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Abstract: The mismatch negativity (MMN) evoked potential, a preattentive brain response to a discriminable
change in auditory stimulation, is significantly reduced in psychosis. Glutamatergic theories of psychosis
propose that hypofunction of NMDA receptors (on pyramidal cells and inhibitory interneurons) causes a loss
of synaptic gain control. We measured changes in neuronal effective connectivity underlying the MMN using
dynamic causal modeling (DCM), where the gain (excitability) of superficial pyramidal cells is explicitly par-
ameterised. EEG data were obtained during a MMN task—for 24 patients with psychosis, 25 of their first-
degree unaffected relatives, and 35 controls—and DCM was used to estimate the excitability (modeled as
self-inhibition) of (source-specific) superficial pyramidal populations. The MMN sources, based on previous
research, included primary and secondary auditory cortices, and the right inferior frontal gyrus. Both patients
with psychosis and unaffected relatives (to a lesser degree) showed increased excitability in right inferior
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frontal gyrus across task conditions, compared to controls. Furthermore, in the same region, both patients
and their relatives showed a reversal of the normal response to deviant stimuli; that is, a decrease in excitabil-
ity in comparison to standard conditions. Our results suggest that psychosis and genetic risk for the illness
are associated with both context-dependent (condition-specific) and context-independent abnormalities of
the excitability of superficial pyramidal cell populations in the MMN paradigm. These abnormalities could
relate to NMDA receptor hypofunction on both pyramidal cells and inhibitory interneurons, and appear to
be linked to the genetic aetiology of the illness, thereby constituting potential endophenotypes for psychosis.
Hum Brain Mapp 37:351–365, 2016. VC 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

Psychotic disorders are among the most severe and
enduring mental illnesses, characterised by a distorted
sense of reality; an inability to distinguish subjective expe-
riences from the objective world. Disorders where psycho-
sis is commonly experienced include, amongst others,
schizophrenia, bipolar disorder, and schizoaffective disor-
der [NICE, 2014; WHO, 2008].

The mismatch negativity (MMN) event related potential is
a pre-attentive brain response to a discriminable change in
auditory stimulation [Duncan et al., 2009; N€a€at€anen, 1992;
Todd et al., 2013; Umbricht et al., 2005]. Reduced MMN
amplitude is one of the most reliable findings in schizophre-
nia research, and since the first publication by Shelley et al
[1991] over 100 papers have commented on this reduced
amplitude [e.g., Baldeweg and Hirsch, 2015; Shaikh et al.,
2012; Todd et al., 2013], with a mean effect size of 0.99
[Umbricht et al., 2005]. The MMN is abnormal in clinical risk
groups as well as in patients, and is a promising biomarker
for psychosis prediction [Bodatsch et al., 2014; Nagai et al.,
2013]. Furthermore, the MMN has been proposed as a poten-
tial endophenotype or a biological marker of genetic risk for
psychosis, because it is heritable [Hall et al., 2006, 2009;
Hong et al., 2012], and abnormal in first degree relatives of
patients, who have an increased genetic risk for psychosis
[Jessen et al., 2001; Michie et al., 2002]. However, not all stud-
ies in unaffected relatives have found MMN abnormalities
[Bramon et al., 2004; Hong et al., 2012; Kim et al., 2014].

Most previous studies of the MMN use classical electroen-
cephalogram (EEG) analysis methods that investigate the
observed amplitude of the event related potential at the sen-
sor level. However, abnormal functional integration among
brain regions or “dysconnection,” has been proposed as a
core pathology of psychosis [Friston, 1998; Stephan et al.,
2006]. Motivated by this hypothesis, we investigated the
MMN in terms of the underlying neuronal connectivity. We
used dynamic causal modeling (DCM), which explains EEG
data using a hierarchical network of dynamically coupled
sources, and estimates effective connectivity—the influence
that one neuronal system exerts over another—using Bayes-
ian model comparison and inversion [David et al., 2006; Fris-

ton et al., 2003]. Several previous DCM studies have found
abnormal effective connectivity in psychosis, both using
EEG/MEG [Dima et al., 2010, 2012; Fogelson et al., 2014;
Roiser et al., 2013] and fMRI methods [Crossley et al., 2009;
Deserno et al., 2012; Dima et al., 2009; Mechelli et al., 2007;
Schmidt et al., 2014]. However, this is the first DCM study
investigating the MMN paradigm in patients as well their
unaffected relatives, with a view to examining whether
abnormal effective connectivity (and its modulation) could
act as an endophenotype for psychosis.

Our hypothesis is based on current theories of psychosis
that implicate the neuromodulation of postsynaptic excit-
ability or cortical gain control [Harrison et al., 2011; Lisman
et al., 2008; Phillips and Silverstein, 2013; Stephan et al.,
2006]. The most ubiquitous neurotransmitter receptor
involved in gain modulation is the glutamatergic N-methyl-
D-aspartate receptor (NMDA-R), which is expressed more
densely in superficial cortical layers [Friston, 1998;
Gonzalez-Burgos and Lewis, 2012; Lakhan et al., 2013].
NMDA-R hypofunction is known to be associated with psy-
chosis; it is for example well established that NMDA-R
antagonists such as ketamine or phencyclidine produce psy-
chotomimetic symptoms in healthy individuals and worsen
symptoms in patients with schizophrenia [Gilmour et al.,
2012; Javitt and Zukin, 1991; Kantrowitz and Javitt, 2010;
Krystal et al., 1994; Lahti et al., 1995; Malhotra et al., 1996;
Pilowsky et al., 2006]. Recent genetic association studies
also implicate the NMDA-R and its postsynaptic signaling
cascade in the disorder [Purcell et al., 2014; Ripke et al.,
2014]. Furthermore, the hypofunctioning of NMDA-Rs on
inhibitory GABAergic interneurons is also thought to con-
tribute to a loss of balance between excitation and inhibi-
tion, which has been implicated in the neuropathology of
psychosis [Gonzalez-Burgos and Lewis, 2012]. Lastly,
reduced MMN amplitudes have been observed in healthy
volunteers after NMDA-R blockade, for example by admin-
istration of ketamine [Javitt et al., 1996; N€a€at€anen et al.,
2012; Schmidt et al., 2012a; Umbricht et al., 2000]. From a
theoretical perspective, this loss of gain control or
excitation-inhibition balance fits comfortably with hierarchi-
cal predictive coding models of psychosis and false infer-
ence–that rest on the abnormal encoding of uncertainty or
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precision by the gain of (superficial pyramidal) cells report-
ing prediction errors [Adams et al., 2013].

Given the prominence of NMDA-Rs in superficial corti-
cal layers, it is unsurprising that the gain of superficial
pyramidal cell populations is strongly affected by NMDA-
R function [Fox et al., 1990; Pinotsis et al., 2014]. In DCM,
this gain is parameterized as the inhibitory self-
connectivity (or “intrinsic connectivity”) of superficial
pyramidal cells within a cortical source [Friston, 2008].
Our aim in this study was to investigate group differences
in MMN responses of patients with psychosis, their unaf-
fected relatives, and healthy controls, and test whether
these are best explained by modulations of synaptic gain
at different levels of the cortical hierarchy. We hypothes-
ised that, compared to controls, we would see abnormal
cortical gain control in both individuals with psychosis
and (to a lesser extent) in their first degree relatives.

MATERIALS AND METHODS

Sample and Clinical Assessment

The total sample of 84 participants included 24 patients
with a psychotic illness (75% schizophrenia, no comorbid

diagnoses; see breakdown in Table 1), 25 unaffected first
degree relatives of psychosis sufferers (without any perso-
nal history of a psychotic illness), and 35 unrelated con-
trols (without any personal or family history of psychotic
illnesses).

A personal history of nonpsychotic psychiatric illnesses
did not constitute an exclusion criterion for relatives or
controls, provided they were well and not taking any psy-
chotropic medication at the time of testing and for the pre-
ceding 12 months. This was to avoid recruiting biased
control groups, unrepresentative of the general and local
populations. Three relatives (12%) and one control (3%)
had a history of major depressive disorder.

Patients with psychosis and relatives were recruited
through voluntary organisations, advertisements in the
local press and from clinical teams at the South London
and Maudsley NHS Foundation Trust. Controls were
recruited by advertisements in the local press and job
centres. Participants were excluded if they had a diagnosis
of alcohol or substance dependence in the last 12 months,
neurological disorders or a previous head injury with loss
of consciousness longer than a few minutes.

All participants were clinically interviewed to confirm
or exclude a Diagnostic and Statistical Manual of Mental

TABLE 1. Sample demographics (N 5 84)

Patients with psychosis
N 5 24

Unaffected relatives
N 5 25

Controls
N 5 35

Mean age (years, SD) 34.6 (69.3) 43.7 (614.5) 41.8 (614.5)
Age range (years) 23–54 16–62 19–69
Gender (N male/female, % female) 18/6 (25%) 12/13 (52%) 17/18 (51%)
Education (mean years, SD) 13.6 (62.8) 14.0 (63.1) 14.4 (63.7)
Diagnosis (N, %)

Schizophrenia 18 (75%) – –
Schizoaffective disorder 3 (13%) – –
Psychosis NOS 1 (4%) – –
Bipolar I disorder (w. psychosis) 2 (8%) – –
Major Depression – 3 (12%) 1 (3%)
No psychiatric illness – 22 (88%) 34 (97%)

Illness duration (mean years, SD) 12.1 (8.4) NA NA
Psychotropic medication (N, %) 23 (95.8%) NA NA
CPZ equivalent (mean, min-max)* 549.4 (30-1100) NA NA
Years medicated (mean, SD) 10.6 (68.6) NA NA
First medicated (mean years, SD) 24.4 (67.2) NA NA
PANSS (mean, SD)**

Positive 12.5 (64.6) 7.2 (60.6) 7.0 (60.0)
Negative 14.9 (65.5) 7.2 (60.6) 7.0 (60.0)
General 24.3 (64.9) 17.5 (62.0) 16.1 (60.4)

Relationship to proband (N, %)
Mother NA 4 (16.0%) NA
Father NA 9 (36.0%) NA
Sister NA 8 (32.0%) NA
Brother NA 3 (12.0%) NA
Daughter NA 1 (4.0%) NA

NA 5 not applicable; SD 5 standard deviation; NOS 5 not otherwise specified; * CPZ equivalent 5 average chlorpromazine equivalent
dosage (mg) for those taking antipsychotic medication (N 5 18); ** PANSS positive and negative scores range from 7 to 49, PANSS gen-
eral scores range from 16 to 112
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Disorders, Fourth Edition [DSM-IV; APA, 1994] diagnosis.
Instruments used included the Schedule for Affective Dis-
orders and Schizophrenia—Lifetime version [SADS-L;
Endicott and Spitzer, 1978] and the Positive and Negative
Syndrome Scale [PANSS; Kay et al., 1987]. Information
regarding psychiatric diagnoses of family members not
directly assessed was collected from the most reliable
informant(s) with the Family Interview for Genetic Studies
[FIGS; Maxwell, 1992].

All participants gave informed written consent to partic-
ipate, and the study was approved by the Institute of Psy-
chiatry Research Ethics Committee, conforming to the
standards set by the Declaration of Helsinki. This sample
is part of the larger Maudsley Family Study of Psychosis
[e.g., Dutt et al., 2012; Ranlund et al., 2014; Schulze et al.,
2008; Shaikh et al., 2013].

EEG Data Acquisition

Electroencephalogram (EEG) was collected from 17 scalp
sites according to the 10/20 International system (FP1,
FP2, F7, F8, F3, F4, C3, C4, P3, P4, FZ, CZ, PZ, T3, T4, T5,
T6), grounded at Fpz using silver/silver-chloride electro-
des [Jasper, 1958]. Vertical, horizontal, and radial electro-
oculographs monitored eye movements, and the left ear
lobe served as reference. Data were continuously digitised
at 500 Hz with a 0.03–120 Hz band-pass filter (24 dB/
octave roll-off). Impedances were kept below 5 kX [Bra-
mon et al., 2004, 2005].

MMN paradigm

This was a duration-deviant auditory two tone para-
digm. The stimuli were 1,200 tones (80 dB, 1,000 Hz, 5 ms
rise/fall time), with a 300 ms inter-stimulus interval, pre-
sented in three blocks of 400 stimuli through bilateral
intra-aural earphones. 85% of the tones were “standards”
(25 ms duration), and 15% were “deviants” (50 ms dura-
tion) [Hall et al., 2009; Shaikh et al., 2012]. The total dura-
tion of the experiment was about 10 min.

Participants were sitting comfortably in an armchair,
and were instructed to keep their eyes open, fixate on a
point in front of them, and disregard the sounds
presented.

The classical group comparisons of the MMN amplitude
in this sample have been reported in a previous study
[Bramon et al., 2004]. Here we undertake a new analysis
of effective connectivity during the MMN task.

EEG Data Preprocessing

Signal processing was conducted using SPM 12b
(http://www.fil.ion.ucl.ac.uk/spm/software/spm12) [Lit-
vak et al., 2011] and FieldTrip (http://www.fieldtrip.nl)
[Oostenveld et al., 2011] in MATLAB R2013b (www.math-
works.co.uk).

The raw EEG data were converted to SPM format, and
re-referenced to the common average. A high-pass filter of
0.5 Hz was applied, followed by a low-pass 70 Hz filter. A
stop-pass (49–50 Hz) filter was also applied, to remove
line noise. The data were then downsampled to 200 Hz,
and epoched with a peristimulus window of 2100 to 300
ms. Baseline correction was performed using the 100 ms
before stimulus onset.

Independent Component Analysis was used to correct
for ocular artefacts in the data. The EEG activity was
decomposed into 17 independent components, of which a
maximum of two that clearly corresponded to eye blinks
were removed from the data. Additional automatic artefact
rejection was then conducted, removing any trials whose
activity exceeded 670 lV across all channels. This resulted
in an average of 45 trials (3.7%) being rejected per partici-
pant, which did not differ between the three groups
(F(2,81)51.1, P 5 0.3).

The EEG data were then averaged using robust averag-
ing in SPM. This procedure produces the best estimate of
the average by weighting data points as a function of their
distance from the sample mean, so that outlier values have
less influence on the overall mean [Wager et al., 2005].
This was followed by an additional low-pass filter of 70
Hz, as recommended with robust averaging [Litvak et al.,
2011].

The grand average event related potential waveforms
across subjects were computed for patients, relatives and
controls separately. The use of grand average waveforms
ensures cleaner (almost noiseless) data for each group and
condition. Grand averages retain features that are con-
served within groups, and suppress individual differences.
These grand averages constitute six event related poten-
tials—one for each group and stimulus condition (stand-
ard and deviant tones)—that were characterised in the
subsequent DCM analysis [Fogelson et al., 2014].

Dynamic Causal Modeling

Dynamic causal modeling (DCM) explains measured
data using a hierarchical network of dynamically interact-
ing sources, and estimates effective connectivity (the influ-
ence that one neuronal system exerts over another), using
Bayesian model inversion [Friston et al., 2007]. DCM was
originally developed for fMRI [Friston et al., 2003] and
was subsequently generalised to other modalities, includ-
ing evoked responses measured by EEG [David et al.,
2006].

DCM permits source reconstruction whilst incorporating
biological constraints on neuronal dynamics and coupling
[David et al., 2005; Kiebel et al., 2009; Pinotsis et al., 2012].
The neuronal model makes predictions about the dynam-
ics of each source based on the underlying anatomy and
biology. We used the canonical microcircuit neural mass
model [Bastos et al., 2012], in which each neural source
comprises four cell populations: Superficial and deep
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pyramidal cells, spiny stellate cells and inhibitory inter-
neurons. Each source is connected to other sources via
extrinsic excitatory connections, and cell populations
within sources are connected to each other via intrinsic
connections [Pinotsis et al., 2013]. In this study, we
focused on the self-inhibition of superficial pyramidal cell
populations (see Supporting Information Fig. S1), because
the strength of this connection reflects the gain (or excit-
ability) of this population, which is linked to NMDA-R
function.

Each source (i.e., each node in the network) was mod-
eled with a single equivalent current dipole under bilateral
symmetry assumptions [Kiebel et al., 2006]. We used a
boundary elements head model [Fuchs et al., 2001] to
approximate the brain, cerebrospinal fluid, skull and scalp
surfaces. A canonical MRI head model was used, and core-
gistration of electrode positions and head model was per-
formed for each subject to map the Montreal Neurological
Institute coordinates to points on the head.

Following standard practice, the EEG data were pro-
jected onto eight spatial modes to ensure more robust
model inversion and dynamical stability. These are the
eight principal components or modes of the prior predic-
tive covariance in sensor space [Fastenrath et al., 2009].
We modeled responses from 0 to 250 ms post stimulus
onset, to ensure selective modeling of the MMN response
per se, rather than later components [Garrido et al., 2008].

DCM specification

In DCM, Bayesian inference is used to optimise neural
source dipoles based on a priori information about their
locations. This information is available from studies inves-
tigating the sources underlying the MMN—using fMRI
[Molholm et al., 2005; Rinne et al., 2005; Sch€onwiesner
et al., 2007], PET [Dittmann-Balçar et al., 2001; M€uller
et al., 2002], EEG/MEG [Deouell et al., 1998; Fulham et al.,
2014; Jemel et al., 2002; Rinne et al., 2000; Tiitinen et al.,
2006], and DCM [Garrido et al., 2007, 2008, 2009a]—show-
ing that the MMN is generated by temporal and frontal
sources. Using DCM, the model with the most evidence
consists of a three-level hierarchy comprising bilateral pri-
mary auditory cortices (Heschl’s gyrus, A1), bilateral supe-
rior temporal gyri (STG), and the right inferior frontal
gyrus (rIFG). The frontal source is lateralised to the right
hemisphere for auditory paradigms [Garrido et al., 2009a;
Levanen et al., 1996].

Following Garrido et al. [2008], we included the follow-
ing five sources, with prior source locations in our DCM
analysis (in Montreal Neurological Institute coordinates):
Left A1 (242, 222, 7), right A1 (46, 214, 8), left STG (261,
232, 8), right STG (59, 225, 8), and right IFG (46, 20, 8),
illustrated in Figure 1A. DCM incorporates source recon-
struction, and the inversion algorithm provides efficient
Bayesian estimates of dipole sources that optimise these
[David et al., 2005; Kiebel et al., 2009].

Our DCM assumes the existence of extrinsic (forward
and backward) connections between, and intrinsic (inter-
laminar and intralaminar) connections within the specified
sources. This has been supported by previous MMN
research [Dietz et al., 2014; Garrido et al., 2007, 2008,
2009a]. We also included lateral connections linking left
and right A1 and STG [Schmidt et al., 2012b]. Auditory
stimuli were modeled as direct input, entering bilateral
A1. This model is shown in Figure 1B.

Experimental effects

We used condition-specific grand averaged data over all
subjects within each group, allowing us to test for the effect
of group directly, as well as the effect of condition by group
interactions [e.g., Fogelson et al., 2014; Kiebel et al., 2007].
In other words, the grand averages were treated as the six
cells of a 2 3 3 factorial design, with two levels of
“condition” (standard and deviant tones) and three levels
of “group” (controls, relatives and patients with psychosis).

Group effects were defined as (i) having a genetic risk for
psychosis (controls versus relatives and patients combined)
and (ii) having a diagnosis of a psychotic illness, irrespec-
tive of genetic risk (relatives versus patients). We tested for
a main effect of diagnosis and genetic risk on effective con-
nectivity, and the interactions with the effect of condition
(standard versus deviant tones). The interactions reflect a
diagnosis or risk effect on deviant-related changes in effec-
tive connectivity or postsynaptic sensitivity.

Bayesian model selection was used to find the model
with the largest (free energy approximation to the) log
model evidence, among the models tested, where models
are penalised for increased complexity [Penny et al., 2004].
A difference in log evidence of three or more is considered
strong evidence in favour of a model, corresponding to an
odds ratio of about 20:1 [Friston and Penny, 2011].

Before testing for the effects of genetic risk and diagno-
sis, we established the best model to explain the effect of
the deviant stimulus across all three groups. We consid-
ered eight candidate models with modulations of forward,
backward and/or intrinsic connections. The model that
allowed for modulations of intrinsic connections (self-inhi-
bition of superficial pyramidal populations) only had the
highest evidence, and was used in all subsequent analyses
(see Supporting Information Figs. S2 and S3).

To study the effects of genetic risk and diagnosis we used
Bayesian model selection to establish where in the hierar-
chy synaptic gain—intrinsic (self-inhibitory) connectivity—
was modulated. Our model space consisted of models with
modulations of intrinsic connections at each of the hierarch-
ical levels (A1, STG, rIFG), and all combinations of these. A
total of 8 models were thus compared, shown in Figure 2.

Having established the model with the greatest evi-
dence, we examined the posterior estimates of the effective
connectivity under this model [Friston and Penny, 2011].
We focused on changes in intrinsic connectivity induced
by the mismatch negativity, to identify any differences
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between patients with psychosis, unaffected relatives, and
controls.

RESULTS

Sample Demographics

The demographic and clinical characteristics of the sample
are detailed in Table 1. All participants were of European
Caucasian ethnicity. Patients were significantly younger than
controls (t 5 2.14, P 5 0.04) and relatives (t 5 2.60, P 5 0.01),
and this group also contained more males compared to con-
trols (v2 5 4.1, P 5 0.04) and relatives (v2 5 3.8, P 5 0.05). Con-
trols and relatives did not differ significantly in age (t 5 0.51,
P 5 0.61) or gender (v2 5 0.002, P 5 0.97) distributions. Impor-
tantly, patients and relatives together (i.e., the genetic risk
group) did not differ from controls in age (t 5 20.83,
P 5 0.41) or gender (v2 5 1.33, P 5 0.27) distributions. Years in
education did not differ between groups (F 5 0.40, P 5 0.67).

The sample comprised 63 families, each including
between 1 and 4 individuals. 49 participants (58.3%) were
singletons, 18 (21.4%) were part of families with two mem-

bers in the study, 9 (10.7%) were in three-person families,
and 8 (9.5%) were part of families with four members par-
ticipating. All unaffected relatives had a first-degree rela-
tive with a psychotic illness, although 8 (32%) did not
have a proband participating in this study.

Mismatch Negativity Group Differences

The grand averaged event related potential waves for
patients, relatives, and controls are shown in Figure 3.
Group differences in the amplitude of the MMN wave of
this sample have been reported in a previous paper [Bra-
mon et al., 2004]: Patients with psychosis had significantly
reduced MMN amplitude compared to both relatives and
controls. The relatives did not differ significantly in MMN
amplitude compared to the controls.

Dynamic Causal Modeling Results

The Bayesian model selection results are presented in Figure
4A, showing model evidences relative to the null model (with

Figure 1.

Image showing (A) the prior source locations (overlaid on an

MRI image of a standard brain) and (B) the structural model

used for dynamic causal modeling. The sources are linked by

extrinsic (forward, backward, and lateral) connections, and each

source has intrinsic inhibitory self-connections. A1 5 primary

auditory cortex; STG 5 superior temporal gyrus; IFG 5 inferior

frontal gyrus; l 5 left hemisphere; r 5 right hemisphere. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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no intrinsic modulations). The model that best explained the
differences between groups allowed modulations of intrinsic
connectivity in bilateral A1 and rIFG. The difference in model
evidence between the winning model and the runner-up was
80. This is significant seeing as a difference of 3 (corresponding
to an odds ratio of 20:1) is considered strong evidence in
favour of the winning model [Friston and Penny, 2011].

Figure 4B shows the posterior estimates of the modula-
tions of intrinsic connectivity in the winning model for
each group (controls, relatives, and patients) and condition
(standard and deviant trials). Note that because the intrin-
sic self-connectivity is inhibitory, increased values corre-
spond to reduced neural excitability, and vice versa.
Posterior estimates of the modulations are also shown in
Figure 5, for each source and experimental effect.

The largest effects are observed at the high-level frontal
source (rIFG), where there are striking group differences.
First, both relatives and patients show reduced self-
inhibition (increased excitability) across task conditions com-
pared to controls (i.e., a main effect of having a genetic risk
for psychosis). Second, patients with psychosis show an
additional reduction in self-inhibition compared to relatives,
across task conditions (i.e., a main effect of diagnosis).

Third, there is a clear interaction between having a
genetic risk for psychosis and task condition in rIFG; both

relatives and patients show the opposite pattern of
responses to the task compared to controls. While controls
demonstrate reduced inhibition (i.e., increased excitability)

Figure 2.

Dynamic causal modeling model space; identifying group differences in intrinsic (self-inhibitory) con-

nectivity. Red arrows indicate a modulated connection. A1 5 primary auditory cortex; STG 5 supe-

rior temporal gyrus; IFG 5 inferior frontal gyrus; l 5 left hemisphere; r 5 right hemisphere. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 3.

EEG activity to standard and deviant tones for each group (grand

averages across subjects), at channel FZ. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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in response to deviants compared to standard tones, the
two groups with a genetic risk showed decreased excitabil-
ity in response to changes in stimulus regularities.

At the sensory level (left and right primary auditory cor-
tices, A1), all three groups show similar responses to the
MMN task conditions: Increased excitability in response to
deviant compared to standard tones.

DISCUSSION

The aim of this study was to investigate whether, com-
pared to controls, patients with psychosis and/or their

unaffected relatives show altered cortical gain control
(intrinsic connectivity) within cortical sources using the
mismatch negativity (MMN) paradigm. We used DCM,
where intrinsic connectivity is a parameterisation of the (to
some extent NMDA-R mediated) excitability of superficial
pyramidal cells, which is thought to be abnormal in psy-
chosis [Stephan et al., 2006].

Our main findings were that; (i) the largest differences
in cortical responses between controls and the other
groups were expressed at the top of the cortical hierarchy
in the right inferior frontal gyrus (rIFG), rather than in pri-
mary sensory areas (A1); (ii) in rIFG, both groups with an
increased genetic risk for psychosis (patients and their

Figure 4.

(A) Bayesian model selection results investigating intrinsic (inhibi-

tory) modulations at different levels of the hierarchy. Log model

evidences relative to the null model are shown. The winning

model has modulations at A1 and IFG, and the difference in log

evidence between this and the runner-up is 80. (B) Changes in

intrinsic connectivity strengths under the winning model, at each

source, for patients, relatives and controls, and for standard

(std.) and deviant (dev.) trials. A1 5 primary auditory cortex;

STG 5 superior temporal gyrus; IFG 5 inferior frontal gyrus;

l 5 left hemisphere; r 5 right hemisphere. [Color figure can be

viewed in the online issue, which is available at wileyonlineli-

brary.com.]

r Ranlund et al. r

r 358 r

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


relatives) demonstrated an increase in cortical excitability
across task conditions (with an additional increase in
patients compared to relatives); and (iii) the two groups
with a genetic risk for psychosis also showed a reversal of
the normal pattern of increased excitability to deviant
tones in rIFG.

Our finding of reduced self-inhibition within rIFG across
task conditions in those with a genetic risk for psychosis—
as well as an additional reduction in patients with psycho-
sis compared to relatives—is in line with theories of
NMDA-R hypofunction in psychosis [Abi-Saab et al., 1998;
Corlett et al., 2011; Goff and Coyle, 2001; Olney et al.,
1999; Stephan et al., 2006]. Specifically, NMDA-R hypo-
function on parvalbumin positive inhibitory interneurons
results in decreased inhibitory g-aminobutyric acid
(GABA) input to (and therefore disinhibition of) pyramidal
cells and hence a loss of balance between excitation and
inhibition in prefrontal cortex [Lewis et al., 2012; Murray
et al., 2014; Pinotsis et al., 2014]. These abnormalities may
be linked to neurophysiological disorganisation [D�ıez
et al., 2014], cognitive dysfunction and the development of
symptoms of psychosis [Ahn et al., 2011; Lewis et al.,
2008; Spencer et al., 2004].

Crucially, patients with psychosis and relatives show
the opposite pattern of rIFG responses to deviant and
standard tones, compared to controls. Controls show
reduced self-inhibition (increased excitability) in response
to deviants, whereas both patients and relatives show a
reduction in excitability in this condition. This indicates
that those with an increased genetic risk for psychosis
(including both relatives and patients) fail to adjust or
optimise the excitability of superficial pyramidal cells in
response to changes of stimulus regularities.

In a visual target detection task, in which subjects had
to respond to target appearances that were either predict-
able or unpredictable, Fogelson et al. [2014] also investi-
gated differences in intrinsic connectivity in patients with
schizophrenia and healthy controls using EEG and DCM.

They found that changes in intrinsic self-inhibition in
response to predictable stimuli were significantly attenu-
ated in patients; this is further evidence that patients with
schizophrenia fail to adjust neuronal connectivity in
response to the context of incoming stimuli.

Our results can be interpreted in the context of predic-
tive coding theories of brain function, in which the brain
infers the causes of its sensory data using Bayesian infer-
ence by minimizing prediction errors throughout the corti-
cal hierarchy [Friston, 2008; Rao and Ballard, 1999].
Predictive coding can be implemented neurobiologically
by deep pyramidal cells sending top-down predictions
about lower level representations, and superficial pyrami-
dal cells sending bottom-up prediction errors (the differ-
ence between the actual and predicted activity) back up
the hierarchy, in order to update the higher level represen-
tations [Friston, 2008]. These neurobiological details are
important, because superficial pyramidal cells—that is,
prediction error units—make the primary contribution to
event related potentials [Garrido et al., 2009b; Lieder et al.,
2013]. Crucially, the influence of ascending prediction
errors on higher representations depends upon their preci-
sion, which is thought to be encoded by the gain or excit-
ability of superficial pyramidal cells. In this setting,
precision (inverse variance) corresponds to the confidence
or reliability attributed to prediction errors at each level of
the cortical hierarchy [Adams et al., 2013; Feldman and
Friston, 2010].

In our MMN data, controls show increased synaptic
gain (diminished intrinsic self-inhibition) in all cortical
sources in the deviant condition—that is, their prediction
error responses to deviant tones are processed as being
unduly precise and are therefore less easily suppressed.
This is also the case for all individuals with a genetic risk
for psychosis at the primary sensory level, but in rIFG the
opposite pattern is seen. This indicates an abnormal influ-
ence of context on prediction error responses in this group,
as has been seen not only in perceptual paradigms like the
MMN, but also in reward learning and causal inference
paradigms [Corlett et al., 2007; Murray et al., 2008].

In computational modeling work, we have shown that a
loss of precision at higher levels of a hierarchical model
can explain a loss of influence of context [Adams et al.,
2013]. Predictive coding simulations show that aberrant
precision or gain control can reproduce classic findings in
the schizophrenia literature, including a reduced MMN
response [Adams et al., 2013]. NMDA-R hypofunction
could confound precision or gain control in two ways,
either by directly lowering synaptic gain in superficial
pyramidal cell populations, or by reducing the excitability
of GABAergic interneurons, thereby impairing sustained
oscillatory firing of pyramidal cells and reducing their
influence on lower areas [Adams et al., 2013]. Our current
results lend more support to the latter mechanism, and it
would be interesting to test this hypothesis directly by
using DCM to assess the relative model evidences for

Figure 5.

Posterior estimates of the (log scaling of) intrinsic connection

parameters and their 95% confidence intervals, for each source

and experimental effects investigated. A1 5 primary auditory

cortex; IFG 5 inferior frontal gyrus.
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psychosis altering the excitability of superficial pyramidal
cell versus inhibitory interneuron populations.

Importantly, our results suggest that both patients and
their first degree relatives have similar alterations in the
excitability of superficial pyramidal cell populations, com-
pared to controls. This indicates that these changes are
linked to genetic risk factors, and are not merely a conse-
quence of the illness state or antipsychotic medication.
This alteration in the gain of superficial pyramidal cells
could therefore be a potential endophenotype for psycho-
sis [Gottesman and Gould, 2003]. The use of endopheno-
types might help clarify the functional effects of genetic
risk variants identified [Bramon et al., 2014; Hall and
Smoller, 2010], and further research could investigate
whether deviant-related changes in excitability can predict
genotype; for example, looking at candidate genes linked
to NMDA-R function. Other studies investigating effective
connectivity in psychosis have also observed abnormalities
in relatives of patients, including children of probands
[Diwadkar et al., 2012, 2014; Winterer et al., 2003], and a
previous study by Dima et al [2013] observed associations
between fMRI derived measures of effective connectivity
and risk genes linked to GABAergic interneuron function
in patients with bipolar disorder.

Our results also suggest that patients show a further
increase in excitability in rIFG across task conditions com-
pared to unaffected relatives. This may indicate that—at least
in prefrontal cortex—there are quantitative, rather than quali-
tative, differences between those with and without a diagnosis
of a psychotic illness but at elevated genetic risk. Alterna-
tively, this difference could be due to the effects of antipsy-
chotic medication, which is known to influence brain function
[e.g., Joutsiniemi et al., 2001; Knott et al., 2001]. The exact
effects of psychotropic drugs on effective connectivity remain
unclear; however, a study investigating effective connectivity
in schizophrenia found abnormalities in an unmedicated at-
risk group but not in first episode patients (prescribed anti-
psychotics), suggesting that medication might potentially nor-
malise abnormalities [Schmidt et al., 2013]. Future
longitudinal studies and research in unmedicated patient
populations are needed to address this important issue.

A limitation of the current study is that our groups dif-
fered slightly in age and gender distributions. There is evi-
dence for both age [Cooper et al., 2006; Cooray et al., 2014;
Kiang et al., 2009; N€a€at€anen et al., 2012] and gender
[Brossi et al., 2007; Matsubayashi et al., 2008] effects on
MMN responses, although a DCM study did not find sig-
nificant effects of aging on intrinsic connectivity [Moran
et al., 2014]. Importantly, however, we found the most sig-
nificant effects when comparing those with a genetic risk
for psychosis (i.e. both relatives and patients) with con-
trols, and since these two groups did not differ in age or
gender distributions, our main findings are unlikely to be
influenced by such confounds.

Another potential limitation is the experimental proce-
dure used to elicit the MMN response. Because the MMN

is a preattentive response not depending on the person
paying attention to the sounds, it has been suggested that
using a distractor task (such as watching a silent video or
reading a book) can be advantageous [Duncan et al., 2009;
Lang et al., 1995]. In this study, no distractor task was
administered, and participants were instructed to disre-
gard the sounds presented to them. We can therefore not
control whether participants were paying attention to the
task or not. Nevertheless, this distractor-free design has
been used previously and has been shown to generate
clear MMN responses [Bramon et al., 2004; Haenschel
et al., 2000; Javitt et al., 1998; Juckel et al., 2007]. Further-
more, attention has been found to modulate the MMN
response suggesting this ERP might not actually be inde-
pendent of attention [Auksztulewicz and Friston, 2015;
Sussman et al., 2013; Woldorff et al., 1991].

Our Bayesian model selection result indicates that both
bilateral A1 and rIFG are important in explaining group
differences in modulations of intrinsic connectivity in
response to deviant tones. However, modulations of self-
inhibition in STG do not seem to be so important (and
were not included in the winning model). Importantly,
this does not mean that the STG makes no contribution to
group differences in responses, but merely suggests that
including modulations in this region did not increase the
evidence for the model sufficiently to justify the increased
complexity. Our results furthermore suggest that group
differences are most pronounced in rIFG. This is in line
with past research suggesting that psychosis is associated
with abnormalities at high hierarchical levels, including
the prefrontal cortex [reviewed in Adams et al., 2013; Har-
rison et al., 2011].

We chose to calculate condition-specific grand average
responses for each group, an approach that has been used
previously [e.g., Fogelson et al., 2014]. While this produces
cleaner data features by reducing noise and enhancing fea-
tures that are conserved over subjects, it eliminates poten-
tially interesting individual differences. Future work could
obtain subject-specific DCM estimates, allowing the inves-
tigation of individual differences within groups, and corre-
lations between effective connectivity parameters and
various clinical and cognitive measures, as well as with
genotypes.

CONCLUSION

In summary, our main finding is that patients with psy-
chosis as well as their unaffected first-degree relatives show
increased excitability in rIFG across task conditions, relative
to controls, and crucially, a loss (reversal) of the normally
increased excitability in deviant trials. Hence, our results
suggest that psychosis is associated with abnormalities of
the sensitivity (gain) control of superficial pyramidal cell
populations, which might be influenced by NMDA-R hypo-
function in prefrontal cortex. These results are in line with
theories about the neuropathology and pathophysiology of
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psychosis. Importantly, abnormalities in unaffected rela-
tives of patients suggest that these alterations are linked to
the aetiology of psychosis and are potential endopheno-
types (markers of genetic risk) for the illness.
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