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Abstract

Despite extraordinary efforts to profile cancer genomes, interpreting the
vast amount of genomic data in the light of cancer evolution remains challenging.
Here we demonstrate that neutral tumor evolution results in a power-law
distribution of the mutant allele frequencies reported by next-generation
sequencing of tumor bulk samples. We find that the neutral power law fits with
high precision 323 of 904 cancers from 14 types, selected from different cohorts.
In malignancies identified as neutral, all clonal selection occurred prior to the
onset of cancer growth and not in later-arising subclones, resulting in numerous
passenger mutations that are responsible for intra-tumor heterogeneity.
Reanalyzing cancer sequencing data within the neutral framework allowed the
measurement, in each patient, of both the in vivo mutation rate and the order and
timing of mutations. This result provides a new way to interpret existing cancer
genomic data and to discriminate between functional and non-functional intra-
tumor heterogeneity.

Introduction

Unraveling the evolutionary history of a tumor is clinically valuable, as
prognosis depends on the future course of the evolutionary process'?, and
therapeutic response is determined by the evolution of resistant subpopulations®.
In humans, the details of tumor evolution have remained largely uncharacterized
as longitudinal measurements are impractical, and studies are complicated by
inter-patient variation* and intra-tumor heterogeneity (ITH)*®. Several recent
studies have begun tackling this complexity’, revealing patterns of convergent
evolution®, punctuated dynamics®, and intricate interactions between cancer cell
populations'®. However, the lack of a rigorous theoretical framework able to
make predictions on existing data'’ means that results from cancer genomic
profiling studies are often difficult to interpret. For example, how much of the
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detected intra-tumor heterogeneity is actually functional is largely unknown, also
because a rigorous ‘null model’ of genomic heterogeneity is lacking. In particular,
interpreting the mutant allele frequency distribution reported by next-generation
sequencing (NGS) is problematic because of the absence of a formal model
linking tumor evolution to the observed data. Therefore, making sense to the
wealth of available sequencing data in cancer remains challenging.

Here we show that the subclonal mutant allele frequencies of a significant
proportion of cancers of different types and from different cohorts precisely follow
a simple power-law distribution predicted by neutral growth. In those neutral
cancers, all tumor-driving alterations responsible for cancer expansion were
present in the first malignant cell and subsequent tumor evolution was effectively
neutral. We demonstrate that under neutral growth, the fundamental parameters
describing cancer evolution that have been so far inaccessible in human tumors,
such as the mutation rate and the mutational timeline, become measurable.
Importantly, this approach allows identifying also non-neutral malignancies, in
which ongoing clonal selection and adaption to microenvironmental niches may
play a strong role during cancer growth.

Results

Neutral cancer growth

Recently, we showed that colorectal cancers (CRC) often grow as a single
expansion, populated by a large number of intermixed subclones'?.
Consequently, we expect that after malignant transformation, individual
subclones with distinct mutational patterns grow at similar rates, coexisting within
the tumor for long periods of time without overtaking one another. Indeed, only a
handful of recurrent driver alterations have been identified in CRC', and those
are reported to be ubiquitous in multi-region sampling'? and stable during cancer
progression’, indicating that they all occurred in the “first” cancer cell and that
subsequent clonal outgrowths are relatively rare. Consequently, we hypothesized
that cancer evolution may often be dominated by neutral evolutionary dynamics.

The dynamics of neutral evolutionary processes have been widely studied
in the context of molecular evolution and population genetics™ " as well as in
mouse models of cancer'®. However, the widely held presumption that subclone
dynamics in human cancers are dominated by strong selection has meant these
ideas have been neglected in current studies of cancer evolution.

Motivated by this, here we present a theoretical model describing the
expected pattern of subclonal mutations within a tumor that is evolving according
to neutral evolutionary dynamics. The model postulates that, after the
accumulation of a “full house” of genomic changes that initiates tumor growth,
some tumors expand neutrally, generating a large number of passenger
mutations that are responsible for the extensive and common ITH. The
parameter-free model is applicable to NGS data from any solid cancer. Here we
present the model, and by applying it to large pre-existing cancer genomics
datasets, determine which tumors are consistent with neutral growth. When the
model applies, we measure new tumor characteristics directly from the patient’s
data.

Model derivation

A tumor is founded by a single cell that has already acquired a significant
mutation burden’: these “pre-cancer” mutations will be borne by every cell in the
growing tumor, and so become “public’ or clonal. Mutations that occur within
different cell lineages remain “private” or subclonal in an expanding malignancy
under the absence of strong selection. We focus on the latter as they contain
information on the dynamics of the cancer growth. We denote the number of
tumor cells at time t as N(t) which divide at rate A per unit time. During a cell
division, somatic mutations may occur with a probability y. If we consider an
average number of m chromosome sets in a cancer cell (e.g. the ploidy of the
cell), we can calculate the expected number of new mutations per time interval
as:
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—=unAN(t 1
gp HAN(E) [1]
Solving this requires integrating over the growth function N(f) in some time
interval [fo,1]:

M(t) = umA| N(t)dt 2]

0

Since not all cell divisions may be successful in generating two surviving lineages
due to cell death or differentiation, we introduce the fraction 8 of “effective” cell
divisions in which both resulting lineages survive. In the case of exponential
growth, the mean number of tumor cells as a function of time is therefore:

N(t)=e™ [3]

Substituting into equation [2] gives the explicit solution:

M(t)=%(em—em°) [4]

This equation describes the total number of subclonal mutations that accumulate
within a growing tumor in the time interval [fo,f]. We note that for t{,=0 equation [4]
corresponds to the Luria-Delbriick model, which describes mutation accumulation
in bacteria’. In our case, this equation is of limited use as none of the
parameters yu, A, 8 or the age of the tumor t can be measured directly in humans.
However, we do know that for a new mutation occurring at any time t, its allelic
frequency (the relative fraction) f must be the inverse of the number of alleles in
the population:

[ (5]

~ZN(t) e

For example, if a new mutation arises in a tumor of 100 cells, it will comprise a
fraction of 1/100. In the absence of clonal selection (or indeed significant genetic
drift), the allelic frequency of a mutation will remain constant during the
expansion, as all cells, with and without this mutation, grow at the same rate. In
the previous example, after one generation has elapsed we will have 2 cells with
that particular mutation, but a total of 200 tumor cells, again a fraction of 1/100.
This implies that in the neutral case, tumor age t and mutation frequency f are
interchangeable. For example, =0 in a diploid tumor (7=2), corresponds to
fmax=0.5 (the expected allelic frequency of clonal variants):

fmax = P AP, [6]

Substituting f for f in equation [4] gives an expression for the cumulative number
of mutations in the tumor per frequency M(f):

puf1 1)
M= 577 ]

thus converging to the solution for expanding populations under neutrality
obtained using other approaches®?3. Critically, the distribution M(f) is naturally
provided by NGS data from bulk sequencing of tumor biopsies and resections,
against which the model can be tested. The model predicts that mutations arising
during a neutral expansion of a cancer accumulate following a 1/f power-law
distribution. In other words, when neutral evolution occurs in a tumor, the number
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of mutations detected should accumulate linearly with the inverse of their
frequency. The 1/f noise or pink noise is common in nature and found in several
physical, biological and economic systems?*.

Importantly, the coefficient u.=u/B is the mutation rate per effective cell
division, and corresponds to the easily measureable slope of M(f). This model
therefore provides a straightforward parameter-free method to measure the in
vivo mutation rate in a patient’s tumor using a single NGS sample. We note that
the results do not depend on the identity of the alterations considered, since any
genomic alteration (mutations, copy nhumber changes or epigenetic modifications)
anywhere in the genome that changes the dynamics of tumor growth (e.g. any
alteration that is clonally selected) would result in deviation from the neutral 1/f
power law by causing an over- or under-representation of the alleles in that
clone. Hence, here we use single nucleotide variants as ‘barcodes’ to follow
clone growth. Stochastic simulations of neutral tumor growth confirm the
analytical solution in equation [7] (see Online Methods).

Identification of neutrality in colorectal cancer evolution

A typical allelic frequency distribution of mutations in a tumor measured by
NGS whole-exome sequencing is shown in Figure 1A (data from ref '2).
Considering tumor purity and aneuploidy, mutations with high allelic frequency
(>0.25) are likely to be public (clonal) while all others are likely subclonal. The
same data can be represented as the cumulative distribution M(f) of subclonal
mutations as in equation [7] (Figure 1B). Remarkably, as reported by the high
goodness-of-fit measure R?, these data precisely follow the distribution predicted
by the model indicating that this tumor grew with neutral evolutionary dynamics.

We next considered our cohort of 7 multi-sampling CRCs'? and 101 TCGA
colon adenocarcinomas'® selected for high tumor purity (270%) that underwent
whole-exome sequencing (see Online Methods). The latter were separated
between tumors characterized by chromosomal instability (CIN) versus
microsatellite instability (MSI). The power-law is remarkably well supported in
both these cohorts, with 38/108 (35.1%) of the cases reporting a high R>>0.98
(Figure 1C). These results confirm that in a large proportion of colon cancers,
intra-tumor clonal dynamics are not dominated by strong selection but rather
follow neutral evolution. In particular, a larger proportion of CIN cancers evolved
neutrally (31/82, 37.8%) than MSI cancers (3/19, 15.7%) (Figure 1C), possibly
because the latter acquired so many new mutations that some are likely under
strong selection. Since M(f) is a monotonic growing function, this stringent
threshold of R?>0.98 was chosen to prevent over-calling neutrality, but we note
that we may have therefore misclassified some tumors as non-neutral due to
limited sequencing depth or low mutation burden. R? values were independent
from the mean coverage of mutations, the total number of mutations in the
sample or the number of mutations within the model range (see Online Methods).
See Supplementary Data Set 1 (summary of TCGA data used).

Measurement of the mutation rate in colorectal cancer

Estimating the per-base mutation rate y per division in human
malignancies is challenging since direct measurements are not possible.
Previous estimates critically depend on assumptions about the cell cycle time
and the growth rate A, as well as on the total mutational burden of the cancer®#’.
However, accurate measurement of all mutations within a cancer, including
heterogeneous subclonal variants, is technically unfeasible since most mutations
are present in very small numbers of cells®. With our approach it is possible to
circumvent this issue by measuring the rate of accumulation of subclonal
mutations represented by the slope of M(f). In the case of neutral evolution, this
can be done in principle within any (subclonal) frequency range, without the need
of detecting extremely rare mutations. We estimated the mutation rate in all
samples with R?>0.98 (Figure 1D) and found that it was more than 15-fold higher
in the MSI group (median: ps=3.65x10®) with respect to the CIN group (median:
Ue=2.31x10"; F-test: p=2.24x10®) and our cohort of CRCs (median: pe=2.07x10"
"), which was comprised of all but one CIN tumors'2. Different mutational types
(e.g. transitions or transversions) are caused by particular mutational
processes?®, and so likely occur at different rates and accordingly we found that
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C>T mutations occurred at median pe c>r=2.19%107, a rate nearly 10-fold higher
than any other type of mutation (F-test: p=3.13x10%; Supplementary Figure 1A).
We stratified according to CIN versus MSI and found that the mutation rate of
each mutational type reflected the overall mutation rate for the group
(Supplementary Figure 1B). The variation in mutation rates within and between
subgroups was remarkably in line with the variation in estimates of mutational
burden in colon cancer®. We note the mutation rate estimate is scaled by the
(unknown) effective division rate 8, which means for example that if only 1 in 100
cell divisions leads to two surviving offspring (8=0.01), then the mutation rate y is
100 times lower than the effective rate ye reported. Importantly, mutation rates of
non-neutral cases (R?<0.98) cannot be estimated, as the model does not fit the
dynamics of these tumors.

We examined the effect of copy-number changes in the model by
performing the analysis using only mutations in diploid regions and found highly
similar proportions of neutral tumors and mutation rates (see Online Methods and
Supplementary Figure 2). The validity of the variant calls was also corroborated
by the consistency of the underlying mutational signature across a range of allelic
frequencies; hence the results are unlikely to be influenced by sequencing errors
(Supplementary Figure 3).

Frequent selection events should induce a higher number of missense and
nonsense mutations than expected by chance whereas under neutrality we
expect the same rate of silent and non-silent mutations. To test this, we
contrasted the estimated rate of synonymous mutations (unlikely to ever be
under selection) versus the rate of missense and nonsense mutations (liable to
experience selection). Although the latter are more common than the former,
after adjustment for the number of potential synonymous and non-synonymous
sites in the exome, the two rates were equivalent (Supplementary Figure 4),
consistent with neutral evolution.

Neutral evolution in coding and non-coding regions

We next tested whether the signature of neutral evolution could be found
across the entire genome, not just in coding regions. To do this, we analyzed 78
gastric cancers from a recent study®® subjected to high depth whole-genome
sequencing. The large number of mutations detected by WGS accumulated
precisely as predicted by the model (example in Figure 2A,B), revealing neutral
evolution in 60/78 (76.9%) cases (Figure 2C). A smaller proportion of MSI tumors
were neutral (3/10, 30%) than microsatellite stable (MSS) tumors (57/68, 83.8%)
consistent with the observation in CRC. A tumor was consistently classified as
neutral independently of whether all SNVs or only non-coding SNVs were used to
perform the classification (Figure 2C, Venn diagram), whereas due to the limited
number of mutations available in the exome alone, fewer tumors were identified
as neutral. Importantly, every case was verified as neutral by at least two
different variant sets. These results confirm that neutral evolution can be robustly
assessed from mutations anywhere in the genome.

Mutation rate analysis of the neutrally evolved gastric cancers revealed
that MSI cancers had a more than 4-fold higher mutation rate (ue=3.30x10°) with
respect to MSS (u,=7.82x107; F-test: p=1.35x10"*). Results were robust to copy
number changes when the analysis was performed only using variants in diploid
regions (Supplementary Figure 5). The mutational signature of the variant calls
for this cohort was also consistent across the frequency spectrum
(Supplementary Figure 6). Synonymous versus nonsynonymous mutation rates
were also not consistent with frequent on-going selection (Supplementary Figure
7). See Supplementary Data Set 2 (summary of Wang et al. data used).

Neutral evolution across cancer types

We then applied our neutral model to a large pan-cancer cohort of 819
exome-sequenced cancers from 14 tumor types from the TCGA consortium
(which included the 101 colon cancers previously examined). All of these
samples had been pre-selected for high tumor purity (270%). The fit of the model
was remarkably good across types (Figure 3A) with 259/819 (31.6%) cases
showing R?>0.98. We found that neutral evolution was more prominent in some
tumor types, such as stomach (validating the WGS analysis), lung, bladder,
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cervical, and colon. Others showed a consistently poorer fit, indicating that the
clonal dynamics in these malignancies were typically not neutral, such as renal,
melanoma, pancreatic, thyroid, and glioblastoma. Consistent with these results,
“non-neutral” renal carcinoma has been shown to display convergent evolution in
spatially disparate tumor regions driven by strong selective forces®, whereas the
same phenomenon was not found in more “neutral” lung cancer®®?®'. Other types
displayed mixed dynamics, with some cases that were characterized by neutral
evolution and some that were not. We note that a proportion of melanoma
samples in this cohort are derived from regional metastases and not primary
lesions, and this could potentially explain the lack of neutral dynamics observed.

Mutation rate analysis on the neutral cases showed differences of more
than an order of magnitude between types (Figure 3B). The highest mutation
rates were observed in lung adenocarcinoma (median pe=6.79x107) and in lung
squamous cell carcinoma (median w.=5.61x107) and the lowest rates in low
grade glioma (median p,=9.22x10®) and in prostate (median p=1.04x107). We
stratified the mutation rates into different mutational types (Supplementary Figure
8) and found that C>A mutations occurred at a significantly higher rate in lung
cancers, consistent with their causation by tobacco smoke?®. C>T mutation rates
were most consistent across cancer types, likely because of their association
with normal replicative errors, as opposed to being caused by a particular
stochastically-arising defect in DNA replication or repair?®.

These results demonstrate that within-tumor clonal dynamics can be
neutral, and the classification of tumors based on neutral versus non-neutral
growth dynamics leads to new measurements of fundamental tumor biology. See
See Supplementary Data Set 1 (summary of TCGA data used).

In silico validation of the neutral model

To assess the different inherent sources of noise in NGS data (normal
contamination, limited sequencing depth, tumor sampling), we designed a
stochastic simulation of neutral growth that produced synthetic NGS data from
bulk samples (see Online Methods). The simulations produced realistic synthetic
NGS data (Supplementary Figure 9) with minimal assumptions and under a
range of different scenarios for tumor growth dynamics (variable low mutation
rate, variable number of clonal mutations) and sources of assay noise (normal
contamination in the sample, sequencing depth, detection limit). For each of
these potentially confounding factors, we were able to fit our neutral model to the
synthetic NGS data and accurately recover both the underlying neutral dynamics
and mutation rate (Supplementary Figure 10). We also validated the prediction
that M(f) would deviate from the neutral power law in the presence of emerging
subclones with a higher fithess advantage (Supplementary Figure 11A,B), as well
as in the case of a mixture of subclones (as observed in ref. **) emerging either
by means of clonal expansions triggered by selection, or by segregating
microenvironmental niches (Supplementary Figure 11C-F). Variation of mutation
rate between subclones also causes a deviation from neutrality (Supplementary
Figure 11G,H). These results confirm the reliability of the conservatively high R?
threshold used to call neutrality.

Mutational timelines
Under neutral evolution, it is possible to estimate the size of the tumor
when a mutation with frequency f arose from equation [5]:

NE©)=— 8]

nf

Figure 4A,B shows the decomposition of the mutational timeline for two
illustrative cases: sample TB from'? and sample TCGA-AA-3712 from"®. Previous
estimates of mutational timelines relied on cross-sectional data®*® that are
compromised by the extensive heterogeneity, whereas multi-region profiling
approaches are instead more accurate but expensive and laborious®*"*. Using
our formal model of cancer evolution this timeline information becomes
accessible from routinely available genomic data. We found that classical CRC
driver alterations, such as in the APC, KRAS and TP53 genes, were indeed
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present in the first malignant cell (likely because they accumulated during
previous neoplastic stages). This confirms what we previously reported using
single-gland mutational profiling where all these drivers, when present, were
found in all glands12. However, we also found that when we considered a more
extended list of putative drivers, many occurred during the neutral phase of tumor
growth, suggesting that the selective advantage conferred by a putative driver
alteration may be context-dependent, as demonstrated in a p53 murine model*°.

Discussion

Understanding the evolutionary dynamics of subclones within human
cancers is challenging because longitudinal observations are unfeasible and the
genetic landscape of cancer is highly dynamic, leading to genomic data that are
hard to interpret*°. In particular, complex non-linear evolutionary trajectories have
been observed, such as punctuated evolution and karyotypic chaos®***'. Here
we have presented a formal law that predicts mutational patterns routinely
reported in NGS of bulk cancer specimens. Our analysis of large independent
cohorts using this framework shows that cancer growth is often dominated by
neutral evolutionary dynamics, an observation that is consistent across 14 cancer
types. Under neutrality, the clonal structure of a tumor is expected to have a
fractal topology characterized by self-similarity (Figure 5). As the tumor grows, a
large number of cell lineages are generated and therefore ITH rapidly increases
while the allele frequency of the new heterogeneous mutations quickly decreases
due to the expansion. This implies that sampling in different parts of the tree
leads to the detection of distinct mutations which all show the same 7/
distribution. Clonal mutations found in a sample (not considered in the model)
belong to the most recent common ancestor in the tree.

We note that some cancers were dominated by neutral evolution whereas
others were not. In non-neutral tumors, strong selection, microenvironmental
constrains and non-cell autonomous effects*? may play a key role. Importantly,
our formalization represents the ‘null model’ of cancer intra-clone heterogeneity
that can be used to identify those cases in which complex non-neutral dynamics
occur, and to discriminate between functional and non-functional intra-tumor
heterogeneity. Furthermore, we speculate that neutral evolutionary dynamics
may be favored by the cellular architecture of the tumor (e.g. glandular structures
that limit the effects of selection) and/or the anatomical location of the malignancy
(e.g. growing in a lumen versus growing in a highly confined space), as well as
the presence of potentially selective microenvironmental features of the tumor
such as hypoxic regions. Despite the evidence for lack of natural selection during
malignant growth, eventual treatment is likely to “change the rules of the game”
and strongly select for treatment resistant clones. The same may happen in the
context of the purported evolutionary bottleneck preceding metastatic
dissemination, wherein treatment-resistance driver alterations that were not
under selection during growth may expand due to new selective pressures
introduced by therapy. Importantly, this reasoning highlights how ‘drivers’ can
only defined within a context, and so the same ‘driver’ alteration can be neutral in
a certain microenvironmental context (e.g. absence of treatment), and not neutral
in another (e.g. during treatment). Moreover, we predict that if a tumor is
characterized by different microenvironmental niches but still presents as neutral,
it is likely that adaptation will be driven by cancer cell plasticity, rather than clonal
selection. Cell plasticity is hard to study in cancer because it implies a change in
the cell phenotype that is not caused by any inheritable change (genomic or
epigenomic). This means that this phenomenon has been so far largely
neglected in cancer. As neutrality can be used as the ‘null model’ with which to
identify clonal selection, this facilitates the study of adaptation through plasticity
directly in human malignancies.

Furthermore, it is important to note that due to the intrinsic sub-clonal
detection limits of sequencing technologies, it is possible to explore only the early
expansion of cancer clones (Figure 5) and hence the dynamics of small clones
may differ from the tumor bulk as a whole.

Importantly, the realization that the within-tumor clonal dynamics are
neutral means that the in vivo mutation rate per division and the mutational
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timeline, factors that play a key role in cancer evolution, progression and
treatment resistance can be inferred without the need to assume cell division
rates. These measurements can be performed in a patient-specific manner and
so may be useful for prognostication and the personalization of therapy.
Recognizing that the growth of a neoplasm is dominated by neutral clonal
dynamics provides an analytically tractable and rigorous method to study cancer
evolution and gain clinically relevant insight from commonly available genomic
data.
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Figure Legends

Figure 1. Neutral evolution is common in colon cancer and allows the
measurement of mutation rates in each tumor. (A) The output of NGS data,
such as whole-exome sequencing, can be summarized as a histogram of mutant
allele frequencies, here for sample TB. Considering purity and ploidy, mutations
with relatively high frequency (>0.25) are likely to be clonal (public), whereas low
frequency mutations capture the tumor subclonal architecture. (B) The same data
can be represented as the cumulative distribution M(f) of subclonal mutations.
This was found to be linear with 1/f, precisely as predicted by our neutral model.
(C) R? goodness of fit of our CRC cohort (n=7) and the TCGA colon cancer
cohort (n=101) grouped by CIN versus MSI confirmed that neutral evolution is
common (38/108, 35.1% with R?>0.98). (D) Measurements of the mutation rate
showed that the CIN groups had median mutation rate of ye=2.31x10", whereas
MSI tumors reported a 15-fold higher rate (median: p,=3.65x10°, F-test:
p=2.24x107%), as predicted due to their DNA mismatch repair deficiency.

Figure 2. Neutral evolution across the whole-genome of gastric cancers. (A)
Large number of coding and non-coding mutations can be identified using WGS.
(B) All detected mutations precisely accumulate as 1/f following the neutral model
in this example. (C) Neutral evolution is very common in gastric cancer, with
60/78 (76.9%) samples showing goodness of fit of the neutral model R?20.98.
This was consistent using all, exonic or non-coding subclonal mutations. The
same tumors were identified as neutral by all three methods, although limitations
in detecting neutrality were present when considering exonic mutations due to
the limited number of variants. (D) Mutation rates were more than 4 times higher
in MSI (£e=3.30x10°) versus MSS (u.=7.82x10"; F-test: p=1.35x10) cancers,
consistently with the underlying biology.

Figure 3. Neutral evolution and mutation rates across cancer types. (A) R’
values from 819 cancers of 14 different types supported neutral evolution in a
large proportion of cases (259/819, 31.6% of R?>0.98) and across different
cancer types, particularly in stomach (validating the WGS analysis), lung,
bladder, cervical and colon. On the contrary, renal, melanoma, pancreatic,
thyroid, and glioblastoma were characterized by non-neutral evolution. The other
types displayed a mixed dynamics. (B) The highest mutation rates were found in
lung cancer and melanoma. Lower rates were found in thyroid, low grade glioma
and prostate.
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Figure 4. Reconstruction of the mutational timeline in each patient. The
frequency of a mutation within the tumor predicts the size of the tumor when the
mutation occurred. (A,B) The deconvolution of the mutational timeline is
illustrated for samples TB and TCGA-AA-3712 respectively. Whereas established
CRC drivers (APC, KRAS, TP53) were found to be present from the first
malignant cell, several recurrent putative drivers not yet validated were mutated
after malignant seeding, despite the underlying neutral dynamics. This suggests
that some of these candidate alterations may not be fundamental drivers of
growth in all cases. Confidence intervals are calculated using a binomial test on
the number of variant reads versus the depth of coverage for each mutation.

Figure 5. Neutral evolution and tumor phylogeny. After the accumulation of
genomic alterations, the cancer expansion is likely triggered by a single critical
genomic event (the accumulation of a “full house” of genomic changes) followed
by neutral evolution that generates a large number of new mutations in ever-
smaller subclones. While the tumor heterogeneity rapidly increases, the allele
frequency of heterogeneous mutations decreases. In this context, the
accumulation of mutations M(f) follows a characteristic 1/f distribution. Moreover,
the tumor phylogeny displays a characteristic fractal topology that is self-similar.
Sampling in different regions of the phylogenetic tree exposes distinct mutations
that however show the same 7/f distribution. Clonal mutations in a sample (not
considered in the model) arose in to the most recent common ancestor of the
sampled cells. Due to the large population of cells sampled using bulk
sequencing, the overwhelming majority of detected clonal mutations belongs to
the trunk of the tree and therefore is found in the first cancer cell. Deviations from
the 1/f law indicate different dynamics from neutral growth.

Online Methods

Data analysis

The processing of exome-sequencing data from' and TCGA? involved
variant calling on matched-normal pairs using Mutect’. A mutation was
considered if the depth of coverage was 210 and at least 3 reads supported the
variant. Mutations that aligned to a more than one genomic location were
discarded. The WGS gastric cancers* were processed using VarScan2®, with
minimum depth of coverage for a mutation being 10x and at least 3 reads
supporting the variant. Non-CRCs in the TCGA had mutations called using
Mutect according to the pipeline described in ref°. Microsatellite instability in the
TCGA colon cancer samgles was called using MSlsensor’. Annotation was
performed with ANNOVAR".

To fit the neutral model to allele frequency data we considered only
variants with allele frequency in the range [fmnaxfmin] corresponding to [fo,f] in
equation [2]. The low boundary fy;, reflects the limit for the reliable detectability of
low-frequency mutations in NGS data, which is in the order of 10%°. The high
boundary . is necessary to filter out public mutations that were present in the
first transformed cell. In the case of diploid tumors, clonal mutations are expected
at f7ax=0.5 (mutations with 50% allelic frequency are heterozygous public or
clonal), in the case of triploid tumors, this threshold drops to 0.33 and in the case
of tetraploid neoplasms, it drops to 0.25. For all samples we used a boundary of
[0.12-0.24] to account only for reliably called subclonal mutations and tumor
purity in the samples. All the samples considered in this study were reported to
have tumor purity 270% and a minimum of 12 reliably called private mutations
within the fit boundary. Once these conditions were met in a sample, equation [7]
was used to perform the fit as illustrated in Figure 1B and 2B. In particular, for
x=1/f, equation [7] becomes a linear model with slope /8 and intercept —u/(8
fmax). We exploited the intercept constraint to perform a more restrictive fit using
the model y=m(x-1/fyax)+0.

Copy-number changes (allelic deletion or duplication) can alter the
frequency of a variant in a manner that is not described by equation [7]. We
assessed the impact of copy-number alterations (CNAs) on our estimates of the
mutation rate within the TCGA colorectal cancer samples by using the paired
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publically available segmented SNP-array data to exclude somatic mutations that
fell within regions of CNA. CNVs were identified having an absolute log-R-
ratio>0.5, and the model fitting was performed only on diploid regions of the
genome. In the gastric cancer cohort, regions with copy number changes were
identified using Sequenza® and removed from the analysis. Mutation rates were
adjusted to the size of the resulting diploid genome. Supplementary Figures 2
and 5 demonstrate the robustness of our analysis to copy number changes. R?
values were independent from the mean coverage of mutations (p=0.32), the
total number of mutations in the sample (p=0.40), the mutation rate (p=0.11), or
the number of mutations within the model range (p=0.65).

Stochastic Simulation of Tumor Growth

To further validate our analytical model and to test the robustness to the
noise in NGS data, we developed a stochastic simulation of tumor growth and
accumulation of mutations that allowed us to generate synthetic datasets. The
model was written and analyzed in the Julia programming language. We then
applied the analytical model to the simulated data to confirm that sources of
noise in NGS data do not considerably impact our results. In particular, we
verified that we could reliably extract input parameters of the simulation (namely
the mutation rate) from “noisy” synthetic data. Confounding factors in the data
include normal contamination, sampling effects, the detection limit of NGS
mutation calling, and variable read depth. We simulate a tumor using a branching
process with discrete generations, beginning with a single “transformed” cancer
cell that gives rise to the malignancy. Under exponential growth, the population at
time t will be given by:

N(t)=R =" [9]

Where R is the average number of offspring per cell and the time t is in units of
generations. We will consider primarily the case when R=2 (a cell always divides
into 2), but we will also consider values <2, noting that R must be greater than 1
to have growth. At each division, cells acquire new mutations at a rate y and we
assume every new mutation is unique (infinite sites approximation). The number
of mutations acquired by a newborn cell at division is a random number drawn
from a Poisson distribution. Each cell in the population is defined by its mutations
and its ancestral history (by recording it's parent cell). Using this information we
can then reconstruct the history of the whole tumor and crucially, calculate the
variant allele frequency of all mutations in the population. To relate the discrete
simulation to the continuous analytical model we will now re-derive equation [7]
within the context of our model. As we simulate a growing tumor using discrete
generations, both the mutation rate y and per capita growth rate A=In(R) are in
units of generations. For an offspring probability distribution P=(po,p1,p2) Where
p=P(# of OFFSPRING = k) where, the average number of offspring R is simply
given by the expected value of P:

R=E[P]=p,+2p, [10]

For example, for R=2 we have P=(p,=0,p:=0,p2=1). By choosing different
offspring probability distributions we can easily modulate the growth rate. We
note that we are now expressing both y and A as rates per generation rather than
probabilities (all rates are scaled by units of generation). This allows us to write
the growth function as N(t)=exp(At) with A=In(R). Proceeding as in the main text,
our cumulative number of mutations with an allelic frequency fis therefore:
( )
MUN=5| F) [11]
AL S

Therefore, when fitting the model to our stochastic simulation we extract u/A from
the linear fit, making it straightforward to compare the simulation with the
analytical model.

NGS data only captures a small fraction of the variability in a tumor, as the
resolution is often limited to alleles with frequency >10% due to sequencing
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depth and limitations in mutation calling. To account for this, we employ a
multistage sampling scheme in our simulations. For all simulations reported here
we grow the tumor to size 1,024 cells, which gives a minimum allele frequency of
~0.1%, considerably smaller than the 10% attainable in next generation
sequencing data. After growing the tumor and calculating the VAF for all alleles,
we take a sample of the alleles in the population, noting that we are assuming the
population is well mixed and has no spatial structure. We can vary the
percentage of alleles we sample, thus allowing us to investigate the effect of the
depth of sequencing on our results. As we know the true allelic frequency in the
simulated population, we can use the multinomial distribution to produce a
sample of the “sequenced” alleles, where the probability of sampling allele i is
proportional to its frequency. The probability mass function is given by:

n! ko oy
b, x +l x =n [12]

| 1
XID x!

f(x;n,p)=

where Xx; is the sampled frequency of allele i, n is the number of trials (the chosen
percentage of alleles sampled) and p; is the probability of sampling allele i (which
has frequency p; in the original population):

p=— [13]

k
Zj:lpi

The variant allele frequency VAF is therefore given by:
VAF =i [14]
N

i

Where N; is the total number of sampled cells from which every sampled allele is
derived. As we are assuming a constant mutation rate y, we can assume that the
percentage of alleles sampled comes from an equivalent percentage of cells.
However, to include an additional element of noise that resembles the variability
of read depth, we calculate a new N, for each allele i, which approximates the
read depth. For a desired “sequencing” depth D we calculate the corresponding
percentage of the population we need to sample that will give us our desired
depth. For example, for a desired depth of 100X from a population of 1,000 cells,
we would need to sample 10% of the population. To include some variability in
depth across all alleles we use Binomial sampling so that N; is a distribution with
mean D.

Contamination from non-tumor cells in NGS results in variant allele
frequencies being underestimated. To include this effect in our simulation we can
modify our N; by an additional fraction ¢, the percentage of normal contamination.
Our VAF calculation thus becomes:

VAF=—"i
N(1+¢)

We also include detection limit in our sampling scheme, we only include alleles
that have an allelic frequency greater than a specified limit in the original tumor
population.

To include the effects of selection in the simulation we introduce a second
population, where on average each cell has a greater number of offspring than
the first population. To model this, our second population has a modified offspring
probability distribution: the previous offspring probability distribution was
P=(po,p1,p2), and the offspring probability distribution of our second fitter
population is defined as Q=(qo,q9+,92), where q2>p,. The selective advantage of a
population — s, will be given by the ratio of the expected number of offspring:

E[Q] _ 4,+24,
E[P] p,+2p,

1+s=
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Therefore given P, and a desired selective advantage s we can easily calculate
the offspring probability distribution of a fitter clone — Q.

Previous studies have detected the presence of mixtures of subclones in breast
cancer samples that emerged by means of clonal expansions, thus generating
multiple subclonal clusters in the data'®. We also used our computational model
of NGS data to produce similar synthetic data by means of mixing of different
clonal clusters and verified that in this scenario (a model of differential selective
pressure across subclones), the power law does not hold.

Simulation Results

From the simulated data we produced histograms of the allelic frequency
and calculated M(f) in order to fit the analytical model. We used the same
frequency range as applied to empirical data [fraxfmin]=[0.12,0.24].
Supplementary Figure 9A and B shows equivalent plots to Figures 1A and B but
with simulated data. These demonstrate that we are able to accurately model the
allelic distribution of NGS data with our simple neutral model of tumor growth. We
also show the effect of a low mutation rate (Supplementary Figure 9C), a large
number of clonal mutations (Supplementary Figure 9D), 30% contamination in
the sample (Supplementary Figure 9E) and a low detection limit (Supplementary
Figure 9F). Importantly, by fitting the analytical model to the simulated data, we
can recover the input mutation rate with high accuracy (Supplementary Figure
9G, 10,000 equivalent simulations). The mean percentage error from the fit is
1.1%. We also see uniformly high R? values across all simulations
(Supplementary Figure 9H).

To test the robustness of the model to the number of clonal mutations, the
detection limit and the amount of normal contamination we ran 10,000
simulations across the spectrum of these parameters. Supplementary Figures
10A-B show that we accurately recover (to within 15%) the mutation rate for 95%
of simulations across different numbers of clonal mutations and different
detection limits. Differently, we found that levels of normal contamination above
30% considerably impact the parameter estimations of the model, hence our
decision of only considering samples with 2=70% of tumor content
(Supplementary Figure 10C). Indeed, when normal contamination is above 30%,
the clonal peak in the allelic frequency distribution interferes significantly with our
chosen cumulative sum limit (fnax = 0.24), thus impacting our results.
Nevertheless, the estimates are within a factor 2 for normal contamination of up
to 50%, which we consider an acceptable level of accuracy. When we consider
normal contamination ¢ directly within our analytical model, the allelic fraction of a
new mutation becomes:

1 1
/ ZN({t) me™(1+¢) [19]
And consequently, M(f) is:
( )
M(f)=—H— 21 (16

pa+ols 1)

Showing that normal contamination alters the measurement of mutation by a
factor of 1/(1+¢): much lower than one order of magnitude. Furthermore, if normal
contamination can be estimated accurately from histopathological scoring or from
reliable bioinformatics tools, we would be able to correct the frequency of variants
in the data and thus rescue our ability to correctly estimate parameters with up to
40-45% normal contamination (Supplementary Figure 10D). We also tested the
model with varying read depths and mutation rates. We find that either a low
mutation rate or low read depth resulted in a higher proportion of poor model fits
(R?<0.98) and inaccurate or higher variance in mutation estimates
(Supplementary Figures 10E-H). It is therefore possible that due to our stringent
neutrality criteria that the true proportion of tumors that are dominated by neutral
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dynamics is higher than reported, and relatedly our gastric cancer cohort covers
the whole genome (greater mutation rate per division) and has mean depth of
coverage >90X which may explain in part why we see a greater proportion of
gastric cancers classified as neutral.

Additionally, we tested the model with simulations using a range of
different probability distributions for the number of surviving offspring at each cell
division. We simulated a growing tumor 10,000 times with 5 different offspring
probability distributions and then reported the distributions of the fitted
parameters. Supplementary Figures 10I-d show that as A decreases the
distribution of mutation estimates becomes wider and we see an increase in
poorly fitted models (larger number of R?<0.98). Again this suggests that tumor
growth may still be neutral even when we classify a tumor as non-neutral due to
a poor R?value. Hence our underestimation of the number of neutral cases may
be largely due to a low proportion of cells that successfully produce 2 viable
offspring (the B term in equation [7]), rather than the presence of selection.

By introducing a second fitter population early during tumor growth we
show that the fitter clone causes an overrepresentation of variants at high
frequency compared to what we would expect from our “null” model of neutral
tumor growth. This causes the cumulative distribution to bend and deviate from
the linear relationship predicted by neutral growth, as shown in Supplementary
Figures 11A-B. This is because an overrepresentation of variants at high
frequency, as compared to what we would expect from our “null” model, is
caused by the clonal selection of the fitter clone, but we note that we do not know
what caused this increase (it could be a point mutation, chromosomal aberration
or a change in environmental pressures for example). In other words, some
passenger mutations are just in the “right clone at the right time” and become
overrepresented in the tumour when that “right” clone expands.

We also show that having multiple subclones that arose by means of
clonal expansion, thus producing multiple clonal ‘clusters’, produces a deviation
from the linear relationship we predict (Supplementary Figures 11C-F), as does
having a marked increase in the mutation rate early in tumour growth
(Supplementary Figures 11G,H).
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Supplementary Figure 1
Rates of different mutation types in CRC.

(A) Stratification by mutation type indicates that C>T mutations occur significantly at greater rate than other types. (B) As for the overall
mutation rate (Figure 1D), all mutation types were significantly higher in the MSI group.
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Supplementary Figure 2

Analysis of neutral evolution in colon cancers is robust to copy number changes.

We removed mutations that fell within regions of the genome with altered copy number by using SNP arrays paired to the exome
sequenced samples to detect regions of copy-number change. (A) The consistently high values of goodness of fit demonstrate that the
neutral model is robust to confounding copy number changes. (B) Estimating the mutation rates using only the mutations in copy
number devoid regions yields similar results as when all SNVs are included, confirming the robustness of our approach.
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Supplementary Figure 3

Validation of the mutational signature across the frequency spectrum.

The mutational signature that characterizes the underlying biology is maintained across the frequency spectrum, providing further
evidence that the identified somatic variants are reliable and are not due to sequencing errors.
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Supplementary Figure 4

Synonymous/non-synonymous ratio in colon cancers.

(A) A random base change within a codon is more likely to result in a nonsynonymous or stopgain mutation than a synonymous
mutation; hence we expect the mutation rate per division of nonsynonymous mutations to be higher than for synonymous mutations.
This is observed in the data. (B) The synonymous and non-synonymous mutation rates become equivalent after normalizing by the
total number of possible synonymous and nonsynoymous mutation sites in the exome, respectively. Therefore synonymous and
nonsynonymous mutations accrue at the same effective rate, consistently with our neutral model of cancer growth.
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Supplementary Figure 5

Neutrality analysis in WGS gastric cancers is robust to copy number changes.

(A) Goodness of fit of the neutral model was robust to copy number changes, as results were equivalent when only diploid regions or all
genomic regions were considered. We note that the total number of cases considered after CNV filtering is considerably smaller
because some samples did not have enough variants in the remaining diploid regions to fit the model. (B) Mutation rates were also
consistent when copy number altered regions were discarded in the analysis. We found only a single neutral MSI tumor so a distribution
could not be plotted.
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Supplementary Figure 6

Validation of the mutational signature across the frequency spectrum in WGS gastric cancer data.

The mutational signature is conserved through the allelic frequency spectrum also in this cohort of whole genome sequenced gastric
cancers, thus supporting the authenticity of the called variants.
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Supplementary Figure 7

Synonymous/nonsynonymous ratio in whole genome sequenced gastric cancers.

Adjusted synonymous versus nonsynonymous mutation rates were consistent with neutral evolution in the gastric cancer cohort.
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Mutation rates by channel across cancer types.
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When measured separately between different mutational channels, the mutation rate estimated by the model is consistent with the
underlying biology, where rates of C>A mutations were higher in lung cancer (tobacco smoking) and C>T mutation rates were higher in

all cancer types.
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Supplementary
Figure 9

Stochastic simulations of neutral evolution recapitulate the observed NGS data.

(A) We were able to produce realistic synthetic NGS data using a stochastic simulation of tumor growth that accounts for neutral
accumulation of mutations in the tumor as well as the different sources of sequencing noise (sampling, sequencing depth and normal
contamination). (B) The prediction of the analytical model on the cumulative distribution of subclonal allelic frequencies agrees with the
stochastic simulation. We generated synthetic data to test the accuracy with which tumor parameters could be reliably recovered when
faced with the confounding factors. lllustrative synthetic data for (C) low mutation rate, (D) high number of clonal mutations, (E)
significant normal contamination and (F) low detection limit. (G) Over 10,000 simulations, the interquartile range of the percentage error
in the estimates of the mutation rate is <5%, demonstrating the ability of the analytical model to accurately estimate tumor growth
parameters from NGS data. (H) The R? values of the fits are consistently high over 10,000 simulations. Unless otherwise stated the
input parameters for the simulation and subsequent sampling were y=100 mutations/cell division, A=In(2), detection limit = 10%, normal
contamination = 0%, mean N=100 and number of clonal mutations = 200.



o | R B (=] R o | N o 1T - H
A B 1 1 CHi Dt
N . . LT e --
f % % 1 1 % o= : o
. 1 1 1 : L BT B
1 T L= T T
s || | | | | \ Qgﬁ 5 §1 T == §?T‘TTT%§
- o ; ; : g
5o 0 0 g : BIE ig '
: ; | i 2 . ; : :
% % ? T BE= . 3 L=
i : : i P 3 :
IR S S ol i T 5 T - ‘ b
! i ‘ ° :
! X : 1 Uncorrected T $1 Corrected T
&4 & 34
> \ i
0 200 400 1% 5% 10% 0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
# of Clonal Mutations Detection Limit Normal Contamination Normal Contamination

m

. . | F

1.00
|

)
T
|
|

¢ _— ———— H -7 +
H i == [ i H
Lot =T + — —T
S . LA : 81 1 2
ol — N 2 = 5 | |
5o M . 3 & & o - — 82 H
= | T | ; E° = i —— £
f : i 1 & : W
71 E A 84 31 ! 3
- T T 7 s ' ‘ ]
i ’ '
5 3 8] © i
! T T T = ; i ) , ] : ' ) ° 4 T :
25 50 75 100 25 50 75 100 3 10 100 3 10 100
Read Depth Read Depth Mutation Rate (\Divison) Mutation Rate (\Divison)

i

6

—
100

1 J
I
=

% Error
0 50
L

-50
L

R? model fit
070 075 080 085 090 095 1.00
. L N )

-100
L

IN20) I(1.8) In(16) In(14) In(12) In20) In(1.8) In(16) In(1.4) In(12
A A

Supplementary Figure 10

Robustness of the parameter estimation analysis.

By varying the parameters of the simulation, we show that the analytical model can accurately identify neutrality of tumor growth and
recover the mutation rate in the face of: (A) different numbers of clonal mutations, (B) different detection limits, and that we can correct
for normal contamination accurately (to within 5%) for contamination below 30% (C) & (D). Panels (E) & (F) show the effect of varying
the read depth. Less accurate mutation rate estimates were achieved at low read depth (<25) and poorer fits of the analytical model.
Panels (G) & (H) show the effect of the mutation rate: lower mutation rates lead to poorer model fits and a higher variance in the
mutation estimate, because fewer variants are available to fit the model. Panel (I) & (J) shows the effect of the growth rate A: the
variance of the mutation rate estimate increases as the tumor growth slows (A decreases) and the fit of the model becomes worse. The
offspring probability distributions for the different values of A were Pa=in2)=(pPo=0,p1=0,p2=1), P=in(1.8)=(P0o=0.05,p1=0.1,p2=0.85),
P)\=|n(1_s)=(po=0.1 ,p1=0.2,p2=0.7), P)‘=|n(1_4)=(po=0.2,p1=O.2,p2=0.6) and P)\=|n(2)=(po=0.2,p1=0.4,p2=0.4).
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Supplementary Figure 11

Clonal expansions and microenvironmental niches produce a deviation from the power law.
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By introducing a second population with a 65% fitness advantage (P=(po=0,p1=0.8,p2=0.2), Q=(po=0,p1=0.02,p»=0.98)) when the tumor
is comprised of 80 cells, we see a second peak at VAF~0.2 (A) and a bend in the cumulative distribution plot (B). A subclonal tumor
architecture where mutations from the same subclone cluster around allelic frequencies would not show patterns consistent with
neutrality, both when we consider 2 (C,D) and 3 different subclones (E,F) within a sample. A new phenotypically distinct clone
introduced with a 10-fold higher mutation rate (20 per division to 200 per division) also produces a deviation from the neutral power law

(G,H).
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