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ABSTRACT  

Morphogenesis is driven by small cell shape changes that modulate tissue 

organization. Apical surfaces of proliferating epithelial sheets have been 

particularly well studied. Currently, it is accepted that a stereotyped 

distribution of cellular polygons is conserved in proliferating tissues among 

metazoans. In this work we challenge these previous findings showing that 

diverse natural packed tissues have very different polygon distributions. We 

use Voronoi tessellations as a mathematical framework that predicts this 

diversity. We demonstrate that Voronoi tessellations and the very different 

tissues analysed share an overriding restriction: the frequency of polygon 

types correlates with the distribution of cell areas. By altering the balance of 

tensions and pressures within the packed tissues using disease, genetic or 

computer model perturbations, we show that as long as packed cells present 

a balance of forces within tissue they will be under a physical constraint that 

limits its organization. Our discoveries establish a new framework to 

understand tissue architecture in development and disease. 
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INTRODUCTION 

 Natural patterns such as fractals, spirals or tessellations have intrigued 

mathematicians and biologists for decades (Haeckel, 1904; Stevens, 1974). 

These evolutionary conserved structures emerge from the physical properties 

of the soft living matter. During development, cell shape is modulated to drive 

the essential process of tissue and organ morphogenesis. Geometrical 

concepts have been widely applied as an approach to understand the basis of 

tissue architecture and remodelling (Chichilnisky, 1986; Classen et al, 2005; 

Hayashi & Carthew, 2004; Honda, 1978; Rivier et al, 1995). A clear example 

is the stereotyped polygon distribution found in very diverse arrangements of 

cells among metazoans. Apical surfaces of proliferating epithelial sheets have 

been particularly well studied. From the early analysis of Lewis using the 

cucumber epidermis to the Drosophila wing disc, numerous works have tried 

to understand the particular arrangement of polygonal cells (Gibson et al, 

2006; Gibson & Gibson, 2009; Korn & Spalding, 1973; Lewis, 1928). 

Currently, it is accepted that the conserved distribution of cellular side 

numbers (polygons) that is observed in many proliferating tissues, is a 

mathematical consequence of cell divisions via a probabilistic Markov chain 

(Axelrod, 2006; Gibson et al, 2006) in conjunction with cell rearrangements 

(Aegerter-Wilmsen et al, 2010; Classen et al, 2005; Zallen & Zallen, 2004). In 

this work we challenge this assumption by analysing a series of natural and 

artificial patterns to demonstrate that the conserved polygon distribution does 

not necessarily require cell proliferation mechanisms.  

Voronoi diagrams fill the plane or space forming convex polygons (called 

Voronoi cells) that do not overlap (Voronoi, 1908). Each Voronoi cell emerges 

from a seed and is characterized by the feature that all the points belonging to 

the cell are closer to its corresponding seed than to any other seed. In nature 

it is easy to find tissues that resemble the organization of Voronoi diagrams; 

hence their occasional use to analyse natural patterns (Gibson & Gibson, 

2009; Hocevar et al, 2010; Honda, 1978; Zhu et al, 2001).  

Here, we describe how Voronoi diagrams are able to predict the diverse 

polygon distributions of any natural packed tissue. Our data indicate that as 
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long as packed cells present a balance of forces within tissue they will be 

under a physical constraint that limits its organization. We uncover a primary 

level of cell arrangement regulation that correlates with the tissue 

homogeneity. 
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RESULTS AND DISCUSSION 

Natural packed tissues present diverse polygon distributions 

It has been described that proliferating epithelia across metazoan have a 

“conserved polygon distribution” that emerge, at least in part, from cell division 

mechanisms or growth rates of these tissues (Aegerter-Wilmsen et al, 2010; 

Gibson et al, 2006; Nagpal et al, 2008; Patel et al, 2009). We have also 

confirmed this with our own images from proliferating Drosophila prepupal 

wing discs (dWP, (Sanchez-Gutierrez et al, 2013) (Fig. 1A, E and Table S1). 

Aiming to understand the general mechanisms of tissue packing, we studied 

the organization of a non-proliferative tissue that also presented packed cells: 

the muscle fibres (Wigmore & Dunglison, 1998). Images from sections of 

normal human adult biceps (BCA, Fig. 1B, C) were analysed. Interestingly, 

the same stereotyped polygon distribution emerged (Fig. 1E). We then 

analysed other proliferating epithelia. The chicken neuroepithelium (cNT) 

(Frade, 2002; Wilcock et al, 2007) presented a very different cellular 

organization when compared to other analysed tissues: cells with small and 

large apical surfaces were mixed resulting in a very heterogeneous tissue 

(Fig. 1D). cNT polygon distribution looked very different to the stereotyped 

distribution found in other proliferative epithelia, with a clear decrease of the 

number of hexagons (falling to the 28.3 %) and a high increase in the number 

of four and eight-sided cells (Fig. 1E). These results challenge the concept of 

a conserved organization for all the proliferating tissues based on proliferative 

mechanisms.   

Voronoi tessellations share organization principles with natural packed 
tissues.  

We have chosen Voronoi tessellations to explore the emergence of diverse 

organizations in packed tissues. It has been described that a random 

distribution of seeds in the Euclidean plane produce a Poisson-Voronoi 

diagram with a fixed polygon distribution that is independent of the number of 

starting seeds (Miles & Maillardet, 1982). We have reproduced these results 
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(Fig. 1F, G) and also obtained histograms enriched in hexagons (29.5%), 

pentagons (25.9%) and heptagons (19.9%), amongst other polygons (Fig. 1E 
Diagram 1 and Table S1). Voronoi diagrams can be homogenized by 

applying Lloyd´s algorithm on them (Du et al, 1999; Lloyd, 1982). This 

process identifies the centroids of the Voronoi cells and uses them as the 

seed to perform a new Voronoi tessellation producing a “relaxation” of the 

diagram. This makes them more homogeneous in terms of the shapes and 

sizes of the cells (Fig. 1H All images can be accessed from the 

Supplementary Information). The iterative application of Lloyd´s algorithm 

approximates the image to an optimal centroidal Voronoi tessellation (CVT) 

(Du et al, 1999; Lloyd, 1982), where the seed of each Voronoi cell is its 

centroid. Starting from Poisson-Voronoi diagrams we obtained the polygon 

distribution of 50 iterations (Fig. 2A and Table S1). The histograms changed 

rapidly after the firsts iterations, increasing the number of hexagons and 

heptagons. After 50 iterations the histograms were stabilized showing 70% of 

hexagons (similar results were obtained with 200 iterations Fig. S1A). The 

combination of these diagrams and distributions form what we will call a “CVT 

path”. Interestingly, we observed that Diagram 5 and 6 of the CVT path 

presented “the conserved distribution” (Fig. 1E). Obviously, these artificial 

Voronoi diagrams were obtained without invoking any cell division 

mechanisms. The results obtained with muscle and Voronoi samples 

suggested that the conserved polygon distribution could in principle arise 

through more general physical constraints.  

Further analysis of the ensemble of Voronoi diagrams provided other 

surprising results. First, the cNT polygon distribution looked similar to the 

distribution obtained by the random Voronoi Diagram 1 (Fig. 1E). Also, the 

actively proliferating third instar wing disc (dWL, (Sanchez-Gutierrez et al, 

2013)) showed that its polygon distribution was similar to a Diagram 4 (Fig. 
S1B). Another example of a proliferating tissue that does not have the 

conserved polygon distribution is the Volvox, a green algae that forms 

spherical colonies that presented a very high proportion of hexagons (Korn & 

Spalding, 1973), and a polygon distribution similar to a Voronoi Diagram 12 

(Fig. S1B). Taken together, these results suggest that alternative 
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mechanisms in addition to cell proliferation may explain the emergence of 

stereotyped polygon distributions. Importantly, we have found a more general 

phenomenon: the natural tessellations analysed in this and other works 

(Aegerter-Wilmsen et al, 2010; Gibson et al, 2006; Korn & Spalding, 1973; 

Lewis, 1928; Sanchez-Gutierrez et al, 2013) appeared qualitatively similar to 

the distributions produced by one of the diagrams of the “CVT path” (Fig. 1E 
and Fig. S1B), suggesting that natural packed tissues cannot present infinite 

organizations but are constrained to certain combinations of polygon 

distributions.  

We have compared these polygon distributions by using chi-squared tests 

(Table S2 and Material and Methods). There were no significant differences 

between BCA vs D5 or D6, dWP vs D5 (dWP vs D6 being in the border of 

significance) and dWL vs D4. However, we found that the chi-squared test 

was able to find differences between cNT and D1. We reasoned that this 

reflected a difference in the position of cNT and D1 tessellations along the 

CVT path. The succession of Voronoi diagrams is discrete. The Voronoi 

diagrams are very different in the first steps of the Lloyd iteration (D1, D2…) 

and become progressively more similar (D5, D6…). cNT could be different to 

D1 and still match the CVT path. This indicated to us that the direct 

comparisons between Voronoi diagrams and natural images were not 

sufficient to address if a tissue is organized like the CVT path. 

In order to solve this problem we have designed a general method to 

quantify the similarity between the natural images and the CVT path. For each 

Voronoi diagram the value of the number of hexagons has a corresponding 

value for each of the other polygon types. We used this property to transform 

the different steps of the CVT path into a continuous function. In this way, we 

could calculate how the percentage of four, five, seven or eight-sided cells 

was changing with respect to the percentage of hexagons and convert these 

data into a probability cloud that facilitates the visualization of the similarity 

between Voronoi and natural tessellations (Fig. 2B-E and Materials and 
Methods). More importantly, this allowed us to quantitatively compare the 

different natural images with any part of the CVT path. We confirmed that 

cNT, dWL, dWP and BCA images largely behaved as predicted by the 
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continuous CVT path using appropriate tests to compare its polygon 

frequencies (with some small variations in the less frequent polygons, 

Materials and Methods and Table S2). Therefore, the CVT path serves as 

an objective scale to compare the organization of any packed tissue at the 

level of their polygon distribution.  

The distribution of cell sizes correlates with the frequency of polygon 
types in the packed tissues. 

We have found a range of polygon distributions in natural tessellations that 

are described by the CVT. We wondered what was the origin of this variety of 

arrangements. Both the different tissues analysed and the Voronoi diagrams 

share some similarities: Their cells were similar to convex polygons that cover 

the plane without overlapping or leaving empty spaces. These packed 

polygonal cell layers have been studied from several angles and it is known 

that they are restrained to several generalizations: i) Euler´s Theorem: taking 

a tissue with a large number of cells, the average number of neighbours of a 

cell will be six. ii) The Lewis’ law states that the average area (An) of an n-

sided cell increases linearly with n (so, small cells tend to have less sides). iii) 

Aboav-Weaire Law asserts that cells with a higher number of sides tend to 

have few-sided neighbors and vice versa. Direct or indirectly, these laws imply 

a relationship between the number of cells, the total space that they fill and 

the distribution of neighbours. Therefore, we analysed the cell area 

distribution of the different Voronoi diagrams (Fig. 3A). The area distribution 

of Diagram 1 was clearly left skewed as a result of the large number of small 

cells present in these images. The area distributions for the successive 

diagrams showed a higher degree of symmetry and a narrower base, as 

expected from the increase of homogeneity of their cells.  

All the natural tissues analysed in this work largely comply with the three 

laws described above (Fig. S2 and Table S3). Therefore, we also found the 

same relationship between the area distribution and the polygon distribution in 

the proliferating tissues. cNT presented a large tail due to the high number of 

cells with small apical surfaces present in this tissue (Fig. 3B and Table S4). 

On the other hand, dWL and dWP showed a more symmetric distribution due 
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to the increase in cell size homogeneity. In the case of the non-proliferating 

muscle tissue, we observed that BCA showed the same area distribution as 

Diagram 5 (Fig. 3B and Table S4). These qualitative comparisons were 

confirmed using Kolmogorov-Smirnov tests to compare the area distribution of 

these tessellations (Table S4). This could be reflecting the absence of cell 

size variance induced by proliferation (discussed below). 

The large number of small cells appearing in cNT or Diagram 1 will directly 

increase the number of few-sided cells (Lewis’ law), but indirectly will also 

give sides to the larger cells (Aboav-Weaire law). The increase on the 

homogeneity of the cell sizes correlates with a higher number of hexagons, 

pentagons and heptagons. This explains the “conserved polygon distribution” 

previously published where tissues analysed were very homogeneous 

(Gibson et al, 2006). However, these authors missed other natural tissues 

presenting diverse arrangements such as cNT. In summary, our results 

support the existence of a constraint that affects any natural tessellation of 

convex polygons and that correlates the shape of the cell area distributions 

with the frequency of polygon types.  

Physical constraints in packed tissues. 

We were intrigued by why the CVT path was able to predict the different 

types of polygon distributions found in natural tissues. Our hypothesis was 

that the geometrical Voronoi tessellations were reflecting some of the physical 

cellular properties of the epithelial cells (Farhadifar et al, 2007). Voronoi cells 

emerge from their seeds that ‘push’ towards each other with equal ‘force’ until 

they meet in the middle to form the Voronoi cell boundary. One possibility is 

that the cells share this homogeneity of forces as this dictate the packing 

order. To test this, we first analysed a tissue where contractile and adhesion 

forces are clearly asymmetrical, the Drosophila eye disc (EYE) (Brown et al, 

2006; Escudero et al, 2007; Mirkovic & Mlodzik, 2006) (Fig. 4A). During eye 

development, the photoreceptors form clusters with small apical areas and 

are surrounded by 4 larger cone cells.  We analyzed the polygon distribution 

of these local structures and found that they did not follow a CVT path 

arrangement. The photoreceptors and cone cells were enriched in 4, 8 and 9-
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sided cells, and presented a low percentage of hexagons (Table S1). 

However, when the EYE tissue was analyzed taking in account all the cells, 

the frequency of polygon types was close to Diagram 1 (Fig. 4E). Accordingly, 

the area distribution presented a high variance and was left skewed, this time 

in the form of a bimodal distribution of small and large cells (Fig. S3A and 
Table S4). Although there is a clear asymmetrical organization in this tissue, 

the polygon distribution was maintained in the limits of the CVT path (Fig. 2B-
E). These results suggest that physiological balanced changes in contractility 

and/or adhesion were increasing the levels of cell area heterogeneity, tuning 

but still maintaining, the tissue along the CVT path.   

We then studied the effect of non-physiological alterations of cell 

biophysical properties, either genetically or pathologically. Myosin II is a 

contractile molecule responsible for the architecture of epithelial cells (Pilot & 

Lecuit, 2005). Its deregulation alters the cortical contraction and adhesion of 

primarily the apical domain of epithelial cells, as well as their cytokinesis 

(Escudero et al, 2007; Young et al, 1993). We analysed the consequences of 

a relatively mild and heterogeneous reduction of myosin II heavy chain 

(Zipper) in the Drosophila wing epithelium. This was done using the C765-

Gal4 line driving the expression of UAS-zipper-RNAi (Escudero et al, 2011). 

The resulting epithelia (dMWP) presented cells with different degrees of 

enlarged apical profiles (Fig. 4B). This heterogeneity in myosin II reduction 

was also the cause of the high diversity between the different samples 

analysed (see Supplementary Information). Compared to the wild type wing, 

dMWP had a more irregular cell area distribution, with a higher variance and 

was moderately left skewed (Fig. S3B and Table S4). This change in the cell 

area distribution was associated with a change in polygon frequency (Fig. 
4E), further emphasising the correlation between area and polygon 

distributions. We then checked if the dMWP polygon distribution was 

behaving like the CVT path diagrams. In this case, we observed a small 

deviation of the number of heptagons: dMWP presented a lower percentage 

of seven-sided cells compared with the CVT diagrams (Fig. 2D and Table 
S2).  
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In parallel, we analysed another tissue where the cellular biophysical 

properties were clearly non-physiological. Neurogenic Atrophy is a large 

family of neuromuscular diseases that affect motor neurons or peripheral 

nerves. A particular characteristic of these pathologies is the scattered 

appearance of atrophic fibres that are smaller and elongated (Fig. 4C, D). 

This is a consequence of the healthy fibres compressing the atrophic fibres 

that are degenerating (Brazis, 2011; Finsterer et al, 2011; Mastaglia, 1992). 

Accordingly, the histogram of cell area distribution showed an increase of 

small cells compared with BCA images (Fig. S3C and Table S4). Although 

the resulting polygon distribution was close to Diagram 2, it had an 

outstanding difference - an unusual increase of heptagons, resulting in its lack 

of compliance with the CVT path (Fig. 2D and Table S2). In this case the chi-

square comparison was not able to differentiate these two distributions (Table 
S2) indicating that our method was more sensitive in finding deviations in a 

particular polygon’s frequency. 

Taking together all the area distributions from the different natural packed 

tissues analysed, we have not been able to find a general rule that relates 

area and polygon distribution. Different area distributions can appear with 

similar polygon distributions. This is the case of dWP and D5, or cNT, EYE 

and D1 (Fig. 1, Fig. S3 and Table S4). This can be due to the very different 

tissues (and diagrams) that we are comparing. For example, in the actively 

proliferating tissues (dWL, dWP, cNT, dMWP) the area distributions are 

greatly influenced by the cell division process: cells growth during a 

determined time and then divide reducing the size by half, increasing the 

range of areas. One possibility could be that the cell rearrangements that take 

place in these epithelia facilitates that the tissue reaches a polygon 

distribution similar to Voronoi diagrams with narrower area distributions. What 

we have been able to consistently observe is that the increase of smaller cells 

in any way (as in D1, cNT, with a left skewed distribution or EYE with a 

bimodal distribution; Fig. 3 and Fig. S3) correlates with a decrease of 

hexagons and increase of three, four, eight, nine and ten sided cells following 

the CVT.  
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Homogeneity of cellular resting volume constrains natural 
tessellations within CVT path.  

We have found two conditions where the tissues deviate from the polygon 

distributions described by the CVT path. The detailed analysis of these two 

exceptions (dMWP and BNA) could be key to understanding the general 

phenomena that makes the Voronoi diagrams to reproduce very different 

tissue patterns.  

Biological tissues do not emerge from seeds, but analogously from cells 

that grow until a determined resting volume. This gives the cells an internal 

cell pressure that causes them to push against each other, forming a packed 

tissue of convex cells. We hypothesize that in the two non-physiological 

conditions that we examined, the original balance of cell resting volumes is 

compromised. In the case of the reduction of myosin II some cells could 

continue growing without performing cytokinesis, thus giving them a greater 

resting volume. In the case of atrophic fibres, the degeneration process could 

reduce their resting volume, and therefore they are deformed by the adjacent 

normal fibres.  

As it is currently technically very challenging to measure the internal 

pressure or the resting volume of cells in in vivo tissues, we have employed a 

classical ‘loss of function’ approach, but in silico. We have used computer 

simulations to analyse the arrangement of cells with altered resting area 

inside the tissue. To do this, we performed two types of analysis using a 

vertex model (Farhadifar et al, 2007; Mao et al, 2011) trying to simulate 

dMWP and BNA tissues.  

We attempted to simulate the complex biophysical events occurring in a 

proliferating tissue mutant for myosin II. As cells enter the mitotic phase, they 

increase their ideal area and grow to twice their original area before dividing 

into two cells, thus driving the growth of the whole tissue (for details see 

Materials and Methods, control, Fig. 5A, E-H). First, to simulate the loss of 

cortical tension that occurs in the mutant tissue, we randomly assigned a 

reduced tension parameter to each cell from the uniform distribution. 

However, this did not change the arrangement of the tissue (case 2, Fig. 5B, 
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E-H). Second, we added an additional condition that cells must have a 

minimum tension threshold in order to divide (Materials and Methods). If the 

cells do not reach this threshold they continue to grow in size, without being 

able to divide the cell body. A cell without the ability to divide will be stuck in 

mitotic phase and will not start a second round of cell division. Therefore, it 

will have a higher value for its ideal area. We screened several values of 

thresholds in an attempt to simulate the dMWP data. Similarly to the case of 

the myosin II mutant tissue where the images were very variable, the results 

obtained with each individual simulation (realization) were very diverse. We 

analysed in more detail the simulations with a threshold value of 30 and 40 

percentage of control tension (case 3, Fig. 5C and case 4, Fig. 5D 

respectively) to allow cell division since it was able to reproduce the wide 

range of average numbers of hexagons found in dMWP. In each case there 

was a mix of images close to the CVT path with images deviating in different 

directions (Fig. 5E-H and Table S1, violet: 10 dMWP images, light pink: 17 

realizations for case 3, dark pink: 15 realizations for case 4). In summary, the 

alteration of the ideal resting area was critical to produce the diversity of 

results and the deviation from the CVT prediction. This broke the original 

balance of forces in the tissue in different manners, allowing the tissue to 

adopt different topologies. The fact that altering line tension alone was 

insufficient to alter the cell packing patterns from the CVT path (Fig. 5B) 

suggests that the resting volume of the cells is the main factor responsible for 

the rupture from the CVT path.  

Aiming to clarify the importance of the resting volume of cells in the packing 

of tissues we tried to simulate the atrophic muscle tissue. In this case our ‘loss 

of function’ approach consisted in comparing a control simulation where all 

the cells have the same ideal resting area (Fig. 6A) with the effect of having 

lower ideal area in certain cells (Fig. 6B, we also increased the effective cell-

cell adhesion to prevent the cells from delaminating, see Materials and 
Methods for details). This autonomously created small-elongated (highly 

anisotropic) cells that also presented an abnormally high number of 

neighbours (Fig. 6D) in comparison with the small cells of the control tissue 

(BCA) and control simulations (Control Simulation) that had the expected low 
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number of neighbours (Fig. 6D, Fig. S4 and Table S5). Our analysis 

demonstrated that this was due to a higher proportion of seven-side cells 

among the small atrophic fibres (Fig. 6D, BNA SICK, Fig. S4 and Table S5). 
When analysing these elongated cells separately we observed that they were 

breaking a fundamental constraint: The direct relationship (linear or not) that 

larger cells should have more sides, and vice versa. In this tissue, many of the 

smaller cells were having an abnormally high number of neighbours, which 

was altering the polygon distribution of the whole tissue.  

Conclusions  

In summary, our results suggest that natural packed tissues cannot freely 

arrange into infinite organizations. Instead, they are limited to certain 

topologies that we have been able to define by comparing them with the 

Voronoi tessellations. CVT does not reflect the dynamic evolution of tissues 

during development, but it is able to reproduce stationary states. Our results 

imply that this is due to a physical constraint induced by the normal 

physiological balance of forces between cells or fibres. The Voronoi diagrams 

and natural tessellations analyzed in this work share this restriction, therefore, 

we suggest the CVT path could present a physical frame that packed tissues 

under physiological conditions would convey to. In non-physiological 

conditions, such as in disease, this original balance of forces between the 

cell’s ideal resting volume and cortical tension is broken, which drive tissues 

to deviate from the CVT path. Cell shape anisotropies, which can affect the 

correlation between the area and the number of sides of a cell (Kim et al, 

2014), can be one factor that breaks the original physical constraints. The 

muscle atrophic tissue together with the in silico LOF experiments suggest 

that a cell’s resting volume, which creates an internal cell pressure, is the 

main biophysical component that sets the original physical constraints for the 

packing of a tissue. Any pathological deviations from a cell’s physiological 

resting volume will break this constraint and create new tissue packing 

geometries away from the CVT path. 

An important avenue for future research would be to test whether the CVT 

path holds true for other tissues, especially differentiating tissues, and 
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whether deviations from the CVT diagrams can indeed be diagnostic for non-

physiological cell types. This could represent a novel imaging method for early 

detection of the emergence of disease onsets.  
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MATERIALS AND METHODS 

Generation of Voronoi diagrams 

Voronoi diagram is a geometrical way of dividing space into a number of 

regions or cells. A set of “n” seeds was specified in a plane (( 1x , 1y ), ( 2x , 2y )… 

( nx , ny )). From each seed ( nx , ny ) a corresponding Voronoi cell ( kCell ) was 

formed containing all pixels closer to that seed than to any other. Therefore, a 

pixel ( ba, ) belonged to a Voronoi cell ( kCell ) when distance to point ( kx , ky ) 

was less or equal than its Euclidean distance to any other seed.  

( ) ( )22 byaxL kkk −+−= , ],1[ nk ∈∀   (1) 

( ) kk CellbaL ∈ ,)min(     

For the analysis of the relaxation of the Voronoi diagrams (Lloyd´s 

algorithm), the centroid ( kc ) of each Voronoi cell ( kCell ) was calculated and 

used as the seed ( kx , ky ) of the new diagram. This makes them more 

homogeneous in terms of the shapes and sizes of the cells (Fig. 1H). 

Subsequent iterations of this process produced a set of Voronoi diagrams that 

form a CVT path. 

In our experiments, we used 500 random points in image of 1024x1024 

pixels and perform Voronoi diagram (Diagram 1 or Poisson-Voronoi 

tessellation). We used 20 different initiations (Poisson-Voronoi initial images) 

to obtain the CVT path data. 

Image analysis 

Drosophila and chicken images were described in (Escudero et al, 2011). The 

images used in the study were: 15 images from Drosophila wing larva (dWL), 

16 images from Drosophila prepupal wing (dWP), 10 images from Drosophila 

mutant wing prepupa (dMWP, using the following genetic combination: C765-

Gal4 line driving the expression of UAS-zipper-RNAi. This induce a reduction 

of myosin II expression in the wing disc epithelium), 16 images from chick 

neuroepithelium (cNT). 3 images from Drosophila prepupal eye (EYE, 
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obtained as described in (Escudero et al, 2007) were segmented manually. 

Fig. S5 shows two examples of the projection of the original confocal image 

that was used for the segmentation of the natural images. The examples 

correspond to Fig. 1A (Fig. S5A) and Fig. 4B (Fig. S5B). All the analysed 

images had a size of 1024 × 1024 pixels. The area of 1 pixel in these cases is 

3.78 × 10–3 μm2. We have identified the neighbours of each cell using a circle 

with radius r=4 pixels.  

In the case of human muscle biopsies, we obtained a ROI with resolution 

1100x1100 pixels from images of 3072x4080 pixels. In this way it is possible 

to avoid small artefacts due to the manipulation and staining of the samples. 

The images were segmented following the method developed in (Sáez et al, 

2013). We used 29 images (taken from 12 different biopsies) for Biceps 

Control Adult (BCA) and 12 images taken from 6 biopsies for the Biceps 

Neurogenic Atrophies Adult (BNA). The Hospital Virgen del Rocío ethics 

commission gave approval for this work (File 2/11). All biopsies were 

performed under informed consent using a standardized protocol (Dubowitz & 

Sewry, 2007) and processed as described in (Sáez et al, 2013). 

All the images utilized for the extraction of data are available at 

http://datadryad.org/. 

Continuous model of CVT path and probability density cloud. 
We had a discrete number of diagrams that form the CVT path (diagrams 1 

to 200). We transformed them into a continuous model to be able to compare 

it with the natural images. To do that, we took the percentage of hexagons as 

a reference of the organization of the tessellations. The Voronoi diagrams 

forming the CVT path, present a percentage of hexagons that corresponds 

univocally with a determined percentage for each one of the rest of polygons. 

We extracted data points (P6, Px) for all individual diagrams of the CVT path 

represented in Table S1 (i.e. 20 realizations of D1, D2, D3, D4, D5, D6, D10, 

D20, D30, D40, D50, D100, D200). P6 indicate the percentage of hexagons of 

the Diagram and Px the percentage of polygon with “x” sides (being “x” equals 

to 4, 5, 7 or 8). We did not include the rest of the polygons since they appear 

in a very low frequency (always less than 5%, and 0% in most of the Voronoi 

Diagrams, Table S1). Applying a curve fitting, we adjusted a mathematical 
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function to each set of data points in a range {25-75}. Therefore, we obtained 

20 functions per each (P6, Px), one per each realization of the CVT. The {25-

75} range was chosen since it is the range where the percentage of hexagons 

took values along the different diagrams of the CVT. Table S6 shows the 

values for the 80 equations that has been selected as the best fitting for the 

data points. 

To represent the continuous CVT path and facilitate the visualization of the 

data, we selected 500 random numbers in a range from 20 to 70 for each 

function that resolve Px (this range was slightly different to the one used for 

the curve fitting experiment, since it allowed better visualization of the relative 

position of the natural images). The resulting 10000 points provide the 

probability density information in Fig. 2B-E and Fig. 5E-H. This range was 

chosen so the values for all individual images showed in both figures were 

included. This information is represented in a grey-scale where the darker 

area represents the higher probability. Over this graph, we plotted the 

average percentage of Px in natural images (dWL, dWP, dMWP, CNT, BCA, 

BNA and EYE) and simulations to compare the behaviour of natural tissues in 

relation with CVT path.  

Statistical differences between CVT path and natural images 

We employed the continuous model of the CVT path described above to 

quantify the differences between the natural images and the Voronoi 

Diagrams. We selected the average percentage of hexagons (P6) of each set 

of natural images and introduce the value in the 20 continuous equations of 

the CVT path generated to extract the 20 values of percentage of square, 

pentagons, heptagons and octagons that “ideally” correspond to each set of 

images (P6-Px values). We compared the real values of P6-Px of each 

category of natural images and the corresponding “ideal” data from the 

continuous CVT path (Table S2). First, we evaluated if “real” and “ideal” 

values presented similar distribution and variance using Kolmogorov-Smirnov 

and F-Snedercor tests respectively. In case that data presented the same 

distribution but not an equal variance, we employed a two tails Welch test to 

compare the means from both groups. In case that data presented different 

distribution and a different variance, we employed Wilcoxon test to compare 



 19

the means from both groups. We employed a two tails t-student test to 

compare the means in the cases where both distribution and variance of the 

two sets of data were similar. A p value smaller than 0.05 indicated that real 

P6-Px values from biological samples were significantly different to the “ideal” 

P6-Px values from the CVT path continuous model. We only considered 

relevant for the study the comparisons of P6-Px with a representation higher 

of the 5% of the total of cells (lower percentages often involves a wide 

variation even in the individual Voronoi diagrams). Where comparisons to the 

continuous CVT path were not required we tested polygonal distribution 

similarity using Chi-square tests of independence. In these cases pairwise 

tests between tissues were performed using integer counts of the number of 

x-sided polygons per sample. 

Extraction of features from the images 
In each image (natural, Voronoi diagrams and Simulations) we selected a 

subset of “valid cells” to calculate several features. Valid cells were identified 

as follows: Cells positioned in the edge of the image were called “Border cells” 

(BC); the neighbours of BC were called “Neighbours Border Cell” (NBC). We 

define the Valid Cell (VC) as every cell in the image that is not including in CB 

and NCB. 

NBCBCkCellvalidatedCell k ,,_ ∉∀= (2) 

 

We calculated features related with geometric and topological properties of 

the valid cells. Area: size (in pixels) of the cell in segmented image. 

Normalized Area: to compare Area from different categories. This has been 

used to test the different laws (Fig. S2 and Table S3). log10 Normalized 
Area: as represented in the following equation. 

log10
Areai

Area






, [ ]mi ,1∈∀  (3) 

Where m is the number of valid cells in image, iArea  is the size of the cell and 

Area  is the mean Area of valid cells. We classified the values in bins of 0.02 

units. The use of the log10 makes the values distribute similar to a normal 

distribution facilitating the comparison. We employed the two sample 
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Kolmogorov-Smirnov test to compare “log10 Normalized Area” distribution of 

each category of natural images and the corresponding Voronoi diagram 

(Table S4). Relation Axis: Ratio between the major and minor axes of each 

cell. Number of neighbours of a cell: Used to calculate the polygon 

distributions. For each category, cells were grouped by individual images and 

the relative percentages of each type of polygon were calculated. This 

allowed obtaining the standard error of the mean value for the frequency of 

each type of polygon. Average number of Neighbours of Neighbouring 
cells of a cell: Used to test the Aboav-Weaire law. 

Computer Simulations 

The computer model is based on a vertex model described previously 

(Farhadifar et al, 2007; Mao et al, 2011). The cells are defined as polygons, 

and the cell shapes are traced by the position of the polygon vertices. Each 

connection between two vertices represents the attached boundary between 

two neighbouring cells. The energy of the whole tissue (4) is calculated as the 

total energy contribution from (a) the deviation of each cell from its ideal size, 

(b) sum of tensile and adhesive energy at individual cell-cell junctions, and (c) 

overall contractility of each cell, reflecting the basic tendency of the cortical 

actomyosin cytoskeleton to resist deformation from an isometric shape. 

( ) ( )( )  Γ
+Λ+−=

α
α

α

α
αα

α 2

,

20

22
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ijiji       (4) 

     (a) (b)  (c) 

 

Here, )( iRE is the total energy for the vertex positions iR , defining Nc cells 

(a= 1...Nc), composed of Nv vertices (i = 1...Nv). In the calculation of “area 

elasticity” (1), Kα is the elasticity coefficient, Aα is the current area of the cell 

and Aα
(0) is the ideal area. In the “line tension” (2) calculation, the summation 

runs over all connected vertices >< ji, , Λi j is the line tension coefficient and lij 

the length of the junction between vertices. In the “cortical contractility” (3) 

calculation, Lα is the cell perimeter, and Γα is the contractility coefficient. For 

details of the relaxation of the tissues, see (Farhadifar et al, 2007; Mao et al, 

2011). 
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The simulations investigating the effects of cell divisions on topology are 

run to an equivalent of 18 hours, with average cell division cycle of five hours, 

where on average four hours of growth is followed by potential division and an 

hour of resting period. During the growth phase, the ideal area (Aα
(0)) of the 

cell is gradually increased up to 2xAα
(0). In control scenarios, the cell is 

allowed to divide once the current cell area reaches 1.95 times the cell area at 

the onset of cell growth. Upon division, the ideal areas of the daughter cells 

are reset to Aα
(0), and the resting phase is initiated. Here, the control setup 

parameters of the healthy tissue are the same as above (Aα
(0) = 1.0, Kα = 1.0, 

Λij = 0.26, and Γ α = 0.0). The myosin mutation is simulated by randomly 

assigning a reduced tension parameter to each cell from the uniform 

distribution in the range Λij = 0.05 – 0.2. For the tension dependent cases, the 

cells are required to fulfill the additional criteria of having a tension parameter 

above the selected threshold, to successfully complete cell division; otherwise 

they grow in size, without being able to divide the cell body. A cell without the 

ability to divide will be stuck in mitotic phase and will not start a second round 

of cell division. Two threshold values for the ability for division, 30 percent of 

control tension (Λij = 0.078) and 40 percent of control tension (Λij = 0.104) are 

simulated.  

For the non-proliferating simulations, first, 20 random Voronoi diagrams of 

500 cells were generated and relaxed for 4 iterations applying Lloyd’s 

algorithm. These iterations provided 20 starting frames equivalent to Diagram 

5 of the CVT path. For the healthy cell simulations, the control setup 

parameters are the same as above (Aα
(0) = 1.0, Kα = 1.0, Λij = 0.26, and Γ α = 

0.0). For the simulations mimicking neurogenic atrophy, random sick cells 

were generated to comprise 10 percent of the total cell population. The sick 

cells had reduced ideal area, Aα
(0)= 0.3; reduced line tension, Λij = -0.104 

(negative value indicates adhesion dominates at cell-cell junctions, leading to 

a tendency to increase the contact zone); and slight increased overall 

contractility, Γα = 0.05. As a control, a similar produce was performed with 

normal value of the ideal area: Aα
(0)= 1.0; reduced line tension, Λij = -0.104 

and Γα = 0.05.  



 22

All simulations relating to muscle atrophy scenarios are run to an 

equivalent of 240 seconds, the analysis is carried out by the image analysis 

procedure used for experimental images. The borders are excluded from the 

analysis to avoid border effects influencing the size distributions.  

Analysis of subsets of cells from the images 

To identify atrophic fibres from BNA images we followed the instructions 

and advice from two neuromuscular diseases specialists (pathologist and a 

neurologist from Hospital Virgen del Rocío, Seville, Spain). We selected as 

atrophic the valid cells that fulfilled two conditions: to be elongated and small. 

These conditions were made objective using the following procedure: To 

select elongated cells we employed the “relation axis” (major axis/minor axis) 

feature that defined the roundness of a cell; we selected as atrophic cells 

those with a “relation axis” value higher than 3 and an area smaller that -0.2 

(17.15% smaller cells from the BNA total). 

“10% smaller cells” were selected from the valid cells using the area 

feature. “Sick cells” were selected from the randomly generated cells with 

altered parameters that also were valid cells. 

ACKNOWLEDGMENTS 

L.M.E. and D.S.-G. are supported by the Ramón y Cajal program 

(PI13/01347), and the Spanish government grants: BFU2011-25734 and 

PI13/01347. MT was funded by Sir Henry Wellcome Postdoctoral Fellowship 

(Grant No: 103095). YM was funded by a Medical Research Council Career 

Development Award Fellowship (Grant No: MR/L009056/1).  

AUTHOR CONTRIBUTIONS 

L.M.E. designed the study with help from Y.M and A.P. D.S.-G. wrote the 

software to generate and analyse Voronoi diagrams and compare them with 

natural images. D.S.-G. and J.D.B. performed the statistical analysis. M.T. 

performed the computer simulations. J.D.B. analysed the packed tissues in 

relation to Lewis and Aboav-Weaire laws. All authors participated in the 



 23

interpretation of results, discussions and the development of the project. 

L.M.E. wrote the manuscript with help from Y.M. and input from all authors. 

 
CONFLICT OF INTEREST 

The authors declare no financial, personal, or professional interests. 

 



 24

REFERENCES 
Aegerter-Wilmsen T, Smith AC, Christen AJ, Aegerter CM, Hafen E, Basler K 
(2010) Exploring the effects of mechanical feedback on epithelial topology. 
Development 137: 499-506 
 
Axelrod JD (2006) Cell shape in proliferating epithelia: a multifaceted problem. 
Cell 126: 643-645 
 
Brazis PW (2011) General principles of Neurological Localization. In 
Localization in Clinical Neurology, Williams L (ed), 6th edition edn. 
Philadelphia 
 
Brown KE, Baonza A, Freeman M (2006) Epithelial cell adhesion in the 
developing Drosophila retina is regulated by Atonal and the EGF receptor 
pathway. Dev Biol 
 
Chichilnisky EJ (1986) A mathematical model of pattern formation. J Theor 
Biol 123: 81-101 
 
Classen AK, Anderson KI, Marois E, Eaton S (2005) Hexagonal packing of 
Drosophila wing epithelial cells by the planar cell polarity pathway. Dev Cell 9: 
805-817 
 
Du Q, Faber V, Gunzburger M (1999) Centroidal Voronoi Tessellations: 
Applications and Algorithms. SIAM review 41: 637-676 
 
Dubowitz V, Sewry CA (2007) Muscle biopsy: a practical approach 
 Third edition edn.: Saunders Eselvier. 
 
Escudero LM, Bischoff M, Freeman M (2007) Myosin II regulates complex 
cellular arrangement and epithelial architecture in Drosophila. Dev Cell 13: 
717-729 
 
Escudero LM, Costa Lda F, Kicheva A, Briscoe J, Freeman M, Babu MM 
(2011) Epithelial organisation revealed by a network of cellular contacts. Nat 
Commun 2: 526 
 
Farhadifar R, Roper JC, Aigouy B, Eaton S, Julicher F (2007) The influence of 
cell mechanics, cell-cell interactions, and proliferation on epithelial packing. 
Curr Biol 17: 2095-2104 
 
Finsterer J, Papic L, Auer-Grumbach M (2011) Motor neuron, nerve, and 
neuromuscular junction disease. Curr Opin Neurol 24: 469-474 
 
Frade JM (2002) Interkinetic nuclear movement in the vertebrate 
neuroepithelium: encounters with an old acquaintance. Prog Brain Res 136: 
67-71 
 



 25

Gibson MC, Patel AB, Nagpal R, Perrimon N (2006) The emergence of 
geometric order in proliferating metazoan epithelia. Nature 442: 1038-1041 
 
Gibson WT, Gibson MC (2009) Cell topology, geometry, and morphogenesis 
in proliferating epithelia. Curr Top Dev Biol 89: 87-114 
 
Haeckel E (1904) Kunstformen der Natur,  Leipzig und Wien: 
Bibliographisches Institut. 
 
Hayashi T, Carthew RW (2004) Surface mechanics mediate pattern formation 
in the developing retina. Nature 431: 647-652 
 
Hocevar A, El Shawish S, Ziherl P (2010) Morphometry and structure of 
natural random tilings. Eur Phys J E Soft Matter 33: 369-375 
 
Honda H (1978) Description of cellular patterns by Dirichlet domains: the two-
dimensional case. J Theor Biol 72: 523-543 
 
Kim S, Cai M, Hilgenfeldt S (2014) Lewis’ law revisited: the role of anisotropy 
in size–topology correlations. New Journal of Physics 16 
 
Korn RW, Spalding RM (1973) The geometry of plant epidermal cells. New 
Phytol 72: 1357–1365 
 
Lewis FT (1928) The correlation between cell division and the shapes and 
sizes of prismatic cells in the epidermis of cucumis. Anatom Rec 38: 341-376 
 
Lloyd S (1982) Least square quantization in PCM. IEEE Trans Inform Theory 
28: 129–137 
 
Mao Y, Tournier AL, Bates PA, Gale JE, Tapon N, Thompson BJ (2011) 
Planar polarization of the atypical myosin Dachs orients cell divisions in 
Drosophila. Genes Dev 25: 131-136 
 
Mastaglia FL (1992) Skeletal Muscle Pathology,  London: Churchill Living-
stone. 
 
Miles RE, Maillardet RJ (1982) The basic structure of Voronoi and generalized 
Voronoi polygons. . J Appl Prob 19 97–111. 
 
Mirkovic I, Mlodzik M (2006) Cooperative activities of drosophila DE-cadherin 
and DN-cadherin regulate the cell motility process of ommatidial rotation. 
Development 133: 3283-3293 
 
Nagpal R, Patel A, Gibson MC (2008) Epithelial topology. BioEssays 30: 260-
266 
 
Patel AB, Gibson WT, Gibson MC, Nagpal R (2009) Modeling and inferring 
cleavage patterns in proliferating epithelia. PLoS Comput Biol 5: e1000412 
 



 26

Pilot F, Lecuit T (2005) Compartmentalized morphogenesis in epithelia: from 
cell to tissue shape. Dev Dyn 232: 685-694 
 
Rivier N, Schliecker G, Dubertret B (1995) The stationary state of epithelia. 
Acta Biotheoretica 43: 403-423 
 
Sáez A, Rivas E, Montero-Sánchez A, Paradas C, Acha B, Pascual A, 
Serrano C, Escudero LM (2013) Quantifiable diagnosis of muscular 
dystrophies and neurogenic atrophies through network analysis. BMC 
Medicine 11 
 
Sanchez-Gutierrez D, Saez A, Pascual A, Escudero LM (2013) Topological 
progression in proliferating epithelia is driven by a unique variation in polygon 
distribution. PLoS One 8: e79227 
 
Stevens PS (1974) Patterns in Nature,  Boston-Toronto: Little Brown and Co. 
in association with The Atlantic Monthly Press. 
 
Voronoi GF (1908) Nouvelles applications des paramètres continus à la 
théorie de formes quadratiques. Journal für die reine und angewandte 
Mathematik 134: 198–287 
 
Wigmore PM, Dunglison GF (1998) The generation of fiber diversity during 
myogenesis. Int J Dev Biol 42: 117-125 
 
Wilcock AC, Swedlow JR, Storey KG (2007) Mitotic spindle orientation 
distinguishes stem cell and terminal modes of neuron production in the early 
spinal cord. Development 134: 1943-1954 
 
Young PE, Richman AM, Ketchum AS, Kiehart DP (1993) Morphogenesis in 
Drosophila requires nonmuscle myosin heavy chain function. Genes Dev 7: 
29-41 
 
Zallen JA, Zallen R (2004) Cell-pattern disordering during convergent 
extension in Drosophila. Journal of Physics: Condensed matter 16: S5073–
S5080 
 
Zhu HX, Thorpe SM, Windle AH (2001) The geometrical properties of irregular 
two-dimensional Voronoi tessellations. Philosophical Magazine A 81: 2765-
2783 
 



 27

 

FIGURE LEGENDS 

Figure 1. Polygon distribution of biological tissues compared with 
Voronoi diagrams. A) Segmentation of a Drosophila prepupa wing imaginal 

disc epithelium (dWP). B) Adult Biceps (BCA) biopsy stained with anti-

collagen VI (green) and anti-Myosin Heavy Chain (red) antibodies. C) 
Segmentation of the image showed in (B). D) Segmented image from a 

chicken embryo neural tube epithelium (cNT). E) Polygon distribution of the 

different biological tissues analysed. Two types of distribution can be 

distinguished: The Poisson Voronoi polygon distribution for Diagram 1 (D1) 

and cNT, and the conserved polygon distribution for the rest of image 

categories. F) Diagram with Voronoi seed distributed randomly in the plane. 

G) Poisson-Voronoi tessellation of the seed showed in (F). H) Resulting 

Voronoi diagram after performing four Lloyd´s algorithm iterations to the 

Diagram 1 (Diagram 5, D5). In all figures data are represented as mean ± 

SEM. Scale bar, 10 μm in (A) and (D); 150 mm in (B). 

Figure 2. The CVT path matches the polygon distribution of natural 
tissues. A) Polygon distribution Voronoi diagrams resulting from the iterative 

application of Lloyd´s algorithm. B-E) Density plot showing the frequency of a 

value for four, five, seven and eight sided cells respectively, depending of the 

percentage of hexagons (P6) in the CVT diagrams. The darker region reflects 

the higher probability of a determine value. Coloured circles represent the 

average values of each polygon class for the different sets of images 

analysed in this study. dWL, Drosophila larva wing disc, light green. dMWP, 

Drosophila mutant wing disc, violet. EYE, Drosophila eye disc, orange. BCA, 

biceps control adult, dark green. BNA, biceps neurogenic atrophy, dark blue.  

Figure 3. Relationship between area and polygon distribution.  A) Area 

distribution of several Voronoi diagrams along the CVT path. Cell areas 

became progressively more homogeneous after each Lloyd iteration. B) 
Comparison of area distribution for proliferating epithelia cNT (blue), dWL 

(green) and dWP (red). At the right of the image Biceps (green) and Diagram 

5 (grey) images.  



 28

Figure 4. Polygon and area distribution of altered tissues. A) 
Segmentation of a prepupal eye imaginal disc from Drosophila (anterior to the 

left). The analysed developing photoreceptors are labelled in green. The cells 

adjacent to the photoreceptors are labelled in blue (these are “cone cells” in 

the most posterior clusters). B) Segmentation of a prepupa wing imaginal disc 

epithelium where myosin II levels have been reduced. C) Adult Biceps biopsy 

from a patient with neurogenic atrophy pathology. Fibres outlined with 

collagen VI antibody (green). D) Segmentation of the image showed in (C) 

highlighting two atrophic elongated fibres that present seven neighbours. E) 
Comparison of polygon distributions of different tissues with altered 

contractibility, tension or pressure balance within the tissue. Scale bars, 10 

μm in (A) and (B); 75 mm in (C). 

Figure 5. Biophysical alterations in proliferating tissues using computer 
simulations. A) Diagram resulting from a vertex model simulation that 

includes cell proliferation. B) Diagram resulting from a vertex model simulation 

that includes cell proliferation and heterogeneous reduction of line tension 

among the tissue cells. C) Diagram resulting from a vertex model simulation 

with heterogeneous reduction of line tension and an impairment of the cell 

division when tension value is under the 30 percent of the initial value D) 
Similar simulation than in (C) with a threshold of 40 percent. E-H) Density plot 

showing the frequency of a value for four, five, seven and eight sided cells 

respectively, depending of the percentage of hexagons (P6) in the CVT 

diagrams. The values for the individual myosin mutant images (violet) and the 

individual diagrams of the four simulations (light grey, grey, light pink and 

pink) are shown in each plot. The average value for each simulation is shown 

with a black circumference. 

Figure 6. Computer simulations indicate that changes to homogeneous 
resting areas are able to alter cell topology. A) Diagram resulting from a 

vertex model simulation with homogeneous parameters for contractility, line 

tension and ideal area. B) Diagram resulting from a vertex model simulation 

where in ten percent of the cells (grey) the line tension and ideal area 

parameters were reduced C) Control diagram where in the ten percent of the 
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cells (blue) only line tension parameter was reduced. D) Comparison of 

polygon distribution for the 10% smallest cells from BCA (green bar) and 

Control Simulation (grey bar) with the sick cells from BNA (light blue bar) and 

Atrophy Simulation (grey cells from (B), purple bar).  
















