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Orientale “Amedeo Avogadro”, Novara

Faculty of Finance, Cass Business School, City University London

Guido Germano

Financial Computing and Analytics Group, Department of Computer Science, University
College London

Systemic Risk Centre, London School of Economics

Daniele Marazzina

Department of Mathematics, Politecnico di Milano

Email addresses: gianluca.fusai@unipmn.it, gianluca.fusai.1@city.ac.uk

(Gianluca Fusai), g.germano@ucl.ac.uk, g.germano@lse.ac.uk (Guido Germano),
daniele.marazzina@polimi.it (Daniele Marazzina)

Preprint submitted to Elsevier September 28, 2015



A. Acceleration of the inverse z -transform via Euler summation

In Figure A we show graphically the convergence of the partial sums bk
to the inverse z-transform.

Figure A: Convergence of the partial sum bk to Z−1q→nṽ(ξ, q) ≈ 1
2mEnρn

∑mE

j=0

(
mE

j

)
bnE+j(ξ).

The real (imaginary) part of bk, k = 0, 1, . . . , nE + mE , corresponds to the red circles
(black squares), while the real (imaginary) part of the solution corresponds to the red
(black dashed) line. The test case is related to the computation of pX,m with X(t) a
double exponential Lévy process, a log-barrier l = 0.8, N = 100 monitoring dates and
M = 214 grid points.

i



B. Hilbert transform and Wiener-Hopf factorization

The Matlab code to compute the Hilbert transform via sinc functions
and the FFT is shown in Figure B; the use of this fast Hilbert transform to
achieve a Wiener-Hopf factorization is reported in Figure C.

Figure B: Matlab code to compute the Hilbert transform via sinc function expansion.

% Fast Hilbert transform: Hilbert transform through
% fast Fourier transforms.
function iHF = ifht(F)
% Setup
[M N] = size(F); % Dimension: number of equations and grid points
P = N; % Number of zero padding elements
Q = N+P; % Number of grid points after zero padding
% Define the auxiliary vector
t = (1-(-1).̂ (-Q/2:Q/2-1))./(pi*(-Q/2:Q/2-1));
t(Q/2+1) = 0;
vec = repmat(imag(fft(ifftshift(t))),M,1);
% Compute the Hilbert transform times the imaginary unit
f = ifft(F,Q,2); % Optional padding
iHF = fft(vec.*f,[],2);
iHF = iHF(:,1:N);

Figure C: Matlab code to compute the Wiener-Hopf factorization via the Hilbert trans-
form.

% Factorise L = 1-H
lL = log(1-H);
iHlL = ifht(lL); % imaginary unit times fast Hilbert transform of L
lLp = (lL+iHlL)/2; % Plemelj-Sokhotsky
lLm = (lL-iHlL)/2; % Plemelj-Sokhotsky
Lp = exp(lLp);
Lm = exp(lLm);
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C. Other Fourier-based transform methods

In this section we discuss other numerical methods presented in the liter-
ature which are based on Fourier and Hilbert transforms. We will not try to
be exhaustive, but limit ourselves to those approaches that are most related
to our own, and thus we will not cover e.g. the Cos method [2], as well as
different approaches like the ones based on advanced quadrature [e.g. 1].

The general recursion pricing equation to compute the price (or cost) c
of a plain vanilla derivative, such as an European call option, at time t given
its value at time t + ∆ can be computed from its price at time t + ∆ using
the backward-in-time density

c(x, t) = e−r∆
∫ +∞

−∞
fb(x− x′,∆)c(x′, t+ ∆)dx′.

Here the derivative price is a function of the log-price x of the underlying
asset and of the time t. This function x→ c(x, t) is, in general, not square in-
tegrable and thus its Fourier transform does not exist. However, this problem
can be worked around introducing the damped call price C(x, t) = eαxc(x, t),
α < 0 being the so-called damping factor. The Fourier transform of the
backward-in-time transition density fb(x,∆) := f(−x,∆) is the conjugate
Ψ∗(ξ,∆) of the characteristic function. Therefore, in Fourier space the above
equation becomes

Ĉ(ξ, t) = e−r∆Ψ∗(ξ − iα,∆)Ĉ(ξ, t+ ∆),

since

Ĉ(ξ, t) = Fx→ξ[eαxc(x, t)] =

∫ +∞

−∞
c(x, t)eix(ξ−iα)dx

= e−r∆
∫ +∞

−∞

∫ +∞

−∞
fb(x− x′,∆)c(x′, t+ ∆)eix(ξ−iα)dx′dx

= e−r∆
∫ +∞

−∞
fb(z,∆)eiz(ξ−iα)dz

∫ +∞

−∞
eiξx

′
C(x′, t+ ∆)dx′

= e−r∆Ψ∗(ξ − iα,∆)Ĉ(ξ, t+ ∆),

changing the order of integration and defining z = x−x′; see Lord et al. [10]
for further details. Therefore we have

c(ξ, t) = e−r∆e−αxF−1
ξ→x[Ψ

∗(ξ − iα,∆)Ĉ(ξ, t+ ∆)].

The methods considered in the following sections for pricing path dependent
derivatives are based on the above described backward recursion from time
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t+ ∆ to time t. For ease of exposition, we will consider only a down-and-out
put barrier option and we neglect the damping factor; for a down-and-out
put option the damping factor is not necessary anyway, since the payoff and
the option price are square integrable functions.

C.1. Convolution and Hilbert transform

First of all, we briefly describe the convolution method [9, 10], as well
as the method based on the Hilbert transform due to Feng and Linetsky [3].
Both are based on obtaining the option price recursively via

v(x, j) = e−r∆
∫ +∞

l

fb(x− x′,∆)v(x′, j − 1)dx′, (1)

where v(x, j) is the value of the option for the log-price x at time (N − j)∆.
Therefore

v(x, j) = e−r∆PΩ

(
f(−x,∆)∗v(x, j−1)

)
= e−r∆PΩF−1

ξ→x
(
Ψ∗(ξ,∆)v̂(ξ, j−1)

)
,

(2)
where we recall that ∗ is the convolution operator and PΩ is the projector
operator on Ω := (l,+∞), i.e., PΩf(x) = 1x∈Ωf(x). The indicator function
1x∈Ω can be replaced by the Heaviside step function centered on l: it is 1 if
x > l and 0 if x < l, while for x = l it can be assigned the values 0 (left-
continuous choice), 1 (right-continuous choice) or 1/2 (symmetric choice).
The value for x = l matters only from a numerical point of view, as the
measure of this point is zero.

At each time step the convolution method proceeds by moving from the
real to the Fourier space and backward trough the iteration

vj−1
F−→ v̂j−1

∗−→ Ψ∗v̂j−1
PF−1

−→ vj, j = 1, . . . , N.

This method has been used, among others, by Jackson et al. [9] and Lord
et al. [10]. Lord et al. improved this numerical methods in order to have a
monotonic convergence to zero of the discretization error.

The method of Feng and Linetsky [3] is based on the Hilbert transform,
Equation (26) in the article. In fact, considering the generalized Plemelj-
Sokhotsky relation

FPΩh =
1

2

[
Fh+ ieiξlHξ(e

−iξlFh)
]
,

the Fourier transform of Equation (2) yields

v̂(ξ, j) =
1

2
e−r∆(Ψ∗(ξ,∆)v̂(ξ, j − 1) + ieiξlHξ(e

−iξlΨ∗(ξ,∆)v̂(ξ, j − 1))).
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Thus all the computations are in Fourier space:

v0
F−→ v̂0 −→ . . . −→ v̂j−1

∗−→ Ψ∗v̂j−1
H−→ v̂j −→ . . . −→ v̂N

F−1

−→ vN .

The Hilbert transform is computed in Fourier space via a sinc function expan-
sion which provides an exponentially decaying error, as explained in Section
3.1 of the article. Therefore the Hilbert method is preferable to the convolu-
tion approach. The computational cost of both methods is O(NM logM).

C.2. Quadrature methods

The recursion given by Equation (1) has been solved using quadrature
[4, 7]. If the domain is truncated as in Fusai et al. [6], the quadrature
nodes are xi, i = 1, . . . ,M , K is an M ×M square matrix with elements
Kij = e−r∆f(xj−xi,∆), D is an M ×M diagonal matrix which contains the
quadrature weights, and (vj)i = v(xi, j), j = 0, . . . , N , then Equation (1)
becomes

vj = KDvj−1 (3)

for j = 1, . . . , N . Thus, in order to compute the option price, one only has
to perform N matrix-vector multiplications.

This approach can be efficiently implemented using the FFT, provided
Newton-Cotes quadrature rules are considered. In fact, if the quadrature
formula is characterized by equidistant nodes, K is a Toeplitz matrix and
the matrix-vector multiplication in Equation (3) can be performed using the
FFT as follows.

We recall that an M × M Toeplitz matrix T can be embedded in a
2M × 2M circulant matrix C, i.e. a special kind of Toeplitz matrix where
each row vector is rotated one element to the right relative to the preceding
row vector. Thus, given an M × 1 vector x, we can compute the component
i of Tx, i = 1, . . . ,M , as

(Tx)i =
(
FFT−1 (FFT(c) FFT(x∗))

)
i
,

c being the first column of the circulant matrix C and x∗ being the extension
of the vector x obtained padding x with M zeros. Thus Equation (3) becomes

(vj)i =
(
FFT−1 (FFT(c) FFT ((Dvj−1)∗))

)
i
,

i = 1, . . . ,M , c being the first column of the circulant matrix embedding
K. Since (K)i,j = e−r∆f(xj − xi,∆) = e−r∆f((j − i)h,∆), h being the
distance between the quadrature nodes, and f is computed with an inverse
Fourier transform of the characteristic function Ψ, it follows that ĉ := FFT(c)
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can be computed directly by using Ψ, avoiding one FFT. At the end the
computational cost of this pricing procedure becomes 2NM logM , since for
each iteration of the pricing recursion we have to compute one FFT and
one inverse FFT. We also have to compute the matrix-vector multiplication
Dvj−1, but as D is a diagonal matrix, the computational cost consists of M
operations. Thus the scheme of the quadrature-FFT based approach is

vj−1 −→ Dvj−1
F−→ F [Dvj−1]

∗−→ ĉF [Dvj−1]
F−1

−→ vj.

C.3. The Z-WH algorithm

Another approach consists in relating the pricing problem to the solution
of an integral equation [6]. After applying the z-transform to Equation (1),
i.e., multiplying both sides by qj and summing over j ≥ 1, it is shown that
ṽ(x, q) solves the Wiener-Hopf integral equation

ṽ(x, q) = qe−r∆
∫ +∞

l

fb(x− x′,∆)ṽ(x′, q)dx′ + φ(x) for x ≥ l. (4)

Two solution strategies are possible to solve the latter. The first [5, 6] consists
in applying a quadrature scheme to Equation (4) and therefore it reduces to
solve the linear system

(I− qKD)ṽ = g

with parameter q, I being the M ×M identity matrix, before inverting the
z-transform to obtain the option price. This approach was introduced by
Fusai et al. [6], who presented a numerical scheme based on a precondi-
tioning technique to speed up the solution of the linear system: in fact,
considering Newton-Cotes quadrature rules and an iterative linear system
solution method, like the generalized minimal residual (GMRes) method,
the authors provided an FFT-based method whose computational cost is
O(min{N,mE + nE}IM logM), M being the number of quadrature nodes
and I denoting the average number of GMRes iterations necessary to solve a
linear system. The authors showed that the scheme provides a great accuracy
at a low computational cost if the matrix D is nearly equal to cI, for any con-
stant c: in fact only in this case I is independent on the number of monitoring
dates. This is true for the trapezoidal rule diag (D) = h[0.5, 1, 1, . . . , 1, 0.5],
but not, for example, for the Simpson rule.

Another possibility consists in relating the Spitzer-Wiener-Hopf factoriza-
tion to the solution of the integral equations. Indeed, the well-known method-
ology to solve a Wiener-Hopf integral equation also requires the knowledge
of the Wiener-Hopf factors. More precisely, the main steps for solving the
Wiener-Hopf integral equation (4) are:
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1. Factorize the function L(ξ, q) := 1− qe−r∆Ψ∗(ξ,∆),

L(ξ, q) = L+(ξ, q)L−(ξ, q).

2. Given the payoff function φ(x), define P (ξ, q) := e−ilξφ̂(ξ)/L−(ξ, q)
and decompose it into components that are analytic in the appropriate
complex half planes:

P (ξ, q) = P+(ξ, q) + P−(ξ, q).

3. The Fourier transform of the solution of the integral equation (4) is
now given by ˜̂v(ξ, q) = eilξ

P+(ξ, q)

L+(ξ, q)
. (5)

Therefore, the following pricing methodology works for a number of mon-
itoring dates N > 2:

1. Compute the value of v̂(ξ, 1) by convolution, i.e.,

v̂(ξ, 1) = Ψ∗(ξ,∆)φ̂(ξ). (6)

2. Compute v̂(ξ,N − 1), i.e., consider an option with N − 2 monitoring
dates and payoff φ(x) = F−1

ξ→xv̂(ξ, 1), whose price is v(·, N − 1), with

v̂(ξ,N − 1) = Z−1
q→N−2

[˜̂v(ξ, q)
]
,

solving the Wiener-Hopf integral equations using the factorization to
obtain ṽ(ξ, q) for the different values of q necessary to invert the z-
transform.

3. Compute the value of v̂(x,N) by convolution, as in Equation (6).

4. Apply an inverse Fourier transform to obtain the option price v(x,N).

All the computations are performed in Fourier space:

v0
F−→ v̂0

Ψ∗−→ v̂1
ZWH−→ v̂N−1

Ψ∗−→ v̂N
F−1

−→ vN ,

where ZWH stands for the second step of the above algorithm. As in the
algorithm described in the article, Section 4.2, Steps 1 and 3 are necessary in
order to smooth the tails of the payoff and of the inverse of the z-transform
in Fourier space, v̂(x,N − 1), before applying the z-transform (Step 2) and
the inverse Fourier transform (Step 4), respectively, and thus to obtain an
exponential convergence considering the Wiener-Hopf factorization described
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in Section 3.1 of the article. We would like to stress that φ(x) = F−1
ξ→xv̂(x, 1)

differs from v(x, 1) because of a projection, i.e., v(x, 1) = P{x>l}F−1
ξ→xv̂(ξ, 1).

In the case of double-barrier options, the Wiener-Hopf equation becomes
a Fredholm equation of the second type with a convolution kernel. This
problem is very old, but up to now no efficient and accurate procedure has
been devised for its solution. So the scheme here presented deserves some
interest on its own. More precisely, the pricing equation becomes

ṽ(x, q)(x) = qe−r∆
∫ u

l

fb(x− x′,∆)ṽ(x′, q)dx′ + φ(x), (7)

and this can be solved using a fixed-point algorithm similar to the one pre-
sented in Section 4.3 of the article, with Equations (40)–(41) in the article
replaced by

J−(ξ, q)

L−(ξ, q)
=

[
e−ilξΨ∗(ξ,∆)φ̂(ξ)− ei(u−l)ξJ+(ξ, q)

L−(ξ, q)

]
−

, (8)

J+(ξ, q)

L+(ξ, q)
=

[
e−iuξΨ∗(ξ,∆)φ̂(ξ)− ei(l−u)ξJ−(ξ, q)

L+(ξ, q)

]
+

. (9)

Once J± are computed via the fixed-point algorithm described in Section 4.3
of the article, the option price is given by

v(x,N) = e−rTF−1
ξ→x [Ψ∗(ξ,∆)

Z−1
q→N−2

[
φ̂(ξ)Ψ∗(ξ,∆)

L(ξ, q)
− eilξ J−(ξ, q)

L(ξ, q)
− eiuξ J+(ξ, q)

L(ξ, q)

]]
. (10)

Thus the pricing algorithm consists of the steps

φ ≡ v0
F−→ v̂0

Ψ∗−→ v̂1
ZWH−→ v̂N−1

Ψ∗−→ v̂N
F−1

−→ vN ,

where here we denote with ZWH the operator

ZWH : F (ξ)→ Z−1
q→N−2

[
F (ξ)− eilξJ−(ξ, q)− eiuξJ+(ξ, q)

L(ξ, q)

]
.

Fusai et al. [6] provided a pricing procedure based on Wiener-Hopf inte-
gral equations also for lookback options: therefore the Z-QUAD and Z-WH
method can be applied to this class of contracts too. However, with respect
to barrier options, a further step must be applied to compute the option
price, since an integral needs to be evaluated once the Wiener-Hopf integral
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equations are solved Fusai et al. [6, Section 3.3.2, Step (6) of the algorithm].
As shown in Section 5 of our article, the Z-WH and the Z-S algorithms ex-
hibit the same accuracy dealing with barrier options. Numerical results not
reported here show that this is no more true for lookback options, since the
further integral to be evaluated makes the Z-WH algorithm uncompetitive
with respect to the Z-S one both in terms of computational cost and accuracy.

D. Continuous versus discrete monitoring

As mentioned in Section 2 of the article, identities similar to Equa-
tions (11)–(16) in the article exist for continuous monitoring too. The dis-
crete minimum and maximum operators are replaced with their continuous
versions,

M c
T = sup

t∈(0,T )

X(t) and mc
T = inf

t∈(0,T )
X(t).

In this case the z-transform is replaced by the Laplace transform, while the
quantity to be factorized is obtained setting q = e−s∆ and taking the limit
∆→ 0 [8, Section 4.1.2]:

lim
∆→0

Φ(ξ, q)

∆
= lim

∆→0

1− qΨ(ξ,∆)

∆
= lim

∆→0

1− e(ψ(ξ)−s)∆

∆
= s− ψ(ξ) =: φ(ξ, s).

Similar limits hold for the Wiener-Hopf factors of Φ and φ:

lim
∆→0

Φ±(ξ, q)√
∆

= φ±(ξ, s).

Remarkably, the Wiener-Hopf factorization of φ(ξ, s) is not obtained through
a passage to the limit of the Wiener-Hopf factorization of Φ(ξ, q), but di-
rectly from φ itself using the Hilbert transform like for the factorization of Φ.
Therefore, our procedure can price contracts in the continuous monitoring
case too, once the inverse z-transform is replaced with the inverse Laplace
transform. To show that the Wiener-Hopf factorization of both the discrete
and continuous case can be computed with our procedure, in Figure D we
consider a double exponential distribution, whose characteristic exponent is

ψ(ξ) = iγξ − 1

2
σ2ξ2 + η

(
p

η1

η1 + iξ
+ (1− p) η2

η2 − iξ
− 1

)
.

We set γ = 0.2, σ = 0.2, η = 0.5, p = 0.5, η1 = 0.4, η2 = 0.4 and
s = 0.2, and we plot φ±(ξ, s) as well as Φ±(ξ, q)/

√
∆ for different values of

∆→ 0, showing numerically the convergence of the latter to the former. The
method by Feng and Linetsky, as well as all the other methods described in
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Figure D: Convergence of Φ+(ξ, q)/
√

∆ to φ+(ξ, s) (top) and of Φ−(ξ, q)/
√

∆ to φ−(ξ, s)
(bottom), ξ ∈ [−2, 2].

Section C, can deal only with the discrete monitoring case. In these cases,
the continuous monitoring value can be obtained only through a passage to
the limit, but it is well known that the convergence is slow. This clarifies
the importance of an efficient numerical method able to deal with both the
discrete and continuous monitoring cases. The methodology proposed here
factorizes directly φ(ξ, s) = s− ψ(ξ) and is exempt from the problem of the
slow convergence from discrete to continuous monitoring.
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and defaultable bonds in Lévy process models: a Hilbert transform ap-
proach. Mathematical Finance 18(3) 337–384.

[4] Fusai, G., G. Longo, M. Marena, M. C. Recchioni. 2009. Lévy pro-
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