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a b s t r a c t

This paper introduces a novel method for inferring spatially varying regularisation in non-linear registration.

This is achieved through full Bayesian inference on a probabilistic registration model, where the prior on the

transformation parameters is parameterised as a weighted mixture of spatially localised components. Such

an approach has the advantage of allowing the registration to be more flexibly driven by the data than a

traditional globally defined regularisation penalty, such as bending energy. The proposed method adaptively

determines the influence of the prior in a local region. The strength of the prior may be reduced in areas

where the data better support deformations, or can enforce a stronger constraint in less informative areas.

Consequently, the use of such a spatially adaptive prior may reduce unwanted impacts of regularisation on the

inferred transformation. This is especially important for applications where the deformation field itself is of

interest, such as tensor based morphometry. The proposed approach is demonstrated using synthetic images,

and with application to tensor based morphometry analysis of subjects with Alzheimer’s disease and healthy

controls. The results indicate that using the proposed spatially adaptive prior leads to sparser deformations,

which provide better localisation of regional volume change. Additionally, the proposed regularisation model

leads to more data driven and localised maps of registration uncertainty. This paper also demonstrates for

the first time the use of Bayesian model comparison for selecting different types of regularisation.

© 2015 The Authors. Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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. Introduction

Non-linear image registration is a fundamental tool in medical im-

ge analysis with a great many applications (Sotiras et al., 2013). One

idely explored application of non-linear registration is the analy-

is of human brain morphology from structural magnetic resonance

MR) images. In this context, non-linear image registration has been

sed to accurately quantify localised cross-sectional differences be-
� Data used in preparation of this article were obtained from the Alzheimers Disease

euroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators

ithin the ADNI contributed to the design and implementation of ADNI and/or pro-

ided data but did not participate in analysis or writing of this report. A complete

isting of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/

ploads/how_to_apply/ADNI_Acknowledgement_List.pdf
∗ Corresponding author at: Centre for Medical Image Computing, University College

ondon, United Kingdom. Tel.: +44 (0) 203 549 5530.

E-mail address: ivor.simpson@gmail.com (I.J.A. Simpson).
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ween populations, such as subjects with Alzheimer’s disease (AD)

ompared to normal ageing. It has also been used to measure lon-

itudinal changes within individuals. Differences in morphology be-

ween populations can be identified using approaches such as ten-

or based morphometry (TBM) (Ashburner and Friston, 2000; Chung

t al., 2001), where statistical analysis is performed on the Jacobian

ensor of deformation fields calculated from registering individual

ubjects to a common space. TBM offers a whole brain approach to

tatistical analysis, and has the potential to extract rich features that

ccurately summarise anatomical differences.

TBM features are wholly defined by the registration process,

hich is complicated by the fact that non-linear registration is an ill-

osed problem. In a typical structural MR image there are more than

ne million voxels in the human brain, where the intensity of a voxel

s a noisy surrogate of tissue type. As such, there is a great deal of

mbiguity in matching intensities, making it implausible for a unique

oxelwise mapping to be determined purely from the image data.
r the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1.1. Regularisation

As no unique mapping can be determined purely from the data,

a “reasonable” mapping between images is sought. This is achieved

through the use of a data matching term and regularisation, which

maximises the similarity of image appearance whilst maintaining

a plausible deformation, i.e. with an appropriate magnitude of dis-

placement and spatial smoothness. Regularisation can be considered

as a prior on the set of expected deformations, which reduces the

space of potential solutions and hence limits the variance of any es-

timated solution. The form of bias induced by the prior is generally

selected based on some physical model of deformation, such as lin-

ear elasticity (Miller et al., 1993) or thin-plate spline bending energy

(Bookstein, 1997).

Regularisation models are commonly described as having the

same effect across the image. However, such models may well be

unreasonable in brain registration for two reasons: Firstly, different

regions of the image contain different amounts of information. Unin-

formative image areas should be strongly influenced by the priors as

they contain little information, whereas feature-rich regions should

be given more freedom. Furthermore, the magnitude of anatomical

mis-correspondence is likely to be variable across space, and some

regions will require more complex deformations than others to allow

an adequate mapping. Therefore, the use of a global spatial regulari-

sation prior may introduce either an unwanted or insufficient bias on

the deformation in certain image regions. This could have substantial

adverse effects on an application, such as TBM, which directly relies

on the interpretability of the deformation field.

1.1.1. Previous approaches to spatially varying regularisation

in registration

There have been several previous works on the use of spatially

varying regularisation in non-linear registration. These include

approaches that vary based on tissues or structures derived from

segmentations (Lester et al., 1999; Davatzikos, 1997; Staring et al.,

2007; Schmah et al., 2013). These approaches are ideal in cases when

an informative deformation prior is known for a specific region or

tissue type, which can be robustly defined. However, in the majority

of registration applications, this is unlikely to be the case.

More data driven approaches have been proposed, which in-

clude anisotropic smoothing of image similarity gradients according

to image information (Hermosillo et al., 2002; Papież et al., 2013).

Alternative approaches include weighting similarity gradients based

on measures of local image reliability (Tang et al., 2010). These ap-

proaches allow the image information to affect the local regularisa-

tion strength, although are still somewhat ad-hoc, being dependent

on the definition of a heuristic weighting between regularisation and

data fidelity.

Inference of geometric deviation from an estimated atlas for use

as a spatial prior is an alternative approach to define regularisa-

tion priors, Allassonniére et al. (2007) proposed a small deforma-

tion Bayesian framework for atlas estimation and registration. Gori

et al. (2013) proposed a Bayesian approach for estimating an atlas and

structure specific regularisation terms for a registration model based

on the metric of currents. A recently published approach by Xu et al.

(2014) propose a method for deriving an average atlas and a spatial

distance metric based on the geometric variability of the atlas. Zhang

et al. (2013) proposed a generative registration model using Geodesic

shooting for atlas and regularisation estimation, this work was ex-

tended to sparsely estimate the principal geodesic modes of varia-

tion (Zhang and Fletcher, 2014). Durrleman et al. (2013) also estimate

sparse parametrisations of variability from an estimated atlas.

Most similarly to this work, Risholm et al. (2010b, 2013) presented

a Bayesian inference scheme that allows linear elastic parameters to

be inferred from the data. These parameters can also vary spatially,
s demonstrated by Risholm et al. (2011b). This approach does not

equire the definition of strong heuristics, although informative

riors are required for the elastic model parameters. The limitations

f the framework lie in the numerical integration inference strategy,

hich comes with vast computational complexity. Modern sampling

echniques may help alleviate this burden (Zhang et al., 2013).

.2. Contribution of this paper

This paper proposes a novel non-linear registration model and

ayesian inference scheme that allows for data-driven spatially vary-

ng regularisation. This approach alleviates the difficulties associated

ith previous attempts at spatially varying regularisation. Firstly, it

s fully data driven, requiring no segmentations or informative priors.

econdly, the trade-off of data fidelity and regularisation is inferred

irectly from the data and finally, inference is tractable.

This work follows from our previous conference paper (Simpson

t al., 2013b), with a second-order inference scheme for the reg-

larisation parameters, a full mathematical derivation and broader

alidation. Additionally, this paper investigates objective Bayesian

odel comparison and the effects of the spatially varying prior on

egistration uncertainty. The proposed framework describes registra-

ion using a hierarchical probabilistic model, with a transformation

rior that is parameterised by a set of hyper-parameters. Each hyper-

arameter influences a spatially localised region of the prior. Through

he use of full Bayesian inference, posterior distributions of hyper-

arameter weights can be inferred alongside the transformation. This

llows the effects of the prior to be locally determined during the

egistration.

This approach is demonstrated through an application of TBM on

ynthetic images, as well as comparing subjects with AD to healthy

ontrols. Our results demonstrate the strength of our approach in

erms of reducing false positive results, which may improve inter-

retability. We also highlight additional benefits of the proposed

ramework including: objective comparison of regularisation models,

nd more reasonable uncertainty estimates of the deformation fields.

. Method

.1. Model

Image registration can be described in a probabilistic manner us-

ng a generative model of the target image, y, which is predicted

y the deformed source image, t(x, w). Here, t is a transformation

odel, x is the source image and w parametrises the transformation.

n this paper, a cubic B-spline free form deformation model (Rueckert

t al., 1999; Andersson et al., 2007) is used for t, with w correspond-

ng to the control point displacement. However, in principle any de-

ormation model could be used.

The generative model also contains an additive noise term, e,

hich describes the error in model fit. In this work, e, is modelled as

ndependently and identically distributed across voxels and follows a

ormal distribution:

≈ N (0, Iφ−1α), (1)

here I is an identity matrix the size of the number of voxels, Nv. φ
orresponds to the noise precision (inverse variance) of the additive

aussian noise under the assumption of being independently dis-

ributed. α corresponds to the virtual decimation factor (Groves et al.,

011), which is a data driven term used to compensate for spatial co-

ariance in the residual, weakening the assumption of independent

oise. The assumption of identically distributed noise could also be

elaxed in this approach as in Simpson et al. (2012a). The full genera-

ive model for registration is therefore given as:

= t(x, w) + e. (2)
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.2. Prior distributions

Prior information is used to constrain the parameters of the model

o plausible values. The noise in model fit, φ, is well defined by the

ata, so an uninformative Gamma distribution prior can be used,

(φ) = Ga(a0, b0), where a0 = 10e10, b0 = 10e−10. As motivated in

ection 1.1, for the problem of non-linear registration an informative

rior on the transformation parameters, p(w), is required to ensure

reasonable result.

.2.1. Priors on transformation parameters

Spatial regularisation for non-linear registration can be encoded

s a prior on the transformation parameters. Commonly such priors

enalise deviation from the identity transformation, functioning as

n elastic type of regularisation. Here, the prior on w is described

sing a multivariate normal distribution:

p(w) = N (0,�). (3)

he mean of the prior is set to 0, representing the identity trans-

ormation. � describes the expected variance, and covariance of the

ransformation parameters. This definition allows the specification of

ighly complex and rich priors. Most commonly, bending or linear

lastic energy priors have been encoded in such a form (Ashburner

nd Friston, 1999). Simpler constraints such as penalising the magni-

ude of the deformation parameters could also be straightforwardly

ncluded.

.2.2. Multiple sparse priors

In this work, the multiple sparse priors (MSP) approach of Friston

t al. (2008) is adopted to allow spatially varying regularisation for

on-linear registration. The MSP model was previously demonstrated

or use in the M/EEG inverse problem. Friston et al. define the prior

ovariance matrix to be a weighted mixture of n covariance compo-

ents: � = ∑n
i exp (λi)�i, where each �i has a pre-defined form,

hich is chosen to have limited spatial support, making �i a spa-

ially localised covariance component. The number and form of these

omponents is optional. λi is a scalar weight associated with each co-

ariance component that is inferred from the data. λi appears within

n exponential to ensure a positivity constraint on the weighting fac-

or for each �i.

As in Friston et al. the prior covariance components, �i, are con-

tructed from columns of a spatial coherence prior, G. Here, G is a

quared exponential Gaussian process (GP) prior (Rasmussen and

illiams, 2006), which can equivalently be considered as the Green’s

unction of a discrete diffusion process (Harrison et al., 2007). The
ig. 1. An illustration of how � is created. The leftmost plot shows the GP covariance mat

llustrates the basis function �i associated with the ith column of G(σ ), where the black circ

llustrates the magnitude of the covariances of the nearby control points. The rightmost plo

omponents leads to the complete spatially varying prior covariance matrix, �. (For interpret

ersion of this article.)
raph encoding the distance between nodes is an adjacency matrix,

, where Ai j = 1 when transformation parameters wi and w j are spa-

ially adjacent, and 0 elsewhere. G can be written as:

(σ ) = exp (σA) ≈
m=4∑
m=0

σ m

m!
Am. (4)

he parameter σ controls the local coherence between adjacent con-

rol points, and takes values between 0 (independence of parame-

ers) and 1 (maximally correlated). This approximation to the Green’s

unction only accounts for 4th order neighbouring control points, as

efined by the maximum value of m, which allows sparse priors, with

ompact spatial support. For non-linear registration, the considera-

ion of 4th order covariance neighbours provides an adequate balance

etween connectedness and sparsity. For a given prior component:

i = qiq
T
i
, where qi corresponds to the ith column in G(σ ).

Each prior component, �i, strongly controls the variance of a con-

rol point displacement, in a given direction, and the covariance with

eighbouring control points, with a weaker influence on these neigh-

ours’ variance. The scale of this component is dictated by the expo-

ential of its control parameter, λi, which is inferred from the data.

ig. 1 illustrates the stages used to create �.

In the present model, there is a univariate normal prior distribu-

ion placed on each λi ∈ {λ} where {λ} = {λ1, λ2, . . . , λNc
} and Nc is

he number of transformation parameters. The prior on λi is written

s:

(λi) = N (η, ρ2). (5)

ue to the exponential parametrisation of λi, this effectively func-

ions as a log-normal hyperprior on the weights of each �i (Friston

t al., 2007). The selection of P(λ) is discussed in Section 2.5, and the

ationale for choosing a normal prior, as opposed to a Gamma distri-

ution, which was used as a prior on a single regularisation parame-

er, is discussed in Section 2.3.1.

.3. Model inference

The generative model and priors defined in the previous sections

escribe a hierarchical probabilistic model that is described graph-

cally in Fig. 2. Bayesian inference is used to infer the unobserved

andom variables in this hierarchical model. Numerical integration

pproaches, such as Markov chain Monte Carlo, are often computa-

ionally prohibitive in problems with many parameters. For this rea-

on, mean-field variational Bayes (VB) (Attias, 2000) was chosen as

he inference strategy. VB allows tractable, approximate full Bayesian
rix G(σ ) as calculated from Eq. (4) on a 12 by 10 control point grid. The middle plot

le indicates the primarily affected control point and the relative size of the red circles

t illustrates how a randomly weighted combination of spatially localised covariance

ation of the references to colour in this figure legend, the reader is referred to the web
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Nv

a0

w
Nc

x

b0

φ

Fig. 2. A graphical description of the probabilistic registration model where the di-

rections of the arrows describe the probabilistic dependencies. Symbols in circles are

random variables, those in squares have fixed values. Grey containers are observations.

Plates correspond to the dimensionality of the variable.
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inference, and has been previously demonstrated for use in high res-

olution non-linear registration (Simpson et al., 2012b).

VB approximates the posterior distribution of model parameters

using parametric distributions. In this work, mean-field VB is used,

hence the posterior distribution on the model parameters is approxi-

mated as:

p(w, φ, λ|y) ≈ q(w, φ, {λ}) ≈ q(w)q(φ)
n∏
i

q(λi). (6)

The variational Bayesian cost function is the negative variational

free energy, F , which is a lower bound on the log model evi-

dence (Beal, 2003). As F = log P(y) − KL, where KL is the always

positive Kullback–Leibler distance between the unknown true pos-

terior and our approximate posterior distributions, the maximisa-

tion of F leads to the minimisation of KL. The derivation of F for

this model is given in Appendix A, and a condensed form is given in

Eq. (14).

Typically, the functional forms of the approximate posterior dis-

tributions can be derived algebraically from the model formulation.

In this case:

q(w) = N (μ,ϒ) (7)

q(φ) = Ga(a, b), (8)

where μ is the mean of the posterior distribution on the transforma-

tion parameters, and Y describes the posterior covariance of these

parameters. a and b are the shape and scale parameters of q(φ),

respectively.

Through the calculus of variations, iterative analytic updates can

be found for the parameters of the approximate posterior distribu-

tions q(w) and q(φ). Briefly, the nature of these updates involves find-

ing the zero-derivative of the functional F with respect to a particular

parameter group. As an example, the optimal value of q(w) would be

found conditional on the approximate posterior distribution of the

other model parameters q(φ)
∏

iq(λi).

2.3.1. Regularisation parameters

Unlike the single regularisation hyper-parameter case described

in previous work (Simpson et al., 2012b), where q(λ) can also be

derived as following a Gamma distribution, the spatially localised

hyper-parameters cannot be algebraically determined as following a

particular distribution. This is because λi appears within a matrix in-

verse in F (see Appendix B), which also complicates the marginalisa-

tion of these parameters.

To allow inference, and marginalisation, of these parameters

within a tractable framework, two further approximations are re-

quired. Firstly, the Laplace approximation is used to assume a normal
osterior form for q(λi) = N (λ̂i, σ
2
i
). Secondly, it is assumed that the

rior covariance matrix only depends on the first order moments of

i, which greatly simplifies the marginalisation of q(λi) and the esti-

ation of σ 2
i

. The expectation of the prior covariance matrix, �, can

ow be written as:

�〉∏Nc
i

q(λi)
=

Nc∑
i

exp (λ̂i)�i, (9)

here the angular brackets correspond to an expectation of the en-

ompassed term with respect to the subscript.

.3.2. Inference of transformation and noise parameters

The updates for the transformation and noise parameters are de-

ived in the same way as (Simpson et al., 2012b), taking the expecta-

ion of the prior covariance matrix with respect to
∏

iq(λi) as given

n Eq. (9). As t(x, w) is non-linear with respect to the transformation

arameters, w, a first order Taylor series approximation is used to lo-

ally linearise the function about the current mean estimate. This re-

uires the calculation of the matrix of partial derivatives, J, of t(x, w)

ith respect to w about the current mean μold, Ji j = ∂t(x,w)i
∂w j

|w=μold
.

he transformation mean, μ, and covariance Y are updated by:

= (αφ̄JTJ + �−1)−1 (10)

new = ϒ
[
αφ̄JT(Jμold + k)

]
, (11)

here k is the vector representing the residual image y − t(x, w).

new describes the current estimated transformation parameters,

nd is dependent on the old estimated values, μold. φ̄ = ab, which

s the expectation of the estimated noise precision.

The posterior parameters of q(φ) are updated by:

= b0 + Nvα

2
(12)

1

a
= 1

a0

+ 1

2
α(k

T
k + Trace(ϒJTJ)) (13)

here Nv is the count of voxels within the masked region.

.3.3. Inference of regularisation parameters

A different but consistent inference mechanism is required to in-

er the spatial prior parameters, {λ}, from the data. As described in

ection 2.3.1, the Laplace approximation uses a Taylor series expan-

ion of F to estimate a normal distribution for q(λ). Based on this

pproximation, these parameters can be inferred through Newton’s

ethod updates with respect to the variational Bayesian cost func-

ion, F . Given the mean-field approximation in Eq. (6), and the re-

ulting F described in Appendix A, the optimistion of {λ} purely in-

olves terms from the minimisation of the Kullback–Liebler distance

etween the prior and posterior distributions of w, as {λ} is a com-

onent of the prior on w (see Eq. (9)), and the prior and posterior of

i. The terms from F that contain {λ̂}, or �, are:

= 1

2

(
− log |�| − Trace(ϒ�−1) − μ�−1μ − 1

ρ2

∑
i

(λ̂i − η)2

)

+ const[{λ̂},�], (14)

here const[{λ̂},�] contains all terms that are constant with {λ̂}
nd �.

The derivation of the 1st and 2nd order partial derivatives of

q. (14) are given in full in Appendix B. The derivative of F with re-

pect to the mean of each local regularisation control parameter, λ̂ ,
i
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an be expressed as:

∂F
∂λ̂i

= 1

2

[
−Trace

(
ϒ

∂�−1

∂λ̂i

)
+ Trace

(
�

∂�−1

∂λ̂i

)
− μT ∂�−1

∂λ̂i

μ

]

− λ̂i − η

ρ2
(15)

here

∂�−1

∂λ̂i

= −�−1 exp (λ̂i)�i�
−1 (16)

The second partial derivative, taking advantage of the approxima-

ion that ∂2�

∂λ̂2
= 0, is simply written as:

∂2F
∂λ̂2

i

= Trace

(
exp (λ̂i)�i

∂�−1

∂λ̂i

− 1

ρ

)
. (17)

As such, q(λi) can be updated according to the derivatives in Eqs.

15) and (17), where

1

σ 2
i

= −∂2F
∂λ2

i

, (18)

nd the posterior mean λ̂ is updated by:

ˆ = λ̂ + ∂F
∂λi

σ 2
i . (19)

.4. Model comparison

The negative variational free energy, F , is an objective means for

llowing comparison of models without requiring ground truth, or

old standard information. F summarises the fit of the data, and the

eviation of the model parameters from their prior distributions. Un-

ike the Bayesian information criteria, F only penalises model param-

ters that deviate from the prior, and the cost of a parameter that

etains the same distribution as the prior is zero. In the case of the

roposed model, this means that the complexity of having additional

parameters that only take the prior distribution, have no additional

ost.

Although F has been previously used for model comparison in

he medical image analysis domain (Groves et al., 2009; Penny et al.,

005; Friston et al., 2008), to the best of the authors’ knowledge it has

ever been used in medical image registration. However, previous at-

empts at probabilistic model selection have appeared using the min-

mum description length in Van Leemput (2009) and Marsland et al.

2008) and information theoretic model selection approaches include

chnabel et al. (2001), Rohde et al. (2003) and Hansen et al. (2008).

.5. Selection of p(λ)

The prior on the regularisation control parameters, p(λ), has an

mportant effect. If there is little information from the data to suggest

value for these parameters, then they will tend to take the values of

he prior. As described previously, p(λ) = N (η, ρ). As our interests lie

n a more interpretable formulation of registration, we therefore only

ish to see deformations that are reliably driven by the data. As such,

low value for η would be preferable, such that in the absence of

nformation to suggest otherwise, transformation parameters would

end towards the identity transformation. Conversely, we want the

alue of λ to be strongly driven by the data, hence, we choose a large

alue for ρ . The influence of p(λ) can be thought of as selecting the

rior probability of different scales of deformations being allowable.

n this work a weakly informative prior is chosen, where η = −6 and

= 40.
.6. Implementation and initialisations

This algorithm was implemented within the FMRIB Non-linear

mage Registration Tool (FNIRT) (Andersson et al., 2007), which

rovides the facility for efficient calculation of the Hessian of the

ransformation parameters, JT J. The algorithm uses a 3 level multi-

esolution scheme where the image is down-sampled, initially by a

actor of 4, then 2, then full-resolution. The B-spline knots are super-

ampled through interpolation at each new level to yield a higher res-

lution grid. The final spacing is given in the experimental descrip-

ion. The original regularisation model is bending energy, described

s an inverse covariance matrix, the scale of which is either adaptively

nferred, as in Simpson et al. (2012b), or manually selected.

In terms of initialisation, at the first multi-resolution level, {λ̂} are

et to give an initial control point variance of 2 mm. The first three

pdates at the first level perform a global scaling of the initial prior

atrix. Subsequent iterations treat each λ independently.

Between multi-resolution levels, {λ̂} is interpolated using tri-

inear interpolation. A maximum of 20 iterations was run for each

ulti-resolution level, with convergence defined by: k
T

k + μ�−1μ,

hich is the sum of squared differences plus the deviation of the

ransformation mean, from the prior instead of F for computational

onvenience.

. Synthetic experiments

Synthetic 2D images were created to demonstrate the effects of

his algorithm, see top row of Fig. 3. 10 instances of two 2D phantom

mages, 30 × 30 pixels, were created with varying SNR. As reference

mage, a circle with a radius of 10 pixels, and a floating image, which

s two pixels thinner on one side. An ideal transformation that links

hese two images should be spatially localised to the area of shrink-

ge and have very high confidence in the transformation parameters

t all other locations.

.1. Visualisation of uncertainty

The distributions of the posterior transformation parameters q(w)
nd of the transformation prior p(w) are multivariate normal. In or-

er to display the uncertainty of the posterior, or the support of

he prior, in this work the sum of the variance in each direction is

ummed and the result is square rooted to give an uncertainty value

n pixels/mm. This is approximated as the variance at each of the knot

oints and interpolated over the image using the B-spline basis set.

.2. Example registration

An example set of images and registration results at two SNRs

s given in Fig. 3. The log Jacobian maps show that when using the

roposed prior the deformation is well localised to the region of

hange, as opposed to using an adaptive bending energy prior as

n Simpson et al. (2012b), where the deformation propagates across

he entire circle, despite there being no local image information to

upport this. The reason for this localisation is that the spatial prior

nly supports deformation within certain areas. Consequently, this

rovides a more interpretable estimation of registration uncertainty,

here the uncertain regions are only in the areas of change rather

han across the image.

.3. Model comparison

Bayesian model selection can be used to objectively choose model

arameters that cannot be inferred directly from the data. Here, we

nvestigate the effects of the number of transformation parameters,

n terms of B-spline knot spacing, as well as the form of the spatial

rior on F at two SNRs. This is plotted in Fig. 4. For both SNRs,

sing the proposed prior leads to an improvement in F over bending
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Fig. 3. Illustrative simulated registration examples. The results were calculated using a B-spline knot spacing of 5 pixels, for the proposed prior σ = 0.1. These parameters values

were chosen as they provide relatively good results at both SNRs in terms of F, see Fig. 4. The top row shows the synthetic reference and floating image at two signal to noise ratios

(SNRs). The second row shows the resulting log Jacobian map, illustrating expansion or contraction, when using the proposed prior or an adaptive level of bending energy. The

third row illustrates the standard deviation of the proposed spatial prior, which is well localised to the region of deformation. The final row shows the uncertainty of the posterior

distribution of transformation parameters using either the proposed prior or bending energy.
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4 pixels 5 pixels 6 pixels 7 pixels

Model Regularisation and Resolution

−1900

−1850

−1800

−1750
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F
Model Comparison on Simulated Images at SNR 40.0

4 pixels 5 pixels 6 pixels 7 pixels

Model Regularisation and Resolution

−2150

−2100

−2050

−2000

−1950

−1900

F

Model Comparison on Simulated Images at SNR 10.0

Bending Energy

Global σ=0.2

Proposed σ=0.05

Proposed σ=0.1

Proposed σ=0.15

Fig. 4. Bayesian model comparison, using the negative variational free energy F, comparing regularisation strategy and B-spline knot spacing using simulated images. The legend

describes the regularisation strategy, where σ is the parameter of the GP prior in Eq. (4). Global refers to the use of a global weight for the GP prior.
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nergy and a global version of the Gaussian process prior henceforth

P prior, where σ = 0.2 is shown as it gave the best average values

or F , despite the increased number of parameters. The exception

o this is where a 4 pixel B-spline knot spacing resolution was used

ith low SNR data, where bending energy fares slightly better.

nterestingly, a slightly higher value of σ is preferable at lower SNR,

hich leads to greater spatial covariance in the prior. A 5 pixel knot

pacing seems to provide the best balance of complexity and data

tting at both SNRs for this example.

. Real data experiments

.1. Materials

Data used in the preparation of this article were obtained from the

lzheimers Disease Neuroimaging Initiative (ADNI) database (adni.

oni.usc.edu). The ADNI was launched in 2003 by the National Insti-

ute on Ageing (NIA), the National Institute of Biomedical Imaging

nd Bioengineering (NIBIB), the FDA, private pharmaceutical compa-

ies and non-profit organisations, as a $60 million, 5-year public-

rivate partnership. The primary goal of ADNI has been to test

hether serial MRI, positron emission tomography (PET), other bio-

ogical markers, and clinical and neuropsychological assessment can

e combined to measure the progression of mild cognitive impair-

ent (MCI) and early Alzheimers disease (AD). Determination of sen-

itive and specific markers of very early AD progression is intended to

id researchers and clinicians to develop new treatments and monitor

heir effectiveness, as well as lessen the time and cost of clinical tri-

ls. ADNI is the result of efforts of many coinvestigators from a broad

ange of academic institutions and private corporations, and subjects

ave been recruited from over 50 sites across the U.S. and Canada.

60 structural MR images acquired on 3 T scanners were taken from

he ADNI database, 30 of these subjects suffered from AD, the other

0 are healthy controls (HC). There were 18 males with AD and 12

ale HC. The age means and standard deviations were 74.3 (8.4) for

D and 70.1 (13.95) for HC. The AD subjects were taken from 10 dif-

erent sites and the HC from 7.

.2. Cross sectional TBM

A single high-resolution representative atlas was constructed

or use in the tensor based morphometry experiments. Having a

ommon atlas allows direct comparison of the TBM results from
he different regularisation approaches. To prevent bias towards a

articular regularisation strategy, an entirely different approach was

sed to create the atlas. The atlas was created by first probabilisti-

ally segmenting the images into grey and white matter, followed

y co-registering these probability maps into a common space using

he geodesic shooting approach (Ashburner and Friston, 2011) within

PM12 beta. The bias corrected images were then resampled into the

tlas space and averaged to create the atlas.

Each of the bias field corrected subject images was rigidly regis-

ered to the template image using FLIRT (Jenkinson and Smith, 2001).

ubsequently, each image was non-linearly registered to the atlas

pace using one of six regularisation strategies: a fixed level of bend-

ng energy (Andersson et al., 2007), a globally adaptive level of bend-

ng energy, where the level is inferred from the data as in Simpson

t al. (2012b), a global GP prior and the proposed prior where σ =
0.05, 0.1, 0.15}. All registrations were run to a 10 mm B-spline knot

pacing. 10 mm was selected for computational reasons, as the cur-

ent implementation does not provide an efficient mechanism for the

nversion of sparse matrices. Following registration, the logarithm of

he voxelwise determinant of the Jacobian of the mean transforma-

ion, μ, is calculated. This provides a measure of local expansion or

ontraction.

For the proposed method, p(λ) = N ( − 6, 40). For the proposed

odel σ was selected to be 0.1 based on the model comparison de-

cribed in Section 4.2.1. For the global GP prior, different σ values

ere tested, but σ = 0.1 gave the highest score in terms of F so is

resented in all experiments. Two example registrations are given in

igs. 5 and 6.

.2.1. Model comparison

Model comparison can be used to find the ideal value of σ . In this

ase we compared the F for an adaptive level of bending energy, a

lobal GP prior with σ = 0.1, and the proposed prior with σ = 0.05,

= 0.1 and σ = 0.15. The results of this model comparison are il-

ustrated in Fig. 7. σ = 0.1 was chosen for illustration as it generally

utperformed σ = 0.15 and adaptive bending energy, with less vari-

bility than σ = 0.05.

.2.2. Jacobian analysis

The distinction between the proposed prior, and a global prior

an be seen in terms of the distribution of local volume change as

iven by the log Jacobian, an example histogram of which is given in

http://adni.loni.usc.edu
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Fig. 5. An example slice illustrating a 3D registration where the substantial volume changes are quite sparsely distributed. In this case, the three methods produce quite different

log Jacobian maps. The adaptive global bending energy infers an inflexible transformation prior, as insufficient information globally suggests more flexibility is needed. The fixed

level of bending energy produces a lot of changes across the brain, the causes of some are not immediately apparent from visual inspection of the data. The global GP prior which

does not encourage particularly strong spatial smoothness performs similarly. Conversely, using the proposed prior leads to a sparser set of volume changes that subjectively seem

more reasonable, and contain less false positives.

s

m

h

F

t

Fig. 8. The proposed prior prohibits much displacement in uninfor-

mative regions, thus leads to large regions of no volume change. Fur-

thermore, in informative regions the registration is free to follow the

data completely leading to more substantial volume changes, which

are seen in the tails of the distributions. This emphasises the well
upported signal from the data, and reduces other effects. This can be

easured using the kurtosis of the log Jacobian distribution, where

igher kurtosis implies a more peaked distribution, with heavier tails.

ig. 9 shows a boxplot of the kurtosis of the log Jacobian maps across

he population.
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Fig. 6. An example slice illustrating a 3D registration where there are changes distributed across the whole brain. As can be seen, all four methods produce similar log Jacobian

maps. The proposed spatial prior shows fairly wide flexibility across the image with more flexibility in the anterior, as there are more substantial changes there. This illustrates

that the proposed prior is appropriate even in cases where the changes are widely distributed. The spatial uncertainty is much lower and more focal than when using either of the

adaptive global priors.
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.2.3. Population statistics

The log Jacobian maps were analysed using a general linear model,

here statistical differences were evaluated between subject groups.

he Jacobian maps were not smoothed prior to analysis. All the anal-

ses were performed using tools from the FSL library.1 Age and total

ntracranial volume (TIV), as estimated by combining the white mat-

er, grey matter and CSF maps from SPM, were used as co-regressors.

ig. 10 shows the results of these statistical analyses.
1 www.fmrib.ox.ac.uk/fsl/ .

b

p

i

. Discussion

This paper has demonstrated that a spatially adaptive transfor-

ation prior can be estimated alongside the non-linear registration

arameters from a pair of images. The current framework was

mplemented using a B-spline FFD transformation model but the

ethod itself is independent of the transformation model. The

nferred spatial prior aims to reduce the Kullback–Leibler distance

etween the prior and posterior distributions of the transformation

arameters and consequently derives information from the data

n terms of the level of local image information, and areas where

http://www.fmrib.ox.ac.uk/fsl/
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Adaptive Bending Global σ = 0.1 Proposed σ = 0.05 Proposed σ = 0.1 Proposed σ = 0.15

−150000

−100000

−50000
F

Fig. 7. Bayesian model comparison of the different regularisation strategies for population to atlas registration. F was significantly lower for σ = 0.15 than all other methods

(paired t-test, p < 0.05). σ = 0.05 and σ = 0.1 are fairly similar, and weakly significantly better than the adaptive bending energy regulariser (paired t-test, p < 0.06) and the global

GP prior (paired t-test, p < 0.12). As σ = 0.1 has a smaller inter-quartile range, and similar median to σ = 0.05, this was used in future experiments.

Fig. 8. Histograms of the log Jacobian values from the registrations in Fig. 6. The left image shows the overall distributions, whereas the right plot focuses on the tails of the same

distributions. As can be seen, using the proposed prior leads to substantially heavier tails. In this case, the kurtosis varies from 7.7, for adaptive bending energy, 8.6, for the fixed

level of bending energy, 9.1 for the global GP prior, which encourages less smooth deformations than bending energy, and 15.0 for the proposed regularisation prior.
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deformations occur. In other areas, the spatial prior has very low

variance allowing little displacement to occur. This can lead to sparse

deformations, as shown in Fig. 5, where the registration is very free in

informative areas allowing larger volume changes, and constrained

in other areas prohibiting volume change. This leads to distributions

of log Jacobians that have higher kurtosis. We postulate that this may

lead to a reduction is weaker false positives, and emphasises true

volume changes in the data.

This model can be thought of as equivalent to a sparse defor-

mation model, where the hyper-parameters controlling regularisa-

tion {λ} can effectively switch off transformation parameters in non-

informative regions, therefore the deformation in those locations

cannot be uncertain, as it not being estimated. For alternative appli-

cations to TBM, a map of inactive regions may be useful, as the align-

ment of these regions cannot be deemed trustworthy, an intuition
or these locations can be seen in the proposed prior maps in Figs. 5

nd 6.

In computational terms, the current implementation is quite ex-

ensive, which limits the B-spline knot resolution that this method

as been tested on. The computational bottleneck lies in the numer-

cal inverse of the matrices � and ϒ−1. Future work would seek to

nd efficient means of inverting the matrices, possibly using a sparse

holesky decomposition that allows updating, or through separating

he matrix into blocks as in Harrison et al. (2008).

Ideally, a regularisation strategy would not enforce sparsity

n the covariance matrix. Instead, it may be more appropriate to

ave a spatially adaptive prior as a mixture of precision, rather

han covariance components. This would permit longer range co-

ariance in the prior, which cannot occur in the proposed work. A

ifficulty with such an approach is learning a suitable set of prior
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Fig. 9. Boxplots illustrating the distribution of kurtosis in the log Jacobian maps between the different priors across the 60 registrations. The proposed prior has significantly higher

kurtosis then the other methods (p < 0.05 paired t-test).

Fig. 10. Population t-statistics (uncorrected) comparing the population with AD and HC. As can be seen, the fixed level of bending energy and global GP prior leads to more

widespread changes, particularly in the white matter visible in the bottom row. These may be false positive effects caused by higher global variance than the other methods, or

lower spatial smoothness in the case of the global GP prior. The proposed prior leads to focal contractions of high significance in the grey matter and expansion of the ventricles,

which may be more plausible.
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components to use, and ensuring that the resulting prior matrix is

positive-definite.

In the current implementation, the subject images were registered

to the atlas to allow the deformation fields (and therefore the Jaco-

bian maps) to be in a common space. However, in a generative model

such as this, it would be more appropriate to register the smooth at-

las image to the subject for estimating the deformation field. As we

are currently using a small deformation model, the inverse is not al-

ways well defined and therefore such an approach may not be ideal.

Future work will implement this model within a large deformation

transformation model, such as a stationary velocity field.

A straightforward extension of this work would investigate the

use of a population prior distribution of p(λ) that has a variable mean

and variance across the image. Furthermore, local covariance compo-

nents could be merged together where appropriate as in Friston et al.

(2008).

Registration uncertainty has been demonstrated to be useful in

improving hippocampal subfield segmentations (Iglesias et al., 2013),

estimating dose delivery in radiotherapy (Risholm et al., 2011a), as-

sisting neurosurgical decision making (Risholm et al., 2010a) and im-

proving classification (Simpson et al., 2013a). Future work could also

investigate the use of posterior deformation distributions to identify

whether an individual belongs to a sub-population of the data, ei-

ther globally or for a specific structure. This work demonstrates how

strongly the registration uncertainty depends on the prior informa-

tion, as well as the local image information. The use of a global spa-

tial prior leads to a global variance contribution, which is modified

based on the local image information. Conversely, with an adaptive

spatial prior, areas that are informative are given freedom to move,

but because they are informative regions, they consequently lead to

low variance. As opposed to areas that are uninformative, which are

given little freedom in the prior and therefore have a tight posterior

distribution as there is no evidence to suggest that they should move.

We believe that this paper provides the first example of Bayesian

model comparison for non-linear registration, as demonstrated for

choosing the form of the regularisation model. Future work will also

investigate finding an optimal B-spline knot spacing or transforma-

tion model for a given application.

6. Conclusions

This paper has described a spatially adaptive regularisation prior

model and inference scheme for non-linear registration. The com-

ponents are optimised using the variational Bayesian cost function,

which aims to reduce the Kullback–Leibler distance between the

prior and posterior distribution of transformation parameters. This

approach leads to better feature localisation and a reduction of false

positives in tensor based morphometry, through having a spatial

prior that adapts to the local data. Further advantages are Bayesian

model comparison and allowing for more plausible measures of reg-

istration uncertainty.
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ppendix A. Derivation of the variational free energy

The negative variational free energy, F , is a lower bound of the

og model evidence, and is the measure that VB seeks to max-

mise (Beal, 2003). Maximisation of F is equivalent to minimisation

f the Kullback–Leibler distance between the true and approximate

osterior distributions. For a model with parameters 
, F is com-

osed of two terms:

=
∫

q(
) log P(y|
)d
 +
∫

q(
)( log P(
) − log q(
))d


(A.1)

= Lav − DKL(q(
)||P(
)) (A.2)

here Lav is the marginal value of the log likelihood with respect to

he approximate posterior distribution, q(
), and DKL is the Kullback–

eibler distance between the approximate posterior and prior distri-

utions.

The mean-field approximation assumes independence of groups

f parameters, and for the model in question: q(
) = q(w)q(φ)

i q(λi). Therefore, for the proposed model Lav is calculated as the

xpectation of the likelihood with respect to the approximate poste-

ior distributions:

av =
∫

q(w)q(φ)
I∏
i

q(λi)( log P(y|
)dw dφ dλi (A.3)

his results in the following expression for the marginal likelihood:

av = αNv

2
( log (a) + ψ(b)) − αφ̄

2
(k

T
k + Tr(ϒJT J)) (A.4)

here ψ is the digamma function.

Similarly, DKL comprises the integral of the second term of Eq.

A.1). Due to the mean-field approximation, DKL(
) is split into ap-

roximate posterior parameter groups:

KL(q(
)||P(
)) = DKL(q(w)||p(w)) + DKL(q(φ)||P(φ))

+
I∑
i

DKL(q(λi)||P(λi)) (A.5)

hese are the standard Kullback–Leibler distances between either

ormal, or Gamma distributions and can be found in the litera-

ure (Roberts and Penny, 2002).

http://dx.doi.org/10.13039/501100000272
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Closed form updates for the parameters of the approximate poste-

ior distributions can be derived using the calculus of variations. This

nvolves finding the derivative of the functional F with respect to a

et of model parameters, given the current posterior distribution on

he conditionally independent model parameters. In practical terms,

his involves equating the log-likelihood and prior probabilities,

arginalised over the independent posterior distributions, with the

pproximate log posterior distribution. For example, if:

= log p(y|x, w, φ) + log p(w) + log P(φ) +
∑

log P(λ) (A.6)

hen the updated distribution for q(w) can be found as:

og q(w) = 〈M〉q(φ)
∏

i q(λi)
(A.7)

here the angled brackets correspond to taking an expectation of

he bracketed term with respect to the sub-scripted terms. The full

erivation of the updates for q(w) and q(φ) are not given here, but

an be found in previous work (Simpson et al., 2012b).

ppendix B. Regularisation parameters

The terms of F that relate to the prior covariance matrix, � are

iven as:

= 1

2

(
− log |�| − Trace(ϒ�−1) − μ�−1μ − 1

ρ2

∑
i

(λ̂i − η)2

)

+ const{λ̂i} (B.1)

s can be seen, � appears twice within a matrix inverse. As {λ} pa-

ameterises �, rather than �−1, q(λ) does not have an algebraically

efined posterior distribution. Instead, the Laplace approximation is

sed to assume a normal posterior distribution, by taking a Taylor

eries expansion of F around the current mean. Furthermore, it is

ssumed that � only depends on the first order moments of λ, as

escribed in Eq. (9).

.1. First order derivative

Each of these terms can be analytically differentiated with respect

o the posterior mean of a given regularisation parameter, λ̂i:

∂

∂λ̂i

log |�| = ∂

∂λ̂i

log |�−1| = 1

|�−1|
∂|�−1|

∂λ̂i

(B.2)

= Trace

(
�

∂�−1

∂λ̂i

)
(B.3)

here the identity ∂ log |X|
∂X

= Trace(X−1∂X) has been used.

The quantity ∂�−1

∂λ̂i

can be analytically calculated as:

∂�−1

∂λ̂i

= −�−1 exp (λ̂i)�i�
−1 (B.4)

here the identity ∂A−1

∂x
= −A−1 ∂A

∂x
A−1 has been used.

The next term is simply:

∂

∂λ̂i

Trace(ϒ�−1) = −Trace

(
ϒ

∂�−1

∂λ̂i

)
(B.5)

The derivative of the third term is:

μT �−1μ = −μT ∂�−1

∂λ̂i

μ (B.6)

The derivative of the final term is:

∂

λ̂i

(λ̂i − η)2

2ρ2
= 2λ̂i − 2η

2ρ2
= λ̂i − μλ

ρ2
(B.7)
This gives the complete derivative of F with respect to λ̂i as:
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2

[
−Trace
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�
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∂λ̂i

)
− μT ∂�−1

∂λ̂i

μ

]

− λ̂i − η

ρ2
(B.8)

.2. Second order derivatives

The second order derivatives of F wrt. λ̂i can be used to esti-

ate the step size for the parameter updates. To get the step size of

ach parameter update, the second derivative of λ̂i w.r.t. F can be

alculated:

∂2F
∂λ̂2

i

= ∂

∂λ̂i

1

2
Trace
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�
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− ϒ
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∂λ̂i

− μμT ∂�−1
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= 1

2
Trace

(
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∂�−1

∂λ̂i

+ �
∂�−2

∂λ̂2
i

− ϒ
∂�−2

∂λ̂2
i

− μμT ∂�−2

∂λ̂2
i

)

= 1

2
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(
exp (λ̂i)�i
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+
(
�−ϒ−μμT

)∂2�−1

∂λ̂2
i

− 1

ρ2

)

(B.9)

here

∂2�−1

∂λ̂2
i

= − ∂

λ̂i

(�−1 exp (λ̂i)�i�
−1)

= −
(

∂�−1

∂λ̂i

exp (λ̂i)�i�
−1 + �−1 exp (λ̂i)�i�

−1

+�−1 exp (λ̂i)�i

∂�−1

∂λ̂i

)
(B.10)

nd the identity ∂XY = (∂X)Y + X(∂Y) has been used.

This work makes the assumption that � only depends on the first

rder moment of λ̂i. This means that ∂2�−1

∂λ̂i

= 0, which leads to a sim-

lification of Eq. (B.9) as given in Eq. (17).
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