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Abstract
Hypoxia-ischaemia (HI) is a major cause of neonatal brain injury, often leading to long-term

damage or death. In order to improve understanding and test new treatments, piglets are

used as preclinical models for human neonates. We have extended an earlier computa-

tional model of piglet cerebral physiology for application to multimodal experimental data

recorded during episodes of induced HI. The data include monitoring with near-infrared

spectroscopy (NIRS) and magnetic resonance spectroscopy (MRS), and the model simu-

lates the circulatory and metabolic processes that give rise to the measured signals. Model

extensions include simulation of the carotid arterial occlusion used to induce HI, inclusion of

cytoplasmic pH, and loss of metabolic function due to cell death. Model behaviour is com-

pared to data from two piglets, one of which recovered following HI while the other did not.

Behaviourally-important model parameters are identified via sensitivity analysis, and these

are optimised to simulate the experimental data. For the non-recovering piglet, we investi-

gate several state changes that might explain why some MRS and NIRS signals do not

return to their baseline values following the HI insult. We discover that the model can explain

this failure better when we include, among other factors such as mitochondrial uncoupling

and poor cerebral blood flow restoration, the death of around 40% of the brain tissue.

Introduction
Neonatal hypoxia-ischaemia (HI) is a major cause of brain injury in term infants. In developed
countries, its incidence is 1 to 2 per 1000 live births, and it is estimated to account for 23% of
worldwide neonatal deaths [1]. HI leads to long term neurological problems in up to 25% of
survivors [2] including cerebral palsy and epilepsy [3]. Monitoring and early detection of cere-
bral circulatory and metabolic disturbances are very important for assessment of brain injury,
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in addition to the development and timely application of neuroprotective strategies such as
hypothermia [4]. Understanding the time evolution of changes in brain oxygenation, haemo-
dynamics and metabolism during and following HI is a highly active area of research that often
involves multimodal monitoring with advanced techniques and technologies. Integrative, mul-
tiscale computational models of the brain can assist the interpretation of such monitoring and
provide insights into the physiological and biochemical processes involved.

Non-invasive monitoring of brain physiology and biochemistry is extremely challenging.
The current state-of-the-art techniques for human infants and piglets (a preclinical animal
model of human neonates) are broadband near-infrared spectroscopy (NIRS) [5, 6] and mag-
netic resonance spectroscopy (MRS) [7–9].

Broadband NIRS uses multi-wavelength near-infrared light to measure tissue concentration
changes of oxy- and deoxy-haemoglobin (ΔHbO2 and ΔHHb). It can also be used to monitor
changes in the oxidation state of cytochrome c oxidase (CCO), the terminal acceptor in the
electron transport chain. CCO is located in the mitochondrial membrane, and passes electrons
to oxygen to form water. Changes in oxidative metabolism can lead to changes in the redox
state of CCO. NIRS can be used to measure the change in concentration of oxidised CCO
(ΔoxCCO) which is indicative of the redox state of CCO. Changes in ΔoxCCO have been
observed in response to changes in inspired oxygen in a variety of species [10–12].

MRS can measure the concentration of various metabolites in tissue, depending on which
type of MRS is used. 31P-MRS measures concentrations of the phosphorus-containing metabo-
lites adenosine triphosphate (ATP), phosphocreatine (PCr) and inorganic phosphate (Pi). The
spectrum can also be used to calculate pH from the chemical shifts of certain peaks [13]. MRS
measurements are often expressed as ratios because this avoids the difficulties of determining
absolute concentrations.

NIRS andMRS are complementary techniques that we have been using together for several
years to investigate HI in the piglet [10, 14]. The brain physiology and biochemistry of the piglets
can be monitored with both modalities throughout the insult, recovery and treatment. In a
recently-published study, combining broadband NIRS and 31P-MRS during and after hypoxic-
ischaemia in 24 new born piglets [15], we found significant correlations between brain tissue
changes in [oxCCO] and those of PCr, Pi and nucleotide triphosphate (NTP, mainly ATP).
These correlations were not reflected in the haemoglobin signals. We further demonstrated that
following HI the recovery fraction of the broadband NIRS measurement of [oxCCO] was highly
correlated with the recovery fraction of the 31P-MRS measurement of NTP and outcome at 48h.

We are currently working towards interpreting the relationships between the measurements
from the two modalities, and investigating the possibility of combining them to give a better
picture of the health of the brain following perinatal asphyxia. To help with this, we have devel-
oped a multiscale computational model to simulate HI, and the NIRS and MRS signals arising
from it, in the neonatal piglet brain. The model is based on a representation of the underlying
brain tissue physiology and biochemistry. It can be used to combine measurements from these
modalities, helping to uncover the complex and non-linear relationships between them and
investigate their physiological consequences.

Computational modelling has frequently been applied both to cerebral circulation [16–18]
and to oxidative metabolism in the brain and other tissues [19–21]. In recent years, there have
been a number of models representing oxygen delivery and metabolism in the brain. The
model of Aubert et al. [22] in particular has been modified and extended in several ways to
model different aspects of cerebral metabolism, including astrocyte and neuron interaction [23,
24] and pH changes [25].

Modelling of brain circulation and metabolism has been carried out in our group since 2005
[26]. The earliest model (BrainCirc) was created to investigate autoregulation, and includes
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equations representing blood flow, ion channel activity in the vascular smooth muscle and res-
piration from glycolysis to the electron transport chain. The circulatory portion of the model
was derived from that of Ursino and Lodi [16]. A second model, BrainSignals, was developed
in 2008, primarily to simulate NIRS signals [27]. BrainSignals is intentionally simpler and
more comprehensible than BrainCirc, but models the electron transport chain in more detail
in order to simulate the ΔoxCCO signal. BrainSignals has been validated with both in vivo and
in vitro data, and its outputs compared with measurements from hypoxia challenges [28],
hypercapnia challenges [29] and anagram solving tasks in healthy adults [30]. The BrainSignals
model was subsequently adapted from adult human to neonatal piglet physiology and
expanded to simulate signals measured by MRS. The resulting BrainPiglet model has been
applied to averaged data from brief anoxia in piglets [31].

Most complex, multiscale computational models depend on a large number of parameters
to tune the model behaviour. These may represent real physical quantities or convenient
abstractions. Some may be known with great precision, but typically many will be quite uncer-
tain and some may be impossible to measure at all. Investigating how a model’s behaviour
depends on its parameters—its sensitivity to them—can therefore be important in interpreting
its outputs [32, 33]. A property common to many such models is what has been termed ‘sloppi-
ness’ [34, 35]: a high-dimensional parameter space that interpolates a smaller space of beha-
vioural variation, with a roughly exponential distribution of sensitivities. Only a few directions
in parameter space, termed ‘stiff’, have a strong effect on behaviour, while most parameters are
‘sloppy’, affecting behaviour jointly but not uniquely identified by it. Fitting sloppy models
may give parameter estimates that are wildly inaccurate whilst still being meaningfully predic-
tive of behaviour.

In this paper we present a significantly expanded version of the BrainPiglet model, which
we term BrainPigletHI. This model includes: (i) simulation of carotid artery occlusion, which is
routinely used in piglets to induce HI; (ii) simulation of cytoplasmic pH, both as a participant
in metabolic reactions and as a model output; and (iii) the ability to simulate cell death, in
order to model poor physiological recovery following HI. A shift in brain pH is known to occur
following HI [36], and changes in pH can alter protein structure and hence affect cell function.
It is therefore important that pH is properly taken into account in our model. Here we apply
the model to multimodal piglet data from our recent published experiments [15], and use it to
investigate possible explanations for the non-recovery of one of the piglets. Our group has also
applied the model to the simulation of grouped data from recovering piglets, with results
reported in [37]. (In that report the model was not defined in detail, so we note here that it
included cytoplasmic pH and occlusion, but did not consider non-recovery or cell death.)

Methods

Ethics Statement
All animal experiments were performed under UK Home Office Guidelines (Animals [Scien-
tific Procedures] Act, 1986) under Project Licence Number PPL 70/7203, approved by the UCL
Animal Welfare and Ethical Review Body (AWERB). All surgery was performed under anaes-
thesia, and every effort was made to minimize suffering.

The BrainPigletHI Model
BrainPigletHI is an extension of the previously-published BrainPiglet model [31], describing
circulation and cerebral metabolism in the neonatal piglet brain. The compartments and main
processes of the model are illustrated schematically in Fig 1, with the changes indicated in red.
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The model changes comprise three distinct areas, each of which has a bearing on the under-
standing of HI: (i) modelling of the carotid occlusion that is used in experimental models of
HI; (ii) modelling cytoplasmic pH, which affects the metabolic processes during HI, and is an
important contributor to a measurable signal; and (iii) a representation of cell death, which is a
possible explanation for the non-recovery observed in some experimental data.

The overall model structure is the same for both BrainPiglet and BrainPigletHI. A circula-
tory part models the cerebral blood flow (CBF) through a series of vascular compartments,
while a metabolic part models intracellular chemical reactions in the cytoplasm and mitochon-
dria. Blood flow is regulated in response to several factors, including the capillary oxygen con-
centration and the mean arterial blood pressure, by modulation of the vessel radius in the
cerebral arterial compartment. The metabolic processes depend on oxygen delivery from the
blood. A number of output variables are predicted from the modelled physiological and bio-
chemical state, which may be compared with values measured by NIRS and 31P-MRS, as well
as other modalities not measured in this study, such as 1H-MRS, which is often used clinically
to measure the brain tissue lactate levels in hypoxic-ischaemic infants; and transcranial Dopp-
ler, which can measure the velocity of the middle cerebral artery, an indicator of cerebral blood
flow.

In the circulatory part of the model, the blood flow through a compartment depends on the
compartment conductance and the pressure difference across it. The standard analogy is to

Fig 1. Overall structure of the BrainPigletHI model.Major changes to the original BrainPiglet are indicated in red. Blood flows from the carotid and other
supplying arteries, through the cerebral arteries to the capillaries, exiting via the veins. Oxygen dissociates from haemoglobin in the capillaries and diffuses to
the tissue, where it participates in the final step of the mitochondrial electron transport chain. Metabolic reactions in the cytoplasmic compartment affect
substrate supply and pH. Dashed lines indicate model outputs that may be compared with measurements from NIRS and MRS.

doi:10.1371/journal.pone.0140171.g001
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electrical circuits, with the relationship equivalent to Ohm’s Law. (Vessel compliance is not
included in BrainPigletHI, but it it were there would be a corresponding analogy to capaci-
tance.) For example, in the cerebral arterial compartment the conductance is denoted G, the
pressure at the supply side is Pa2 and the pressure at the venous side is Pv, so the blood flow is
given by

CBF ¼ GðPa2 � PvÞ ð1Þ

In order to allow simulation of carotid artery occlusion, a new compartment was added to the
circulatory part of the model. The changes are illustrated in electrical circuit analogue form in
Fig 2A. The original model included only one arterial-arteriolar compartment, with conduc-
tance G under autoregulatory control. This compartment remains in BrainPigletHI, but is now
preceded by another compartment representing the supplying arteries, with conductance G0.
The latter is not subject to autoregulatory control, and under normal conditions is assumed to
have a constant value G0,n. However, when the carotid arteries are occluded experimentally,
the conductance is reduced.

The carotid arteries are responsible for the majority of the cerebral blood supply: 80% in
adult humans under normal conditions [38]. In the model, this fraction is denoted occfrac.
Hence, if these arteries were completely occluded, the conductance would be reduced to

G0 ¼ G0;nð1� occfracÞ ð2Þ

In practice, it is useful to be able to model an incomplete or gradual occlusion, so an additional

Fig 2. Changes to the circulatory part of the model. (A) Electrical circuit analogues of the blood flow components of BrainPiglet and BrainPigletHI. A new
compartment has been added to the latter, with total conductance G0, to represent supplying arteries. The portion of this conductance that is through the
carotid arteries (G0,noccfrac) is shown as a variable resistor to indicate the possibility of experimental occlusion. (In both models the resistance of the capillary
bed is assumed to be negligible.) (B) Relationship between cerebral blood flow and the relative conductance of the supplying arterial compartment. The
curvature depends on the value of the parameter G0,frac. Examples are shown for G0,frac = 10 (dotted), G0,frac = 5 (solid) and G0,frac = 0.1 (dashed). Complete
occlusion of the carotid arteries is equivalent to reducing G0 to 20% of its normal value, marked by a grey line on the plot.

doi:10.1371/journal.pone.0140171.g002
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control parameter is included, kocc, to specify the degree of occlusion:

G0 ¼ G0;nð1� koccoccfracÞ ð3Þ

The normal, unoccluded conductance of the supplying compartment is set relative to the nor-
mal value for the cerebral arterial compartment, Gn:

G0;n ¼ G0;fracGn ð4Þ

The weighting factor G0,frac expresses the relative contribution of the two compartments to the
flow resistance. This cannot be readily measured, so instead it is set by considering the curve of
CBF as a function of G0 at steady state (Fig 2B). Intuitively, we would expect the larger supply-
ing vessels to offer less resistance to blood flow than the smaller cerebral vessels, corresponding
to a high value for G0,frac. If G0,frac were lower (signifying a higher resistance in the supplying
arteries), then CBF would be more rapidly constrained by occlusion of the supply. A few stud-
ies have reported CBF measurements in piglets when one or both carotid arteries were
occluded but oxygen levels were normal. The occlusion of just one carotid artery did not signif-
icantly reduce CBF. With both carotid arteries occluded, measurements of CBF include 75%
[39] and 45% [40] of baseline values; however, these experiments also involved changes in sys-
temic arterial blood pressure. For our purposes, a value of G0,frac = 5.0 was chosen so that the
curve lay between these two values.

In BrainPiglet, the pressure at the start of the cerebral arterial compartment is assumed to
be the systemic arterial pressure, Pa. In BrainPigletHI this is no longer the case, since there is a
pressure drop across the supplying compartment. The new boundary pressure, Pa2, is calcu-
lated by equating the blood flow through the two compartments:

G0ðPa � Pa2Þ ¼ GðPa2 � PvÞ ð5Þ

where Pv is the pressure at the start of the venous compartment. (This is equivalent to calculat-
ing the voltage drop across the series resistances in the electrical circuit of Fig 2A.)

The second addition to the model was the simulation of cytoplasmic pH. Protons are
involved in metabolic reactions in both cytoplasm and mitochondria, but only mitochondrial
pH was modelled explicitly in BrainPiglet. Inclusion of explicit cytoplasmic pH should improve
the behavioural fidelity of the model. Moreover, intracellular pH can be inferred from
31P-MRS spectra [13], but the measurement is not localised to a single compartment. Since the
mitochondria constitute only a tiny fraction of the tissue volume, the cytoplasmic pH is likely
to dominate the aggregate measurement. Without explicit modelling of that value, we cannot
make a meaningful comparison to the data.

Protons were added to the model’s oxidative phosphorylation reactions, the TCA cycle, gly-
colysis, pyruvate to lactate conversion, lactate transport, and the phosphocreatine equilibrium.
In addition, cytoplasmic NAD/NADH was added to the model, and included in glycolysis and
the reaction describing the conversion between pyruvate and lactate. The network of reactions
involving protons in the cytoplasm and mitochondria is illustrated in Fig 3.

The rates of the oxidative phosphorylation reactions and the TCA cycle were left
unchanged. Glycolysis is modelled in BrainPiglet as a Michaelis-Menten reaction. Its rate term
was updated to include a dependence on NAD concentration:

vglyc½ADP�2½Pi�2½gluc�½NADcyt�2
ðk2m;glycA

þ ½ATP�2Þðk2m;glycP
þ ½Pi�2Þðkm;glycG

þ ½gluc�Þðk2m;glycN
þ ½NADcyt�2Þ

ð6Þ

The km are rate constants relating to each reactant and vglyc is the maximum rate for glycolysis.
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As in BrainPiglet, lactate transport into and out of the cell is considered as the balance of
two symmetrical reactions, each with a maximum rate vMCT, dependent on the lactate concen-
tration on the relevant side of the cell membrane. Lactate is co-transported with a proton, and
the transport rate is known to be somewhat affected by pH [41]. BrainPigletHI includes sup-
port for this dependence via additional rate terms in the two transport reactions:

vMCT

½laccap�½Hþ
cap�

ðkMCT þ ½laccap�ÞðkMCT;H þ ½Hþ
cap�Þ

� ½lac�½Hþ
cyt�

ðkMCT þ ½lac�ÞðkMCT;H þ ½Hþ
cyt�Þ

 !
ð7Þ

The capillary concentrations, [Hcap
+] and [laccap] are assumed constant, while kMCT and kMCT,

H are rate constants for the two substrates. However, inclusion of this pH dependency pro-
duced a negligible effect unless kMCT,H was given an unrealistic value, in which case the results
were also unrealistic, so for practical purposes this parameter was set to 0 and the net transport
rate simplified to its original BrainPiglet version.

All the other reactions are modelled as mass action reactions, and their rates were updated
accordingly to include the concentration of hydrogen ions.

The Malate Aspartate shuttle, which allows the exchange of NAD and NADH between the
cytoplasm and mitochondria, was added to the model as a mass action reaction:

NADHcyt þ NADmit þHþ
cyt Ð NADHmit þ NADcyt þHþ

mit ð8Þ

The equilibrium constant for this reaction was set to 10 [26] and the rate constants were chosen
to give a steady state at the normal value of CMRO2.

BrainPiglet models proton buffering in the mitochondria by defining an effective mitochon-
drial volume for protons [19, 27]. The new model extends this approach to the cytoplasm,
defining an equivalent cytoplasmic effective volume:

RHi;c ¼
Cbuffi;c

ð10�pHc � 10�pHc�dpHÞ=dpH Volcyt ð9Þ

Fig 3. Cytoplasmic andmitochondrial reactions extended to include explicit proton changes. Buffering is taken into account by defining effective
volumes of the compartments for protons (RHi and RHi,c) as described in Eq (9). The model equation for the ATP synthesis reaction also takes into account
proton leak. The fractional number of protons in reaction 1 arises from a weighted average of reduction from both NADH and FADH2.

doi:10.1371/journal.pone.0140171.g003
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Here, Volcyt is the real cytoplasmic volume, while Cbuffi,c and dpH are constants. The latter is
the same as for the mitochondrial buffering relationship.

As discussed below, several possible state changes were modelled to investigate piglet non-
recovery following HI. Mitochondrial uncoupling is already represented in BrainPiglet by the
parameter kunc, normally set to 1, a simple scale factor that multiplies the rate of proton entry
to the mitochondrial matrix by mechanisms independent of ATP production, relative to its
normal level [27]. Occlusion is represented via the parameter kocc, described above.

In order to simulate cell death, the model was extended as follows. A parameter df was
added to represent the fraction of cells that have died. It was assumed that during HI, CCO
becomes fully reduced and remains so in the dead cells. It was further assumed that in dead
cells, all the exchangeable phosphate is in the form of Pi.

In the model, oxygen is transferred from the capillaries to the mitochondria at a rate TO2in,
dependent on the concentration gradient, and consumed at a rate Tbox. The time course of
mitochondrial oxygen is determined by the interplay of these terms. Dead cells were assumed
to no longer consume oxygen and quickly equilibrate with the oxygen concentration of the
capillaries. Accordingly, the volume of functioning mitochondria, Vmit, was scaled by (1–df):

d½O2�
dt

¼ TO2 in

Vmitð1� df Þ
� Tbox ð10Þ

Since concentration depends on volume, the rate of concentration change per unit of trans-
ferred oxygen increases as the living volume declines. This can be interpreted as reflecting
increased oxygen availability as consumption falls. That in turn affects the concentration gradi-
ent, leading to reduced oxygen unbinding in the blood, ultimately reflected in the NIRS
variables.

In addition, a number of model outputs were changed to account for the effect of cell death
on measured quantities:

NTP=EPP ¼ ð1� df Þ½ATP�
EPP

ð11Þ

PCr=EPP ¼ ð1� df Þ½PCr�
EPP

ð12Þ

Pi=EPP ¼ ð1� df Þ½Pi�
EPP

þ df ð13Þ

DoxCCO ¼ ð1� df ÞDoxCCO� dfoxCCOn ð14Þ

CMRO2 ¼ ð1� df ÞCMRO2 ð15Þ

EPP denotes the total exchangeable phosphate pool, given by [PCr] + [Pi] + 2[NTP]. Note that
the values calculated in Eqs (11)–(15) do not affect the model behaviour, only the predicted
measurements arising from the model state.

All new model parameters and their values are listed in Table 1.

Experimental Methods
The model was applied to data from individual piglets which had been subjected to HI. The
experimental methods have been described previously [43] but in brief, the piglets were
mechanically ventilated and anaesthetised with isoflurane. Arterial oxygen saturation (SaO2),
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arterial blood pressure (Pa) and heart rate were monitored continuously. Vascular occluders
were placed around both common carotid arteries. Broadband NIRS data was acquired using
an in house developed broadbrand spectrometer from optodes placed on either side of the
head. Data were collected at 1 min intervals and the measurements of ΔHbO2, ΔHHb, and
ΔoxCCO were determined from the attenuation spectra between 780 and 900 nm using the
UCLn algorithm [44] after correcting for wavelength dependence of path-length [45]. The
31P-MR surface coil was placed and secured on top of the piglet head (without interfering with
the NIRS optodes) and 31P-MRS spectra were acquired at 1 min intervals in a 9.4 T MR spec-
trometer. After 10 min of baseline measurements, HI was induced by occluding the carotid
arteries and reducing the inspired oxygen fraction (FiO2) to 12%. It was held there until the
height of the β-NTP peak had fallen to 50% of its baseline value. FiO2 was then adjusted to
maintain the peak between 30 and 50% of its baseline height for 12.5 min, after which time the
occluders were deflated and FiO2was returned to normal.

Intracellular pH was calculated from the 31P-MRS spectra following the methods described
by Cady et al [13]. The chemical shift of Pi and phosphoethanolamine (PEt) was used to calcu-
late an estimate of pH denoted pHPi–PEt.

Computational Simulations
The measured SaO2 and Pa were used as inputs to the model. Arterial occlusion was repre-
sented by changing the control parameter kocc from 0 to 1 over a minute and then decreasing it
in the same way at the end of occlusion. Model outputs were compared with the results mea-
sured by NIRS and MRS. Simulations were initially carried out using the BRAINCIRC model-
ling environment (http://braincirc.sourceforge.net/), and more recently with its successor
system, the Brain/Circulation Model Developer (http://tinyurl.com/ucl-bcmd). Model defini-
tions and inputs are online at http://tinyurl.com/brainpiglet. Results from two piglets are pre-
sented as case studies, denoted LWP180, which showed good recovery following HI, and
LWP188, which did not. The model inputs for both piglets are shown in Fig 4.

Sensitivity analysis was carried out on the signals from each piglet. We used a form of the
Morris elementary effects method [46], a global sensitivity sampling scheme commonly used
as a screening tool for large models because of its comparatively low cost in model evaluations.
The variant employed was devised by Saltelli et al. [32] and is implemented using the R sensi-
tivity package [47]. Briefly, the parameter space, with ranges specified for each parameter, is
subdivided into a grid with the same number of divisions on each axis. A number of

Table 1. New parameters in the BrainPigletHI model.

Parameter Description Value Source

occfrac Fraction of blood normally passing through carotid arteries 0.8 [38]

G0,frac Ratio of normal conductances of the supplying arterial and cerebral arterial compartments 5 [39, 40]

Cbuffi,c Constant in the cytoplasmic proton buffering relationship 10 [19]

Keq,MAshut Equilibrium constant for the malate-aspartate shuttle 10 [26]

[NADcyt]n Normal concentration of NAD in the cytoplasm 359 mM [42]

[NADHcyt]n Normal concentration of NADH in the cytoplasm 50 mM [42]

km,glycN Rate constant for NAD in the equation representing glycolysis 1 mM [26]

kMCT,H Rate constant for protons in the equation representing lactate transport 0 mM –

df The fraction of dead cells following HI 0 –

kocc Control parameter for the degree of carotid occlusion 0 –

doi:10.1371/journal.pone.0140171.t001
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Fig 4. Inputs to the model for two example piglets. Time courses of measured arterial oxygen saturation (SaO2) and arterial blood pressure (Pa), together
with the degree of carotid artery occlusion, for piglets LWP180 (left) and LWP188 (right).

doi:10.1371/journal.pone.0140171.g004
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‘trajectories’ are then navigated through this space, starting from a random grid position and
taking a step along each dimension in random order until all parameters have been changed
once. The model is evaluated at each step of the trajectory, and the sensitivity to each parameter
estimated from model output changes associated with changes to that parameter across all
sampled trajectories. Two statistics are notable: the mean of the absolute values of the changes,
denoted μ?, and their standard deviation, σ. The larger the value of μ? the more influential a
parameter is on the output, while large σ indicates a non-linear influence of the parameter.

We wished to identify parameters to optimise for an improved fit of the model to the data.
We therefore chose to use as the output the root mean square (RMS) difference between each
measured signal and its modelled equivalent. The resulting μ? values were normalised for each
signal by dividing by the maximum value.

Parameter ranges were chosen by using a default of ±20% of the normal model value. A
larger range was chosen for parameters which were set heuristically and have a large uncer-
tainty in their value. Some parameter ranges were also adjusted to keep their values within a
meaningful range—for example, several parameters are defined to lie between 0 and 1. Finally,
a few parameters were excluded from the analysis completely, either because they represent
physical constants and therefore are known sufficiently accurately, or because they were not
relevant to the current studies. The ranges used for each parameter can be found in the supple-
mentary material. In total, 99 parameters were included, with 2000 repeats, giving a total of
200000 simulations. Simulations which failed to give a result were excluded from the analysis.
Parameters with a normalised μ? of 0.5 or greater (averaged across both piglets) were then
optimised.

Optimisation was carried out using the PSwarm method [48] to minimise the RMS differ-
ence between the modelled and measured signals on which the parameter had a strong influ-
ence. The parameters were optimised in groups depending on which signals they influenced, in
order to reduce the dimensionality of the optimisations. Parameter values were limited to the
same ranges used in the sensitivity analysis.

Results
The results from steady state simulations on the model are shown in Fig 5, together with equiv-
alent results from the original model. The addition of a new arterial compartment gives rise to
small differences in CBF response, but these are well within the range of experimental
variability.

The experimentally measured signals from the two piglets can be seen as dashed lines in
Fig 6. Both piglets showed a drop in ΔHbO2 and a rise in ΔHHb which both return close to
their baseline values after the insult. Both piglets also show a reduction of CCO (a drop in
ΔoxCCO) as expected. There is also a decrease in NTP/EPP and PCr/EPP and an increase in
Pi/EPP. These signals return to baseline for piglet LWP180 but not for piglet LWP188, indicat-
ing that this piglet did not recover.

Table 2 shows results from the sensitivity analysis for those parameters with a normalised
μ? > 0.5 for the measured output signals. In all cases, as is common for Systems Biology models
[34], sensitivity was dominated by a small number of parameters. Given their impact on the
outputs, these parameters were assumed to capture significant aspects of the model behaviour
and therefore be potentially informative of the physiological state. We return to this assump-
tion in the Discussion.

Based on the sensitivity results, the following optimisation strategy was chosen:

• Parameters [Hbtot]n, r0 and Vblood,n were optimised for the output signals ΔHbO2 and
ΔHHb.
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• Parameter pHo,n was optimised for the cytoplasmic pH.

• Parameters [CCO]tis and CuA,frac,n were optimised for the output signal ΔoxCCO.

• Parameters [ATP]n, [PCr]n and [PCr]n/[Pi]n were optimised for the phosphate signals NTP/
EPP, PCr/EPP and Pi/EPP.

As noted previously, the measured CCO and 31P-MRS signals did not return to baseline fol-
lowing HI in piglet LWP188, implying a state change during the insult relative to piglet
LWP180. For the initial optimisation we wished to consider only the model state prior to this
change, so the model was optimised to these signals only up to the nadir of the insult.

Global optimisation of non-convex functions is not guaranteed to produce uniquely correct
results [49]. Even when optimisation is apparently successful the parameters may suffer from
problems of identifiability [50]. To assess the validity of the parameter estimates in this case,
multiple optimisations were run with differing initial populations. The results are shown
graphically in Fig 7, and summarised in Table 3. It can be seen that the optimised values are

Fig 5. Steady state simulations before and after the model alterations. Plots show variation of (A) cerebral blood flow (CBF) with mean arterial pressure
(Pa); (B) CBF with partial pressure of carbon dioxide (PaCO2); CBF with arterial oxygen saturation (SaO2); and (D) oxidised cytochrome c oxidase (ΔoxCCO)
with SaO2. In each case, the specified input parameter was varied while other conditions were held constant. Results from the earlier BrainPiglet model [31]
are shown as dashed lines, while solid lines show those from the new version, BrainPigletHI.

doi:10.1371/journal.pone.0140171.g005
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not unique, exhibiting significant variation in some instances, and are also not independent.
We therefore cannot consider them good estimates of the true physical quantities. Neverthe-
less, the population results for the two piglets are visibly distinct, implying that the parameter
ensemble jointly manifests a genuine difference of location in some other, lower-dimensional,
space of behavioural variation [34, 35]. Characterisation of such spaces is an active area of
modelling research, beyond the scope of the current work. Here, we simply accept the ensemble
estimates as a useful proxy for that location.

Simulations using the optimised parameters for both piglets are shown as solid lines in Fig
6. For most of the signals the magnitude of the measured change is matched well by the model.
For ΔoxCCO and the 31P-MRS measured variables, the modelled signals show changes occur-
ring faster than is seen in the measurements. The modelled ΔoxCCO shows a smaller drop
than seen in the measurement, and also an overshoot at the end of the occlusion, before the sys-
tem equilibrates to a a more realistic value. These faster time courses may be a consequence of
the model’s compartmental structure, which neglects spatial factors that could be expected to
lead to a slower response propagation. Conversely, the pH measurements calculated from the
31P-MRS spectra appear to exhibit a faster and less stable response than the model prediction.

With no state change represented during HI, all modelled signals return to baseline once the
insult ends. This is clearly not the case for the measured ΔoxCCO and 31P-MRS signals from
the non-recovering piglet LWP188. To attempt to model this non-recovery, three possible
changes were considered:

• non-recovery of some fraction of the occluded blood flow, represented by kocc

• a change in the rate of oxygen metabolism, mediated via mitochondrial uncoupling, repre-
sented by kunc

Fig 6. Comparison of optimised signals to experimental measurements for both piglets.Measured time courses are shown as dashed lines, and
corresponding model outputs as solid lines, for the following signals (top to bottom): changes in deoxygenated haemoglobin (ΔHHb), oxygenated
haemoglobin (ΔHbO2) and oxidised cytochrome c oxidase (ΔoxCCO); cytoplasmic pH; and the fractions of the exchangeable phosphate pool present as
nucleotide triphosphate (NTP/EPP), phosphocreatine (PCr/EPP) and inorganic phosphate (Pi/EPP). Results for the recovering piglet LWP180 are shown in
the left column, while the right column shows those for the non-recovering piglet LWP188.

doi:10.1371/journal.pone.0140171.g006

Table 2. Main parameter sensitivities of the modelled signals.

ΔHbO2 ΔHHb CCO NTP/EPP PCr/EPP Pi/EPP pH

[Hbtot]n 1.00 1.00

r0 0.81

Vblood,n 0.61

CuA,frac,n 1.00

[CCO]tis 0.93

[ATP]n 1.00 1.00 0.67

[PCr]n/[Pi]n 0.75 1.00

[PCr]n 0.83 0.56 0.66

pHo,n 1.00

Normalised μ? values greater than 0.5 from a sensitivity analysis of the model parameters. Output signals

are shown at the top and model parameters to the left. A full description of all model parameters and the

equations in which they occur can be found in S1 Text.

doi:10.1371/journal.pone.0140171.t002
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Fig 7. Correlations between optimised parameter values. Parameter estimates are shown from repeated optimisations to the measured signals: (A)
ΔHbO2 and ΔHHb; (B) NTP/EPP, PCr/EPP and Pi/EPP; (C) ΔoxCCO. Estimates exhibit significant variation and are also highly correlated, so results cannot
be considered reliable estimators of the individual physical parameters. However, the values for each piglet occupy different regions of the parameter space,
suggesting that they jointly identify distinct locations in a lower-dimensional space of behavioural variation.

doi:10.1371/journal.pone.0140171.g007

Table 3. Parameter values before and after optimisation.

Parameter Description Default LWP180 (mean ± SD) LWP188 (mean ± SD)

[CCO]tis Concentration of cytochrome c oxidase in tissue 2.2 μM 5.9 ± 1.0 6.4 ± 0.6

CuA,frac,n Normal oxidised fraction of CuA in cytochrome c oxidase 0.67 0.48 ± 0.08 0.49 ± 0.05

[Hbtot]n Normal total haemoglobin concentration in blood 5.4 mM 6.6 ± 0.3 6.1 ± 0.1

r0 A radius in the elastic tension relationship 126 μm 105 ± 1 118 ± 0

Vblood,n Normal blood volume as a fraction of brain tissue 0.0325 0.036 ± 0.002 0.038 ± 0.001

[ATP]n Normal concentration of ATP in the cytoplasm 2.2 mM 1.3 ± 0.1 1.3 ± 0.1

[PCr]n Normal concentration of PCr in cytoplasm 2.6 mM 3.7 ± 0.7 3.3 ± 0.5

[PCr]n/[Pi]n Ratio of normal concentrations of PCr and Pi in the cytoplasm 2.73 2.1 ± 1.0 1.7 ± 0.5

pHo,n Normal cytoplasmic pH 7.00 7.01 ± 0.0 7.03 ±0.0

doi:10.1371/journal.pone.0140171.t003
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• the death of some proportion of the cells in the tissue compartment, represented by the
parameter df

For each scenario, the post-insult value of the relevant parameter was optimised jointly with
the other parameters for the ΔoxCCO and 31P-MRS variables. The other parameters were
assumed to remain the same after the insult as before, but optimisation was performed against
the whole time course of the signal. Thus, the estimates take into account evidence from the
response to the insult under the candidate scenario. In consequence, the predictions of the pre-
insult behaviour can differ in each case, even though all three models would be the same as the
original in the absence of HI.

Optimisation results are given in Table 4. Corresponding model simulations for the single
scenarios are shown in Fig 8, while Fig 9 shows model outputs for a scenario including both
occlusion and cell death, and another including all three factors. As before, we cannot infer
that the optimised parameters are physically correct, but it is instructive to observe the beha-
vioural changes obtained in each scenario.

Occlusion and uncoupling are individually able to produce only marginal changes, trading a
slightly better fit in one signal for significant worsening in another. This is particularly evident
in the phosphate signals, where trivial improvements in the post-insult NTP and Pi behaviour
are achieved at the cost of very poor simulation of PCr (Fig 8, bottom three rows). Neither sce-
nario reproduces the failure of the CCO and phosphate signals to return to baseline following
the insult. The cell death model, on the other hand, is much better able to reproduce the failure
to return to baseline in these outputs, but leads to an over-recovery of the haemoglobin signals,
probably due to the reduced oxygen consumption, and somewhat overestimates the cyto-
plasmic pH. These failings are partly compensated when the state changes are combined,
although this may simply be a consequence of having more parameters with which to fit.

While the accuracy of the optimised parameter values is unknown, it is worth noting that in
every optimisation including kocc, the optimised value indicates that the arteries remain
occluded.

Discussion
BrainPigletHI is a significant expansion of our earlier model of circulation and metabolism in
the piglet brain, BrainPiglet [31]. Like its predecessor, the model is intended to provide a
computational tool that can simulate our instrumental measurements in piglets, in this case
during a hypoxic-ischaemic insult. It allows integration of multimodal measurements and
more in depth investigation of the physiological and biochemical changes that occur during

Table 4. Optimised parameters for LWP188 non-recovery scenarios.

Parameter Occlusion Uncoupling Cell Death Occl. & Death All

[CCO]tis 0.7 0.7 5.9 4.9 3.9

CuA,frac,n 0.46 0.45 0.54 0.65 0.83

[ATP]n 0.1 0.5 0.7 0.7 0.9

[PCr]n 0.8 4.7 5.8 5.9 5.5

[PCr]n/[Pi]n 0.1 1.2 10 10 10

kocc 1 – – 1 1

kunc – 0.33 – – 1.63

df – – 0.45 0.43 0.40

doi:10.1371/journal.pone.0140171.t004
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Fig 8. Modelled signals using a single non-recovery factor. Parameters affecting the 31P-MRS and ΔoxCCO signals were jointly optimised with a control
parameter representing either (left) the post-insult level of arterial occlusion; (centre) mitochondrial uncoupling; or (right) cell death. Measured time courses
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this challenge. We note this focus is much narrower than that of developing an animal preclini-
cal experimental model of human neonatal hypoxic-ischaemia, a very active field of research
that extends both in the type of animals used (rats, mice, fetal sheep)[51] but also the type of
experimental challenge (e.g. hypoxia versus hypoxia and carotid occlusion). [52] Such develop-
ment is beyond the current and future scope of our work.

New features have been added to BrainPiglet to allow the modelling of experimentally-
induced HI and improve the simulation of multimodal data from broadband NIRS and
31P-MRS, including cytoplasmic pH. The model outputs have been compared with measure-
ments from piglet studies in which different outcomes occurred after HI, and used to investi-
gate possible mechanisms for the observed behaviour.

For the first time in this type of modelling, we have used sensitivity analysis to identify
parameters with a strong effect on the model’s ability to reproduce experimental results. These
parameters were then optimised to characterise the differences between the piglets. Implicitly,
we are assuming that the model structure represents the fundamental similarities of behaviour
shared across all individuals, while a small number of influential parameters can capture inter-
esting behavioural variations between them.

We note that the Morris sensitivity analysis is a sampling-based method that provides only
an estimate of the parameter sensitivities. It is widely used because of its relative efficiency in
terms of number of simulations required. Results may vary for different sample runs, especially
for complex models with highly non-uniform parameter spaces. The outcome is also depen-
dent on the parameter ranges chosen. This is true for most sensitivity analysis methods: if the
range of a parameter is expanded, then it will be adjusted by greater increments and its appar-
ent influence is likely to increase. For ‘sloppy’models like BrainPigletHI, with strongly skewed
sensitivity distributions [34], this issue should not be severe, since most parameters will remain
of low importance over any physiologically-plausible range. However, the set of influential
parameters identified by our analysis is not exhaustive. In (smaller) tests with altered ranges,
the result set was overlapping but non-identical. The set chosen appears to capture enough var-
iability to be useful, but we cannot rule out the possibility that some important dimension of
behaviour has been excluded. A complete determination of parameter influences, and their
relation to the true dimensions of behavioural variability in the model, is well beyond the scope
of this paper—if it were possible at all.

Most of the influential parameters in the chosen set represent normal concentrations of
metabolites. This is consistent with our expectations of the model behaviour. These are also
values that might be expected to vary between individuals, making them appropriate parame-
ters to change when optimising the model to datasets from different subjects.

It may reasonably be argued that parameter fitting to the individual datasets presents a
problem of validation, since there is no independent data against which the fit may be com-
pared. In the context of single experiments, with a single intervention after which the subject is
sacrificed, there is limited scope for using a classic ‘training data’/‘test data’ paradigm. In the
longer term, and in particularly for applications to human subjects, we would expect to employ
an initial training phase, in which the model is parameterised for the individual, and subse-
quent application phases, where the individualised model is used for prediction. Even in such a

are shown as dashed lines, and corresponding model outputs as solid lines, for the following signals (top to bottom): changes in deoxygenated haemoglobin
(ΔHHb), oxygenated haemoglobin (ΔHbO2) and oxidised cytochrome c oxidase (ΔoxCCO); cytoplasmic pH; and the fractions of the exchangeable
phosphate pool present as nucleotide triphosphate (NTP/EPP), phosphocreatine (PCr/EPP) and inorganic phosphate (Pi/EPP).

doi:10.1371/journal.pone.0140171.g008
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Fig 9. Modelled signals using combined non-recovery factors. Parameters affecting the 31P-MRS and ΔoxCCO signals were jointly optimised with
control parameters for both cell death and arterial occlusion (left); and for cell death and occlusion combined with mitochondrial uncoupling (right). Measured
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scheme, however, the dynamic variability of physiological systems is such that training is
unlikely ever to be a one-off process, instead requiring constant monitoring and updating.

Uncertainty in parameter estimation may arise from many different sources: measurement
errors in the data, specification errors in the model design, structural non-identifiability of
interacting parameters, non-convergence of the optimisation procedure. Considering only the
latter concerns, it is evident from the results in Fig 7 that the true physical values corresponding
to the parameters cannot by determined with any confidence from our model fitting. Neverthe-
less, the parameter ensemble can usefully distinguish behavioural differences. Once again, this
is consistent with the known properties of ‘sloppy’models [34].

With an optimised set of influential parameters, BrainPigletHI was able to approximately
reproduce the measured responses of piglet LWP180, which recovered after the HI insult,
although there were differences of time course. In particular, the model’s responses were typi-
cally faster than those seen in the real data, particularly in the release phase. This may be due to
the lack of spatial representation in the model. The different model compartments are consid-
ered purely as functional units, responding all in one go, rather than as the spatially-distributed
systems they actually are. This omission may be addressed in a future model version, but it is
likely to require a fundamental change in the model structure. For the moment, we choose to
accept the difference in response times as a reasonable trade-off against significantly increased
model complexity.

For the non-recovering piglet LWP188, the model was able to reproduce the recorded
behaviour up to the end of the insult, but the subsequent failure of the 31P-MRS and ΔoxCCO
signals to return to baseline required the assumption that an internal state change occurred
during HI. We investigated three candidate changes to the model state, corresponding to possi-
ble physiological explanations for the failure to recover: disrupted blood flow; altered oxygen
consumption; the death of a proportion of the cells. Neither blood flow nor mitochondrial
uncoupling were able to simulate the non-recovery, suggesting that cell death was indeed a
factor.

Indeed if the hypothesis of cell death is correct, there are two likely explanations for the
observed results. Firstly, microvascular shunting could occur, causing blood to no longer flow
to all parts of the brain. This would cause a decrease in CBF and therefore a decrease in oxygen
delivery, despite normal SaO2 levels. Secondly, CMRO2 in the remaining functioning cells may
be greatly increased. This could occur as a result of uncoupling between the reduction of oxy-
gen and the synthesis of ATP in the mitochondria. Uncoupling is known to occur after hypoxic
or ischaemic injury [53]. This would normally be expected to increase oxidation of CCO. How-
ever, if uncoupling occurred alongside cell death, the oxidation could be masked by the larger
reduction effect.

If the assumption of cell death is incorrect, it is more difficult to explain the relationship
between ΔoxCCO and NTP/EPP measurements. Uncoupling in the mitochondria could lead
to a reduced NTP concentration and a small oxidation of CuA; that has also been observed
experimentally after the administration of an uncoupler (dinitrophenol) to newborn piglets
[54]. Other possible explanations for the results include an impairment in glycolysis or the
TCA cycle, but this would lead to an oxidation in CCO. A large decrease in oxygen delivery

time courses are shown as dashed lines, and corresponding model outputs as solid lines, for the following signals (top to bottom): changes in deoxygenated
haemoglobin (ΔHHb), oxygenated haemoglobin (ΔHbO2) and oxidised cytochrome c oxidase (ΔoxCCO); cytoplasmic pH; and the fractions of the
exchangeable phosphate pool present as nucleotide triphosphate (NTP/EPP), phosphocreatine (PCr/EPP) and inorganic phosphate (Pi/EPP).

doi:10.1371/journal.pone.0140171.g009
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relative to baseline may also explain the results. CBF measurements would help to resolve this
question.

The simulations with cell death did not, of course, exactly reproduce the measured signals,
and the optimisation results do not constitute proof. The models of the state changes in all
three cases were somewhat simplistic. It is likely that the observed behaviour did not result
exclusively from a single isolated cause. We note that in all optimisations where blood flow dis-
ruption was permitted, the results indicated that it did indeed occur. The best simulations were
those in which all three factors played a part, although this may simply be a result of having
more opportunities to overfit. Ultimately, this is not a question that can be settled by modelling
alone. The model can only suggest mechanisms that merit future experimental investigation.

Extending the model to simulate cytoplasmic pH has produced promising initial results. We
assume that pHPi–PEt is a reasonable comparison. Strictly, 31P-MRS measurements represent
an average over all the tissue compartments in which the metabolites are found. However, the
cytoplasm has a much larger volume than the mitochondria, and is therefore expected to con-
tribute more to the measurement. Our modelled pH and the measured pHPi–PEt show compa-
rable drops during the insult for both piglets, though the model is slower to respond. A recent
model of intracellular pH by Orlowski et al. showed a similar drop in pH following a reduction
in CBF [25]. That model investigated the effect of ischaemia in neurons and astrocytes and
incorporated the dynamics of carbonic acid, the sodium-potassium pump and the sodium
hydrogen exchanger (NHE). NHE is known to play an important role during hypoxia-ischae-
mia—animal models have shown NHE inhibitors to be neuroprotective [55]. We are currently
working on improving the simulation of intracellular pH in our model by including these com-
ponents and processes and by comparing the model with measurements from more piglets.

Several factors need to be borne in mind when considering the data analysed here. Firstly,
the NIRS and MRS measurements do not come from exactly the same area of the brain and it
is known that HI damages different parts of the brain to different extents. Secondly, there are
other changes to the brain following HI. In particular, cerebral oedema is likely to occur [56]
which could have an effect on the measurements. Finally, the haemoglobin measurements may
also be influenced by changes in haematocrit that have taken place during or after the insult.
The simple method used to simulate cell death here is not capable of simulating the pH changes
that would occur as a consequence of cell death. Future model developments will explore these
in more detail, allowing for simulation of distinct cell populations with different fates.

Other model improvements are currently under investigation. We have used total cytosolic
NAD and NADH concentrations in the modelling of intracellular pH. It has recently come to
our attention that the free unbound cytosolic NAD and NADH concentrations may be more
more relevant. Sensitivity analysis indicates that these values do not have a large impact on the
results, but a future version of the model will be altered to use to more correct values. The
scope of the model will also be extended further to allow simulation of secondary energy fail-
ure, the period during which much of the long-term brain damage caused by HI is thought to
occur. This will allow the model to be used to investigate treatments of HI such as hypothermia
and to simulate the effects of specific drugs such as melatonin [57]. Ultimately we aim to adapt
the model to human infant physiology and employ it to aid the interpretation of multimodal
measurements in neonatal HI.

Supporting Information
S1 Text. BrainPigletHI model definition. Full list of the model equations and parameter val-
ues.
(PDF)
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