considered the fact that the scheme must produce 20% of its own energy on 

site from renewable sources; the ProjectCo would have the incentive to include it in their proposals. 

Akintoye et al. (2003) equally emphasise that ‘best value’ in the VfM assessment should take into 

account wider policy objectives. It can thus be argued that delivering the Local Authority’s 

sustainable energy objectives can form an important assessment of ‘best value’ in the PSC’s VfM 
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assessment. Therefore, a vital aspect to obtain more sustainability in PFI would be to build more 

sustainable features into the PSC model. In fact, failing to build sustainable energy into the PSC may 

result in sustainable energy innovations being abandoned as being ‘unaffordable’.  

 

The study has stimulated a number of research questions in need of further investigation. First, the 

examined risks associated with the energy strategy are mostly project-related risks that affect the 

realisation of the project objectives; how these risks may translate into business risks for the risk-

taker, such as uncertainty in profits, threat of loss or business failure, is a research area worthy of 

future exploration. In addition, an important issue in the achievement of sustainable energy that was 

beyond the scope of this research is whether a sustainable school building produces the desired effect, 

i.e. sustainable behaviour in end-use. Future research could build on this study’s findings and further 

explore PFI school projects in their operational stages. An interesting research question would be 

whether the espoused sustainable energy design objectives correlated with experienced sustainable 

energy performance in operation. Future research could also focus on how risk allocation through the 

output specification, payment mechanism and performance-monitoring mechanisms work together 

during the operational stages of PFI projects to ensure that the schools remain energy-efficient during 

operation. 
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Figure 1: Main identified risks associated with the energy strategy 
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Table 1: The case Studies 

Case Study pseudonym Location Value (£) Main SEI(s) Implemented 

1 BEC South West £34m The design utilises an innovative ventilation chimney in every classroom. The 

innovative chimneys provide outstanding cross air flow across the classrooms, 

minimising the need for mechanical ventilation. The school design achieved 40% 

reduction in CO₂ emission against Part L 2002 Building Regulation. 

2 

 

SVC East 

Midlands 

£21.5m No SEI was implemented. 

3 HGS South East £30m The design adopts an innovative sustainable energy supply strategy utilising high-

end technologies (mini-Combined Heat and Power Plant, Ground Source Heat 

Pump, Earth Tubes, and mini-Wind Turbine) to offset and reduce carbon 

emissions and provide micro-generation. This led to a 61% reduction in CO₂ 

emissions against Part L 2002 Building Regulation and 25.3% reduction against 

Part L 2006 Building Regulation. 

4 BWS East 

Midlands 

£20m The design is based on an innovative energy supply solution with an Energy 

Centre housing a biodiesel Combined Heat and Power (CHP) plant, the first to be 

implemented in a school in Britain. The CHP plant provided heating and 

electricity. It also substantially offset the demand for grid energy, leading to a 

dramatic CO₂ reduction of 60% against Part L 2002 Building Regulation. 
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Table 2: Case Study Participants 

 

Team  Case Study 1 Case Study 2 Case Study 3 Case Study 4
Bid Management 

Team 
Bid Manager Bid Manager Assistant Bid Manager 

Whole Life Cost 
Director 

 

Bid Director 

Architect Project Director 
(Principal Architect) 

Project Director 
(Development 

Architect) 
 

Project Director 1 
Project Director 2 

Project Director Project Architect 

M&E Engineer  Project Leader 
Project Engineer 

 

Project Engineer Project Engineer Project Engineer 

Building Contractor Design Manager Operations Manager Operations Manager Operations Manager 
Education Director 

 

Facility Manager General Manager Design Co-ordinator Operations Manager 
 

Contract Manager 
 

Energy Consultant - - - Project Manager  
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Table 3: Qualitative measurement of conceptual constructs 

Concept  Key Construct(s) Measurement  Corresponding Interview Question(s) 
Risk 

allocation 
(1) Clarity of risk 
allocation 

Participant’s perception of 
the extent to which the 
allocation of the risks 
associated with the energy 
strategy is free from 
confusion, uncertainty, 
ambiguity, or doubt. 
 

How clear was the allocation of the risks associated 
with the energy strategy on this project? 

(2) Appropriateness of 
risk allocation 

Participant’s perception of 
the extent to which the 
allocation of the risks 
associated with the energy 
strategy is fitting for a 
particular entity or situation. 

In your opinion, was the allocation of the risks 
associated with the energy strategy appropriate? What, 
if any, risks were non-negotiable? 
 
Were there any specific risks associated with the energy 
strategy that should have been allocated differently? Do 
you think that the affected actors were/are clear over the 
risks that they were taking on? 
 

(3) Manageability of risk 
allocation 

Participant’s perception of 
the extent to which the 
allocation of the risks 
associated with the energy 
strategy can be managed or 
controlled. 

In your opinion was the risk allocated to your 
organisation manageable? 
 
What were the most probable risks to materialise for 
your organisation? How did the innovation influence 
these probabilities? 
 
What were the most probable risks to materialise for the 
project as a whole? How did the innovation influence 
these probabilities? 
 
What were the most significant risks for your 
organisation should they materialise? When were you 
clear that you had to take those risks? How did the 
innovation impact (positive or negative) on the way you 
handled these risks? 
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Table 4: Risk allocation and implication for sustainable energy innovation: summary of 

key findings 

Key Constructs Emergent 
Issues 

Case study 1 
Findings 

Case study 2 
Findings 

Case study 3 
Findings 

Case study 4 
Findings 

Clarity of risk 
allocation 

Clarity of 
Energy-related 
Risks 

Risk allocation clear 
on BSF 
documentation (+) 
 

Building 
Contractor’s limited 
understanding and 
assessment of 
BREEAM risk 
complicated design 
process (-) 

Risk allocation clear 
on BSF 
documentation (+) 
 

Risk allocation clear 
on BSF 
documentation (+) 
 

Appropriateness 
of risk 
allocation 

Appropriateness 
of Energy-
related Risks 

Risk allocation fair 
and acceptable (+) 
 
Conflicting 
requirements and 
excessive perceived 
availability risk 
damaging to energy 
efficiency (-) 

Risk allocation fair 
and acceptable (+) 
 

Risk allocation fair 
and acceptable (+) 
 
Allocation of initial 
carbon target risk to 
Building Contractor 
seen by ProjectCo 
WLC Director to be 
somewhat unfair (-) 

Risk allocation fair 
and acceptable (+) 
 
The 27kg CO₂/m²/yr 
target seen by 
Education Director 
to be onerous and 
difficult to close out 
(-) 

Manageability 
of risk 
allocation 

The 
Management of 
Energy-related 
Risks as a Driver 
for SEI  

Availability risk was 
main driver for 
innovative chimney 
design (+) 

- Energy consumption 
risk, availability risk 
and planning 
approval risk drove 
innovative design (+) 

Operational carbon 
target risk main 
driver for innovative 
CHP solution (+) 
 

Strategies to 
Manage 
Innovation-
related Risks  
 

Perceived technical 
risk managed by 
undertaking 
numerous 
prototyping and 
simulation tests 
 
Chimney design not 
to be ‘too 
experimental’ to 
safeguard investment 
and long-term 
commitment to 
project 
 
Chimney design 
predominantly new 
combination of tried 
and tested 
technologies 
 

- Energy simulation 
models were critical 
to ensure targets are 
met and minimise 
risk 
 
Perceived planning 
approval risk 
managed by 
discussions with 
planners 
 
Innovation is new 
combination of best 
available 
technologies in 
market 
 

Technical risk 
managed by 
appointing an Energy 
Consultant 
 
Bid Director was 
instrumental in 
overcoming 
resistance to 
innovation 
 
Innovation not 
necessarily ‘risk-
taking’ and CHP 
purchased from well-
known manufacturer 
 
Perceived planning 
approval risk 
managed by 
discussions with 
planners 

Unmanageability 
of Innovation-
related Risks as 
Barrier to 
Innovation  

Perceived technical 
risks led to adoption 
of a new 
combination of well-
known technologies 
(-) 
 
Perceived capital 
cost risk inhibited 
adoption of high-cost 
technologies with 
long payback periods 
(-) 
 
Perceived planning 
approval risk 
restricted installation 
of a wind turbine (-) 

Perceived technical 
risks led to adoption 
of safe and robust 
technology (a 
biomass boiler) (-) 
 
Perceived capital 
cost risk inhibited 
adoption of high-
cost technologies (-) 
 
Perceived planning 
approval risk 
restricted adoption 
of a wind turbine (-) 

Perceived capital 
cost risk inhibited  
adoption of high-cost 
technologies with 
long payback periods 
(-) 
 
Perceived off-take 
and construction 
risks associated with 
energy supply 
networks restricted 
their development (-) 
 
 

Perceived capital 
cost risk inhibited 
adoption of high-cost 
technologies with 
long payback periods 
(-) 
 

Note: (+) indicate that the issue has a positive effect on construct, (-) indicate that the issue has negative effect on construct. 
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Table 5: Main identified risks and the party assuming the risk 

 

i In the DCSF (2010) Report ‘Road to Zero-Carbon, Final Report of the Zero-Carbon Task Force’, a ‘zero carbon’ 
building was defined as that with “a net zero carbon emissions over the course of a year [..] after taking into 
account (a) energy consumption and related CO2 emissions of the fixed building services (i.e. heating, ventilation, 
hot water, lighting, and appliances) and (b) energy exports and imports from the development ( and directly 
connected energy installations) to and from centralised energy networks”. However, this definition is yet to be 
finalized, according to the UK Green Building Council Task Group report (2014) titled: ‘Building Zero Carbon – 
the case for action’. 
 
ii BREEAM ‘Building Research Establishment Environmental Assessment Method’ is used in the measurement 
and labelling of a building’s environmental performance. It sets the standards for best practice in building 
design, specification, construction and use. The measures evaluate performance against a wide range of 
environmental and sustainability issues and consequently provide an environmental label for the building in a 
scale of ‘Pass’, ‘Good’, ‘Very Good’, ‘Excellent’ and ‘Outstanding’. In our four case studies, the client 
requirement for Case Study 1, as specified in the output specification, was to achieve BREEAM for Schools’ 
‘Very Good’, while the other three schools were delivered to a requirement of ‘Excellent’ BREEAM rating. 

                                                       

Risk Definition Risk Allocation 
Project-related risks: 
Availability risk 
 

The risk that the building’s environment fails to meet agreed environmental 
criteria and, thus, incurring availability penalties. 
 

ProjectCo SPV 

Energy risk Energy Consumption Risk: the risk that the building’s operational energy 
consumption is beyond agreed standards for maximum annual energy 
consumption in the contract. 
 

ProjectCo SPV/ FM 
 

Energy Tariff Risk: the risk of fluctuations in the market price of energy. ProjectCo SPV/ FM for the 
first three years. 
Subsequently retained by the 
Local Authority 
 

BREEAM target 
risk 

The risk that the building fails to achieve the BREEAM target and, hence, 
incurring penalties. 
 

Building Contractor 

Operational 
carbon target risk 
 

The risk that the building fails to meet the operational carbon target of 27kg 
CO₂/m²/yr and, hence, incurring penalties. 

Building Contractor 

Planning approval 
risk 

The risk that the building specification/energy strategy adopted fails to 
achieve the terms of planning permission. 
 

Building Contractor 

Innovation-related risks: 
Technical risk 
 

The risk that the innovative solution adopted fails to meet technical criteria 
set by the innovating organisation and/or the contract. 
 

The innovating organisation 

Capital cost risk The risk that the innovative solution adopted fails to meet project budget 
and, hence, rejected as being unaffordable. 
 

The innovating organisation 

Schedule risk The risk that the innovative solution adopted fails to be delivered to 
schedule. 
 

The innovating organisation 


