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Abstract
With the purpose of controlling the steady state of a dielectric nanosphere levitatedwithin an optical
cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-
continuousmeasurement of either the output cavitymode or the nanosphere’s position.We find that
the average phonon number, purity and quantum squeezing of the steady-states can all bemademore
non-classical through the addition of time-continuousmeasurement.We predict that the continuous
monitoring of the system, together withMarkovian feedback, allows one to stabilize the dynamics for
any value of the laser frequency driving the cavity. By considering state of the art values of the
experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-
state with an average phonon number n 0.5ph ≈ .

1. Introduction

Bringing physical degrees of freedom to the quantum regime is proving so difficult that quantum control is
bound to be amulti-branched endeavour, where techniques developed on different platforms and designed for
different aims are blended together. In the context of coolingmatter to the quantumground state, a primary
directive of quantum control, various techniques have come to the fore over the last 20 years. Prominent among
them in the case ofmacroscopicmechanical systems is sideband cooling, where the targeted degree of freedom is
driven by light on a red sideband, such that a beam-splitting light–matter interaction is achieved and excitations
are drained out of the system, cooling it down.On the other hand, the implementation of efficient indirect
quantummeasurements is another obvious way to extract entropy from a quantum system. This study evaluates
the combined performance of sideband laser cooling and continuous quantummeasurements (also known as
‘monitoring’) on a levitating nanosphere, an interesting opto-mechanical systemwhere both such techniques
are applicable to actual experiments.

The research field of quantumopto-mechanics, whose goal is to achieve control at the quantum level of
massivemechanical oscillators, has received increasing attention in the last years, both for applicative and
fundamental reasons [1]. So far, themain objective pursued by both theorists and experimentalists is the cooling
of the oscillator either to itsmotional ground state or to non-classical states, such as low-number Fock states or
squeezed states; several protocols have been proposed in this respect, adapted to different physical settings and
using different control strategies [2–17].

Here, wewill focus on a particularly promising setup, where the opto-mechanical system corresponds to a
dielectric nanosphere trapped inside an optical cavity [18–21]. As the nanosphere is levitating, the coupling to
the environment isminimized; it is possible then to neglect the thermal background of phononswhich is
typically one of themost detrimental sources of noise in opto-mechanical systems. Variations of this basic
paradigm,where the nanosphere is trapped by the cavityfield only [19, 22], by an optical tweezer within the
cavity field [23], or with the help of an electromagnetic trap [21], have been recently proposed.On the
theoretical side, a detailed derivation of themaster equation for the quantum state corresponding to the
nanosphere’smotion and to the cavitymodemay be found in [24, 25], and allows one to study the time
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behaviour of this opto-mechanical system, aswell as its steady-state properties. As amatter of fact, thismaster
equation paves theway to the analysis of protocols combining time-continuousmeasurement and feedback
operations, and it will be the starting point of our study.

We havewitnessed constant progress in the understanding of quantum filtering, i.e. of the conditional
dynamics of quantum systems subjected to time continuousmeasurements [26–41]. In particular, as regards
systems described by continuous, canonical degrees of freedom, diffusive dynamics described bymultivariate
Wiener increments have been characterized in detail, and a general framework is available [42, 43]. Such
diffusive dynamics correspond to conditional evolutions due to themonitoring of the environment through the
class of so called general-dyne detections [27]. These quantummeasurements amount to performing homodyne
detections on the environment and, possibly, additional ancillarymodeswhich are coupled to the environment
itself via Gaussian unitary transformations [44, 45].We recall that the term ‘homodyne’ detection refers to the
projectivemeasurement on the eigenbases of canonical position andmomentumoperators x̂ and p̂. In the case
where the overall Hamiltonian is quadratic in the canonical operators, and the system is linearly coupled to the
environment, the conditional dynamics due to general-dyne detections preserves theGaussianity of the
quantum state and thus thewhole dynamics can be equivalently described by the evolution offirst and second
statisticalmoments only. In this case, it is easy to optimize different steady-state properties, such as
entanglement, squeezing and purity, over the parameters characterizing the detection scheme [46–51].

The role of conditional dynamics due to indirectmeasurements, and of subsequent quantum feedback, for
steering the quantum state of amechanical oscillator towards either its ground state or a certain non-classical
state has been already discussed in the literature. In [52], Doherty and Jacobs derive the effective stochastic
master equation corresponding to positionmeasurements obtained through adiabatic elimination of a cavity
mode continuouslymonitored through homodyne detection, and discuss the related feedback strategies aimed
cooling themotion of the oscillator. The possibility to observemechanical squeezing via a continuous back-
action evasionmeasurement wasfirstly proposed in [2] and then invesitgated experimentally in [6, 17]. In [53],
the unravelling corresponding to direct positionmeasurements of an oscillator interacting with a non-zero
temperature thermal bath is considered;more specifically, the results obtainable in different regimes,
corresponding to differentmeasurement resolutions, are discussed in great detail, and the ensuing stochastic
master equation has been seminal in the design of protocols to engineer thermo-mechanical squeezing [16, 54].
Also, the usefulness of discrete and repeatedmeasurements on a coupled qubit in a hybrid setup has been
investigated in [55], where an effective dynamics able to prepare a squeezed steady-state has been identified.
Very recently, Hofer andHammerer [56] have studied the effect of continuous homodyne detection on the
cavity output combinedwith sideband cooling in a standard opto-mechanical setup, where themechanical
oscillator interacts with a non-zero temperature thermal bath. First, they consider a single oscillator and discuss
the corresponding steady-state average number of phonons; then, they presentmore complex and sophisticated
protocols able, for example, to create entanglement between two distant oscillators.

As already stated above, in thismanuscript we focus on the case of a levitating dielectric nanosphere in an
optical cavity, described by themaster equation derived in [25]. Notice that our treatment is distinct from the
existing literature in that themaster equation of the levitating nanosphere includes a photon scattering term, and
themeasurements of both cavity output, via homodyne detection, and oscillator position, through the light
scattered by the nanosphere itself, are considered simultaneously. By combining thesemeasurements with
sideband cooling andMarkovian feedback, we address the possibility of both cooling the oscillator towards its
ground state and of generating quantummechanical squeezing, that is sub-vacuum fluctuations, which is a
paradigmatic signature of non-classicality useful for quantummetrology and precision sensing [57]. Finally, we
also address inmore detail the experimental setup described in [22], where the nanosphere is trapped in a high
finesse optical cavity: by considering state-of-the-art values for the experimental parameters and for the
measurement efficiencies, we show the possibility to vastly improve the performances of sideband cooling both
in terms of steady-state average number of phonons and in terms of generation of squeezed quantum states.

Themanuscript is organized as follows: in section 2we discuss themaster equation of a levitating
nanosphere, and introduce the notation and figures ofmerit that will be discussed in the remainder of the article.
In section 3we introduce the stochasticmaster equation describing the time-continuousmeasurements and
then present the results obtainable for different values of theirmeasurement efficiencies. In section 4we discuss
the performances of these protocols for a specific experimental setup, while section 5 concludes the paper with
some final remarks.

2. Levitating dielectric nanospheremaster equation

Wewill consider two quantumdegrees of freedom; the cavity electromagneticmode and themechanicalmotion
of a trapped nanosphere, described respectively by bosonic operators a and b satisfying the commutation
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relations a a b b[ , ] [ , ] 1† †= = .We can then define the corresponding position andmomentumquadrature
operators as x a a( ) 2c

†= + , p a ai( ) 2c
†= − − , x b b( ) 2m

†= + and p b bi( ) 2m
†= − − , which

can be grouped in a single vector

x p x pr ( , , , ) . (1)c c m m
T=

By considering the cavity driven by a laser at frequency Lω , theHamiltonian describing the interaction between
the twomodes reads

H b b a a g a a b b( )( ), (2)m
† † † †ω Δ= − + + +

where g is the effective coupling constant, mω is themechanical frequency andwe have already transformed the
Hamiltonian to a frame rotating at the driving laser frequency Lω , such that L cΔ ω ω= − denotes the detuning
from the cavity resonance cω (note thatwe set 1= ). By considering the open dynamics resulting from the
interactionwith the environment (i.e. the free electromagneticmodes), one obtains themaster equation [25],

t

H a b b

d

d

i[ , ] [ ] [ ] , (3)†


 

ϱ ϱ

ϱ κ ϱ Γ ϱ

=

= − + + +

where O O O O O O O[ ] ( ) 2† † † ϱ ϱ ϱ ϱ= − + . Thefirst term is responsible for the unitary dynamics, the
second one describes the usual cavity loss (with total loss rate κ), while the third one corresponds to the recoil
heating due to photon scattering from the oscillating nanosphere (with decoherence rateΓ). The dependence
and formulas for all the parameters entering in equations (2) and (3) can be found in [25]. Specifically wewant
to point out that the cavity loss parameter d0κ κ κ= + is the sumof the intrinsic loss rate 0κ due to the
imperfections in the cavitymirrors, plus the extra contribution dκ due to the presence of the dielectric inside the
cavity.We also remark that we only address the control along one spatial direction (dictated by the harmonic
trap generated by the optical tweezers) along the optical cavity axis andwewill not deal with the potential
technicalities involved in cooling themotion along the other two decoupled directions.

By assuming that the system is prepared in aGaussian state (e.g. in a thermal state) at time t=0, at every time
the dynamics keeps the state Gaussian (see [58] for different reviews onGaussian states). As a consequence, the
whole dynamics can be fully described bymeans of the firstmoment vector R and the covariancematrix σ ,
whose elements are defined as

( )
R r

r r r r R R

Tr[ ]

Tr 2 . (4)

j j

jk j k k j j k
⎡⎣ ⎤⎦

ϱ

σ ϱ

=

= + −

Throughout the article, wewill discuss the efficiency of our protocols by considering the effect on themechanical
oscillator properties. Hence, it is useful to introduce the covariance (sub)matrix corresponding to the oscillator
quantum state alone, obtained by tracing out the cavitymode, Tr [ ]m

c
( )ϱ ϱ= . This corresponds to

( )
x x p

x p p
2 , (5)m m m m

m m m

( ) 33 34

34 44

2

2

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟σ

σ σ
σ σ

Δ Δ

Δ Δ
= =

where jkσ are the elements of the global covariancematrix defined in equation (4), which in fact correspond to
variances and covariances of the quadrature operators xm and pm. All the properties we are interested in can be
easily obtained from thematrix m( )σ .Wewill focus on threefigures ofmerit: quantum squeezing, purity and
average number of phonons.

Quantum squeezing can be quantified through theminimumeigenvalue of m( )σ , as

min eig . (6)m( )⎡⎣ ⎤⎦σξ =

In the next sections wewill show the squeezing behaviour, by plotting ξ in dB scale, such that negative values will
correspond to a quadrature of themechanical oscillator having sub-vacuum fluctuations, and thus to a non-
classical squeezed state. In general this quadrature will be a certain linear combination of position and
momentumoperators, and the detectability and usefulness of the corresponding squeezingmay not be
straightforward. This is one of the reasonswhy, in section 4, wewill also focus on the position fluctuations xm

2Δ
only.

The usefulness of a certain quantum state in quantum information and quantum communication protocols
often strictly depends on its purity, that is on how close a state ϱ is to a projector ψ ψ∣ 〉〈 ∣on a singleHilbert space
vector, rather than a statisticalmixture thereof. Such single vector states are also known as pure states. The purity
of a quantum state is defined as Tr[ ]2μ ϱ= and it takes ismaximumvalue 1μ = if and only if ϱ is a pure state.
ForGaussian states, the purity can be evaluated through the covariancematrix, and in particular for the single-

modemechanical oscillatorwe can use the formula 1 Det [ ]m( )σμ = . Notice that, as we are considering
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single-mode states, all entropies, including the vonNeumann entropy, aremonotonic functions of the purity,
which thus fully characterize themixedness of the quantum state.

Finally, as wewillmainly consider steady-states of themechanical oscillator having zero firstmoments
( x pTr[ ] Tr[ ] 0m mϱ ϱ= = ), the number of phonons can also be evaluated directly from the covariancematrix as

( )
n b b

x p
Tr[ ]

Tr 1

2

tr 2

4
. (7)

m m

m

†

2 2

( )

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
ph

σ

ϱ
ϱ

= =
+ −

=
−

Here, tr[·] denotes to the trace of afinite dimensionalmatrix. Notice that whenever thefirstmoments of the
oscillator are not equal to zero, equation (7) gives only a lower bound on the actual average number of phonons
nph.

In terms offirstmoment vector and of the global covariancematrix, themaster equation for the quantum
state ϱ in (3) entails the following time evolution:

t
A

R
R

d

d
, (8)=

t
A A D

d

d
, (9)Tσ σ σ= + +

where thematricesA (driftmatrix) andD (diffusionmatrix) can be easily evaluated from the parameters
entering in (3) and in the interactionHamiltonian (2) [43] and are reported in the appendix. The existence of a
steady-state of the dynamics (having zerofirstmoments) can be easily discussed by analyzing the eigenvalues of
the driftmatrixA:

jstable dynamics Re[ ] 0 , (10)jα⇔ < ∀

where xRe[ ]denotes the real part of a complex number x, and jα are the eigenvalues of the driftmatrixA. Such a
property is often referred to as ‘Hurwitz stability’ in the control literature.

A plot of the stable regions for themaster equation (3) as a function of the detuningΔ and of the coupling
constant g is pictured infigure 1. As one can see, stability is obtained only for red-detuning ( 0Δ < ) and, in order
to reach a steady-state, for larger values of the coupling constant g, one needs also a larger value of the detuning
Δ∣ ∣. Infigure 2, we plot the values of the purity of the oscillator and the average number of phonons obtainable at
steady-state as a function of the detuningΔ, where the other parameters have been given plausible experimental
values in current setups as in [25]; one can see that for large red-detunings one can cool the oscillator to a state
with around n 8ph = phonons at steady-state.

3. Time-continuous homodynemeasurement of cavitymode and oscillator position

Wenow consider the conditional evolution due to general-dyne time-continuousmeasurement on both the
cavitymode and the oscillator. The corresponding stochasticmaster equation reads

Figure 1. Stable (green) and unstable (grey) regions for themaster equation (3), as a function of the laser detuningΔ and of the
oscillator-cavitymode coupling constant g, for 2 mκ ω= and 10mΓ ω= . Notice that, for 0mΔ ω = , the driftmatrixA always has an
eigenvalue equal to zero, and thus the system cannot be considered strictly stable.
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t a w b b wd d [ e ] d [ ] d , (11)1
i

1 2
†

2  ϱ ϱ η κ ϱ η Γ ϱ= + + +ϕ

where O O O O O[ ] Tr[( ) ]† † ϱ ϱ ϱ ϱ ϱ= + − + and dwj are uncorrelatedWiener increments, such that
w w td d dj k jkδ= . The term a[ e ]1

iη κ ϕ describes the effect of continuous homodyne on the output cavity
modewith efficiency 1η , where the phaseϕ can be adjusted by choosing the optical phase of themonitored
quadrature operator (e.g. 0ϕ = and 2ϕ π= correspond respectively to homodyning quadratures xc and pc)
[27, 43]. Analogously, the term b b[ ]2

†η Γ + describes the effect of continuousmonitoring of the oscillator
position, with efficiency 2η [52, 53].

As for the unconditionalmaster equation (3), the dynamics induced by the continuousmeasurement here
considered does not change theGaussian character of the quantum state; as a consequencewe can translate
equation (11) into equations for the firstmoment vector and covariancematrix:

A t N BR R wd d ( ) d , (12)Tσ= + −

t
A A B B D

d

d
, (13)

T Tσ σ σ σ σ= + − + ͠∼ ∼

where d w ww (d , d )1 2
T= and thematrices N B A, ,

∼
and D͠ can be evaluated starting from the parameters

entering the stochasticmaster equation (11) [43] and are reported in the appendix. It is important to observe
that the Riccati equation for the covariancematrix is completely deterministic, and yields a steady-state that can
be efficiently evaluated numerically. On the other hand, the firstmoments’ evolution is stochastic, i.e. it depends
on the outcomes of the continuousmeasurements. As a consequence, at each time the conditional state is a
Gaussian statewhose covariances and correlations evolve deterministically according to the dissipative dynamics
and the kind ofmeasurement performed, while itsfirstmoments evolves randomly in the phase-space,
depending on the values of the photocurrents. In the followingwewill focus on these conditional steady-
states only.

Although it is possible to achieve these conditional covariancematrices by pure filtering, i.e. recording the
measurement outcomes (photocurrents), in order to remain in the harmonic trap regime, where our treatment
applies, it is useful to suppress the drift of the firstmoments, due to the stochastic evolution, by an active
feedback operation. The role of feedback is indeed to use the information contained in themeasurement
outcomes in order to remove the contribution given by the last term in equation (12), which is proportional to
theWiener increment wd . This can always be done by adding a linear feedback term in theHamiltonian (3)with
coupling constants proportional to the photocurrents, i.e.

H H tr f( ) , (14)T′ = +

where r is the vector of quadrature operators introduced in equation (1) and tf( ) is an optimized vector of time-
dependent coupling constants whose values depends linearly on the continuous-measurement outcomes [43].
In practice, while for the cavity field this corresponds simply to a linear driving, in the case of amechanical
oscillator it can be obtained bymeans of a combination of impulses and shifts of the trapping potential (for a
more detailed discussion of this issue see [52]).

Thefirst important consequence of equations (11) and (13) regards the stability of the opto-mechanical
system. The existence of a steady-state for a continuouslymonitored quantum systems has been discussed in
[43].More specifically, it is proven that equation (13) has a stabilizing solution if and only if the pair ofmatrices
B A( , )

∼
is detectable, namely

Figure 2. Steady-state values for average number of phonons (left) and for the oscillator purity (right), as a function of the detuning
Δ (g mω= , 2 mκ ω= and 10mΓ ω= ). Notice that we plot only values of detuning corresponding to the stable region and that
minimumphonon number andmaximumpurity do not exactly correspond (this is due to the fact that the steady-state corresponds to
a squeezed thermal state).
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B Ax x x x0 : with Re[ ] 0, (15)λ λ≠ ∀ = ⩾∼
λ λ λ λ

that is whenever the degrees of freedom that are not strictly stable under the driftmatrix A
∼
contribute to the

measurement output Br.Wefind that, for all the choices of parameters we have considered in our numerical
simulation, whenever the interaction between the two bosonicmodes is on (i.e. for g 0> ), if a continuous
measurement is performed, i.e. if 01η > or 02η > , the stochasticmaster equation satisfies the stability
conditions.We should remark that this stability condition regards the covariancematrix steady-state, while in
principle thefirstmoments could not go to a steady-state value (e.g. to zero). However, as we have just stated
above and discussed for example in [52], the information obtained from themeasurement can be used to obtain
a proper steady-state for the quantum systemwith zero firstmoments, as the stochastic drift on the lattermay
always be canceled byMarkovian linear feedback.

In the following, wewill concentrate on the the steady-state properties of the harmonic oscilaltor. As
anticipated in the previous section, wewill analyse the number of phonons, the purity of the state, and at the
achievable quantum squeezing, quantified by theminimumeigenvalue of the steady-state covariancematrix.
Wewill consider differentmeasurement strategies: (i)measurement of the cavitymode only ( 01η > and

02η = ); (ii)measurement of the oscillator position only ( 01η = and 02η > ); (iii) simultaneousmeasurement
of the cavitymode and of the oscillator ( 01η > and 02η > ).

3.1. Time-continuousmeasurement of the cavitymode
In this subsectionwe investigate the properties of the steady-state of the oscillator in the case where no
measurement is performed directly on the nanosphere, while the output of the cavity is continuouslymeasured.
The phaseϕ of the quadraturewhich ismonitored through homodyne detection is optimized for every set of
parameters and for all thefigures ofmerit considered.We notice that the behaviours of these different optimized
homodyne phases for squeezing, number of phonons and purity as a function of the detuning parameter are
almost identical in all the cases we investigated. Infigure 3we plot the steady-state average phononnumber,
purity and squeezing for a reasonable choice of the parameters entering in themaster equation (3).More
specifically wefix these parameters following the experimentally reasonable assumptionsmade in [25], for a
silica nanosphere with a radius of 200 nm.Note that very good results are obtained for all the values of the
detuningwe are considering. This is really important from an experimental point of view as it strongly relaxes

Figure 3.Results obtained via continuous optimized homodyne of the output cavitymode. Top: steady-state values for average
number of phonons. Bottom: steady-state oscillator purity (left) and quantum squeezing in dB scale (right). All quantities are plotted
as a function of the detuningΔ and for different values of the cavitymodemeasurement efficiency: blue, 01η = (notice that the blue
lines are plotted only in the squeezing and purity plots, and only for the small region of values where the system is stable); purple,

0.41η = ; yellow, 11η = . The other parameters are fixed as follows: 02η = , g mω= , 2 mκ ω= and 10mΓ ω= .

6

New J. Phys. 17 (2015) 073019 MGGenoni et al



the requirement to be sideband resolved in order to cool the nanospheremotion, a condition that in fact is
particularly difficult tomeet for low frequency oscillators. As one can notice, if we are interested in cooling the
oscillator, both in terms of number of phonons and of purity of the quantum state, the optimal choice is
obtained either in the red or blue sideband for 4 mΔ ω≈ ± . On the other hand, in order to obtain the largest value
of quantum squeezing, onemay choose a value of the detuning around 2.5 mΔ ω= − , obtaining a non-classical
state that exhibits around 3 dB of squeezing.

3.2. Adding time-continuousmeasurement of the oscillator position
As a preliminary analysis, let us consider the effect of continuousmonitoring of the oscillator position, while the
cavity output is left unobserved ( 01η = ). The results for this case are shown infigure 4.We observe that, if we
want tominimize the average number of phonons ormaximize the purity, the optimal performances are
obtained in the case of large detuning 1Δ∣ ∣ ≫ , regardless of the red or blue shift of the driving field. This should
not come as a surprise, as a large detuning corresponds to decoupling the oscillator from the cavity, and hence
directlymeasuring an isolated degree of freedom. By solving the dynamics for the decoupledmechanical
oscillator alone (i.e., for g = 0), one can evaluate analytically the corresponding steady-state. Onemay prove that
its purity simply depends on themeasurement efficiency, as 2μ η= , which thus univocally characterize the

entropy of the steady-state; on the other hand quantum squeezing and number of phonons do depend also on
the ratio between the noise parameter and themechanical frequency mΓ ω , and their behaviour is plotted in
figure 5 for different values of themeasurement efficiency.We remind the reader that larger values ofΓ
correspond to a large amount of scattered light from the nanosphere. On the one hand, this implies a larger
amount of incoherent energy acquired by the oscillator due to the recoil heating process; on the other hand, it
also corresponds to a large amount of information available for the continuous positionmeasurement, and thus
to the possibility to convert such incoherent energy into stead-state quantum squeezing. This explain the
different behaviourwe observe infigure 5 for quantum squeezing and number of phonons.

As anticipated above, the results derived here for the decoupled oscillator almost perfectly correspond to the
ones reported infigure 4 in the case of large detuning. Note that the small values of the number of phonons away
from resonance are indeed due to the fact that the oscillator decoherence rateΓ is relatively small with respect to

mω (in the range of 10mω ). For example, for a unit efficiencymeasurement ( 12η = ), an almost pure quantum

Figure 4.Results obtained viamonitoring the oscillator position. Top: steady-state values for the average number of phonons. Bottom:
steady-state oscillator purity (left) and quantum squeezing in dB scale (right). All quantities are plotted as a function of the detuningΔ
and for different values of the oscillator positionmeasurement efficiency: blue, 0.22η = ; purple, 0.52η = ; yellow, 0.82η = ; green

12η = . The other parameters arefixed as follows: 01η = , g mω= , 2 mκ ω= and 10mΓ ω= .
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state is obtainedwith around n 0.02ph = phonons. The state is also squeezed, with a squeezing around 1 dB (a
value compatible with the number of phonons obtained). Ourfindings show that, if direct positionmonitoring
with high efficiencywere possible, feedback coolingwould greatly outperform sideband cooling of the oscillator.
However, in practice, a decoupled cavity is not likely to be a favourable condition towork in, as the actual
efficiencies of positionmeasurements through scattered light are bound to be severely limited by a number of
practical factors (one among all, the geometric impossibility of probing thewhole solid angle of scattering).
Quite interestingly, at lower values of themeasurement efficiency (i.e. 0.22η < ) or if our aim is to optimize the
squeezing of the steady-state (alsowith larger values of 2η ), a combination of sideband cooling and position
measurements still yields the best results.More specifically, as regards quantum squeezing, the optimal detuning
is again around 2.5 mΔ ω≈ − , obtaining a quantum squeezing around 1 and 2 dB.Note that, in this section, we
are not taking into account the fact that, in principle, varying the detuningwill change the number of photons
inside the cavity, and thus also the effective coupling constant g (such that larger values of detuning correspond
to lower values of g). This effect will be properly taken into account in section 4.

Finally, let us consider the simultaneousmonitoring of the cavity outputmode (optimizing the phase of the
homodyne detection andwith unit efficiency: 11η = ) and of the oscillator position (with different efficiencies

2η ). The results for this case are plotted infigure 6. The properties of the steady-state are qualitatively similar to
the oneswe have just discussed, showing the prominent role played by the oscillator positionmeasurement over
the other control strategies (i.e. sideband cooling and cavity homodynemeasurement). Nevertheless, one
observes slightly better results with respect to the unobserved cavity scenario, both in terms of steady-state
phonons (in particular if we do not consider the large detuning regime) and in terms of quantum squeezing. For
red-detuningwith 2.5 mΔ ω≈ − , one obtains the highest value of squeezing of approximately 4 dB.

4. Results for a nanopshere levitated in a highfinesse optical cavity

In this section, wewillmake specific predictions onwhat could be achieved by the continuousmeasurement of a
nanosphere levitated by the field of a highfinesse optical cavity, as depicted infigure 7. The position and
dynamics of the nanosphere can be directlymeasured by collecting the light it scatters or indirectlymonitored
through the homodynemonitoring of the light that leaves the optical cavity. A detailed description of this setup,
comprising the derivation of the formulas wewill use in the following can be found in [21].

The experimental setupwe consider comprises a silica nanosphere of radius r=200 nm,withmass
m 7.35 10 17= × − Kg, and a cavity, characterized by a resonance frequency 2 2.8 10c

14ω π = × Hz
( 1064λ = nm), length L=13 mm,finesse 400 000 = , and cavity waistw=60 μm.The corresponding value
for the intrinsic cavity loss parameter is c L(2 ) (2 ) 290 κ π = = kHz. Following the results in [25], we estimate
that the extra loss due to the presence of the nanosphere inside the cavity is of the same order, d 0κ κ∼ , such that
the total loss parameter isfixed to 58κ = kHz. The cavity average photon number reads

n
P

2 2 ( )

1

4
. (16)c

c

in

2 2

κ
Δ ω κ Δ

=
+ +

As usual in opto-mechanical setups, the cavity-oscillator coupling constant g depends on the cavity average
photon number nc

2α= ∣ ∣ . In particular we adopt the formula

g
k A

m
n

2
, (17)

m
c

2
2 2

ω
≈ 

Figure 5.Results obtained through analytical calculations for steady-state squeezing in dB scale (left) and number of phonons (right)
of a decoupledmechanical oscillator (g = 0) subjected to time-continuous positionmeasurement, as a function of the decoherence
parameterΓ and for different values of themeasurement efficiency 2η : from top to bottom, {0.2, 0.5, 0.8, 1}2η = .
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where k 2π λ= ,

A
V

V

3

2

1

2
, (18)s

m

r

r
l

ϵ
ϵ

ω=
−
+

and the volumes of the nanosphere and of the cavity readV r(4 3)s
3π= andV w Lm

2π= respectively. The
remaining parameters, rϵ and lω denote the dielectric constant and the driving laser frequency. Since the
nanosphere is here trapped by the cavity field, themechanical frequency depends on the average photon number
nc too, as per

k A

m
n

2
. (19)m c

2
2

ω ≈ 

Figure 6.Results for simultaneous optimized continuous homodyne of the cavity outputmode (with unit efficiency) and of the
oscillator position xm. Top: steady-state values for the average number of phonons. Bottom: steady-state oscillator purity (left) and
quantum squeezing in dB scale (right). All quantities are plotted as a function of the detuningΔ and for different values of the oscillator
positionmeasurement efficiency: blue, 02η = ; purple, 0.52η = ; yellow, 0.82η = ; green 12η = . The other parameters are set as
follows: 11η = , g mω= , 2 mκ ω= and 10mΓ ω= .

Figure 7. Schematic of the experimental set-up for the quantum control of a levitated dielectric nanosphere within an optical cavity.
The nanoparticle can be sideband-cooled by sending in light that is red-detuned from the cavity resonance. The light that leaves the
cavity can be continuouslymonitored to perform generaldynemeasurements. The light which is scattered by the particle can be
collected to give information upon the position of the nanosphere.
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It is important to notice that, because of the dependence of mω on the average photon number nc, the behaviour
of the opto-mechanical coupling constant ismodifiedwith respect to standard setups, in that g nc

1 4∼ .
As far as the oscillator’s decoherence rateΓ is concerned, one can follow the results shown in [22].One

observes that nc
1 2Γ ∼ , while the corresponding ratio 0.15mΓ ω ≈ —evaluated for our specific experimental

parameters—isfixed for every value of the detuning1Δ. In the case of zero detuning ( 0Δ = ), we obtain a
mechanical frequency 2 33m0ω π ≈ kHz and g 2 200 π ≈ kHz.

Like in the previous section, wewill consider the steady-state properties as a function of the detuningΔ. As
themechanical frequency mω decreases for increasing detuning, the corresponding zero-pointmotionwill
increase; for this reason besides the quantum squeezing property (which is obtained by considering variances
renormalized to the zero-pointmotion and thus does not take into account the effect of the variation of the
frequency mω ), wewill also consider the proper fluctuation of the position

X
x

m
, (20)m

m

2

δ
δ
ω

=


xm
2δ being the fluctuations of the dimensionless position operator xm. Apart from taking into account the

different zero-point fluctuations, Xδ is arguablymore interesting from an experimental and practical point of
view as it is directly accessible in experiments.

The results are depicted infigures 8 and 9. In thefirst one, we plot the results in the case where the efficiency
of the homodynemeasurement of the cavity output ismaximum ( 11η = ), the phase of the homodyne is
optimized for eachfigure ofmerit, and different values of the oscillator’smeasurement efficiency 2η are
considered. As one should expect, we observe better performances for increasing values of 2η . In detail, by
focusing on the average number of phonons, for small values of 2η we observe that two localminima of nph are
obtained, one in the red- and one in the blue-detuning regimes. By considering an efficiency over 50%, the

Figure 8.Results for simultaneous optimized homodynemonitoring of the cavity outputmode (with unit efficiency) and of the
oscillator position xm. Top: steady-state value for the average phonon number of the oscillator. Bottom left: steady-state position
uncertainty Xδ (solid lines), with the grey area corresponding to sub vacuum fluctuations. Bottom right: steady-state quantum
squeezing in dB scale. All quantities are plotted as a function of the detuning δ (in units of themechanical frequency m0ω , and for
different values of the oscillator positionmeasurement efficiency: blue, 02η = ; purple, 0.22η = ; yellow, 0.52η = ; green 12η = . The
other experimental parameters arefixed as described in themain text.

1
Notice that in principle one should also consider an additional phenomenologicalmomentumdamping due to collisionwith the

surrounding gas particles. However one can show that, in the present experimental conditions with pressure around 10−9 bar, the
corresponding rate is negligible compared to the other dynamical parameters entering in themaster equation (3).
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optimal performances are obtained in the case of large detuningwhere, as discussed above, the oscillator’s
motion decouples from the cavitymode, and thus its steady-state properties become entirely dependent on the
positionmeasurement efficiency. If we instead focus on quantum squeezing, in this case toowe obtain that for all
values of 2η two localminima are present in the red and blue sideband, and the optimal working point
corresponds to a value of the detuning near 3 2m0Δ ω= − . Surprisingly, observing the behaviour of the position
fluctuations Xδ , its actualminimum is always reached at resonance, while sub-vacuumfluctuations are
observed only in the blue sideband, that is for 0Δ > . One important remark is needed here: as sub-vacuum
fluctuations are not obtained formost of the values of the detuningΔ, the amount of quantum squeezing
observed in the other plot offigure 8 necessarily corresponds to different quadrature operator describing the
oscillator; in general, this quadraturewill correspond to a certain linear combination of position and
momentumof the oscillator, whose usefulness and detectabilitymay not be straightforward.

Similar observations aremade also regarding figure 9, wherewe considered plausible values for the position
and homodynemeasurement efficiencies, estimated respectively at 0.22η = , based on the the set-up of [21], and
at 0.51η = corresponding to the homodyne set-up efficiency in [59]. In this realistic scenario, we demonstrate
that for all the different values ofΔ considered one can achieve a steady-state characterized by n 1ph < , with a
minimum reaching n 0.4ph ≈ and amaximum squeezing of dB 0.5≈ − both obtained in the red sideband.

5. Summary and conclusions

Our study explicitly shows the quantum control possibilities offered, in realistic setups, by the combined
simultaneousmonitoring of scattered as well as coherent cavity light interacting with a levitating dielectric
nanosphere. In particular, it was shown that

• time-continuousmeasurements of either the cavitymode or the oscillator position, accompanied by
Markovian feedback, are able to stabilize the nanospheremotion for all the values of the detuningΔ and of the
measurements efficiencies.

Figure 9.Results for simultaneous optimized homodynemonitoring of the cavity outputmode and of the oscillator position xm, with
realistic values of themeasurement efficiencies: 0.51η = and 0.22η = . Top: steady-state value for the average phonon number of the
oscillator. Bottom left: steady-state position uncertainty Xδ (solid lines), with the grey area corresponding to sub vacuumfluctuations.
Bottom right: steady-state quantum squeezing in dB scale. All quantities are plotted as a function of the detuningΔ (in units of the
mechanical frequency m0ω ). The other experimental parameters are fixed as described in themain text.
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• The addition of time-continuous homodynemonitoring of the cavity output plusMarkovian feedback
greatly improves the performance that onewould have obtainedwith sideband cooling only. For the realistic
values of physical parameters considered in our study, while sideband coolingwould prepare a phase-
insensitive steady-state characterized by n 10ph ≳ phonons on average, the addition of continuous
homodynemeasurements of the cavity outputwould prepare a squeezed steady-state, with n 2ph < phonons.
In particular, this is true for a large range of detuning values, which relaxes the requirements of sideband
resolution to cool down the oscillator. This is particularly important for low frequency heavy oscillators
which cannot be operated in the sideband resolved regime for dispersive coupling orwhere a dissipative
coupling is not available [60].

• In terms of optimizing the purity and the cooling of the oscillator, sideband coolingwould cease to be useful if
one is able to directlymeasure the oscillator with very high efficiency. Nevertheless, if we take into account the
state-of-the-art values for thesemeasurement efficiencies in an actual experimental setup, the combination of
the two control procedures represents still the best choice for experimental realizations, leading in principle
to a quantum squeezed steady-state with less than one phonon on average. The performances are further
improved if a simultaneousmeasurement of the cavitymode output is carried out.

• If we consider a state-of-the-art experimental setupwhere the dielectric nanosphere is trapped by the field of
a high-finesse cavity, the proposedmeasurement protocols are in principle able to prepare a quantum
squeezed state with less than n 1ph = phonons at steady-state.

Over the next few years, it will be possible to performmore andmore exhaustive time-continuous
measurements on the outputs of interestingmicro- andmeso-scopic physical systems [62]. It is apparent from
ourfindings that such a possibility will be one of the pathways to reduce the entropic content of such systems,
drive them to the quantum regime, and ultimately achieve their full or partial quantum control.

Note added: after this workwas completed, a similar approachwas presented in [61] for a different
experimental setup inwhich the nanosphere is trappedwithout the help of a optical cavity.
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AppendixA.Unconditional and conditional evolution forfirst and secondmoments

In this appendix, we provide the explicit formof thematrices entering the unconditional and conditional
evolution equations forfirst and secondmoments, corresponding to the equations (3) and (11), derived
following the general framework provided in [43].

Aswe stated in themanuscript, themaster equation (3) describing the unconditional noisy evolution of the
quantum state of themechanicalmode and of the cavitymode, yields the following evolution for the
corresponding firstmoment vector R and for the covariancematrix σ :

t
A

R
R

d

d
, (A1)=

t
A A D

d

d
. (A2)Tσ σ σ= + +

The driftmatrixA and the diffusionmatrixD read

A g

g

2
0 0

2
2 0

0 0 0

2 0 0

, (A3)

m

m

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

κ Δ

Δ κ

ω
ω

=

− −

− −

− −

D

0 0 0
0 0 0
0 0 0 0
0 0 0 4

. (A4)

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟

κ
κ

Γ

=

On the other hand, if we consider simultaneous continuousmonitoring of the output cavitymodewith
homodyne detection, and of the oscillator position, the corresponding stochasticmaster equation (11) is
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translated forfirstmoment vector and covariancematrix in:

A t N BR R wd d ( ) d (A5)Tσ= + −

t
A A B B D

d

d
, (A6)

T Tσ σ σ σ σ= + − + ͠∼ ∼

where w wwd (d , d )1 2
T= ,A has been defined just above and the othermatrices read

B

cos sin cos 0 0

sin cos sin 0 0

0 0 0 0

0 0 4 0

(A7)

1
2

1

1 1
2

2

⎛

⎝
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⎞

⎠

⎟⎟⎟⎟⎟

η κ ϕ η κ ϕ ϕ
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η Γ
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−

−

N

cos sin cos 0 0
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