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Abstract. In this work, we develop variational formulations of Petrov-Galerkin type for one-
dimensional fractional boundary value problems involving either a Riemann-Liouville or Caputo
derivative of order α ∈ (3/2, 2) in the leading term and both convection and potential terms. They
arise in the mathematical modeling of asymmetric super-diffusion processes in heterogeneous media.
The well-posedness of the formulations and sharp regularity pickup of the variational solutions are
established. A novel finite element method is developed, which employs continuous piecewise linear
finite elements and “shifted” fractional powers for the trial and test space, respectively. The new
approach has a number of distinct features: It allows deriving optimal error estimates in both L2(D)
and H1(D) norms; and on a uniform mesh, the stiffness matrix of the leading term is diagonal and
the resulting linear system is well conditioned. Further, in the Riemann-Liouville case, an enriched
FEM is proposed to improve the convergence. Extensive numerical results are presented to verify
the theoretical analysis and robustness of the numerical scheme.
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1. Introduction. In this work, we consider the following one-dimensional frac-
tional boundary value problem (FBVP)

− 0D
α
x u+ bu′ + qu = f in D = (0, 1),

u(0) = u(1) = 0,
(1.1)

where the source term f belongs to L2(D) or a suitable subspace, and 0D
α
x u denotes

either the left-sided Riemann-Liouville or Caputo fractional derivative of order α ∈
(3/2, 2) defined in (2.2) below. The choice α ∈ (3/2, 2) is to ensure the well-posedness
of problem (1.1) in the space L2(D), and that the solution u lies in H1

0 (D) (see Section
3 for details) so that the H1(D) error estimate makes sense. Throughout, unless
otherwise stated, we assume a convection coefficient b ∈ W 1,∞(D) and a potential
coefficient q ∈ L∞(D). For α = 2, problem (1.1) recovers the canonical steady-state
convection diffusion equation.

The interest in the model (1.1) is motivated by anomalous diffusion in heteroge-
neous media. Often it is used to describe super-diffusion processes, in which the mean
squared variance grows at a rate faster than that in a Gaussian process for normal
diffusion. Microscopically, the fractional derivative describes long-range interactions
among particles and large particle jumps, and the choice of the one-sided derivative
reflects the asymmetry of the transport process [3, 6]. The term bu′ describes con-
vection under external flow field, with a velocity b. The model has found successful
applications in a number of areas, e.g., magnetized plasma and subsurface flow.
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1.1. Review on existing studies. The robust simulation of the model (1.1)
is challenging due to the nonlocality of the fractional derivative and limited solution
regularity. In the time dependent case, the finite difference method (FDM) is pre-
dominant [17, 22, 20, 2]; see also [14] for a finite element method (FEM). Often, the
stability of the schemes and their error estimates were derived by assuming a suffi-
ciently smooth solution. In this work, we focus on the steady-state model (1.1), and
review below the Riemann-Liouville and Caputo derivatives separately.

In the Riemann-Liouville case, Ervin and Roop [8] (see also [9]) gave a first vari-

ational formulation of (1.1) on the space H
α/2
0 (D). The coercivity of the formulation

was shown under suitable conditions on the coefficients b and q. However, in the
presence of the convection term, for α ≤ 3/2, the variational solution generally does
not solve the equation in the L2(Ω) sense, due to insufficient solution regularity. A
Galerkin FEM was also proposed, and error estimates were provided by assuming that
the solution is smooth, which remains completely open in the general case, and that
the adjoint problem has full regularity pickup, which generally does not hold.

In the absence of the convection term in (1.1), it was revisited in [13], where
sharp regularity pickup was established for the first time and Hα/2(D) and L2(D)
error estimates, directly expressed in terms of the problem data, were provided for the
Galerkin FEM. However, the L2(D) error estimates are suboptimal. Wang and Yang
[23] developed a stable Petrov-Galerkin formulation on the space Hα−1

0 (D)×H1
0 (D),

with a variable coefficient inside the fractional derivative. It was numerically realized
in [24], where an L2(D)-error estimate was provided. The problem in [23, 24] does
not involve lower order terms, and its extension to problem (1.1) seems nontrivial.
In [25], Petrov-Galerkin formulations for initial value problems for fractional ODEs
and PDEs with a Riemann-Liouville derivative in time were studied. Chen et al [5]
proposed a spectral method for FBVPs of general order without any lower order term,
which merits exponentially convergence in the L2(D) norm for suitably smooth data.
However, the L2(D) error estimate remains suboptimal [5, Remark 5.2].

One distinct feature of FBVPs with a Riemann-Liouville derivative is that the
solution is usually weakly singular, irrespective of the smoothness of the source term
f . Thus the standard FEM converges slowly. There are several ways to improve the
convergence, e.g., singularity reconstruction [15] and transformation approach [12].

The Caputo case is more delicate, and was scarcely studied. For example, for
α ∈ (1, 3/2], the existence of a solution to problem (1.1) with f ∈ L2(D) is unknown.
This is reminiscent of fractional diffusion with a Caputo derivative of order α ∈ (0, 1/2)
in time [10]. The only variational formulation for the Caputo case was derived in [13].

The trial space is H
α/2
0 (D), but the test space involves a nonlocal constraint. The

stability and sharp regularity pickup were shown, and a Galerkin FEM was proposed,
with optimal Hα/2(D) but suboptimal L2(D) error estimates. Recently, Stynes and
Gracia [21] developed a FDM for (1.1) with a Caputo derivative and a Robin boundary
condition, and derived an L∞(D) rate. See also [11] for a Legendre tau method, where
suboptimal L2(D) error estimates were obtained for a smooth solution.

1.2. Our contributions and the organization of the paper. In this work,
we shall develop proper variational formulations of Petrov-Galerkin type for the model
(1.1), and establish their well-posedness and sharp regularity pickup. For the choice
α ∈ (3/2, 2), the variational solution satisfies (1.1) in the L2(D) sense. Further,
we develop a novel FEM. It employs continuous piecewise linear finite elements and
“shifted” fractional powers for the test and trial space, respectively. Note that both
variational formulation and FEM are different from the work [13].
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The new FEM has a number of distinct features. First, the choice of the FEM test
space allows us to derive optimal error estimates in both L2(D) and H1(D) norms
that are directly expressed in terms of the problem data. In particular, this fills an
outstanding gap in the theoretical analysis of FEMs for FBVPs, for which only subop-
timal L2(D) estimates were known. Second, on a uniform mesh, the stiffness matrix
of the leading term is diagonal, and the resulting linear system is well conditioned.
To the best of our knowledge, it is the first FEM with such desirable property.

In the Riemann-Liouville case, we also develop an enriched FEM based on a
singularity reconstruction technique [4, 15] to improve the convergence, by resolving
the solution singularity directly. We also derive optimal error estimates in both H1(D)
and L2(D) norms, thereby improving the results in [15].

The rest of the paper is organized as follows. In Section 2 we recall preliminaries
on fractional calculus. The variational formulations are developed in Section 3, where
the well-posedness and sharp regularity pickup are also studied. The new FEM and
its implementation details are described in Section 4, and optimal convergence rates
are provided. Then we present an enriched FEM for the Riemann-Liouville derivative
in Section 5. Finally, in Section 6, the theoretical analysis is numerically verified by
extensive experiments, including nonsmooth data. Throughout the notation c, with
or without a subscript, denotes a generic constant, which may change at different
occurrences, but it is always independent of the mesh size h and the solution u.

2. Preliminaries on fractional calculus. We first briefly recall some prelimi-
nary facts on fractional calculus. For any γ > 0 and f ∈ L2(D) we define the left-sided
Riemann-Liouville fractional integral 0I

γ
xf of order γ by

( 0I
γ
xf)(x) =

1

Γ(γ)

∫ x

0

(x− t)γ−1f(t)dt, (2.1)

where Γ(·) is the Gamma function defined by Γ(x) =
∫∞
0
tx−1e−tdt for x > 0. Then,

for any positive real number β with n − 1 < β < n, n ∈ N, the left-sided Riemann-
Liouville and Caputo derivatives of order β of f ∈ Hn(D), denoted by R

0D
β
x f and

C
0D

β
x f , are respectively defined by [16, 18]

R
0D

β
x u =

dn

dxn
(
0I
n−β
x u

)
and C

0D
β
x u = 0I

n−β
x

(dnu
dxn

)
. (2.2)

Analogously we define the right-sided Riemann-Liouville integral xI
γ
1 f by

(xI
γ
1 f)(x) =

1

Γ(γ)

∫ 1

x

(t− x)γ−1f(t) dt

and the right-sided derivatives of order β by

R
xD

β
1 u = (−1)n

dn

dxn
(
xI
n−β
1 u

)
and C

xD
β
1u = (−1)nxI

n−β
1

(dnu
dxn

)
.

The following formula for change of integration order is valid [16, pp. 76, Lemma 2.7]

( 0I
γ
xψ,ϕ) = (ψ, xI

γ
1ϕ) ∀ψ,ϕ ∈ L2(D), (2.3)

where (·, ·) denotes the L2(D) inner product.
Now we introduce some function spaces. For any β ≥ 0, we denote Hβ(D) to

be the Sobolev space of order β on the unit interval D [1], and H̃β(D) the set of
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functions in Hβ(D) whose extension by zero to R is in Hβ(R). Likewise, we define

H̃β
L(D) (respectively, H̃β

R(D)) to be the set of functions u whose extension by zero,

denoted by ũ, is in Hβ(−∞, 1) (respectively, Hβ(0,∞)). Further, for u ∈ H̃β
L(D), we

set ‖u‖H̃βL(D) := ‖ũ‖Hβ(−∞,1), and similarly the norm in H̃β
R(D).

The next theorem collects some useful properties of fractional integral and differ-
ential operators (see [16, pp. 73, Lemma 2.3] [13, Theorems 2.1 and 3.1]).

Theorem 2.1. The following statements hold.
(a) The integral operators 0I

β
x and xI

β
1 satisfy the semigroup property.

(b) The operators R0D
β
x and R

xD
β
1 extend continuously to bounded operators from

H̃β
L(D) and H̃β

R(D), respectively, to L2(D).

(c) For any s, β ≥ 0, the operator 0I
β
x is bounded from H̃s

L(D) to H̃β+s
L (D), and

xI
β
1 is bounded from H̃s

R(D) to H̃β+s
R (D).

We shall also need the following two results. The first asserts the equivalence of
the two fractional derivatives on suitable function spaces, and the second gives an
algebraic property of fractional order Sobolev spaces.

Lemma 2.2 ([13], Lemma 4.1). For u ∈ H̃1
L(D) and β ∈ (0, 1), R

0D
β
x u =

0I
1−β
x (u′). Similarly, for u ∈ H̃1

R(D) and β ∈ (0, 1), RxD
β
1 u = −xI1−β1 (u′).

Lemma 2.3 ([13], Lemma 4.6). Let 0 < s ≤ 1, s 6= 1/2. Then for any u ∈
H̃s(D) ∩ L∞(D) and v ∈ Hs(D) ∩ L∞(D), the product uv is in H̃s(D).

3. Variational formulation and regularity. Now we develop proper varia-
tional formulations for problem (1.1), and establish their stability and sharp regularity
pickup. We shall discuss the Riemann-Liouville and Caputo derivatives separately.

3.1. Variational formulation in the Riemann-Liouville case. First we con-
sider the case b, q ≡ 0. Then it was shown in [13, Section 3] that for f ∈ L2(D), the
solution u of (1.1) is given by

u = −0I
α
x f + (0I

α
x f)(1)xα−1 ∈ H̃α−1+β

L (D), (3.1)

for any β ∈ [2− α, 1/2). Thus for α ∈ (3/2, 2), u ∈ H̃1(D). Further, for ϕ ∈ C∞0 (D),
by (2.3) and Lemma 2.2, there holds

(R0D
α
x u, ϕ) = ((0I

2−α
x u)′′, ϕ) = −((0I

2−α
x u)′, ϕ′)

= −(0I
2−α
x u′, ϕ′) = −(u′, xI

2−α
1 ϕ′) = (u′, RxD

α−1
1 ϕ).

This motivates us to define a bilinear form a(·, ·) : H̃1(D)× H̃α−1(D)→ R by

a(u, ϕ) := −(u′, RxD
α−1
1 ϕ). (3.2)

For notational simplicity, we set U = H̃1(D) and V = H̃α−1(D) below, and denote by
U∗ etc. the dual space of U etc., and the norms on U etc. by ‖ · ‖U etc. Throughout,
we also denote the duality pairing by 〈·, ·〉.

Now we state our first result regarding the stability of the variational formulation.
Lemma 3.1. The bilinear form a(·, ·) in (3.2) satisfies the inf-sup condition:

sup
ϕ∈V

a(u, ϕ)

‖ϕ‖V
≥ c0‖u‖U . (3.3)

4



Proof. For any fixed u ∈ U , let ϕu = R
xD

2−α
1 u− (RxD

2−α
1 u)(0)(1− x)α−1. Clearly,

ϕu(0) = ϕu(1) = 0. For β ∈ [2 − α, 1/2), the term (1 − x)α−1 ∈ H̃α−1+β
R (D).

Meanwhile, by Lemma 2.2 and Theorem 2.1(c), for u ∈ U , there holds

‖RxD2−α
1 u‖Hα−1(D) = ‖xIα−11 u′‖Hα−1(D) ≤ c‖u‖U ,

and thus ϕu ∈ V and it is a valid test function. Further,

‖ϕu‖V ≤ c
(
‖RxD2−α

1 u‖Hα−1(D) + c|RxD2−α
1 u(0)|‖(1− x)α−1‖Hα−1(D)

)
≤ c

(
‖u‖U + |(xIα−11 u′)(0)|

)
≤ c‖u‖U .

Since u(0) = u(1) = 0, the identity (u′, RxD
α−1
1 (1− x)α−1) = cα(u′, 1) = 0 holds, and

we derive the following inf-sup condition:

sup
ϕ∈V

a(u, ϕ)

‖ϕ‖V
≥ −(u′, RxD

α−1
1 ϕu)

‖ϕu‖V
≥ c0

−(u′, RxD
α−1
1 (−xIα−11 u′))

‖u‖U
= c0‖u‖U .

For any nonzero ϕ ∈ V , we choose uϕ = xI
2−α
1 ϕ − (xI

2−α
1 ϕ)(0)(1 − x), which is

nonzero and belongs to U . Then

a(uϕ, ϕ) = −(u′ϕ,
R
xD

α−1
1 ϕ) = ‖uϕ‖2U > 0.

It implies that if a(u, ϕ) = 0 for all u ∈ U , then ϕ = 0. This and Lemma 3.1 give the
stability of the variational problem for the case b, q ≡ 0. Namely, given any F ∈ V ∗,
there exists a unique solution u ∈ U such that

a(u, ϕ) = 〈F,ϕ〉 ∀ϕ ∈ V.

We now turn to the general case b, q 6≡ 0. The corresponding variational formu-
lation reads: given any F ∈ V ∗, find u ∈ U such that

A(u, ϕ) = 〈F,ϕ〉 ∀ϕ ∈ V, (3.4)

where the bilinear form A(·, ·) : U × V → R is defined by

A(u, ϕ) = a(u, ϕ) + (bu′, ϕ) + (qu, ϕ).

To study the bilinear form A(·, ·), we make the following uniqueness assumption.
Assumption 3.1. Let the bilinear form A(·, ·) : U × V → R satisfy
(a) The problem of finding u ∈ U such that A(u, ϕ) = 0 for all ϕ ∈ V has only

the trivial solution u ≡ 0.
(a∗) The problem of finding ϕ ∈ V such that A(u, ϕ) = 0 for all u ∈ U has only

the trivial solution ϕ ≡ 0.
Theorem 3.2. Let b, q ∈ L∞(D) and Assumption 3.1 hold. Then for any F ∈

V ∗, there exists a unique solution u ∈ U to problem (3.4).
Proof. In case of b, q ≡ 0, the assertion follows from Lemma 3.1. In general, the

proof is based on Petree-Tartar’s lemma [7, pp. 469, Lemma A.38]. To this end, we
define two operators S ∈ L(U ;V ∗) and T ∈ L(U ;V ∗) by

〈Su, ϕ〉 = A(u, ϕ) and (Tu, ϕ) = −(bu′, ϕ)− (qu, ϕ),
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respectively. By Assumption 3.1(a), the operator S is injective. The compactness of
the operator T follows from b, q ∈ L∞(D) and the compact embedding from L2(D)
into V ∗. Further, by Lemma 3.1, we deduce that for any u ∈ U

‖u‖U ≤ c sup
ϕ∈V

a(u, ϕ)

‖ϕ‖V
≤ c sup

ϕ∈V

A(u, ϕ)

‖ϕ‖V
+ c sup

ϕ∈V

−(bu′, ϕ)− (qu, ϕ)

‖ϕ‖V
= c(‖Su‖V ∗ + ‖Tu‖V ∗).

Then by Petree-Tartar’s lemma, the image of the operator S is closed; equivalently,
there exists a constant c0 > 0 such that

c0‖u‖U ≤ sup
ϕ∈V

A(u, ϕ)

‖ϕ‖V
∀u ∈ U. (3.5)

This and Assumption 3.1(a∗) show that the operator S : U → V ∗ is bijective, i.e.,
there exists a unique solution u ∈ U to problem (3.4).

Theorem 3.3. Let b, q ∈ L∞(D) and 〈F,ϕ〉 = (f, ϕ) for some f ∈ L2(D), and

Assumption 3.1 hold. Then there exists a unique solution u ∈ H̃α−1+β
L (D) ∩ H̃1(D)

to problem (3.4) for any β ∈ [2− α, 1/2) and it satisfies

‖u‖H̃α−1+β
L (D) ≤ c‖f‖L2(D). (3.6)

Proof. By Theorem 3.2, we have ‖u‖H̃1(D) ≤ c‖f‖L2(D). Then we rewrite (3.4) as

−R0Dα
x u = f̃ with f̃ = f − bu′ − qu. Since b, q ∈ L∞(D) and u ∈ H̃1(D), bu′ + qu ∈

L2(D), and f̃ ∈ L2(D). Then (3.6) follows from (3.1) and Theorem 2.1(c).
Next we consider the adjoint problem: for a given F ∈ U∗, find w ∈ V such that

A(ϕ,w) = 〈ϕ, F 〉 ∀ϕ ∈ U. (3.7)

The inf-sup condition for problem (3.7) with b, q ≡ 0 was shown in [23, Theorem 5.5].
The stability in the case of b ∈W 1,∞(D) and q ∈ L∞(D) follows from Assumption 3.1
and the argument in the proof of Theorem 3.2. If 〈ϕ, F 〉 = (ϕ, f) for some f ∈ L2(D),
the solution w for b, q ≡ 0 is given by w = −xIα1 f + (xI

α
1 f)(0)(1−x)α−1. This implies

w ∈ H̃α−1+β
R (D) with β ∈ [2− α, 1/2).

To rigorously analyze the adjoint problem, we first extend the domain of the
operator xI

γ
1 to the space H̃−γ(D), γ ∈ (0, 1/2), the dual space of H̃γ(D) ≡ Hγ(D), by

means of duality. Specifically, we define xI
γ
1 on H̃−γ(D) by (xI

γ
1ϕ,ψ) := 〈ϕ, 0Iγxψ〉 for

all ϕ ∈ H̃−γ(D), ψ ∈ L2(D), and for α > γ, xI
α
1 ϕ := xI

α−γ
1 xI

γ
1ϕ for all ϕ ∈ H̃−γ(D).

Next we verify the consistency relation for α ∈ (3/2, 2)

R
xD

α
1 xI

α
1 ϕ = ϕ ∈ H̃−γ(D) with γ ∈ (0, 1/2).

In fact, for any ψ ∈ C∞0 (D), by Theorem 2.1(a) and (2.3), there holds

〈RxDα
1 xI

α
1 ϕ,ψ〉 = 〈(xI2−α1 xI

α
1 ϕ)′′, ψ〉 def= 〈(xI2−γ1 xI

γ
1ϕ)′′, ψ〉 = 〈xI2−γ1 xI

γ
1ϕ,ψ

′′〉

= (xI
γ
1ϕ, 0I

2−γ
x ψ′′)

def
= 〈ϕ, 0I2xψ′′〉 = 〈ϕ,ψ〉.

Now we show that, for α > γ > 0, the operator xI
α
1 is bounded from H̃−γ(D) to

H̃α−γ
R (D). Indeed, by Theorem 2.1(a) and (c), we have

‖xIα1 ϕ‖H̃α−γR (D) : = ‖xIα−γ1 xI
γ
1ϕ‖H̃α−γR (D) ≤ c‖xI

γ
1ϕ‖L2(D)

= c sup
ψ∈L2(D)

〈ϕ, 0Iγxψ〉
‖ψ‖L2(D)

≤ c‖ϕ‖H̃−γ(D).
(3.8)
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Thus the representation w = −xIα1 f + (xI
α
1 f)(0)(1− x)α−1 is a solution to (3.7) with

b, q ≡ 0 and F = f ∈ H̃−γ(D), γ ∈ (0, 1/2). In sum, we have the following lemma.

Lemma 3.4. Let F = f ∈ H̃−γ(D), γ ∈ (0, 1/2), and b, q ≡ 0. Then w =
−xIα1 f + (xI

α
1 f)(0)(1− x)α−1 is a solution of problem (3.7) and for β ∈ [2− α, 1/2)

‖w‖H̃α−1+β
R (D) ≤ c‖f‖H̃−γ(D).

Now we can state a regularity result for the adjoint problem (3.7).
Theorem 3.5. Let b ∈ W 1,∞(D), q ∈ L∞(D) and 〈F,ϕ〉 = (f, ϕ) for some

f ∈ L2(D) and Assumption 3.1 hold. Then there exists a unique solution w ∈
H̃α−1+β
R (D) ∩ H̃α−1(D) to problem (3.7) for any β ∈ [2− α, 1/2) and it satisfies

‖w‖H̃α−1+β
R (D) ≤ c‖f‖L2(D).

Proof. By the inf-sup condition, there exists a solution w ∈ H̃α−1(D) to (3.7).

Next we rewrite it into a(ϕ,w) = 〈ϕ, f̃〉, with f̃ = f + (bw)′− qw, with ‖f̃‖H̃α−2(D) ≤
c‖f‖L2(D). By Lemma 3.4, w = −xIα1 f̃ + (xI

α
1 f̃)(0)(1 − x)α−1. Since α > 3/2, by

Theorem 2.1(c), xI
α
1 f̃ ∈ H̃2α−2

R (D) ⊂ H̃α−1+β
R (D), for any β ∈ [2 − α, 1/2). Hence,

the desired estimate holds: ‖w‖H̃α−1+β
R (D) ≤ c‖f̃‖H̃α−2(D) ≤ c‖f‖L2(D).

3.2. Variational formulation in the Caputo case. Now we consider the
Caputo case. For b, q ≡ 0, the solution of (1.1) is given by [13, Section 3]

u = −xIα1 f + (xI
α
1 f)(0)x ∈ Hα(D) ∩ H̃1(D). (3.9)

Recall the defining relation C
0D

α
x u =R

0D
α
x (u−u′(0)x−u(0)) [16, pp. 91]. Hence, with

u(0) = 0, for any ϕ ∈ H̃∞R (D), upon integration by parts, we have

(C0D
α
x u, ϕ) = (R0D

α
x (u− u′(0)x), ϕ) = (u′,RxD

α−1
1 ϕ)− u′(0)(R0D

α
x x, ϕ).

Since u′(0) does not make sense on the space H̃1(D), we choose the test function ϕ

such that (R0D
α
x x, ϕ) = 0, i.e., (x1−α, ϕ) = 0. Hence, we let W = {ϕ ∈ H̃α−1

R (D) :
(ϕ, x1−α) = 0}, and introduce a bilinear form a(·, ·) : U ×W → R by

a(u, ϕ) = −(u′, RxD
α−1
1 ϕ). (3.10)

The only difference from the Riemann-Liouville case lies in the test space W : in the
Caputo case, it involves an integral constraint (ϕ, x1−α) = 0.

The following lemma gives the stability of the bilinear form.
Lemma 3.6. The bilinear form a(·, ·) in (3.10) satisfies

sup
ϕ∈W

a(u, ϕ)

‖ϕ‖W
≥ c0‖u‖U . (3.11)

Proof. For a fixed u ∈ H̃1(D), let ϕu = −xIα−11 u′ + c1(1 − x)α−1, where c1 is
chosen such that (ϕu, x

1−α) = 0, i.e., c1 = −(RxD
2−α
1 u, x1−α)/((1−x)α−1, x1−α). Since

u′ ∈ L2(D) and (1 − x)α−1 ∈ H̃α−1+β
R (D) with β ∈ [2 − α, 1/2), by Theorem 2.1(c),

we have ϕu ∈W . Further, by Theorem 2.1,

‖ϕu‖W ≤ c(‖xIα−11 u′‖H̃α−1
R (D) + ‖xIα−11 u′‖L∞(D)) ≤ c‖u‖U .
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The desired assertion follows from the argument in the proof of Lemma 3.1.
For any ϕ 6= 0 ∈ W , let uϕ = xI

2−α
1 ϕ. Since ϕ ∈ W , (xI

2−α
1 ϕ)(0) = 0, and

obviously uϕ(1) = 0, we deduce uϕ ∈ U . Further,

a(uϕ, ϕ) = −(u′ϕ,
R
xD

α−1
1 ϕ) = ‖RxDα−1

1 ϕ‖2L2(D) = ‖ϕ‖2W > 0. (3.12)

Hence if a(u, ϕ) = 0 for all u ∈ U , then ϕ = 0. This and Lemma 3.6 imply the
variational stability. In the case b, q 6= 0, the variational formulation reads: given any
F ∈W ∗, find u ∈ U such that

A(u, ϕ) = 〈F,ϕ〉 ∀ϕ ∈W, (3.13)

where the bilinear form A(·, ·) : U ×W → R is given by

A(u, ϕ) = a(u, ϕ) + (bu′, ϕ) + (qu, ϕ).

To analyze problem (3.13), we assume the unique solvability.
Assumption 3.2. Let the bilinear form A(·, ·) : U ×W → R satisfy
(a) The problem of finding u ∈ U such that A(u, ϕ) = 0 for all ϕ ∈ W has only

the trivial solution u ≡ 0.
(a∗) The problem of finding ϕ ∈ W such that A(u, ϕ) = 0 for all u ∈ U has only

the trivial solution ϕ ≡ 0.
Under Assumption 3.2, we have the following existence result. The proof is iden-

tical to that of Theorem 3.2 and hence omitted.
Theorem 3.7. Let Assumption 3.2 hold and b, q ∈ L∞(D). Then for any F ∈

W ∗, there exists a unique solution u ∈ U to (3.13).
Theorem 3.8. Let Assumption 3.2 hold and s ∈ [0, 1/2). If 〈F, v〉 = (f, v) for

some f ∈ Hs(D), and b, q ∈ L∞(D)∩Hs(D), then the solution u ∈ U of (3.13) is in

Hα+s(D) ∩ H̃1(D) and further it satisfies

‖u‖Hα+s(D) ≤ c‖f‖Hs(D).

Proof. We show the regularity, by rewriting (3.13) as −C
0D

α
x u = f̃ , with f̃ =

f − bu′ − qu. By Lemma 2.3, bu′ ∈ L2(D) and qu ∈ Hs(D), and thus f̃ ∈ L2(D).

By (3.9), u ∈ Hα(D) ∩ H̃1(D), and by Lemma 2.3, bu′ and qu ∈ Hs(D), and thus

f̃ ∈ H̃s(D). The assertion follows, by appealing again to Theorem 2.1 and (3.9).
Remark 3.1. In the Riemann-Liouville case, the solution is limited to Hα−1+β(D),

β ∈ [2 − α, 1/2), irrespective of the smoothness of f , whereas in the Caputo case, it
can be made smoother, by imposing suitable smoothness on q, b and f .

Now we consider the adjoint problem: given any F ∈ U∗, find w ∈W such that

A(ϕ,w) = 〈ϕ, F 〉 ∀ϕ ∈ U. (3.14)

The next result gives the well-posedness of the adjoint problem.
Theorem 3.9. Let Assumption 3.2 hold, b ∈ W 1,∞(D) and q ∈ L∞(D). Then

for any F ∈ U∗, there exists a unique solution w ∈W to (3.14).
Proof. First consider the case b, q ≡ 0. For any w ∈ W , xI

2−α
1 w ∈ U , and thus

Theorem 2.1(a) yields

w = −(xI
1
1w)′ = −(xI

α−1
1 xI

2−α
1 w)′ = −xIα−11 (xI

2−α
1 w)′ = xI

α−1
1

R
xD

α−1
1 w.

8



Hence by Theorem 2.1(c), for w ∈W , there holds

‖w‖W = ‖xIα−11
R
xD

α−1
1 w‖W ≤ c‖RxDα−1

1 w‖L2(D). (3.15)

Next, with uw = xI
2−α
1 w ∈ U and by Theorem 2.1(c), ‖uw‖U = ‖RxDα−1

1 w‖L2(D) ≤
c‖w‖W . Then the inf-sup condition in case of b, q ≡ 0 follows from (3.12) and (3.15)

sup
u∈U

a(u,w)

‖u‖U
≥ a(uw, w)

‖uw‖U
≥ c0‖w‖W . (3.16)

Moreover, if u ∈ U and a(u,w) = 0 for all w ∈ W , then u = 0 by (3.11). This and
(3.16) indicate that problem (3.14) has a unique solution w ∈W . The well-posedness
for b, q 6= 0 follows by repeating the argument for Theorem 3.2.

Next we derive the regularity pickup for problem (3.14). If 〈ϕ, F 〉 = (ϕ, f) for
some f ∈ L2(D), the strong form of the problem reads

−RxDα
1 w − (bw)′ + qw = f, (3.17)

with w(1) = 0 and (w, x1−α) = 0. For b, q ≡ 0, the solution w is given by

w = −xIα1 f + cf (1− x)α−1 with cf = (xI
α
1 f, x

1−α)/((1− x)α−1, x1−α).

The constant cf can be bounded by |cf | ≤ c|(xIα1 f, x1−α)| ≤ c‖f‖L2(D). Hence w ∈
H̃α−1+β
R (D) with β ∈ [2 − α, 1/2). The general case can be analyzed analogously to

Theorem 3.5, and then we have the following regularity result.
Theorem 3.10. Let Assumption 3.2 hold, and b ∈W 1,∞(D), q ∈ L∞(D). Then

with 〈ϕ, F 〉 = (ϕ, f) for some f ∈ L2(D), the solution w to problem (3.14) is in

H̃α−1(D) ∩ H̃α−1+β
R (D) for any β ∈ [2− α, 1/2) and further it satisfies

‖w‖H̃α−1+β
R (D) ≤ c‖f‖L2(D).

Remark 3.2. The adjoint problem for both derivatives is of Riemann-Liouville
type, but with different constraints: the Riemann-Liouville case involves w(0) = 0,
whereas the Caputo case (w, x1−α) = 0. Hence, their regularity pickup is identical.

4. Finite element approximation. Now we apply the variational formulations
to the numerical approximation of problem (1.1). We shall develop novel FEMs using
continuous piecewise linear finite elements and “shifted” fractional powers (xi−x)α−1+

for the trial and test space, respectively, analyze their stability, and derive optimal
error estimates for the approximation in the L2(D) and H1(D) norms.

4.1. Finite element spaces and their approximation properties. First we
introduce the finite element spaces based on a uniform partition of the domain D,
with nodes 0 = x0 < x1 < . . . < xm = 1 and a mesh size h = 1/m. We then define
Uh to be the set of functions in U which are linear when restricted to the subintervals
[xi, xi+1], i = 0, . . . ,m− 1, i.e.,

Uh = {ψh ∈ U : ψh = ax+ b, x ∈ [xi, xi+1]} .

To define the test spaces, we first introduce “shifted” fractional powers

ϕi(x) =

{
(xi − x)α−1 x ≤ xi

0 x > xi

}
:= (xi − x)α−1χ[0,xi](x), i = 1, 2, . . . ,m,
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where χS denotes the characteristic function of a set S. The basis functions ϕi(x)
can be written as ϕi(x) = Γ(α)xI

α−1
1 χ[0,xi](x), i.e., the fractional derivative RxD

α−1
1 ϕi

is piecewise constant. Clearly, ϕi ∈ H̃α−1+β
R (D) for any β ∈ [2 − α, 1/2). Then we

define the following finite-dimensional subspaces Vh ⊂ V and Wh ⊂W

Vh = span{ϕi}mi=1 ∩ V and Wh = span{ϕi}mi=1 ∩W,

as the test space for the Riemann-Liouville and Caputo derivative, respectively.
Next we introduce two operators PV : L2(D)→ L2(D) and PW : L2(D)→ L2(D),

respectively, by: for any ψ ∈ L2(D),

PV ψ = ψ − Γ(α)(xI
α−1
1 ψ)(0) and PWψ = ψ − (xI

α−1
1 ψ, x1−α)/Γ(2− α).

Lemma 4.1. The operators PV and PW are bounded. Further, for ψ ∈ H̃1(D),

PV
R
xD

α−1
1 ψ =R

xD
α−1
1 ψ, and for ψ ∈W ∩ H̃1

R(D), PW
R
xD

α−1
1 ψ =R

xD
α−1
1 ψ.

Proof. Let δ = α− 1. For any ψ ∈ L2(D), the boundedness of PV follows from

‖PV ψ‖L2(D) ≤ ‖ψ‖L2(D) + c|(xIδ1ψ)(0)| ≤ c‖ψ‖L2(D),

The boundedness of PW is similar. For ψ ∈ H̃1(D), with ϕψ = R
xD

δ
1ψ, by Lemma 2.2

and Theorem 2.1(a), xI
δ
1ϕψ = −xIδ1 (xI

1−δ
1 ψ)′ = −(xI

1
1ψ)′ = ψ, and thus (xI

δ
1ϕψ)(0) =

0, which yields PV ϕψ = ϕψ−Γ(δ+1)(xI
δ
1ϕψ)(0) = ϕψ. Likewise, for ψ ∈W ∩H̃1

R(D),
(xI

δ
1ϕψ, x

−δ) = (ψ, x−δ) = 0, which gives directly PWϕψ = ϕψ.
Now we can state important approximation properties of these spaces.
Lemma 4.2. Let the mesh be quasi-uniform and 1 ≤ γ ≤ 2, and δ = α − 1 ∈

(1/2, 1). If u ∈ Hγ(D) ∩ H̃1(D), then

inf
ψh∈Uh

‖u− ψh‖U ≤ chγ−1‖u‖Hγ(D).

Further, if u ∈ H̃γ
R(D) ∩ V , then

inf
ψh∈Vh

‖u− ψh‖V ≤ chmin(1,γ−δ)‖u‖Hγ(D).

Similarly, if u ∈ H̃γ
R(D) ∩W , then

inf
ψh∈Wh

‖u− ψh‖W ≤ chmin(1,γ−δ)‖u‖Hγ(D).

Proof. Let Πhu ∈ Uh be the standard Lagrange interpolant of u ∈ H̃1(D) so that

inf
ψh∈Uh

‖u− ψh‖U ≤ ‖u−Πhu‖U .

The first estimate follows from the approximation property of the interpolant Πhu
[7, Corollary 1.109, pp. 61]. Next we consider the space Vh. For u ∈ H̃γ

R(D), by
Theorem 2.1(c), we have

‖(xI1−δ1 u)′‖H̃γ−δR (D) ≤ c‖xI
1−δ
1 u‖H̃γ+1−δ

R (D) ≤ c‖u‖H̃γR(D). (4.1)

Hence ϕu := −(xI
1−δ
1 u)′ =R

xD
δ
1u belongs to H̃γ−δ

R (D). On the space L2(D), we define
a projection operator Π0 : L2(D)→ L2(D) by (with hi = xi+1 − xi)

Π0ψ(x) =
1

hi

∫ xi+1

xi

ψ(s) ds x ∈ (xi, xi+1]. (4.2)
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By the definitions of Π0 and PV , xI
δ
1 (PV Π0ψ) ∈ Vh for any ψ ∈ L2(D). Then using

(4.1), the property of Π0 and Lemma 4.1, we deduce

inf
ψh∈Vh

‖u− ψh‖V ≤ ‖RxDδ
1 (u− xI

δ
1 (PV Π0ϕu))‖L2(D) = ‖ϕu − PV Π0ϕu‖L2(D)

= ‖PV (ϕu −Π0ϕu)‖L2(D) ≤ c‖ϕu −Π0ϕu‖L2(D)

≤ chmin(1,γ−δ)‖ϕu‖Hγ−δ(D) ≤ chmin(1,γ−δ)‖u‖H̃γR(D).

Last, by the definitions of Π0 and PW , xI
δ
1 (PWΠ0ψ) ∈ Wh for any ψ ∈ L2(D). Now

the L2(D) stability of PW and the identity PWϕu = ϕu from Lemma 4.1 yield

inf
ψh∈Wh

‖u− ψh‖W ≤ ‖RxDδ
1 (u− xI

δ
1 (PWΠ0ϕu))‖L2(D) = ‖PW (ϕu −Π0ϕu)‖L2(D)

≤ c‖ϕu −Π0ϕu‖L2(D) ≤ chmin(1,γ−δ)‖u‖H̃γR(D).

4.2. Error estimates in the Riemann-Liouville case. Here the finite ele-
ment problem is: given any F ∈ V ∗, find uh ∈ Uh such that

A(uh, ϕh) = 〈F,ϕh〉 ∀ϕh ∈ Vh. (4.3)

In Theorem 4.7 we shall establish optimal error estimates for the approximation uh
for 〈F, v〉 ≡ (f, v) with f ∈ L2(D), using several technical lemmas.

A first lemma shows the stability of problem (4.3) when b, q ≡ 0.
Lemma 4.3. For the bilinear form a(·, ·) in (3.2), there holds

sup
ϕh∈Vh

a(ψh, ϕh)

‖ϕh‖V
≥ c‖ψh‖U ∀ψh ∈ Uh, (4.4)

and the finite element problem: Find uh ∈ Uh such that

a(uh, ϕh) = (f, ϕh) ∀ϕh ∈ Vh, (4.5)

has a unique solution.
Proof. For any ψh ∈ Uh, let ϕh = −xIα−11 (PV ψ

′
h). By Theorem 2.1, ϕh ∈ Vh and

a(ψh, ϕh) = −
(
ψ′h,

R
xD

α−1
1

(
−xIα−11 (PV ψ

′
h)
))

= (ψ′h, PV ψ
′
h)

= (ψ′h, ψ
′
h)− Γ(α)(xI

α−1
1 ψ′h)(0)(ψ′h, 1) = ‖ψh‖2U .

Further, by Lemma 4.1 and ϕh(0) = 0, there holds

‖ϕh‖V = ‖xIα−11 (PV ψ
′
h)‖V ≤ c‖PV ψ′h‖L2(D) ≤ c‖ψh‖U .

Thus the condition (4.4) holds. Since the stiffness matrix is square, the existence
follows from uniqueness, which is a direct consequence of (4.4), and thus problem
(4.5) has a unique solution uh ∈ Uh.

Next, we introduce the (adjoint) Ritz projection Rh : V → Vh defined by

a(ψh, Rhϕ) = a(ψh, ϕ) ∀ψh ∈ Uh.

Lemma 4.4. The operator Rh is well-defined and satisfies for any β ∈ (2−α, 1/2)

‖Rhϕ‖V ≤ c‖ϕ‖V ,
‖ϕ−Rhϕ‖L2(D) ≤ chα−2+β‖ϕ‖V .

(4.6)
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Proof. For any ϕh ∈ Vh, let ψh = xI
2−α
1 ϕh − (xI

2−α
1 ϕh)(0)(1− x). Then ψh(0) =

ψh(1) = 0, and ψ′h = −RxDα−1
1 ϕh+(xI

2−α
1 ϕh)(0), i.e., ψh is the primitive of a piecewise

constant function, hence ψh ∈ Uh. SinceRxD
2−α
1 ψh = ϕh−(xI

2−α
1 ϕh)(0)(RxD

2−α
1 (1−x))

and ϕh(0) = 0, we deduce R
xD

2−α
1 ψh(0) = c0(xI

2−α
1 ϕh)(0), with c0 = −(RxD

2−α
1 (1 −

x))(0) 6= 0. Thus the following bound holds

|(xI2−α1 ϕh)(0)| ≤ c|RxD2−α
1 ψh(0)| = c|(xIα−11 ψ′h)(0)| ≤ c‖ψh‖U ,

which directly yields

‖ϕh‖V = ‖RxDα−1
1 ϕh‖L2(D) ≤ c

(
‖ψ′h‖L2(D) + c|(xI2−α1 ϕh)(0)|

)
≤ c‖ψh‖U .

This and the identity a(ψh, ϕh) = ‖ψh‖2U give the following discrete inf-sup condition

sup
ψh∈Uh

a(ψh, ϕh)

‖ψh‖U
≥ c‖ϕh‖V ∀ϕh ∈ Vh,

which shows that Rh is well-defined. Then the H̃α−1(D)-stability of Rh follows:

‖Rhϕ‖V ≤ c sup
ψh∈Uh

a(ψh, Rhϕ)

‖ψh‖U
= c sup

ψh∈Uh

a(ψh, ϕ)

‖ψh‖U
≤ c‖ϕ‖V .

Next let g be the solution to (3.4) with F = ϕ−Rhϕ. By Theorem 3.3, ‖g‖H̃α−1+β
L (D) ≤

c‖ϕ−Rhϕ‖L2(D), β ∈ (2−α, 1/2). Then Galerkin orthogonality, and Lemma 4.2 give

‖ϕ−Rhϕ‖2L2(D) = a(g, ϕ−Rhϕ) ≤ c inf
ψh∈Uh

‖g − ψh‖U‖ϕ−Rhϕ‖V

≤ chα−2+β‖ϕ−Rhϕ‖L2(D)‖ϕ‖V .

The next result gives the stability for the discrete variational formulation in the
general case, using a kickback technique [19, 13].

Lemma 4.5. Let Assumption 3.1 hold, f ∈ L2(D), and b, q ∈ L∞(D). Then
there exists an h0 > 0 such that for all h ≤ h0

c‖ψh‖U ≤ sup
ϕh∈Vh

A(ψh, ϕh)

‖ϕh‖V
∀ψh ∈ Uh. (4.7)

For such h, the finite element problem: Find uh ∈ Uh such that

A(uh, ϕh) = (f, ϕh) ∀ϕh ∈ Vh, (4.8)

has a unique solution.
Proof. For any ψh ∈ Uh, by the inf-sup condition (3.5), there holds

c0‖ψh‖U ≤ sup
ϕ∈V

A(ψh, ϕ)

‖ϕ‖V
≤ sup
ϕ∈V

A(ψh, ϕ−Rhϕ)

‖ϕ‖V
+ sup
ϕ∈V

A(ψh, Rhϕ)

‖ϕ‖V
=: I + II.

By Lemma 4.4, we have for β ∈ (1− α/2, 1/2)

I = sup
ϕ∈V

(bψ′h + qψh, ϕ−Rhϕ)

‖ϕ‖V
≤ c sup

ϕ∈V

‖ψh‖U‖ϕ−Rhϕ‖L2(D)

‖ϕ‖V
≤ c1hα−2+β‖ψh‖U .
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Meanwhile, the second term II can be bounded by (3.5) and Lemma 4.4:

II ≤ c sup
ϕ∈V

A(ψh, Rhϕ)

‖Rhϕ‖V
= c sup

ϕh∈Vh

A(ψh, ϕh)

‖ϕh‖V
.

By choosing an h0 such that c1h
α−2+β
0 = c0/2 we get the discrete inf-sup condition

(4.7), and the unique existence of the solution to (4.8) follows directly.
Last we give some error estimates for the adjoint problem.
Lemma 4.6. Let Assumption 3.1 hold, f ∈ L2(D), b ∈W 1,∞(D) and q ∈ L∞(D),

and w be the solution of the adjoint problem (3.7). Then there holds

inf
ψh∈Vh

‖w − ψh‖L2(D) + inf
ψh∈Vh

‖w − ψh‖V ≤ ch‖f‖L2(D). (4.9)

Proof. By the solution representation, w = wr +ws and ws = µ(1−x)α−1, where

the regular part wr ∈ H̃α
R(D), and µ ∈ R. By Theorem 3.5, there holds

‖wr‖H̃αR(D) ≤ ‖xI
α
1 f‖H̃αR(D) + ‖xIα1 (bw)′‖H̃αR(D) + ‖xIα1 (qw)‖H̃αR(D)

≤ c(‖f‖L2(D) + ‖bw‖H̃1
R(D) + ‖qw‖L2(D)) ≤ c‖f‖L2(D).

(4.10)

Let ϕwr =R
xD

α−1
1 wr, ϕws =R

xD
α−1
1 ws and ϕw = ϕwr + ϕws . By Lemma 4.1, we have

‖ϕw − PV Π0ϕw‖L2(D) = ‖PV (ϕw −Π0ϕw)‖L2(D) ≤ c‖ϕw −Π0ϕw‖L2(D)

≤ c‖ϕwr −Π0ϕwr‖L2(D) + c‖ϕws −Π0ϕws‖L2(D).

In view of ϕwr ∈ H̃1
R(D), by Lemma 4.2 and (4.10), we deduce

‖ϕwr −Π0ϕwr‖L2(D) ≤ ch‖ϕwr‖H̃1
R(D) ≤ ch‖w

r‖H̃αR(D) ≤ ch‖f‖L2(D).

Meanwhile since ϕws is a constant, ‖ϕws − Π0ϕws‖L2(D) = 0. Then by letting ψh :=

xI
α−1
1 PV Π0ϕw ∈ Vh and Lemma 4.1, there holds

inf
ψh∈Vh

‖w − ψh‖V ≤ ‖RxDα−1
1 (w − ψh)‖L2(D) ≤ ‖ϕw − PV Π0ϕw‖L2(D) ≤ ch‖f‖L2(D).

Since w ∈ H̃1
R(D), there holds w = xI

α−1
1

R
xD

α−1
1 w = xI

α−1
1 ϕw. Hence

inf
ψh∈Vh

‖w − ψh‖L2(D) ≤ ‖xIα−11 (ϕw − PV Π0ϕw)‖L2(D)

≤ c‖ϕw − PV Π0ϕw‖L2(D) ≤ ch‖f‖L2(D).

Remark 4.1. The L2(D) estimate in Lemma 4.6 is suboptimal, but the Hα−1(D)
estimate suffices deriving an optimal L2(D) estimate in Theorem 4.7.

Now, we state the main theorem of this part, i.e., optimal error estimates in the
L2(D) and H1(D) norms for the Petrov-Galerkin FEM in the Riemann-Liouville case.

Theorem 4.7. Let Assumption 3.1 hold, f ∈ L2(D), b ∈ W 1,∞(D), and q ∈
L∞(D). Then there exists an h0 > 0 such that for all h ≤ h0, the solution uh ∈ Uh
to problem (4.8) satisfies for any β ∈ (2− α, 1/2),

‖u− uh‖L2(D) + h‖u− uh‖U ≤ chα−1+β‖f‖L2(D).
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Proof. The error estimate in the H̃1(D)-norm follows from Cea’s lemma, (4.7)
and Galerkin orthogonality. Specifically, for any h ≤ h0 and ψh ∈ Uh, by (4.7)

‖uh − ψh‖U ≤ c sup
ϕh∈Vh

A(uh − ψh, ϕh)

‖ϕh‖V
≤ c sup

ϕh∈Vh

A(u− ψh, ϕh)

‖ϕh‖V
≤ c‖u− ψh‖U .

Hence the triangle inequality yields for any ψh ∈ Uh

‖u− uh‖U ≤ ‖u− ψh‖U + ‖ψh − uh‖U ≤ c‖u− ψh‖U .

Then the H̃1(D)-estimate follows from Theorem 3.3 and Lemma 4.2

‖u− uh‖U ≤ inf
ψh∈Uh

c‖u− ψh‖U ≤ chα−2+β‖f‖L2(D),

with β ∈ (2− α, 1/2). Next let w be the solution of problem (3.7) with F = u− uh.
By Theorem 3.3 and Lemmas 4.2 and 4.6, we deduce

‖u− uh‖2L2(D) = A(u− uh, w) ≤ c‖u− uh‖U inf
ϕh∈Vh

‖w − ϕh‖V

≤ chα−1+β‖f‖L2(D)‖u− uh‖L2(D).

Remark 4.2. Since the solution u is in H̃1(D)∩Hα−1+β(D) with β ∈ (2−α, 1/2),

both L2(D) and H̃1(D) error estimates are optimal. This is in stark contrast with
that in [13], where the L2(D)-error estimate suffers from one half order loss.

4.3. Error estimates in the Caputo case. Here the finite element problem
reads: given any F ∈W ∗, find uh ∈ Uh such that

A(uh, ϕh) = 〈F,ϕh〉 ∀ϕh ∈Wh. (4.11)

First we prove the stability of problem (4.11) for the case b, q ≡ 0.
Lemma 4.8. Let a(·, ·) be the bilinear form in (3.10). Then there holds

sup
ϕh∈Wh

a(ψh, ϕh)

‖ϕh‖W
≥ c‖ψh‖U ∀ψh ∈ Uh, (4.12)

and the finite element problem: Find uh ∈ Uh such that

a(uh, ϕh) = (f, ϕh) ∀ϕh ∈Wh,

has a unique solution.
Proof. For any fixed ψh ∈ Uh, let ϕh = −xIα−11 (PWψ

′
h). Then ϕh ∈Wh and

a(ψh, ϕh) = −
(
ψ′h,

R
xD

α−1
1

(
−xIα−11 (PWψ

′
h)
))

= (ψ′h, PWψ
′
h)

= (ψ′h, ψ
′
h)− cα(xI

α−1
1 ψ′h, x

1−α)(ψ′h, 1) = ‖ψh‖2U .

Further, the L2(D)-stability of PW yields

‖ϕh‖W = ‖xIα−11 (PWψ
′
h)‖W ≤ c‖PWψ′h‖L2(D) ≤ c‖ψh‖U .

Then we obtain (4.12) and the unique existence of a solution uh ∈ Uh.
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Next we introduce the (adjoint) Ritz projection Rh : W →Wh defined by

a(ψh, Rhϕ) = a(ψh, ϕ) ∀ψh ∈ Uh.

Analogous to Lemma 4.4, the following error estimates hold for Rh.
Lemma 4.9. The projection Rh is well-defined and satisfies for any ϕ ∈W

‖Rhϕ‖W ≤ c‖ϕ‖W ,
‖ϕ−Rhϕ‖L2(D) ≤ chα−1‖ϕ‖W .

(4.13)

Proof. For any given ϕh ∈ Wh, let ψh = xI
2−α
1 ϕh. Clearly, ψh(1) = 0 and

ψh(0) = (xI
2−α
1 ϕh)(0) = cα(x1−α, ϕh) = 0 since ϕh ∈Wh ⊂W . Consequently

‖ϕh‖W ≤ c‖RxDα−1
1 ϕh‖L2(D) = c‖ψh‖U .

The discrete inf-sup condition follows from this and (3.12):

sup
ψh∈Uh

a(ψh, ϕh)

‖ψh‖U
≥ c‖ϕh‖W ∀ϕh ∈Wh.

The H̃α−1
R (D)-stability of Rh follows immediately

‖Rhϕ‖W ≤ c sup
ψh∈Uh

a(ψh, Rhϕ)

‖ψh‖U
= c sup

ψh∈Uh

a(ψh, ϕ)

‖ψh‖U
≤ c‖ϕ‖W .

Next let g be the solution to (3.13) with F = ϕ−Rhϕ. By Theorem 3.8, ‖g‖Hα(D) ≤
c‖ϕ−Rhϕ‖L2(D). Then by the Galerkin orthogonality, Lemmas 4.9 and 4.2, we deduce

‖ϕ−Rhϕ‖2L2(D) = a(g, ϕ−Rhϕ) ≤ c inf
ψh∈Uh

‖g − ψh‖U‖ϕ−Rhϕ‖W

≤ chα−1‖ϕ−Rhϕ‖L2(D)‖ϕ‖W .

Remark 4.3. The L2(D) error estimate of Rh in the Caputo case is optimal,
since its adjoint problem has full regularity pickup.

Lemma 4.10. Let Assumption 3.2 hold, f ∈ L2(D), and b, q ∈ L∞(D). Then
there exists an h0 such that for all h ≤ h0

c‖ψh‖U ≤ sup
ϕh∈Wh

A(ψh, ϕh)

‖ϕh‖W
∀ψh ∈ Uh.

For such h, the finite element problem: Find uh ∈ Uh such that

A(uh, ϕh) = (f, ϕh) ∀ϕh ∈Wh, (4.14)

has a unique solution.
Proof. The proof is the same as that of Lemma 4.5, using Lemmas 4.8 and 4.9.
Lemma 4.11. Let Assumption 3.2 hold, f ∈ L2(D), b ∈ W 1,∞(D) and q ∈

L∞(D). Let w be the solution of problem (3.14). Then there holds

inf
ψh∈Wh

‖w − ψh‖L2(D) + inf
ψh∈Wh

‖w − ψh‖W ≤ ch‖f‖L2(D).
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Proof. The proof is identical with that of Lemma 4.6, with PW in place of PV .

Theorem 4.12. Let s ∈ [0, 1/2) and Assumption 3.2 hold. Suppose f ∈ Hs(D),
b ∈ W 1,∞(D) and q ∈ L∞(D) ∩ Hs(D). Then there exists an h0 such that for all
h ≤ h0, the solution uh to the finite element problem (4.14) satisfies

‖u− uh‖L2(D) + h‖u− uh‖U ≤ chmin(α+s,2)‖f‖Hs(D).

Proof. The H1(D)-estimate follows directly from Cea’s lemma and Lemma 4.11
as in Theorem 4.7. With w being the solution to problem (3.14) with F = u− uh, by
Theorem 3.8, Lemmas 4.2 and 4.11, we deduce

‖u− uh‖2L2(D) = A(u− uh, w) ≤ c‖u− uh‖U inf
ϕh∈Wh

‖w − ϕh‖W

≤ chmin(α+s,2)‖f‖Hs(D)‖u− uh‖L2(D).

4.4. Numerical implementation. Now we briefly discuss the efficient imple-
mentation of the Petrov-Galerkin FEM on a uniform mesh, especially the computation
of the stiffness matrix S = A + R := [ai,j ] + [ri,j ], with

ai,j = −(ψ′j ,
R
xD

α−1
1 ϕi) and ri,j = (bψ′j , ϕi) + (qψj , ϕi),

where ψj and ϕi are the basis functions in Uh and in Vh or Wh, respectively. In the
space Uh, we choose the nodal basis function {ψj}:

ψj =

 (x− xj−1)/h for x ∈ [xj−1, xj),
(xj+1 − x)/h for x ∈ [xj , xj+1),

0 otherwise,

with j = 1, 2, ..,m− 1. Now, we set the basis function ϕi of Vh by

ϕi = (xi − x)α−1χ[0,xi] − x
α−1
i (1− x)α−1, i = 1, 2, ..,m− 1.

Clearly, ϕi ∈ Vh, and R
xD

α−1
1 ϕi is piecewise constant −RxDα−1

1 ϕi = −Γ(α)χ[0,xi] +

xα−1i Γ(α). Hence we have

ai,j = −(ψ′j ,
R
xD

α−1
1 ϕi) = −Γ(α)δij/h, (4.15)

where δij is the Kronecker symbol. That is, the matrix A is a multiple of the identity
matrix, which is one distinct feature of the proposed approach. Hence, the resulting
linear system is well conditioned, and A can be used as a preconditioner, if desired.
The matrix R can be accurately computed using quadrature rules.

Likewise, we define the basis function ϕi in Wh by

ϕi = (xi − x)α−1χ[0,xi] − xi(1− x)α−1 with i = 1, 2, ..,m− 1.

By (ϕi, x
1−α) = 0, ϕi ∈Wh, and thus (4.15) holds also in the Caputo case.
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5. An enriched FEM in the Riemann-Liouville case. By Theorem 4.7, in
the Riemann-Liouville case the FEM can only converge slowly, due to the presence of
the singular term xα−1. Now we discuss how to improve the convergence, using an
idea first introduced in [4] for the Poisson equation on an L-shaped domain, and then
extended to FBVPs in [15]. Below we only sketch the technique and state the result,
since the proofs are analogous to [15].

This technique is to split the solution u to problem (1.1) into a regular part ur

and a singular part involving xα−1 (with us = xα−1 − x2):

u(x) = ur + µus.

We shall assume 0I
α
x (b(us)′ + qus)(1) 6= −1. Otherwise, we may replace the choice

x2 by any other function v in the space H̃s
L(D), s ≥ 2, with v(1) = 1, such that

0I
α
x (b(xα−1 − v)′ + q(xα−1 − v))(1) 6= −1. Then the regular part ur is given by

ur = −0I
α
x (f − bu′ − qu) + (0I

α
x (f − bu′ − qu))(1)x2, (5.1)

and the singularity strength µ is given by µ = c0 (0I
α
x (f − b(ur)′ − qur)) (1), where

c0 = 1/(1 + 0I
α
x (b(us)′ + qus)(1)). The regular part ur satisfies

−R0Dα
x u

r + b(ur)′ + qur + (0I
α
x (b(ur)′ + qur)) (1)Q = f̃ in D,

with ur(0) = ur(1) = 0, where the functions Q and f̃ are defined by Q = c0
R
0D

α
x u

s −
c0b(u

s)′ − c0qus ∈ L2(D) and f̃ = f + c0 (0I
α
x f) (1)(R0D

α
x u

s − b(us)′ − qus) ∈ L2(D),
respectively. Now we introduce a bilinear form Ar(·, ·) : U × V → R by

Ar(u, ϕ) = a(u, ϕ) + b(u, ϕ),

with b(u, ϕ) = (bu′+qu, ϕ)+ 0I
α
x (bu′+qu)(1)(Q,ϕ). Then the variational formulation

of the regular part ur is to find ur ∈ U such that

Ar(u
r, ϕ) = (f̃ , ϕ) ∀ϕ ∈ V. (5.2)

The following assumption on Ar(·, ·) is analogous to Assumption 3.1.
Assumption 5.1. Let the bilinear form Ar(·, ·) : U × V → R satisfy
(a) The problem of finding u ∈ U such that Ar(u, ϕ) = 0 for all ϕ ∈ V has only

the trivial solution u ≡ 0.
(a∗) The problem of finding ϕ ∈ V such that Ar(u, ϕ) = 0 for all u ∈ U has only

the trivial solution ϕ ≡ 0.
Under Assumption 5.1, problem (5.2) is stable and has extra regularity pickup.

Theorem 5.1. Let Assumption 5.1 hold, b, q ∈ H̃γ(D)∩L∞(D) and f ∈ H̃γ
L(D)

with γ > α − 3/2. Then there exists a unique solution ur ∈ H2α−2+β(D) ∩ H̃1(D),
β ∈ [2− α, 1/2), to problem (5.2) and further, it satisfies

‖ur‖H2α−2+β(D) ≤ c‖f‖H̃γL(D).

Proof. The proof of the stability is similar to that in Section 3.1. The regularity
estimate follows from the representation (5.1) and Theorem 3.3.

Now we consider the discrete problem: find urh ∈ Uh such that

Ar(u
r
h, ϕh) = (f̃ , ϕh) ∀ϕh ∈ Vh. (5.3)
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Then we reconstruct uh by

uh = urh + µhu
s with µh = c0 (0I

α
x (f − burh′ − qurh)) (1). (5.4)

Last, we state error estimates of the approximation uh.
Theorem 5.2. Let Assumption 5.1 hold, b ∈ W 1,∞(D), q ∈ H1(D) ∩ L∞(D)

and f ∈ H̃γ
L(D), γ > α − 3/2. Then there exists an h0 such that for all h ≤ h0, the

solution uh to problem (5.3)-(5.4) satisfies for any β ∈ (2− α, 1/2),

‖u− uh‖L2(D) + h‖u− uh‖U ≤ chmin(2α−2+β,2)‖f‖H̃γL(D).

6. Numerical results and discussions. Now we present numerical experi-
ments to verify the convergence theory, and consider the following three examples:

(a) The source term f = x ∈ H̃s
L(D), s ∈ (1, 3/2).

(b) The source term f = 1 ∈ H̃s
L(D), s ∈ (0, 1/2).

(c) The source term f = x−1/4 ∈ H̃s
L(D), s ∈ (0, 1/4).

The numerical results are computed on a uniform mesh with a mesh size h = 1/m,
m ∈ N. All the numerical experiments are performed on a personal computer with
MATLAB 2014a. In the case of q, b ≡ 0, the exact solution is available in closed form,
cf. (3.1) and (3.9). In general, the analytic solution is not available, and a reference
solution is computed on a much finer mesh with a mesh size h = 1/5000.

6.1. Numerical results for example (a). The numerical results for case (a)
with b, q ≡ 0 are given in Tables 6.1 and 6.2 for the Riemann-Liouville and Caputo
derivative, respectively. The notation rate in the tables refers to empirical conver-
gence rate, and the numbers in the bracket denote the theoretical predictions from Sec-
tion 4. The empirical rates agree well with the theoretical ones for all three fractional
orders. As the order α increases, the convergence rate in the L2(D) and H̃1(D)-norm
improves accordingly. In the Riemann-Liouville case, despite the smoothness of the
source term f , the solution regularity is limited, due to the presence of the singularity
xα−1. These observations remain valid for the Caputo derivative, but the convergence
rates are higher. The estimates in Section 4 are sharp for both derivatives. Further,
we have the following interesting observation: for i = 1, 2, ...,m− 1

Γ(α)u(xi) = (u′, RxD
α−1
1 ψi) = −(f, ψi) = (u′h,

R
xD

α−1
1 ψi) = Γ(α)uh(xi).

That is, the solution uh coincides with the P1 Lagrange interpolation of u. This
partly implies optimality of the convergence rates in Section 4. The presence of a
smooth b and q does not affect the convergence rates, cf. Tables 6.3 and 6.4.

One distinct feature of the proposed approach is that the stiffness matrix for
the leading term is diagonal, and the resulting linear system is well conditioned. To
illustrate this, we give in Table 6.5 the condition numbers of the stiffness matrix for
α = 1.55, 1.75 and 1.95. It is observed that for either derivative, it is fairly small
for the whole range of fractional orders, and independent of the mesh size h. These
results fully confirm the observations in Section 4.4.

6.2. Numerical results for example (b). Here the source term f is smooth
but does not satisfy the zero boundary condition. In the Riemann-Liouville case, the
L2(D) and H1(D) errors are respectively of order O(hα−1/2) and O(hα−3/2), while
in the Caputo case, an O(h) and O(h2) rate is observed for L2(D) and H1(D) errors,
respectively, cf. Tables 6.6 and 6.7, which fully confirm our convergence theory.
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Table 6.1: Numerical results for example (a) with a Riemann-Liouville derivative and
b, q = 0, α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 3.10e-3 1.39e-3 6.42e-4 2.99e-4 1.39e-4 6.47e-5 ≈ 1.10 (1.10)

H1 1.67e-1 1.50e-1 1.35e-1 1.21e-1 1.07e-1 9.33e-2 ≈ 0.17 (0.10)
1.75 L2 1.25e-3 4.62e-4 1.84e-4 7.55e-5 3.15e-5 1.32e-5 ≈ 1.27 (1.25)

H1 5.03e-2 3.89e-2 3.14e-2 2.57e-2 2.10e-2 1.70e-2 ≈ 0.29 (0.25)
1.9 L2 6.40e-4 1.72e-4 4.92e-5 1.53e-5 5.14e-6 1.83e-6 ≈ 1.53 (1.40)

H1 2.08e-2 1.15e-2 6.81e-3 4.38e-3 3.01e-3 2.14e-3 ≈ 0.50 (0.40)

Table 6.2: Numerical results for example (a) with a Caputo derivative and b, q = 0,
α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 6.88e-4 1.72e-4 4.30e-5 1.08e-5 2.69e-6 6.71e-7 ≈ 2.00 (2.00)

H1 2.18e-2 1.09e-2 5.45e-3 2.72e-3 1.33e-3 6.47e-4 ≈ 1.02 (1.00)
1.75 L2 6.28e-4 1.57e-4 3.93e-5 9.81e-6 2.45e-6 6.12e-7 ≈ 2.00 (2.00)

H1 1.99e-2 9.93e-3 4.97e-3 2.48e-3 1.22e-3 5.90e-4 ≈ 1.02 (1.00)
1.9 L2 5.67e-4 1.42e-4 3.54e-5 8.86e-6 2.21e-6 5.53e-7 ≈ 2.00 (2.00)

H1 1.79e-2 8.97e-3 4.48e-3 2.24e-3 1.10e-3 5.33e-4 ≈ 1.02 (1.00)

Table 6.3: Numerical results for example (a) with a Riemann-Liouville derivative and
b = ex, q = x(1− x), α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 2.67e-3 9.41e-4 3.89e-4 1.74e-4 8.01e-5 3.69e-5 ≈ 1.13 (1.10)

H1 1.22e-1 9.14e-2 7.93e-2 6.65e-2 5.81e-2 5.00e-2 ≈ 0.20 (0.10)
1.75 L2 1.23e-3 3.69e-4 1.28e-4 4.92e-5 2.00e-5 8.29e-6 ≈ 1.29 (1.25)

H1 5.25e-2 3.18e-2 2.18e-2 1.65e-2 1.31e-2 1.04e-2 ≈ 0.33 (0.25)
1.9 L2 7.49e-4 1.92e-4 5.05e-5 1.40e-5 4.20e-6 1.37e-6 ≈ 1.66 (1.40)

H1 3.02e-2 1.55e-2 8.10e-3 4.44e-3 2.61e-3 1.65e-3 ≈ 0.70 (0.40)

Table 6.4: Numerical results for example (a) with a Caputo derivative and b = ex,
q = x(1− x), α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 1.91e-3 4.92e-4 1.25e-4 3.18e-5 8.03e-6 2.01e-6 ≈ 1.99 (2.00)

H1 7.12e-2 3.59e-2 1.80e-2 9.00e-3 4.50e-3 2.12e-3 ≈ 1.03 (1.00)
1.75 L2 1.03e-3 2.59e-4 6.49e-5 1.62e-5 4.06e-6 1.01e-6 ≈ 2.00 (2.00)

H1 4.18e-2 2.10e-2 1.05e-2 5.27e-3 2.63e-3 1.24e-3 ≈ 1.00 (1.00)
1.9 L2 7.22e-4 1.81e-4 4.53e-5 1.13e-5 2.83e-6 7.04e-7 ≈ 2.00 (2.00)

H1 2.88e-2 1.45e-2 7.25e-3 3.62e-3 1.81e-3 8.52e-4 ≈ 1.02 (1.00)

6.3. Numerical results for example (c). Note that the source term f(x) =

x−1/4 ∈ H̃s(D) with s ∈ [0, 1/4). Hence, in the Caputo case with α < 1.75, the
solution u fails to be in H2(D), which deteriorates the convergence rate. The H1(D)
and L2(D)-errors are of order O(h0.85) and O(h1.85) in case of α = 1.6, while for
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Table 6.5: The condition number of the linear system for b(x) = ex, q(x) = x(1− x),
α = 1.55, 1.75 and 1.95, h = 1/m.

Deriv. type α\m 20 40 80 160 320 640 1280
1.55 2.98 3.48 4.26 4.30 4.57 4.84 5.00

R-L 1.75 2.06 2.22 2.33 2.40 2.45 2.48 2.50
1.95 1.63 1.68 1.71 1.73 1.74 1.74 1.75
1.55 2.75 3.20 3.57 3.89 4.16 4.39 4.60

Caputo 1.75 2.02 2.17 2.27 2.34 2.39 2.42 2.44
1.95 1.63 1.68 1.71 1.73 1.73 1.74 1.74

Table 6.6: Numerical results for example (b) with a Riemann-Liouville derivative and
b = ex, q = x(1− x), α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 6.87e-3 2.89e-3 1.28e-3 5.78e-4 2.65e-4 1.22e-4 ≈ 1.12 (1.10)

H1 3.28e-1 2.79e-1 2.46e-1 2.17e-1 1.90e-1 1.63e-1 ≈ 0.20 (0.10)
1.75 L2 2.93e-3 1.05e-3 4.04e-4 1.62e-4 6.65e-5 2.76e-5 ≈ 1.28 (1.25)

H1 1.17e-1 8.47e-2 6.59e-2 5.29e-2 4.28e-2 3.42e-2 ≈ 0.31 (0.25)
1.9 L2 1.37e-3 3.82e-4 1.12e-4 3.54e-5 1.19e-5 4.23e-6 ≈ 1.53 (1.40)

H1 5.16e-2 2.84e-2 1.66e-2 1.04e-2 7.02e-3 4.91e-3 ≈ 0.54 (0.40)

Table 6.7: Numerical results for example (b) with a Caputo derivative and b = ex,
q = x(1− x), α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 1.86e-3 4.72e-4 1.19e-4 3.00e-5 7.54e-6 1.88e-6 ≈ 2.00 (2.00)

H1 7.89e-2 3.98e-2 2.00e-2 1.00e-2 5.00e-3 2.35e-3 ≈ 1.03 (1.00)
1.75 L2 1.28e-3 3.22e-4 8.03e-5 2.01e-5 5.01e-6 1.25e-6 ≈ 2.00 (2.00)

H1 5.38e-2 2.71e-2 1.35e-2 6.78e-3 3.39e-3 1.59e-3 ≈ 1.03 (1.00)
1.9 L2 1.07e-3 2.68e-4 6.71e-5 1.68e-5 4.19e-6 1.04e-6 ≈ 2.00 (2.00)

H1 4.20e-2 2.11e-2 1.05e-2 5.28e-3 2.64e-3 1.24e-3 ≈ 1.04 (1.00)

α = 1.75 and 1.9, an O(h) and O(h2) rate of the H1(D) and L2(D)-errors is observed,
cf. Table 6.9, confirming theoretical predictions. In the Riemann-Liouville case, the
desired optimal but slow convergence behavior is observed, cf. Table 6.8.

Table 6.8: Numerical results for example (c) with the Riemann-Liouville derivative
and b = ex, q = x(1− x), α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 1.07-2 4.61e-3 2.04e-3 9.18e-4 4.18e-4 1.91e-4 ≈ 1.13 (1.10)

H1 5.03e-1 4.38e-1 3.87e-1 3.42e-1 2.99e-1 2.57e-1 ≈ 0.20 (0.10)
1.75 L2 4.62e-3 1.71e-3 6.60e-4 2.63e-4 1.07e-4 4.40e-5 ≈ 1.30 (1.25)

H1 1.76e-1 1.33e-1 1.05e-1 8.47e-2 6.83e-2 5.44e-2 ≈ 0.32 (0.25)
1.9 L2 2.02e-3 5.93e-4 1.82e-4 5.87e-5 1.99e-5 6.99e-6 ≈ 1.53 (1.40)

H1 7.05e-2 4.12e-2 2.54e-2 1.66e-2 1.14e-2 7.97e-3 ≈ 0.52 (0.40)
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Table 6.9: Numerical results for example (c) with a Caputo derivative and b = ex,
q = x(1− x), α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 1.84e-3 4.92e-4 1.31e-4 3.51e-5 9.46e-6 2.56e-6 ≈ 1.89 (1.85)

H1 7.47e-2 3.87e-2 2.01e-2 1.05e-2 5.54e-3 2.82e-3 ≈ 0.94 (0.85)
1.75 L2 1.56e-3 4.05e-4 1.05e-4 2.72e-5 7.04e-6 1.81e-6 ≈ 1.97 (2.00)

H1 5.92e-2 3.04e-2 1.56e-2 7.99e-3 4.09e-3 1.98e-3 ≈ 0.99 (1.00)
1.9 L2 1.39e-3 3.54e-4 8.99e-5 2.28e-5 5.74e-6 1.44e-6 ≈ 1.99 (2.00)

H1 5.02e-2 2.55e-2 1.29e-2 6.49e-3 3.27e-3 1.55e-3 ≈ 1.03 (1.00)

Table 6.10: Numerical results for ur for example (b) with a Riemann-Liouville deriva-
tive, by the enriched FEM and b = 1, q = x(1− x), α = 1.6, 1.75, 1.9, h = 1/m.

α m 10 20 40 80 160 320 rate
1.6 L2 5.51e-4 1.40e-4 3.66e-5 1.01e-5 9.18e-6 2.87e-6 ≈ 1.74 (1.70)

H1 2.04e-2 1.05e-2 5.50e-3 2.99e-3 1.70e-3 1.01e-3 ≈ 0.78 (0.70)
1.75 L2 3.86e-4 9.84e-5 2.52e-5 6.46e-6 1.66e-6 4.30e-7 ≈ 1.96 (2.00)

H1 1.38e-2 6.98e-3 3.55e-3 1.79e-3 9.04e-4 4.51e-4 ≈ 1.02 (1.00)
1.9 L2 3.00e-4 7.52e-5 1.88e-5 4.71e-6 1.18e-6 2.94e-7 ≈ 2.00 (2.00)

H1 1.04e-2 5.21e-3 2.61e-3 1.29e-3 6.33e-4 3.06e-4 ≈ 1.03 (1.00)

Table 6.11: |µ − µh| for example (b) with a Riemann-Liouville derivative, by the
enriched FEM, and b = 1, q = x(1− x), α = 1.6, 1.75, 1.9, h = 1/m.

α 10 20 40 80 160 320 rate
1.6 4.04e-4 1.00e-4 2.44e-5 5.88e-6 1.41e-6 3.37e-7 ≈ 2.07 (1.70)
1.75 1.59e-4 3.90e-5 9.54e-6 2.34e-6 5.74e-7 1.41e-7 ≈ 2.02 (2.00)
1.9 8.58e-5 2.14e-5 5.36e-6 1.34e-6 3.34e-7 8.33e-8 ≈ 2.00 (2.00)

6.4. Numerical results for the enriched FEM. In Table 6.10, we present
the L2(D) and H1(D) norms of the error in approximating the regular part ur for

example (b). Since f ∈ H̃s(D) with s ∈ [0, 1/2), by Theorem 5.1, ur ∈ H2(D) in case
of α > 1.75. The numerical results show a convergence rate of O(h2) and O(h) for the
L2(D) and H1(D)-norms of the error, respectively, for α = 1.75 and 1.9. For α = 1.6,
the regular part ur lies in H1.2+β(D) with β ∈ [2 − α, 1/2) by Theorem 5.1, and we
observe a convergence rate O(h1.7) and O(h0.7), respectively, in L2(D) and H1(D)-
norm, which fully confirms Theorem 5.2. The error |µ − µh| of the reconstructed
singular strength µh achieves an O(h2) convergence, even for α = 1.6, cf. Table 6.11.

7. Conclusions. In this work, we have developed novel variational formulations
for fractional BVPs involving a convection term. The fractional derivative in the
leading term is of either Riemann-Liouville or Caputo type. The well-posedness and
sharp regularity pickup of the formulations are established. A new finite element
method, using continuous piecewise linear finite elements and “shifted” fractional
powers for the trial and test space, respectively, was also developed. It leads to
a diagonal stiffness matrix for the leading term (on a uniform mesh), and admits
optimal L2(D) and H1(D) error estimates, which is the first FEM with such desirable
properties. Further, an enriched FEM was proposed to improve the convergence in
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the Riemann-Liouville case, and optimal error estimates were provided. Extensive
numerical experiments fully confirm the convergence analysis.

There are several avenues for further research. First, it is of immense interest to
extend the approach to higher dimensions. This extension is formally feasible for the
Riemann-Liouville case. However, their solution theory, e.g., well-posedness and sharp
regularity pickup, is missing. Second, it is also of much interest to extend the approach
to other type or inhomogeneous boundary conditions, which may induce much graver
solution singularity. Third, the adaptation of the approach to the time-dependent
problems, including the space-time fractional model, is important. Especially, it may
allow one to derive optimal L2(Ω) error estimates.
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