Materials Science and Engineering C 60 (2016) 285-292

Contents lists available at ScienceDirect

MATERIALS
SCIENCE &
ENGINEERING

Materials Science and Engineering C S Y

journal homepage: www.elsevier.com/locate/msec

Development of dental composites with reactive fillers that promote
precipitation of antibacterial-hydroxyapatite layers

@ CrossMark

Anas Aljabo ¢, Ensanya A. Abou Neel *><, Jonathan C. Knowles ¢, Anne M. Young **

2 UCL Eastman Dental Institute, Biomaterials & Tissue Engineering Division, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
b Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
¢ Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt

ARTICLE INFO ABSTRACT
Article history: The study aim was to develop light-curable, high strength dental composites that would release calcium phos-
Received 26 February 2015 phate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simu-

Received in revised form 23 October 2015
Accepted 16 November 2015
Available online 18 November 2015

lated body fluid (SBF). 80 wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing
10 wt.% CHX and 0, 10, 20 or 40 wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite
layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities
were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to de-
tect by XRD until 4 weeks. XRD peak width and SEM images suggested this was due to the very small size
(~10 nm) of the hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt.% of the sample CaP total
mass irrespective of CaP wt.% and up to 7 wt.% of the specimen. Early diffusion controlled CHX release, assessed
by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1 week, CHX
continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At
12 weeks CHX formed 5 to 15% of the HA layer with 10 to 40 wt.% CaP respectively. Despite linear decline of
strength and modulus in 4 weeks from 160 to 101 MPa and 4 to 2.4 GPa, respectively, upon raising CaP content,
all values were still within the range expected for commercial composites. The high strength, hydroxyapatite pre-
cipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid
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demineralised dentine repair and prevent subsurface carious disease respectively.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Dental composites have been used for over 50 years as restorative
materials [1]. Compared to dental amalgam, they trigger less safety con-
cerns and provide improved aesthetics. Over the years there has been a
significant increase in mechanical properties of commercial resin-based
filling composites enabling a reduction in failure due to fracture and
wear. Polymerisation shrinkage and lack of anti-bacterial activity, how-
ever, are continuing issues as they enable micro-gap formation between
the tooth and restoration followed by bacterial microleakage. These bac-
teria can cause continuing disease and de-mineralisation of dentine un-
derneath a restoration. Subsequent action by matrix metalloproteinases
(MMPs) then degrades the demineralised dentinal collagen further
widening the micro-gap. Recurrent caries is now the major reason for
the shorter median survival lifespan (5-6 year) of composites in com-
parison with more antibacterial dental amalgam (13 years) [1-4]. Den-
tal composites are typically composed of four major components: an
organic polymer matrix (produced from dimethacrylate monomers
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such as UDMA, BisGMA, TEGDMA), inorganic fillers (e.g. glass, ceramic),
coupling agents and the initiator-accelerator system. Much work has
focussed upon varying these components to reduce shrinkage and im-
prove mechanical properties [5-8]. To prevent bacterial microleakage,
however, new components are additionally required to promote re-
mineralisation (e.g. through calcium and phosphate release) and anti-
bacterial action.

In the past 20 years a wide range of calcium phosphates (CaP) such
as hydroxyapatite (HA) [9-11], amorphous calcium phosphates (ACP)
[12-15], tetracalcium phosphate (TTCP) [16] and mono- and dicalcium
phosphates (MCPM and DCPA) [17-19] have been studied as fillers in
an attempt to produce calcium and phosphate — releasing dental com-
posites. Both nano-sized and micro-sized HA particles have been inves-
tigated with the latter tending to give higher mechanical properties [9,
17]. Acidic coupling agent optimisation could improve flexural strength
but a maximum of only ~70 MPa was achieved [9,10]. ACP filled com-
posites were shown to release calcium and phosphate at levels depen-
dent upon the amount added to the formulations [20]. The biaxial
flexural strength could be increased to ~75 MPa through hybridisation
of the ACP with other elements (e.g. silicon and zirconium) but was
still generally half that for base resin [13-15,21]. Initial low strengths
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could be attributed in part to poor dispersion and insufficient interac-
tion between ACP and resin but might also be caused by the generation
of pores upon component release and increased water sorption after
water storage. The strength of TTCP filled composites was increased
from ~50 to 100 MPa upon replacing 50% of the TTCP by silicon nitride
whiskers. Calcium and phosphate release, however, was decreased by
an order of magnitude [16]. Similar effects were observed with
MCPM/whisker composites [17]. Replacing MCPM with less soluble
DCPA increased strength but drastically reduced calcium phosphate re-
lease [17,20]. Furthermore, the addition of whiskers compromised opti-
cal properties preventing light cure feasibility.

More recently, reactive acidic and basic mono- and tricalcium
phosphate fillers (MCPM/B-TCP) have been added together in dental
composites [22]. The 3-TCP enabled more control over the MCPM disso-
lution and composite water sorption. Highly soluble MCPM on the sur-
face of the material dissolved but in the bulk it reacted with the 3-TCP to
form less soluble, water-binding brushite (dicalcium phosphate
dihydrate) crystals. The strengths of these composites were subse-
quently improved through partial replacement of the reactive fillers
with reinforcing fillers but these again compromised optical properties
[23].

In the above studies, remineralisation potential was generally
assessed through calcium and phosphate release determination [24].
Predicting the release levels required to promote remineralisation,
however, is complex and dependent upon many other parameters. A
dental restoration that promotes HA deposition could in addition to
providing remineralisation of adjacent collagen, potentially also enable
closure of gaps between the material and tooth and reduce bond deteri-
oration over time. In this study, therefore, remineralisation potential
was evaluated through calcium and phosphate release and their precip-
itation as HA layer on the surface. Some dental Portland cements, adhe-
sives and ceramics have shown hydroxyapatite precipitates on their
surfaces in simulated body fluids (SBF) [25-28]. In one study it was
shown they could also re-mineralise adjacent human dentin [28].

Factors increasing rates of HA precipitation on the surface of a mate-
rial include raised SBF supersaturation, pH and temperature. Material
surface chemistry has also been shown to be important (e.g. by provid-
ing nucleation sites) [29-32]. In these studies, SEM, EDX, Raman, FTIR
and XRD have all been employed to assess the hydroxyapatite precipi-
tates. These studies, however, were largely only semi-quantitative. In
addition material mass changes have been monitored to provide quan-
titative results. Such gravimetric methods are complicated in compos-
ites studies, however, because of large composite changes in mass
upon water sorption and component release.

To provide anti-bacterial action, various agents including fluoride
[20,33] and chlorhexidine (CHX) [15,34] have been added to compos-
ites. There is conflicting evidence over whether the addition of fluoride
in commercial composites has any clinical benefit [24,35]. CHX was
added into various experimental dental composites due its low mini-
mum inhibitory concentrations against oral bacteria and ability to in-
hibit MMPs [34,36]. Composites with early release of chlorhexidine
might reduce the need for extensive caries affected tissue removal as
advocated in modern tooth restoration procedures [37]. The CHX, how-
ever, is not readily released from the bulk of conventional composites.
This problem has been solved through combining CHX with reactive
MCPM/B-TCP [23].

The aim of this study was therefore to develop methods that provide
a quantitative assessment of any hydroxyapatite layer on the surfaces of
systematically varying new MCPM, B-TCP and CHX-containing light
curable composites. In addition, this study will assess if these new ma-
terials also have high CHX release and enhanced mechanical strengths.
The precipitated HA-CHX layer was thoroughly investigated to provide
a deep understanding to factors that determines precipitation kinetics.
This study not only aims to form interactive composites that promote
precipitation of HA-CHX layer, but also provides a detailed explanation
to the nature of the precipitated layer and how it was formed.

Furthermore, it is known that hydroxyapatite can promote the precipi-
tation of chlorhexidine from solution [38]. This study will therefore ad-
dress, how the formation of the HA layer affects the release of CHX and
whether any of this antibacterial can be entrapped with the HA to po-
tentially enable a long-term antibacterial restoration/dentine interface.

2. Materials and methods
2.1. Composite paste preparation

In this study, urethane dimethacrylate (UDMA, Esstech) was
used as the base monomer. Triethylene glycol dimethacrylate
(TEGDMA, Esstech) and hydroxyethyl methacrylate (HEMA,
Esstech) were added as diluents and camphorquinone (CQ, Sigma-
Aldrich)/dimethylparatoluidine (DMPT, Sigma-Aldrich) as initiator/
activator respectively. UDMA:TEGDMA: HEMA:CQ: DMPT was
68:25:5:1:1 by weight.

The composite filler consisted of radiopaque barium-alumino-sili-
cate glass with an average particle diameter of 7 um (1 to 20 um diam-
eter range by SEM) (DMG, Hamburg, Germany). Its refractive index
(0.52) matched well that of the monomer phase (0.48) to enable good
depth of cure. Chlorhexidine diacetate salt hydrate (CHX, Sigma-Al-
drich) and borosilicate glass fibres (15 pm diameter x 300 um length)
(MO-SCI Healthcare LL.C. Rolla, USA) levels were fixed at 20 and
10 wt.% of the total filler respectively. Reactive calcium phosphate
(CaP, equal masses of B-tricalcium phosphate (R-TCP, Plasma Biotal)
and monocalcium phosphate monohydrate (MCPM, Himed)) levels
were 0, 10, 20 or 40 weight % (wt.%) of the filler. The base powder
phase therefore contributed 30, 50, 60 or 70 wt.% of the filler. Powder
and liquid phases were combined at a ratio of 4:1.

2.2. Composite disc preparation

To prepare disc-shaped specimens, pastes were placed in metal rings
(1 mm deep and 10 mm internal diameter), covered top and bottom
with acetate sheet and light cured with blue light (Demi Plus, Kerr)
with 1100 mW/cm? output for 40 s top and bottom. This long cure
time ensures maximum polymerisation of the whole disc and greater
than 70% conversion irrespective of formulation as assessed by FTIR.
The resultant composite discs were removed from the moulds and
their edges polished with 1000 grit paper to remove any loose chips.
They were subsequently stored dry in sterilin tubes overnight before
testing or immersion either in water or a simulated body fluid (SBF)
(asin ISO 23317:2007).

2.3. Characterisation of hydroxyapatite deposition

The morphology, elemental composition, chemical changes, crystal-
linity and mass of any deposited layer on the surface of composites were
assessed after immersion in 10 ml of water or SBF for periods ranging
from 1 day up to 12 weeks using the techniques below. During the stor-
age periods the solutions were left unchanged to mimic accumulation of
components as might occur underneath a sealed tooth restoration.

2.3.1. Scanning electron microscopy and energy dispersive X-ray analysis

To assess the morphology and elemental composition of the precip-
itated layer, scanning electron microscopy (SEM) with energy disper-
sive X-ray (EDX) analysis was employed. Specimens stored for 1 day
or 1, 2, 3, 4 and 8 weeks were mounted onto stubs with fast setting
epoxy adhesive. The mounted specimens were then sputter coated
using gold and palladium alloy. All SEM images were captured at 5 kV
accelerating voltage using a Scanning electron microscope (Phillip XL-
30, Eindhoven, The Netherlands) and INCA software.

EDX analysis was performed using an Inca X-sight 6650 detector
(Oxford Instrument, UK) at 20 kV accelerating voltage to quantify the
average and homogeneity of calcium versus silicon content of the
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surfaces. The surface of the composite was divided into 9 squares each
3 x 3 mm? ignoring the 1 mm edge area which could be contaminated
with the epoxy resin. Acquisition time to map each square was 200 s
with a Count Rate Optimisation process time of 6. Ca/P ratio was deter-
mined to first confirm HA formation. Subsequently, the ratio of Ca from
HA to Si in the glass filler, was used to investigate relative changes in the
thickness/homogeneity of the HA layer with time and composite
composition.

2.3.2. Raman

Raman spectroscopy was utilised to further quantify any surface
changes and hydroxyapatite formation after 1 day, or 1, 2 and 4
weeks. All spectra were obtained using a Lab Ram spectrometer (Horiba,
Jobin Yvom, France). The samples were excited at 633 nm by a He-Ne
laser through a microscope objective (50 x). Raman spectra were ob-
tained in the range of 850-1700 cm™ ! with a resolution 2 cm™ ' using
a confocal hole of 150 um. For each specimen, spectra were obtained
by mapping areas of 40 x 40 um. For each area (n = 3), several hun-
dreds of spectra were generated and normalised using data between
1200 and 1700 cm™ ! prior to obtaining average spectra. To aid peak as-
signment, spectra were generated for pure 3-TCP, MCPM, CHX and glass
as well as the polymerised monomer.

2.3.3. X-ray diffraction

Surface X-ray diffraction (XRD) (thin film) spectra of samples stored
for 1, 2, 3 or 4 weeks in water or SBF were obtained using a Bruker-D8
Advance Diffractometer (Briiker, UK) using Ni filtered Cu Ko radiation.
Data were collected using a Scintillation counter with a step size of
0.02° over an angular range of 20-55° 26 and a count time of 10 s.
The width of the XRD peak was used to estimate the size of the HA
crystals [39] using the Scherrer Eq. (1):

.
" Bcoso
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7 is the mean size of HA crystals, K is dimensionless shape factor
~0.9, A is the X-ray wavelength = 0.15 nm, (3 is the line broadening at
half the maximum intensity and & is the Bragg angle.

2.3.4. Mass of HA

To determine the mass of HA on the surface of specimens stored for
12 weeks in SBF, the HA layer was very carefully scraped off using a
metal blade and assessed gravimetrically. Sample repetition for each
formulation was 3.

2.4. Chlorhexidine release and entrapment in HA layer

To quantify CHX release, discs of each composition (n = 3) were
weighed and immersed in 10 ml of distilled water or SBF (at 37 °C)
within sterile tubes. At various time points up to 12 weeks (2, 4, 6, 24,
168, 336, 720, 1440 and 2160 h), the specimens were removed and re-
placed in fresh distilled water or SBF. UV spectra of storage solutions
were obtained between 190 and 300 nm using a UV 500 spectrometer
(Thermo Spectronic, UK). These were compared with calibration graphs
created in the same range for solutions of known concentration of CHX
to ensure that the CHX was the only component causing absorbance.
The CHX peak at 255 nm was then used to calculate the amount of
CHX release (R; in grammes) between different time periods from
each specimen using Eq. (2):

A
Ri=—V 2
=g (2)

Where A is the absorbance at 255 nm, g is the gradient of a calibra-
tion curve of absorbance vs CHX concentration (obtained using known
solutions) and V is the storage solution volume. The percentage

cumulative amount of drug release R. at time t was then given by
Eq. (3):

100{251{4

Re(%) = W
C

3)

W, is the weight of CHX incorporated in a given specimen in
grammes.

To assess the level of CHX deposited/trapped in the surface hydroxy-
apatite layers after 12 weeks in SBF, the HA from the test in Section 2.3.4
was dissolved in 10 ml of deionised water. This was achieved by mixing
for 24 h using a small stirrer. The UV spectra of the resultant solutions
were then obtained.

2.5. Biaxial flexural strength and modulus

To assess strength and modulus, discs of each formulation (n = 6)
were prepared as above and stored for 1 month in SBF. Biaxial flexural
strength, S, and modulus, E, were determined using a “ball on ring” jig
and a universal testing machine (Instron 4502, UK) with Egs. (4) and
(5)

s— % [(1+w)(0.485In (3 +052) +0.48] 4)
E= 0.502% (;%) (5)

(P,load (N); h, sample thickness (mm); L, Poisons ratio taken as 0.3;
dP/dw, the gradient of load versus central deflection; a, the support ra-
dius (mm)).

2.6. Linear regression analysis and 95% confidence intervals

The function Linest in Microsoft excel was used to fit linear equa-
tions to average properties versus variables. This function provided
standard errors on gradients and intercepts and R? values. 95% confi-
dence intervals were estimated assuming they were 2 times standard
errors. These are provided as error bars on graphs (unless mentioned
otherwise as in Fig. 2) and in parentheses with equations. Linest was
first applied assuming a non-zero intercept. If the intercept was smaller
than its estimated 95% confidence interval, the analysis was repeated
assuming a zero intercept.

3. Results
3.1. Characterisation of hydroxyapatite formation

3.1.1. Scanning electron microscopy

SEM images of any composites stored dry or in water showed only
scratches and small pores (e.g. Fig. 1a). Any samples containing CaP
and stored in SBF for one day or more, however, were covered with
HA spheres (Fig. 1b-d). From SEM it was noticeable that the percentage
of the surface covered by HA and the average size of the HA spheres in-
creased with raised CaP content in the samples or time in SBF. At early
times the layers were just 1 sphere thick. At later times, however, the
HA precipitate consisted of larger, aggregating and/or multiple layers
of spheres. After 4, 2 and 1 week, in SBF, samples containing 10, 20
and 40% CaP were approximately 90% covered with HA respectively.
At high magnification the spheres had a sponge like appearance with
pores of approximately 100 nm diameter. The pore walls were approx-
imately 10 nm thick (Fig. 1e and f). Upon very close inspection the walls
appeared to consist of balls of approximately 10 nm diameter.
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Fig. 1. SEM images for composite (a) 0% CaP, (b) 10% CaP, (c, e and f) 20% CaP and (d) 40% CaP immersed in SBF for 1 week.

3.1.2. EDX

From EDX the ratio of Ca/P in the precipitate was 1.67 when focussed
solely upon the precipitate as expected for HA. When examining the
composite surface it could be 0, 0.5 or 1.5 dependent upon whether
glass/polymer, MCPM or TCP was being observed respectively. Full sur-
face mapping of the composite surfaces showed that the ratio of Ca (pri-
marily from HA) to Si (in the composite glass) increased linearly with
storage time in SBF between 1 and 30 days (Fig. 2). The gradients
were also proportional to the calcium phosphate content (see Table 1).

The error bars in Fig. 2 provide an indication of the level of HA vari-
ation in thickness across the sample. When the stdev error bars at later
times do not overlap significantly with the initial error bars the surfaces
are fully covered with HA layer. This occurs at 1, 3 and >4 weeks with
40, 20 and 10% CaP respectively.

3.1.3. Raman

3.1.3.1. Monitoring HA formation. Example average Raman spectra before
and after immersion in SBF are illustrated in Fig. 3a. For the dry surface,
various sharp CHX peaks are observed including one at 1600 cm ™. Ad-
ditionally a glass peak at 1400 cm™ ! and polymer peaks at 1445, 1640
and 1718 cm™ ! were evident. Phosphate peaks (P-O stretch) at 901,
912 and 1108 cm™ ! due to MCPM, and 943 and 968 cm™ ' for 3-TCP
were also present. After 1 week immersion in SBF or water, the peaks at-
tributed to MCPM disappeared. Those due to B-TCP remained after
water immersion but were masked by the very intense HA peak at
960 cm~ ! for composites immersed in SBF.

3.1.3.2. Monitoring HA growth. Normalised average Raman spectra of
composite samples indicated that the intensity of the HA peaks in-
creased linearly with both CaP content and time of immersion in SBF
(Fig. 3b and c). The gradients of HA normalised intensity versus time
was also proportional to CaP content (see linear regression parameters
in Table 1).

m10% CaP
A20% CaP
©40% CaP
10 -
2
©
14
@
©
O 5 |
0 - .
0 10 20 30

Time (Days)

Fig. 2. The average Ca: Si ratio on the surfaces of different formulations (10, 20 and 40%
CaP), after 1, 7, 14, 21 and 30 days in SBF. Error bars (stdev with n = 9 areas) indicate
the layer homogeneity on a single specimen. Each point is a different specimen.
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Table 1

289

Gradients of Ca/Si ratio and normalised 980 cm ™~ peak versus time from EDX and Raman respectively, mass of surface hydroxyapatite at 12 weeks, gradient of CHX release versus the
square root of time in water and SBF, CHX entrapment in the HA layer at 12 weeks and 4 week flexural strength and modulus results for formulations with 0, 10, 20 and 40% CaP. Gradients

and intercepts of the data versus CaP wt.% are also provided with R? values at the bottom of each column. Errors represent 95% CI.

CaP Ca/Sivst Raman HA peak HA at 12 weeks CHX release vs CHX release vs sqrt CHX in HA layer  Flexural strength  Flexural modulus
(wt.% of filler) (mol/mol day~') intensity day~! (% of specimen) sqrtt (%/h®°) water t (%/h%°) SBF (% of total CHX) ~ (MPa) (GPa)
0 0.00 4 0.01 0.0 + 0.0 0.0 + 0.0 0.00 + 0.01 0.00 + 0.01 0.00 + 0.01 160 £ 8 4.0+ 0.2
10 0.05 + 0.00 1543 1.7+ 03 0.10 + 0.01 0.10 + 0.02 1.0+ 0.1 145 £5 36+0.1
20 0.24 4+ 0.03 36+9 3.0+0.1 0.28 4+ 0.02 0.18 + 0.01 494+ 0.7 129+ 4 32402
40 0.41 + 0.03 66 +£9 71+ 1.7 0.61 + 0.04 027 + 04 136 +£13 101 £8 24+03
Gradient 0.010 + 0.002 1.7 +£ 0.1 0.17 + 0.02 0.015 + 0.001 0.007 + 0.001 0.42 + 0.03 —1.47 £ 0.03 —0.04 4+ 0.001
Intercept 0 0 0 0 0 0 160 £+ 2 4 +0.01
R? 0.98 0.99 0.99 0.99 0.98 0.99 0.99 1.00
3.1.4. XRD plateau after this time (Fig. 5b). The early gradients are provided in

XRD patterns of the 0 CaP sample and all other formulations
immersed in water up to 1 month showed no HA peaks. Formula-
tions 10, 20 and 40 CaP stored in SBF, however, showed low-
crystallinity peaks appearing at about 26° and 32° 206 (Fig. 4).
These were assigned as apatite on the basis of JCPDS Card 09-0432.
The size of the crystals was estimated from the Scherrer equation
to be ~10 nm.

3.1.5. HA layer mass

The average mass of the discs was 200 mg. The total mass of HA
scrapped from the disc surfaces at 12 weeks was between 3 and
15 mg. This is provided in Table 1 as a percentage of the sample mass
in addition to results from linear regression. These data show that the
level of HA at this time was proportional to the calcium phosphate con-
centration in the samples.

3.2. CHX release in water vs SBF

The level of CHX release in water was proportional to the square root
of time as expected for a diffusion controlled process (Fig. 5a). In SBF,

Table 1. Linear regression shows these gradients are proportional to
the calcium phosphate contents but in addition doubled in water com-
pared to that in SBF.

The CHX trapped in the HA layer after 12 weeks in SBF was also pro-
portional to the calcium phosphate content in the samples (see Table 1).
From this data the concentration of CHX in these layers was calculated
to be 5,12 and 15 wt.% with 10, 20 and 40 wt.% CaP respectively. CHX
in HA plus that released in SBF (3.3, 8.5, 18 wt.% with 10, 20 and
40 wt.% CaP respectively) was found to be approximately 2/3rd of the
CHX released in water (4.2, 12, 27 wt.%).

3.3. Flexural strength and modulus

Biaxial flexural strength and modulus both decreased linearly with
raising CaP level after storing for 1 month in SBF (see Table 1). The for-
mulation with no CaP showed the highest flexural strength and modu-
lus (160 MPa and 4 GPa respectively). Upon CaP addition, strength and
modulus was reduced to 145 MPa and 3.6 GPa respectively for 10 CaP%
formulation. Strength and modulus both continued to decrease with
further increase in CaP, reaching 101 MPa and 2.4 GPa respectively for

the CHX release was linear versus t®° only up to 1 week and began to the 40% CaP formulation.
700 - 960 a 7 days in SBF
——7 Days in water
600 - —Dry
2
£ 500 -
£
5 400
[
K] / . y
g 300
é 200 /"/\/LA——/—/\J—/\I———/\/\_/_/\/\M/_JW
100 | 901912 943/968 s
1640
0 : ; ; .
800 1000 1200 1400 1600
Raman shift (cm-)
, o
1400 b — 1day 2500 | 440% CaP e
1200 - ——7days = 20% CaP
1000 14days || E 2000 | #10% CaP
- 30 days 2
= 800 - @ 1500
5 £
E 6004 £ 1000
400 - I 3
! = 500
200 ﬂ
0 e A =, 0 ‘ , :
800 1000 1200 1400 1600 1800 0 10 20 30
Wavenumber (cm-') Storage time (Days)

Fig. 3. Raman spectra for (a) composite with 20% CaP dry, 7 days in water and 7 days in SBF. (b) Raman spectra for composite with 20% CaP at 1, 7, 14 and 30 days of immersion in SBF.
(c) Average intensity at 960 cm ™! for 10, 20 and 40% CaP formulations plotted against time at 1, 7, 14 and 30 days (each point is for a different specimen. Error bars (n = 5) are stdev

obtained from 5 spectra on a single specimen).
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Fig. 4. XRD patterns for the 10, 20 and 40% CaP composite surfaces after storage in SBF for 1
month. Stars (*) indicate HA peaks.

4. Discussion

The above study has developed new quantitative methods of provid-
ing a detailed description of the morphology and density/thickness of
HA precipitate on the surface of light cured composites, as a function
of time in SBF. HA precipitations were shown to slow CHX release and
trap this antibacterial within the hydroxyapatite layer. Even with high
levels of reactive calcium phosphate these materials were shown to
still have high flexural strength after 4 weeks immersion in SBF.

4.1. Characterisation of hydroxyapatite formation

Utilising SBF as a storage medium for both dental [6,14,40] and other
medical devices is popular mainly due to the intensive investigation and
development carried out to optimise SBF composition in the past decade
[41], leading to the introduction of BS ISO 23317:2007 standard. Unlike
the above new work this standard method and many previous studies,
however, have limited their analysis to qualitative rather than quantita-
tive assessment of precipitation kinetics [29,31,32].

The morphology of HA crystals shown by SEM images (Fig. 1) was
comparable to that observed in previous studies using the standard
method [39,41,42]. Other studies have shown that with reactive filler
composites [22] monocalcium phosphate dissolves from the surface of
the material in the first 24 h after placement in water. Subsequently, re-
lease of calcium and phosphate is much lower but the ratio of Ca/P

A. Aljabo et al. / Materials Science and Engineering C 60 (2016) 285-292

higher [22]. This suggests that the early release is required to supersat-
urate the SBF and initiate the precipitation process. Other investigations
showed composites with TCP or MCPM formed either no precipitate or
brushite respectively on their surface in SBF (unpublished results). As
pH decreases, the solubility of hydroxyapatite increases. Below pH ~ 4
the stable form of calcium phosphate in water is brushite and therefore
precipitates instead [43]. A possible explanation of why hydroxyapatite
forms instead of brushite when MCPM, TCP and CHX are present in the
composites is therefore that the TCP and CHX may help to buffer the so-
lutions in addition to providing the extra calcium required.

Using EDX it was possible to confirm that the precipitate had the cor-
rect Ca/P ratio for hydroxyapatite. By mapping relatively large areas
(3 x 3 mm?), it was additionally possible to gain values for Ca/Si that
provided a quantitative assessment of the level of precipitation. This
ratio was low at early times because the layer was patchy and areas of
uncovered composite were being observed. Once the composite was
covered, silicon would still be detectable if the layer was thin and low
density. As the thickness and density of the layer then increased detect-
able silicon would further declined. The increase in Ca/Si ratio with time
and CaP content was therefore consistent with SEM images indicating
increasing coverage, thickness and density of hydroxyapatite.

The dissolution of surface MCPM but not TCP upon composite place-
ment in water observed above by Raman is consistent with much great-
er solubility of the former [41]. It is also in agreement with previous ion
release studies from reactive filler composite [22]. The observation of a
strong hydroxyapatite peak and its linear increase with time relative to
composite surface peaks and CaP level are entirely consistent with the
EDX data. As with EDX, the method of Raman analysis employed is ex-
pected to give a parameter that is sensitive to increasing coverage,
thickness and density of hydroxyapatite. It is not surprising therefore
that there is direct correlation between the Raman and EDX results.

The BS ISO 23317:2007 standard suggests samples should be stored
for 4 weeks before analysis by XRD. Both EDX and Raman enabled de-
tailed quantification of HA precipitation from day 1 in SBF up to 1
month. XRD was less sensitive to this process and unable to detect HA
before 1 month presumably because the crystallite size was very small
causing any peaks to be too broad to detect. Comparison of the EDX
and XRD studies suggests the latter cannot detect the HA until the Ca/Si
ratio exceeds 3. The XRD peaks at 26 and 32 26 were as expected for
precipitated HA crystals with no heat treatment [44]. The width of the
peak was consistent with a crystal size of comparable dimension to the
smallest crystal balls observed by detailed examination of the high
magnification SEM images.

As the samples above weigh 200 mg they will contain ~11 pmoles of
calcium and phosphorus per weight percent of CaP in the filler phase.
For the 10 and 40 wt.% CaP samples there is therefore ~110 and 450
pumoles of both calcium and phosphorus respectively. Formulations
with 10 or more wt.% CaP will therefore contain much higher levels of
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Fig. 5. CHX release versus the square root of time in water (a) and SBF (b) from 10, 20 and 40% CaP formulations up to 12 weeks.
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these elements than in the 10 ml of SBF (10 and 25 umoles of phospho-
rus and calcium respectively). Most of the ions forming the hydroxyap-
atite are therefore likely to be from the material rather than the SBF.
1 mg of hydroxyapatite contains 6 and 10 umoles of phosphorus and
calcium. Upon raising the CaP content from 10 to 40% the maximum
mass of hydroxyapatite that might then be expected would therefore
be from 11 to 45 mg. The mass percentages of HA observed on the ma-
terial surfaces in Table 1 suggests that in 12 weeks 22% of the calcium
phosphate from the sample had been released and reprecipitated on
the surface. From the SEM images the highly porous HA precipitate
would be expected to have a density ~% of that of the disc. The percent-
ages of HA in Table 1 would then correspond with layers of ~30, 60 and
140 um thickness at 12 weeks in agreement with SEM images.

4.2. CHX release in water vs SBF

CHX particles have been incorporated into dental restorative mate-
rials in previous studies for their antibacterial properties [34,45,46]. Re-
cent studies showed that even small CHX release (2%) significantly
reduced acidogenic bacterial counts (such as Streptococcus mutans), bio-
film viability, biofilm formation, biofilm metabolic activity and lactic
acid production [47,48]. Previous work showed restorations that release
CHX can potentially kill bacteria in surrounding media in the first 4
weeks. After that the CHX release was exhausted and biofilms were
then formed [47]. In this study, however, most of the CHX release was
restricted where it was needed; at the composite surface within the pre-
cipitating HA layer. In addition, it is anticipated that if this layer is dam-
aged and subsequently infiltrated by carious bacteria the acid they
produce will dissolve the HA and release the antibacterial. The surface
therefore responds to attack.

Early release of CHX from the experimental formulations in water
was proportional to the sqrt of time, as expected for a diffusion con-
trolled process (Fig. 5a). Increasing the CaP content substantially en-
hanced the release of CHX, which is in good agreement with a
previous study [22]. This was attributed to increased water sorption in-
duced by the CaP in the samples. This absorbed water dissolves the solid
CHX enabling its release to the surrounding environment. In SBF, CHX
released from the material was largely entrapped in the HA layer.
Total CHX diffusion from the discs may have been lower in SBF than in
water due to the higher ions concentration in SBF than water. These re-
duce the osmotic pressure difference leading to lower water sorption. A
reduction in both water sorption and chlorhexidine release into phos-
phate buffer compared with water was previously observed [22].

From the mass of HA and percentage of CHX (Table 1) in this layer as
the CHX make up 8 wt.% of the specimen, the level of CHX in the layer
will increase from 4 to 14% upon raising the CaP form 10 to 40% of the
sample. Upon subsequent attack by acid producing bacteria, this
hydroxyapatite layer is likely to re-dissolve releasing a localised highly
lethal concentration of CHX [23]. These formulations, therefore, poten-
tially could provide prolonged and localised antibacterial activity at
the interface between the restoration and the tooth structure. It has to
be mentioned, however, that the biological environment is more com-
plex and the above observations should be tested on a suitable clinical
model.

4.3. Flexural strength and modulus

Previous work with the formulations in this study has shown the dry
strength and modulus decreases by approximately 20% and 50% respec-
tively as the CaP content is raised from 0 to 40% (data submitted for pub-
lication). This is not due to changes in levels of cure but possibly caused
by a lack of coupling agent between CaP fillers and polymer matrix
phase. The above work (Table 1) shows additionally greater decline in
strength and modulus is observed with higher CaP. This may be a conse-
quence of increased water sorption. Furthermore, there may be increas-
ing porosity due to greater release of some unreacted MCPM to promote

mineralisation. Commercial composites have been shown to have initial
flexural strength between 100 to 180 MPa [49] but they can decline by
more than 100% after storing in water for 12 months [50]. In 1 month a
typical decline would be ~10-20%. The strengths observed for the ex-
perimental materials therefore at 1 month are still well within the
range obtained with commercial composites. Whilst a decrease in
strength is disadvantageous, decrease in modulus will increase resil-
ience and energy absorption [51].

5. Conclusion

In this study, various quantitative methods for monitoring HA pre-
cipitation kinetics on composite surfaces were introduced. Incorporat-
ing calcium phosphates in the form of reactive MCPM and 3-TCP into
dental composites promoted precipitation of HA in SBF. HA precipita-
tion mass was proportional to the CaP content as were parameters ob-
tained from EDAX and Raman studies of the composite surfaces. The
above study suggested that most of the ions forming the surface HA
were released from within the material. Antibacterial CHX was found
to be bound to the HA precipitate at high concentration and at
12 weeks made up to 15 wt.% of the HA layer. The strength of the mate-
rials decreased linearly upon raising CaP levels. The lowest value, how-
ever, was well above 100 MPa, giving the materials competitive
strength compared to commercial composites. In conclusion, these ma-
terials could potentially solve the problem of microleakage and recur-
rent carries as well as promote remineralisation of demineralised
dentine.
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