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Abstract 

 

Background: Extreme preterm infants are most unstable during the first week of life and 

hence require frequent blood tests to optimise the intensive care they undergo. This leads to 

anaemia and need for frequent red blood cell transfusion. Blood transfusion in mature 

preterm infants has been thought to be associated with intestinal injury and necrotising 

enterocolitis. The effect of blood transfusion on intestinal blood flow and oxygenation in 

extreme preterm infants in the first week of life has not been studied. 

 

Methods and Results: The aim of the study was to measure the effect of blood transfusion 

on intestinal blood flow and oxygenation during the first week of life in extreme preterm 

infants. Superior mesenteric artery (SMA) peak systolic and diastolic velocities were 

measured 30-60 minutes before and after blood transfusion to assess intestinal blood flow 

using Doppler ultrasound scan (Logic P6, GE Healthcare). Intestinal or splanchnic tissue  

oxy/deoxy-haemoglobin (sHbO2/sHHB) concentrations, Tissue Haemoglobin Index (sTHI) 

and Tissue Oxygenation Index (sTOI) were measured 15-20 minutes before, during and 15-

20 minutes post blood transfusion using a Near Infrared Spectroscopy (NIRS) device (NIRO 

300, Hamamatsu Photonics Ltd, Japan).  

 

Heart rate (HR), respiratory rate (RR), arterial oxygen saturation (SaO2) and blood pressure 

were recorded continuously during NIRS measurement using a Phillips Intellivue monitor 

(MP50/MP70). Other data collected: gestational age (GA), birth weight (BWt), pre and post-

transfusion hemoglobin (Hb), blood gas (pH, pCO2 and lactate), and feeding details. Data 

were analysed using SPSS 22.0 statistical software. Continuous variables were compared 

using a paired t-test and one way ANOVA. The study was approved by National Research 
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Ethics Committee (REC no. 12/LO/0527) and adopted as a NIHR Portfolio study (Study ID: 

13594); written parental consent was obtained. 

 

20 infants were studied. The median GA was 26 (range 23 - 27) weeks, BWt 762.5 (600 - 

1180) grams, age on day of blood transfusion 5 (1 to 7) days and male: female ratio 12:8. 

50% of the infants were partially fed (median 18, range 15 - 68 ml/kg/day). There was no 

significant change in HR, RR and SaO2, but blood pressure increased significantly (p<0.01) 

following blood transfusion.  Hb significantly increased (p<0.001; 95% CI 2.12 to 3.04) and 

lactate decreased (p=0.02; 95% CI 0.11 to 1.30) after transfusion, and there was no 

difference between the pre and post-transfusion pH (p=0.51) or pCO2 (p=0.47).  

 

There was no significant change in the mean SMA peak systolic velocity (p=0.63) as well as 

SMA diastolic velocity (p=0.65) following blood transfusion. The mean pre-transfusion SMA 

peak systolic velocity was higher in partially fed (n=10, 0.78 m/s) compared to unfed (n=10, 

0.52 m/s) infants (p=0.06). The changes in SMA peak systolic velocity (p=0.72) and diastolic 

velocity (p=0.76) following blood transfusion was not significantly different between the fed 

and unfed infants.  

 

NIRS data from 3 infants were excluded from analysis due to motion artefact. There was a 

significant increase in sHbO2 concentration (mean difference 14.9 μM; p=0.04) and sTOI 

(mean difference 14.6%; p=0.03) following blood transfusion. There was no significant 

difference in sHbO2 or sTOI between the fed and unfed infants and their response to blood 

transfusion.  
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Conclusion: Blood transfusion significantly increased systemic blood pressure, intestinal 

tissue oxygenation but did not alter intestinal blood flow velocities in extreme preterm infants 

during the first week of life. Partial feeding in extreme preterm infants had no impact on the 

intestinal blood flow and tissue oxygenation changes following blood transfusion in the first 

week of life.  
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Introduction 

 

Extreme preterm infants are most vulnerable in the first postnatal week and need frequent 

blood tests to monitor their cardiorespiratory status to optimise intensive care. As a result of 

repeated phlebotomy losses these infants receive frequent transfusions during the first week 

of life1,2. The physiology of intestinal circulation and oxygenation are not clearly documented 

in human infants. Injecting radionuclide-labelled microspheres in experimental models of 

newborn lambs has helped us gain insight into this highly complex circulatory system. The 

oxygen consumption of intestines in these newborn lambs were 1.5 – 3 times higher than 

that in adults; and this high demand of oxygen consumption was met by increasing blood 

flow to the intestines 3. The regulation of intestinal blood flow and oxygenation depends on 

various intrinsic (myogenic, metabolic factors and endogenous vasodilators) and extrinsic 

(neural and hormonal) factors which in turn are dependent on the postnatal age of the infant 

4. Apart from physical increase in the length and weight of the intestines following birth 

resulting in increased metabolic demand as reported in animal models 5, there is also a 

marked decrease in the intestinal basal vascular resistance following birth which results in a 

2-fold increased blood flow to the intestines6. Researchers have studied the effect of 

anaemic hypoxia on newborn lambs by chronic arterial catheterisation. It has been reported 

that in order to maintain oxygenation in anaemic hypoxic state, the newborn intestinal tissue 

relies mostly on increases in oxygen extraction 7. The effect of blood transfusion on 

splanchnic vasculature is reliant on the balance between mesenteric vasoconstriction and 

relaxation induced by intestinal endothelial production of nitric oxide. A recent study has 

shown blood transfusion in enterally fed preterm lambs (n=16)  promotes mesenteric 

vasoconstriction and impairs vasorelaxation by reducing mesenteric arterial endothelial 

nitric-oxide synthase 8.  
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Doppler ultrasound scan has been used by researchers to assess intestinal perfusion in 

preterm infants 9. Superior mesenteric artery (SMA) blood flow measured by Doppler 

ultrasound scan has been used to assess blood flow to the gut10,11. Changes in tissue 

oxygenation markers such as oxy/deoxy-hemoglobin (HbO2/HHb) concentrations, , tissue 

hemoglobin index (THI) and tissue oxygenation index (TOI) (also known as regional tissue 

oxygen saturation) of various tissues can be measured using Near-Infrared Spectroscopy 

(NIRS) 12. Researchers have used these oxygenation markers to assess the oxygenation 

status of splanchnic tissues, and as a biomarker to recognize the need for blood transfusion 

in newborn infants9. Intestinal or splanchnic oxygenation can be measured non-invasively by 

placing the NIRS probe over the hypogastrium13. The splanchnic tissue oxygenation 

measured by NIRS has been used to investigate the effect of feed 14 and blood 

transfusion15,16 on intestinal oxygenation in stable preterm infant more than one week of 

postnatal age.  

 

Despite being most unstable and receiving frequent blood transfusions during the first week 

of life, the hemodynamic change in the splanchnic tissues following blood transfusion has 

not been studied in extreme preterm infants. We 17 and others 18 have shown blood 

transfusion as an independent risk factor of in-hospital mortality in preterm infants. The aim 

of our study was to measure the effect of blood transfusion on intestinal blood flow and 

oxygenation in extreme preterm infants in the first week of postnatal life using Doppler 

ultrasound scan and NIRS. 

 

 
Methods 
 
 
The study was conducted in a tertiary level neonatal unit in London, UK. Extreme preterm 

infants receiving blood transfusion for clinical indication were eligible for the study. 
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Congenital anomalies, established abdominal pathology such as NEC and infants 

considered unstable for Doppler ultrasound or NIRS measurements by the attending clinical 

team were excluded. In accordance with the British Committee for Standards in 

Haematology (BCSH) guidance 19, blood transfusion was indicated in our neonatal unit for 

extreme preterm infants in the first week if Hb is less than 12 g/dl or Hct <0.36. The decision 

for blood transfusion was made by attending clinicians based on infant’s Hb, ventilation 

status and oxygen requirement (FiO2 >0.35). 15 ml/kg of packed red blood cells were 

transfused over a period of 3 hours and the ongoing feeding regime was not interfered 

during the blood transfusion.  

 

Intestinal Doppler ultrasound scan measurements 

The Doppler measurements were performed using an ultrasound scanner with a 7 MHz 

probe (Logic P6, GE Healthcare, US). The superior mesenteric artery (SMA) peak systolic 

and diastolic velocities were measured 30-60 minutes before and after blood transfusion 

using a range-gated pulsed wave Doppler ultrasound scan (Figure 1). The Doppler 

measurements were performed by a single operator (JB) to minimise intra-operator 

variability and utmost care was taken to minimise the angle of insonation to the direction of 

flow. When this was more than 30° angle correction was performed. The probe was placed 

in the infra-diaphragmatic region (longitudinal view) to measure SMA blood flow 20. Cardiac 

morphology and presence of patent ductus arteriosus (PDA) was also recorded. 

 

Intestinal or splanchnic oxygenation measurements 

Intestinal or splanchnic oxygenation was measured using a NIRS device (NIRO 300, 

Hamamatsu Photonics K.K., Japan) with a sample acquisition rate of 6 Hz (samples/s). It 

has been reported in a recent study that the reproducibility and mean variability of NIRO 300 
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is comparable to other NIRS devices currently available 21. The NIRS probe was placed over 

the hypogastrium in the midline above the symphisis pubis and held in place using a single 

use tourniquet (Vygon ‘Vene K’ Quick Release, Vygon UK Ltd.); utmost care was taken to 

minimise any movement and the probe was also covered with a diaper to prevent any 

ambient light interference. To reduce NIRS motion artefacts the infants were minimally 

handled during the study period. The splanchnic oxy-Hb (sHbO2), deoxy-Hb (sHHb) in 

micromolar units, tissue Hb Index (sTHI) in arbitrary units and tissue oxygenation index 

(sTOI) in percentage were continuously measured from 15-20 min before, during and 15-20 

min post blood transfusion (Figure 1), and downloaded into the research laptop.  

 

Vital parameters measured  

The vital parameters such as heart rate, respiratory rate, blood pressure and oxygen 

saturation were measured using a Phillips Intellivue monitor (MP50/MP70) during NIRS 

measurements (Figure 1), and downloaded continuously using the ixTrend 2.0 software 

(ixellence GmBH, Halle, Germany) into the research laptop.   

 

Laboratory parameters measured  

The pre and post blood transfusion laboratory parameters such as hemoglobin (Hb), 

hematocrit (Hct) and blood gas parameters such as pH, pCO2 and serum lactate were also 

measured (Figure 1). Hb and Hct were measured using flow cytometry (Beckman Coulter 

Inc. US) in the hospital lab and the blood gas parameters were measured by a blood gas 

analyzer (GEM Premier 4000, Instrumentation Laboratory, UK) in the neonatal unit.  

 

Additional data collected 
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Antenatal factors: antepartum hemorrhage (APH), maternal pre-eclampsia (PET) and intra-

uterine growth restriction (IUGR), chorioamnionitis; and infant characteristics: gestational 

age, birth weight, Hb at birth were collected. Clinical condition on the day of transfusion: 

ventilation status and inotropic support were recorded. 

 

The study was approved by the National Research Ethics Committee (REC no.12/LO/0527) 

and was adopted as an NIHR portfolio study (NIHR Study ID 13594). Informed written 

parental consent was obtained.  

 

Data analysis 

A mean for 15 minute epochs of NIRS and vital parameter measurements were determined 

for each infant using  mathematical software Matlab (Math works, USA) during the following 

time periods: T1 - 15 to 20 minutes before the start of the blood transfusion, T2 - 1 hour into 

blood transfusion, T3 - 2 hour into blood transfusion and T4 - 15 to 20 minutes post blood 

transfusion. The mean of these epochs were then compared using one way ANOVA and t-

tests. The pre and post-transfusion values of all other measurements were compared using 

paired (two-tailed) t-test. A p value of <0.05 were considered significant. The data was 

analysed using SPSS 22.0 software (IBM Corp., USA). 

 

Results 

 

Infant characteristics 
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20 infants were studied and infant characteristics were presented in Table 1. The gestational 

age (GA) and birth weight ranged from 23 to 27 weeks and 600 to 1180 grams respectively. 

17 out of these 20 infants received a full course of antenatal steroids. 3 infants were IUGR 

due to maternal PET. 6 mothers were noted to have APH, 8 had chorioamnionitis and 2 had 

both. Twelve infants were undergoing conventional invasive ventilation and 8 were receiving 

non-invasive ventilation (Continuous Positive Airway Pressure – CPAP) at the time of blood 

transfusion. 10 infants were receiving enteral feed between 15 and 68 ml/kg/day. 19 infants 

had PDA on echocardiography, otherwise normal cardiac morphology. All infants were 

receiving antibiotics for presumed sepsis; however, blood culture results were noted to be 

subsequently negative for all. Three infants were on single inotropic support (Dopamine) 

because of hypotension, the dose remained unchanged for the duration of the study. 

 

 

Vital parameters and laboratory measurements 

 

The mean values of pre and post blood transfusion vital parameters and laboratory 

parameters are presented in Table 2. There was a significant increase in systolic, diastolic 

and mean blood pressure following blood transfusion. The serum lactate levels decreased 

significantly following blood transfusion. However, the mean pre and post blood transfusion 

pH and pCO2 levels in the blood gas remained unaltered.  

  

 

Doppler measurements 

 

The mean pre-transfusion superior mesenteric artery (SMA) Peak Systolic Velocity (PSV) 

(0.63 ± 0.32 m/s) did not change significantly post-transfusion (0.60 ± 0.23 m/s; p = 0.63). 

Similarly the mean pre-transfusion SMA diastolic velocity (0.12 ± 0.05 m/s) did not change 

significantly post-transfusion (0.11 ± 0.04 m/s; p=0.65). The mean SMA PSV was higher in 
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partially-fed (0.75 ± 0.22 m/s) compared to unfed (0.52 ± 0.34 m/s) infants (Figure 2) but this 

was not statistically significant (p=0.06). The mean SMA diastolic velocity was similar 

between the partially-fed (0.14 ± 0.04 m/s) and unfed (0.11 ± 0.04 m/s; p = 0.13) infants. 

There was no difference between the degree of change in SMA PSV following transfusion 

between the partially fed and unfed groups (p=0.72) (Figure 2).  

 

  

NIRS measurements 

 

Intestinal or splanchnic tissue oxygenation parameters (ΔsHbO2, ΔsHHb and sTHI) 

 

The changes in mean intestinal or splanchnic oxy-haemoglobin concentration (ΔsHbO2), 

deoxy-haemoglobin (ΔsHHb) concentration and tissue haemoglobin index (sTHI) are shown 

in Figure 3. The mean splanchnic oxy-haemoglobin concentration (ΔsHbO2) increased from 

the baseline consistently during blood transfusion and was significantly higher post-

transfusion (p<0.01). There was a slightly different trend in the ΔsHHb levels during 

transfusion. There was an initial decrease (p=0.20, 95% CI -5.8 to 25.2 micromolar) within 

the first hour of transfusion; this lasted for the next one hour and followed by an increase in 

the ΔsHHb levels in the intestinal tissues. The mean post-transfusion ΔsHHb level was lower 

than the pre-transfusion ΔsHHb but it was not statistically significant (p=0.93; Figure 3). 

Following an initial drop in sTHI levels in the first hour, there was an increasing trend in sTHI 

during transfusion which was consistent throughout the transfusion and was present 

following blood transfusion (Figure 3). The mean post transfusion sTHI increased 

significantly compared to pre-transfusion sTHI (p=0.01).   

 

Intestinal or splanchnic tissue oxygenation Index (sTOI) 
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The mean pre-transfusion sTOI (35.48 ± 20.31%) increased significantly following 

transfusion (post-transfusion sTOI 50.07 ± 24.16%; p=0.04). Although there was an 

increasing trend in mean sTOI over time (35.53% at 1 hour and 38.33% at 2 hours) it did not 

reach statistical significance until the end of transfusion (Figure 3).  

 

NIRS measurements in the partially-fed and unfed groups 

 

There was no difference in mean sHbO2 changes between the partially fed (4.54 

micromolar) and unfed (2.25 micromolar) infants in the study population (p=0.76). There was 

also no significant difference in the mean sTHI between the partially fed (32.18 ± 18.9 

arbitrary units) and unfed (45.64 ± 19.4 arbitrary units; p=0.28; CI -12.7 to 39.7) infants. 

Similarly, there was no significant difference in the mean sTOI between the partially fed 

(31.78±18.9%) and unfed (38.78±21.8%; p=0.49; CI -14.2 to 28.2) infants. There was also 

no significant difference in the degree of measurement changes in sHbO2 (p=0.78), sTHI 

(p=0.76) and sTOI (p=0.72) following blood transfusion between the partially fed and unfed 

infants. 

 

Discussion 

We have demonstrated for the first time that blood transfusion increases splanchnic oxy-

haemoglobin concentration (sHbO2), tissue haemoglobin index (sTHI) and tissue 

oxygenation index (sTOI) in extreme preterm infants during the first week of life. Splanchnic 

regional tissue oxygenation (SrSO2) (a.k.a sTOI) is a biomarker of tissue oxygenation and 

they represent the percentage of oxygenated Hb compared to the total Hb in the tissue 

traversed by the near infra-red light 22. Similar to the present study Bailey et al reported a 

significant increase in SrSO2 in preterm infants more than seven days of age (mean 

postnatal age 31.7±16.2 days) from a baseline 41.3±2.2% to 48.2±2.5% following 

transfusion15. Dani et al studied SrSO2 changes in preterm infants (mean postnatal age 
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32±23 days) and noted similar changes (pre-transfusion 54±12% to 70±8% post-

transfusion)16. These studies were performed in more mature preterm infants (gestational 

age 25 to 31 weeks) with lower pre-transfusion Hb (mean Hb 9.3±1.2 g/dl) compared to the 

present study. The pre-transfusion splanchnic tissue oxygenation levels (sTOI) noticed in the 

present study during the first week of postnatal life is comparable to other published reports 

13. Compared to the brain, the baseline pre-transfusion intestinal tissue oxygenation is lower, 

indicating a lower oxygen requirement and higher oxygen extraction capacities16. The 

increasing trend in the splanchnic tissue oxygenation (sTOI) during transfusion in the current 

study was apparent as early as one hour into the transfusion but did not reach statistical 

significance until the end of the transfusion, this pattern is similar to the published reports in 

older preterm infants 15,16. There are no published data on blood transfusion and changes in 

sHbO2, sHHb and sTHI in preterm infants to compare with our findings. Though there were 

significant increases in sHbO2 and sTHI, the sHHb did not change, resulting in increased 

sTOI following transfusion in the present study. It is reported that in stable preterm infants 

receiving full enteral bolus feeds splanchnic tissue oxygenation increase after each feed14 

indicating increased blood flow to the gut. In the current study the degree of change in sTOI, 

sHbO2, sHHb and sTHI following transfusion between the unfed and partially fed infants 

remained unaltered which may be due to the lower volume (range 15 - 68 mls/kg/day) of 

enteral feeds they were receiving.  

 

To better appreciate the effect of blood transfusion on splanchnic perfusion we measured 

the SMA peak systolic and diastolic velocities before and after transfusion. Our study 

findings demonstrated no significant change in the SMA flow velocities following blood 

transfusion in extreme preterm infants which is comparable to reported studies of more 

mature and older preterm infants16. This indicate that transitory haemodynamic changes in 

the first few days of postnatal life 23 did not alter the effect of blood transfusion on SMA blood 

flow velocities in the infants studied. Nelle et al reported a significant decrease in blood flow 
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velocity of coeliac artery following blood transfusion in clinically stable non-ventilated older 

preterm infants (mean gestational age 29 ± 5 weeks and mean postnatal age 48 ± 21 

days)24. This is not comparable to the present study as we have measured SMA blood flow 

as a proxy of intestinal blood flow in extreme preterm infants during the first week of life. 

Although the blood flow velocities in the SMA remained unaltered following blood 

transfusion, the blood flow volume to the splanchnic circulation may have a different 

response to transfusion and this need further investigation.  

 

SMA blood flow velocity has been reported to increase following feeds in older stable 

preterm infants 20, but we did not find any difference in the SMA peak systolic and diastolic 

velocities between the partially fed and the unfed groups. There was a noticeable difference 

of peak systolic velocities between the fed and unfed infants, but it did not reach statistical 

significance. This could be ascribed to the small amount of enteral feeds these infants 

received in proportion to total fluids. The effect of PDA and ductal steel on the SMA blood 

flow is well recognised25,26, since almost all infants in the current study had PDA, we were 

not able to analyse the bearing of PDA on the SMA blood flow velocities. 

 

We measured heart rate continuously upto 20 minutes post blood transfusion in the current 

study and did not notice any changes. It is possible that heart rate would decrease 

significantly following blood transfusion later and this was more prominent in older clinically 

and haemodynamically stable preterm infants as reported in some studies24,27. Unlike 

previous studies in older clinically stable preterm infants who did not report any significant 

difference in mean blood pressure following blood transfusion 16,24, there was a significant 

increase in the mean blood pressure following blood transfusion in the current study perhaps 

indicating the haemodynamic effect of increased circulatory volume in the first week of life. 

We did not notice any change in SaO2 and respiratory rate following blood transfusion in this 
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group of infants. In older preterm infants, Fredrickson et al also did not notice any difference 

in the SaO2, FiO2 and oxygen consumption between two groups receiving liberal and 

restrictive transfusion 28. There was a significant drop in serum lactate levels following blood 

transfusion in the current study despite normal levels pre-transfusion. It has been reported 

earlier that blood transfusion reduces serum lactate levels and this have raised the 

possibility of using serum lactate as a trigger for blood transfusion in preterm infants 9,29.  

 

We carried out the study in a group of extremely premature infants who were receiving either 

invasive or non-invasive ventilation and were undergoing various circulatory adaptive 

changes in the first week of postnatal life. The decision to transfuse blood was made by the 

attending clinical team and was based on the BCSH guidance for transfusion in the first 

week of postnatal life19. Leukocyte depleted, cytomegalovirus negative, Sickle cell negative, 

plasma reduced packed red blood cells (hematocrit 50-70%), were transfused over a period 

of 3 hours through an intravenous cannula. This is a standard practice in most neonatal units 

in the UK. The ventilatory pressures, oxygen requirement, feeding regime, the pre-

transfusion pH and pCO2 remained unchanged during the study period. The mean pre-

transfusion Hct (0.31 ± 0.04) is comparable to the reported studies 27,30,31.        

 

Extreme preterm infants receiving blood transfusion during the first week of life for clinical 

indications were studied, and decision for transfusion was made by the attending clinician. 

Hence, selection bias cannot be excluded. Since Doppler ultrasound scan measurements 

are operator dependent, the measurements were performed by a single operator (JB) to 

minimise intra-operator variability. The splanchnic oxygenation measurements of 3 infants 

were excluded from the analysis due to motion artefacts, which is comparable to other 

reported NIRS studies 32,33. One of the limitations of the study is that we measured the 

splanchnic tissue oxygenation only upto 20 minutes following transfusion. Other researchers 
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have measured splanchnic tissue oxygenation at one 34, four and 24 hours 31 post-

transfusion , and reported persistence of increased tissue oxygenation state following 

transfusion in more stable preterm infants. All infants in the current study were receiving 

intensive care and any alterations in the tissue oxygenation later would be difficult to 

interpret due to ongoing intensive care management. Three infants were receiving 

Dopamine and this is unlikely to influence the study findings as the dosage of Dopamine 

infusion remained unchanged for the duration of the measurements.  

 

Conclusion: Blood transfusion in the first week of postnatal life in extreme preterm infants 

increased systemic blood pressure, improved intestinal tissue oxygenation but did not alter 

intestinal perfusion. Partial feeding in these infants had no impact on the intestinal blood flow 

and tissue oxygenation changes following blood transfusion. Further studies on intestinal 

perfusion, microcirculation and tissue oxygenation response to blood transfusion in preterm 

infants of various gestational and chronological age groups are required. The effect of 

enteral feed on intestinal perfusion and oxygenation during blood transfusion needs to be 

explored.  
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Table 1. Study infant characteristics (n=20) 

 

 

*Mean (standard deviation), +Ratio  

 

Infant characteristics 

 

Results 

Gestational age at birth (weeks) 25 (1.25)* 

Birth weight (grams) 819 (140.6)* 

Male : Female 12 : 8+ 

Caucasian : Black : Asian : Mixed 12 : 4 : 3 : 1+ 

Age at transfusion (days) 4 (2)* 

Admission Hb (grams/dl) 14.4 (2.28)* 

Not-fed: Fed 10:10+ 

Median (range) volume of feeds (ml/kg/d) 18 (15 – 68) 
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Table 2. Changes in vital and laboratory parameters following blood transfusion (n=20) 

Vital and  

laboratory parameters  

Pre-transfusion 

Mean (SD) 

Post-transfusion 

Mean (SD) 

p values (95% CI) 

Heart rate (per min) 159.1 (8.8) 157.9 (15.1) 0.67 (-4.51 to 6.89) 

Resp rate (per min) 53.2 (12.3) 50.0 (11.7) 0.13 (-0.99 to 7.28) 

Saturation (%) 93.2 (2.9) 93.2 (2.5) 0.96 (-1.71 to 1.63) 

Systolic BP (mm of Hg) 46.7 (6.6) 51.6 (4.9) <0.01 (2.24 to 7.62) 

Diastolic BP (mm of Hg) 24.3 (3.1) 30.7 (4.7) <0.01 (3.17 to 9.11) 

Mean BP (mm of Hg) 32.7 (3.8) 37.9 (3.7) <0.01 (2.61 to 8.01) 

Hb (mg/dl) 11.08 (1.30) 13.77 (1.63) < 0.01 (2.12 to 3.04) 

Hct 0.31 (0.04) 0.39 (0.05) < 0.01 (0.07 to 0.09) 

pH 7.28 (0.07) 7.27 (0.05) 0.51 (-0.02 to 0.05) 

pCO2 (kPa) 5.69 (1.21) 5.85 (0.82) 0.47 (-0.63 to 0.31) 

Lactate (mmol/L) 2.53 (1.31) 1.78 (0.51) 0.02 (0.11 to 1.30) 
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Figure 1. Overview of measurements. The numbers in the timeline at the bottom show the 

various steps of measurements during the process. 
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Figure 2: Pre and post blood transfusion SMA peak systolic velocity of partially fed (n=10) 

and unfed (n=10) infants 
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Figure 3: Blood transfusion and changes in splanchnic tissue oxy-Hemoglobin concentration (ΔsHbO2), deoxy-Hemoglobin concentration 

(ΔsHHb), tissue Hemoglobin Index (sTHI) and tissue oxygenation index (sTOI) (n=17). T1 = Pre-blood transfusion, T2 = 1 hour after blood 

transfusion started, T3 = 2 hours after blood transfusion started, T4 = Post blood transfusion. (* = p<0.05)

 


