NeuroMolecular Medicine

Changes in dopamine signalling does not underlie aberrant hippocampal plasticity in a mouse model of Huntington's disease --Manuscript Draft--

Manuscript Number:	NEMM-D-15-00052R1		
Full Title:	Changes in dopamine signalling do not underlie aberrant hippocampal plasticity in a mouse model of Huntington's disease		
Article Type:	Negative Findings		
Keywords:	Synaptic Plasticity, LTD, Electrophysiology, R6/1, Neurodegeneration, Polyglutamine, Huntingtin		
Corresponding Author:	Glenn Dallerac		
	FRANCE		
Corresponding Author Secondary Information:			
Corresponding Author's Institution:			
Corresponding Author's Secondary Institution:			
First Author:	Glenn Dallerac		
First Author Secondary Information:			
Order of Authors:	Glenn Dallerac		
	Damian M Cummings, PhD		
	Mark C Hirst, PhD		
	Austen J Milnerwood, PhD		
	Kerry PSJ Murphy, PhD		
Order of Authors Secondary Information:			
Funding Information:	Open University (GB)	Kerry PSJ Murphy	
Abstract:	Altered dopamine (DA) receptor labelling has been demonstrated in presymptomatic and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in dopaminergic signalling is an early event in HD. We have previously described early alterations in synaptic transmission and plasticity in both the cortex and hippocampus of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity were associated with altered dopaminergic signalling and could be reversed by D1- or D2-like dopamine receptor activation. In light of these findings we here investigated whether defects in dopamine signalling could also contribute to the marked alteration in hippocampal synaptic function. To this end we performed dopamine receptor labelling and pharmacology in the R6/1 hippocampus and report a marked, age-dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that global perturbations to dopamine receptor expression do occur in HD transgenic mice, similarly in HD gene carriers and patients. However, the direction of change and the lack of effect of dopaminergic pharmacological agents on synaptic function demonstrates that the perturbations are heterogeneous and region-specific, a finding that may explain the mixed results of dopamine therapy in HD.		
Response to Reviewers:	Reviewer #1: In this manuscript, the authors detected expression of dopamine receptors by immunostaining in HD mice and they found the levels of D1 and D2-like receptors were increased along with age in R6/1 HD hippocampus. Further they tested the effect of D1 or D2-like receptor agonists or antagonists on LTD of R6/1 mice hippocampal slices. There is no alteration on LTD properties presented by		

manipulation of dopamine receptors. The results along with their previous finding provide systemic understanding of dopamine signaling and synaptic dysfunction in HD. Several concerns and suggestions are listed below:

1. What's the CAG repeat number in R6/1 mice? Did the authors check the repeat size occasionally since sometimes repeat size is quite not stable through generations in HD mice?

All the mice used in the study were genotyped as described in Vatsavayai et al. 2007 as part of a pedigree study (Vatsavayai et al. 2007). As shown in Figure R1, the primer set used in our genotyping enabled us to verify the repeat length of the transgene in tail samples collected from each animal prior to weaning. The PCR products representing approximately 116 repeats are in the region of 394bp (as shown in Figure R1 lane 1-4 and 6-9). For comparison, lane 5 (Figure R1) shows the PCR product of a different R6 line containing only 89 CAG repeats, here the size of the PCR product is 300bp. Stability of the repeat length across generations was maintained by breeding from male mice that had repeat length of 116.

2. Please replace the representative image of 1m, 3m HD mice in Fig 1 D1 receptor. The coronal level or presented region is not consistent with other pictures. We understand that it may seem as if the sections used in Fig1 are from different coronal planes. This is however likely due to the orientation of the images acquired, notably with regard to the dendate gyrus. We were indeed careful to pick sections from -1.8 to -2.0 mm relative to bregma. In order to avoid such ambiguity, we re-centered images to only show the CA1 region in the correct orientation both in Fig 1 and Fig 2 and updated the captions accordingly.

3. Page 9, "Dopamine receptor expression increases in R6/1 transgenic mice" need specific to hippocampus since previously the authors found decreased levels of dopamine receptors in perirhinal cortex and other regions.

We agree and thank the reviewer for this suggestion. We have now replaced the title "Dopamine receptor expression increases in R6/1 transgenic mice" by "CA1 dopamine receptor expression increases in R6/1 transgenic mice" p9, I199.

4. Did the authors run western blot for dopamine D1 or D2- like receptors to confirm their finding? Especially in 7m HD hippocampus they found significant increase of D2-like receptor by immunostaining.

Western blots are indeed used to quantify protein expression but can lack sufficient spatial and cellular resolution, the latter is better addressed using fluorescence immunohistochemistry. In our investigation we aimed at assessing dopamine receptor expression of different regions of the CA1 area of the hippocampus. Western blots performed on hippocampal extracts is not the method of choice in our study as the changes we report would most likely be masked by heterogeneity from different hippocampal regions.

5. Evidences showed increased DA in early stage and reduced DA in late-stage HD patients and animal models. Manipulation DA receptor depends on the level of DA tone. Thus except DA receptors, determine DA level in hippocampus of R6/1 mice may provide more comprehensive information.

DA levels are indeed altered in HD patients and mice, and we have actually previously found that striatal release of this important neuromodulator is increased at early disease stages whilst it is markedly decreased in a late HD mouse model (Dallérac et al. 2015). We agree that studying DA release and tone in the hippocampus is relevant in light of the results we report here and of a recent study showing that dopamine content is reduced by ~30% in symptomatic R6/2 mice (Mochel et al. 2011). We thank the reviewer for the suggestion, this will however be addressed in a future investigation as it is beyond the scope of the current negative findings manuscript. In light of this sensible comment, we have nevertheless improved the discussion of our manuscript p13 l288:

" The significance of a large increase in dopamine receptor labelling is unclear, but it might reflect an up-regulation in dopamine receptor number in response to decreased dopaminergic innervation or signalling. Such a view is supported by a recent study reporting more than 30% decrease in hippocampal dopamine content in 12 weeks old symptomatic R6/2 mice (Mochel et al. 2011)."

Dallérac, G. M., Levasseur, G., Vatsavayai, S. C., Milnerwood, A. J., Cummings, D. M., Kraev, I., et al. (2015). Dysfunctional Dopaminergic Neurones in Mouse Models of

Huntington's Disease: A Role for SK3 Channels. Neuro-degenerative diseases, 15(2), 93–108.

Mochel, F., Durant, B., Durr, A., & Schiffmann, R. (2011). Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice. PloS one, 6(3), e18336.

Vatsavayai, S. C., Dallérac, G. M., Milnerwood, A. J., Cummings, D. M., Rezaie, P., Murphy, K. P. S. J., & Hirst, M. C. (2007). Progressive CAG expansion in the brain of a novel R6 / 1-89Q mouse model of Huntington 's disease with delayed phenotypic onset. Brain Research Bulletin, 72, 98–102.

Reviewer #2: The manuscript by Dallerac et al. nicely demonstrates that in the R6/1 mouse model of Huntington's disease, aberrant LTD in the aged hippocampus is not due to alterations in dopamine detection. Specifically, the authors show that aberrant LTD is dissociated from pathologically elevated hippocampal expression of both D1 and D2 type receptors. This is important, as abnormal plasticity in the disease state is clearly linked to abnormal dopaminergic signaling in other brain regions, including the cortex. This dissociation helps shed light on one of the many potential limitations of dopamine-related therapies posited to be useful for HD. The study is from a well-established HD group, and should be of interest to researchers in the HD field. I only have a few minor comments.

1. For quantification of fluorescence: how was fluorescence intensity compared between different slices? Were wt and mutant slices processed and analyzed in parallel? Can you please clarify what is meant by "internally normalized" in the methods section?

Both transgenic and non-transgenic slices were indeed processed and analysed in parallel. Following the reviewer's advice we have now replaced the mention "internally normalized" by a more detailed description of the procedure p6 I140: "Transgenic and non-transgenic slices were processed and analysed in parallel. Image stacks (6 m) of 12 sequential scans (0.5 m) were performed and collected for each section using Leica Confocal Software (Version 2.5, Leica, Heidelberg, Germany). Fluorescence was calculated by manually selecting the 3 brightest scans from each stack and generating a composite average. Fluorescence was quantified by generating a mean fluorescence value (in arbitrary units) from three manually placed non-overlapping sampling boxes (2000 µm2) in each region of interest (ROI) through the

CA1 field of the hippocampus (capillaries were avoided). Fluorescence intensity was standardized between slices by imaging sections on the same day using the same laser and parameters; i.e. gain, offset and PMT intensity."

2. It may be useful to show where the recording electrode was for LTD experiments (fig 3), in relation to the immune data shown in figures 1-2. Perhaps a label in figure(s) 1 or 2.

This is a sensible suggestion and we have now inserted a schematic diagram showing placement of the electrodes in Figure 3. Figure caption has been amended accordingly (p21 I543).

3. Recently, evidence has been published that points to non-dopaminergic pathologies in HD that lead to impaired synaptic plasticity. For example, Surmeier's group recently showed that diminished TrkBR signaling in the striatum impairs LTP. It would be benSeficial to add references supporting the findings that non-dopaminergic impairments alter plasticity in HD models.

We agree with the reviewer and have now improved our manuscript by discussing nondopaminergic alterations in synaptic plasticity, p12 l269:

" This indicates that although dopaminergic changes play an important role in HD, the etiology of the disease is more complex and involves multiple mechanisms. Focusing on synaptic plasticity, alteration in brain derived neurotrophic factor (BDNF) availability has for example been reported as an important modifier of synaptic efficacy (Lynch et al. 2007; Simmons et al. 2009; Zuccato et al. 2003). In this regard, two recent reports further indicate that in HD mice striatum (Plotkin et al. 2014) and hippocampus (Brito

et al. 2014), signalling downstream the BDNF tyrosine-related kinase B (TrkB) receptors and and p75 neurotrophin receptors (p75NTR) would also be deficient. Other identified molecular abnormalities underlying synaptic dysfunction in HD include NMDA receptor composition with an increased NR2B function (Li et al. 2004; Milnerwood et al. 2006; Zeron et al. 2002) and cell adhesion molecules such as PSA-NCAM (van der Borght and Brundin 2007). Finally, a recent report indicates that astroglial Kir4.1 channels are deficient in HD (Tong et al. 2014); these astroglial channels are involved in the regulation of synaptic function (Dallerac et al. 2013) and are therefore also likely to contribute to abnormal neurotransmission in HD. ".

References reviewer 2

Brito, V., Giralt, A., Enriquez-Barreto, L., Puigdellívol, M., Suelves, N., Zamora-Moratalla, A., et al. (2014). Neurotrophin receptor p75(NTR) mediates Huntington's disease-associated synaptic and memory dysfunction. The Journal of clinical investigation, 124(10), 4411–28.

Dallerac, G., Chever, O., & Rouach, N. (2013). How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front Cell Neurosci, 7, 159. doi:10.3389/fncel.2013.00159

Li, L., Murphy, T. H., Hayden, M. R., & Raymond, L. A. (2004). Enhanced striatal NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J Neurophysiol, 92(5), 2738–2746.

Lynch, G., Kramar, E. A., Rex, C. S., Jia, Y., Chappas, D., Gall, C. M., & Simmons, D. A. (2007). Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease. The Journal of neuroscience: the official journal of the Society for Neuroscience, 27(16), 4424–34.

Milnerwood, A. J., Cummings, D. M., Dallerac, G. M., Brown, J. Y., Vatsavayai, S. C., Hirst, M. C., et al. (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease. Hum Mol Genet, 15(10), 1690–1703.

Plotkin, J. L., Day, M., Peterson, J. D., Xie, Z., Kress, G. J., Rafalovich, I., et al. (2014). Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease. Neuron, 83(1), 178–88.

Simmons, D. A., Rex, C. S., Palmer, L., Pandyarajan, V., Fedulov, V., Gall, C. M., & Lynch, G. (2009). Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4906–11.

Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., et al. (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. Nature neuroscience, 17(5), 694–703.

van der Borght, K., & Brundin, P. (2007). Reduced expression of PSA-NCAM in the hippocampus and piriform cortex of the R6/1 and R6/2 mouse models of Huntington's disease. Experimental neurology, 204(1), 473–8.

Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin, P., et al. (2002). Increased Sensitivity to N-Methyl-D-Aspartate in a Mouse Model of Huntington 's Disease, 33, 849–860.

Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., Conti, L., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. Nature Genetics, 35(1), 76–83.

1	Changes in dopamine signalling do not underlie aberrant
2	hippocampal plasticity in a mouse model of Huntington's
3	disease
4	Glenn M Dallérac, Damian M Cummings, Mark C Hirst,
5	Austen J Milnerwood & Kerry PSJ Murphy [†]
6	
7	Huntington's Disease Research Forum, Department of Life, Health & Chemical
8	Sciences, The Open University, Milton Keynes, MK76AA, UK.
9	
10	
11	[†] To whom correspondence should be addressed at:
12	
13	Department of Life, Health & Chemical Sciences, The Open University, Milton
14	Keynes, UK.
15	kerry.murphy@open.ac.uk
16	
17	Present address:
18	AJM: Department of Psychiatry and Brain Research Centre, University of British
19	Columbia, Vancouver, Canada.
20	DMC: University College London, Neuroscience, Physiology & Pharmacology,
21	Gower Street, London, WC1E 6BT.
22	GMD: Collège de France, CIRB, CNRS UMR 7241, INSERM U1050, F-75005,
23	Paris, France.
24	
25	
26	
27	

28 Abstract

29 Altered dopamine (DA) receptor labelling has been demonstrated in 30 presymptomatic and symptomatic Huntington's disease (HD) gene carriers, 31 indicating that alterations in dopaminergic signalling is an early event in HD. We 32 have previously described early alterations in synaptic transmission and plasticity 33 in both the cortex and hippocampus of the R6/1 mouse model of Huntington's 34 disease. Deficits in cortical synaptic plasticity were associated with altered 35 dopaminergic signalling and could be reversed by D1- or D2-like dopamine 36 receptor activation. In light of these findings we here investigated whether 37 defects in dopamine signalling could also contribute to the marked alteration in 38 hippocampal synaptic function. To this end we performed dopamine receptor 39 labelling and pharmacology in the R6/1 hippocampus and report a marked, age-40 dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 41 hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-42 like receptors did not modify the aberrant synaptic plasticity observed in R6/1 43 mice. These findings demonstrate that global perturbations to dopamine receptor 44 expression do occur in HD transgenic mice, similarly in HD gene carriers and 45 patients. However, the direction of change and the lack of effect of dopaminergic 46 pharmacological agents on synaptic function demonstrates that the perturbations 47 are heterogeneous and region-specific, a finding that may explain the mixed 48 results of dopamine therapy in HD.

- 49
- 50

51 Introduction

52 Huntington's disease (HD) is a late-onset and fatal neurological disorder 53 caused by the repetition of a CAG repeat codon in the first exon of the gene that 54 codes for the protein huntingtin. This translates into a protein with an expanded 55 polyglutamine repeat that confers a toxic gain of function, which induces 56 neurodegenerative changes and neuronal cell death. A number of studies, 57 including ours (Cummings et al. 2006; Dallérac et al. 2011; Dallérac et al. 2015; Milnerwood et al. 2006; Murphy et al. 2000), have demonstrated that neuronal 58 59 dysfunction occurs prior to neurodegeneration. In particular, the loss of 60 neuromodulatory receptors for dopamine, adenosine, and cannabinoids has 61 been described in post-mortem human tissues (Glass et al. 2000), in prodomal 62 and overt HD patients (Andrews et al. 1999; Antonini et al. 1998; Ginovart et al. 1997; Weeks 1997), as well as in several HD mouse models (André et al. 2010). 63

64 Dopaminergic signalling is involved in both cognition and the control of 65 movement (Korchounov et al. 2010; Shohamy and Adcock 2010; Smith and 66 Villalba 2008), processes that are affected in HD, though the etiology is poorly 67 understood. Many studies have demonstrated progressive loss of D1 and D2 dopamine receptor in striatal medium spiny neurones and cortical areas of 68 69 symptomatic patients as well as asymptomatic HD gene carriers (André et al. 70 2010) demonstrating that striatal and cortical changes in the dopaminergic 71 before clinical diagnosis gross system are detected and prior to 72 neuropathological changes. Such findings support the notion that the early

cognitive and emotional disturbances seen in HD gene carriers occur as a
 consequence of cellular dysfunction, rather than neuronal loss.

75 We have previously found that altered cortical plasticity in prodomal and 76 symptomatic HD mouse models is attributable to dopaminergic dysfunction in the 77 perirhinal as well as prefrontal areas, brain regions that are highly sensitive to 78 dopaminergic neuromodulation (Cummings et al. 2006; Dallérac et al. 2011). 79 Others have shown that long-term potentiation (LTP) is affected in the striatum of 80 HD mice, a form of plasticity that is also modulated by dopamine (Kung et al. 81 2007). Strikingly, the impairment of perirhinal long-term depression (LTD) in R6/1 82 mice could be reversed by the administration of a D2R agonist (Cummings et al. 2006) whilst prefrontal long-term potentiation (LTP) was fully rescued by 83 84 administration of a D1R agonist; suggesting that dopaminergic tone is altered in 85 HD (Dallérac et al. 2011). Recent findings support further the view that 86 dopaminergic modulation is abnormal in HD (Dallerac et al 2015). Dopaminergic 87 neuronal excitability was shown to be abnormally high in HD mice; importantly, 88 evoked dopamine release from dopaminergic neurones was increased in the 89 prodomal state and markedly decreased in symptomatic HD mouse models 90 (Dallérac et al. 2015).

Cognition is altered in HD patients (Harper 1996) and the hippocampus plays a central role in memory formation (Colgin et al. 2008). A number of investigations have reported that hippocampal-dependent cognitive functions are modulated by midbrain dopaminergic inputs (González-Burgos and Feria-Velasco 2008; Hansen and Manahan-Vaughan 2014; Jay 2003). We and others

96 have previously described markedly altered hippocampal synaptic plasticity in 97 several HD mouse models (Hodgson et al. 1999; Milnerwood et al. 2006; Murphy et al. 2000; Usdin et al. 1999). In R6/1 and R6/2 mice this is manifest as impaired 98 99 LTP and aberrant LTD (Milnerwood et al. 2006; Murphy et al. 2000). In light of 100 the finding that alterations in cortical synaptic plasticity are highly sensitive to 101 dopaminergic modulation in HD mice (André et al. 2010; Cepeda et al. 2014; 102 Cummings et al. 2006; Dallérac et al. 2011; Dallérac et al. 2015), we 103 hypothesized that abnormal dopaminergic signalling might also underlie the 104 changes in synaptic plasticity seen in the hippocampus of HD mice. Therefore, 105 using immunohistochemistry and electrophysiology, we have assessed the 106 expression and regulatory functions of D1 and D2 receptors in the hippocampus 107 of R6/1 mice.

108

109 Materials & Methods

110 Mice

Hemizygotic R6/1 males (Mangiarini et al. 1996), were mated with CBAxC57BL/6 females, resulting in ~50% of the offspring being hemizygotic for the R6/1 transgene. At weaning (3 weeks), all mice were given identity marks and tail-tip samples were taken for genotyping by PCR (Mangiarini et al. 1996). R6/1 and aged-matched non-transgenic littermates (WT) mice were killed by cervical dislocation and immediate decapitation in accordance with UK legislation (Animal (Scientific Procedures) Act 1986).

118 Immunohistochemistry

119 Brains were rapidly removed and 400µm coronal slices were prepared on a 120 vibrating microtome (Campden Instruments Inc. USA). Slices were fixed in 4% paraformaldehyde (PFA, Sigma-Aldrich, UK) then 2% PFA overnight and 121 122 transferred to 0.1M phosphate buffered saline (PBS pH 7.4) and stored at 4°C. 123 Slices were temporarily mounted in 5% agar and re-sectioned to 50µm on a 124 vibrating microtome (VT1000S; Leica, Milton Keynes, UK) washed in PBS, 125 blocked/permeabilized (2% Fish gelatine; 0.01% sodium azide; 0.1% TritonX-100 126 in PBS) for 2 h, and peroxidase guenched (3% H₂O₂ 30 min). Subsequently, 127 sections were incubated with the relevant primary antibody (AB1765P, rabbit 128 polyclonal anti-dopamine D1A receptor or AB5840P rabbit polyclonal anti-129 dopamine D2 receptor; 1:1600 dilution of 1 mg/ml stock, Chemicon International 130 Inc., UK) made up in 2% blocking solution for 48 h. Next, sections were rinsed 131 (PBS) prior to O/N incubation with peroxidase-conjugated anti-rabbit antibody 132 (tyramide signal amplification kit, Molecular Probes Inc., USA). Sections were 133 incubated in a 1:50 dilution of the amplification reagent and 0.0015% H_2O_2 for 5 134 h, rinsed in PBS (3x15 min), coverslipped with fluorescence mounting medium, 135 and left to dry for 48-62h. Consecutive slices were visualized on an inverted 136 confocal microscope (Leica DM IBRE scanning confocal microscope, Leica 137 Microsystems, Heidelberg, Germany) under 568 nm excitation (PMT 907) with 138 the TRIT-C channel optimized for emission at 576 nm. Image stacks (6 mm) of 139 12 sequential scans (0.5 mm) were collated for each section using Leica 140 Confocal Software (Version 2.5, Leica). Transgenic and non-transgenic slices were processed and analysed in parallel. Image stacks (6 µm) of 12 141

142 sequential scans (0.5 µm) were performed and collected for each section 143 using Leica Confocal Software (Version 2.5, Leica, Heidelberg, Germany). Fluorescence was calculated by manually selecting the 3 brightest scans 144 145 from each stack and generating a composite average. Fluorescence was 146 quantified by generating a mean fluorescence value (in arbitrary units) from 147 three manually placed non-overlapping sampling boxes (2000 µm²) in each 148 region of interest (ROI) through the CA1 field of the hippocampus 149 (capillaries were avoided). Fluorescence intensity was standardized between slices by imaging sections on the same day using the same laser 150 151 and parameters; i.e. gain, offset and PMT intensity. A minimum of three consecutive sections (3 measurements were collected per slice, and slice values 152 153 collapsed to an animal mean) was used per animal (WT, R6/1 n = 3 animals) and 154 age (1, 3 and 7 months; three animals per genotype per time point). Negative 155 control sections were included where the primary antibody was omitted. Antibody 156 specificity was further confirmed on sections of the brain from mice deficient in D2 dopamine receptors (Kelly et al. 1997) that were a gift from Professor Michael 157 158 Levine (Intellectual and Developmental Disabilities Research Center, UCLA, 159 USA). Sections prepared from D2 knock-out brains were processed for D2 160 immunoreactivity together with control and R6/1 tissue. No immunoreactivity was 161 observed in the D2 knock-out material or negative controls

162 Electrophysiology

163 Transverse hippocampal slices (400 μm) were prepared as previously 164 reported (Milnerwood et al. 2006), area CA3 was excised and slices were

165 transferred to an interface recording chamber (Scientific Systems Design Inc., 166 USA) maintained at 28°C and constantly perfused with oxygenated (95% O₂, 5% 167 CO₂) artificial cerebrospinal fluid (ACSF; containing in mM: 120 NaCl, 3 KCl, 2 168 MqSO₄, 2 CaCl₂, 1.2 NaH₂PO₄, 23 NaHCO₃, 11 glucose) and left to incubate for 169 a minimum of 1.5 h prior to experimentation. Hippocampal CA1 field potentials 170 were evoked by constant current stimuli (40 µs) applied via monopolar 171 stimulating electrodes (impedance 5 MΩ; AM Systems, USA) to CA3 Schaffer-172 collateral commissural projections. Field potentials were recorded via 173 extracellular glass microelectrodes (impedance 5-8 MΩ, filled with 1 M NaCl and 174 2% pontamine blue) placed in the stratum radiatum of CA1 using either a Neurolog AC-preamp or Axoclamp 2B amplifier (Digitimer, UK; Axon Instruments 175 176 Inc., USA, respectively). Low frequency stimulation (LFS) consisted of 900 177 shocks at 1 Hz. For the purposes of assessing the probability of the induction of 178 LTD it was defined as a stable reduction (>10%) of the fEPSP slope 1 h post-179 conditioning. The fEPSP initial linear slope set at a fixed latency (software: 180 A/Dvance 3.6) was used as an index of synaptic efficacy. Data are presented as 181 mean+SEM (n = slice/experiment) and statistical analysis performed by one-way 182 ANOVA. Stimulus intensity was set to produce a response just below the 183 threshold for population spike activity detected in the fEPSP, and evoked at 184 0.033 Hz for at least 20 min, to ensure a stable baseline prior to conditioning. All 185 drugs (purchased from Tocris Bioscience, UK and Sigma-Aldrich Company Ltd.) were diluted in ACSF and perfused into the recording chamber for a minimum of 186 187 20 minutes prior to experimentation. The D2 dopamine receptor agonist

quinpirole (10µM, Cummings et al., 2006; Dallérac et al., 2015), the D2 dopamine receptor antagonist remoxipride (10µM, Cummings et al. 2006), the D1 dopamine receptor antagonist SCH 23390 (10µM, Huang et al. 2004) and the D1 dopamine receptor partial agonist SKF 38393 (10µM, Dallérac et al. 2011) were used to investigate dopamine receptor activity.

193 Statistical analyses

194 Data for each condition were pooled and are expressed as mean<u>+</u>SEM. One -

or Two-way ANOVA were performed using Statistica 6.1 (StatSoft Inc.). Fisher

- 196 LSD test was used for post-hoc analysis.
- 197

198 **Results**

199 CA1 dopamine receptor expression increases in R6/1 transgenic mice

200 In order to investigate the potential role of altered dopaminergic signalling in the R6/1 hippocampus, immunohistochemical investigation of the distribution of both 201 202 D1 and D2 dopamine receptors was conducted. Representative confocal micrographs are shown in figures 1 & 2 for D1 and D2 receptor labelling 203 204 respectively. Regions of interest (ROIs: white matter, WM; stratum oriens, SO; 205 stratum pyramidale, SP; stratum radiatum proximal to SP, SRp; stratum radiatum 206 distal from SP, SRd; molecular layer, ML) were sampled for fluorescence 207 quantification.

Two-way ANOVA demonstrated significant effect of age and genotype upon D1 receptor labelling (p<0.00001, F_{2,226}=18.4), relative to WT. At 1 month of age there was a trend towards less D1 receptor labelling in all ROIs in R6/1 sections

(figure 1). D1 labelling was significantly lower in the SP (42.2%, p<0.03) and SRp (36.9%, p<0.04). By 3 months D1 labelling had increased relative to WT sections and significantly greater fluorescence was observed in the stratum radiatum (SRp, 62.9%, p<0.03 & SRd, 75.9%, p<0.03), suggesting that D1 receptor numbers are altered specifically in the R6/1 stratum radiatum. In the 7-month age group, D1 labelling also appeared to be increased, although this did not reach significance.

218 Significant effects of age and genotype were also observed in D2 receptor 219 labelling by ANOVA (p<0.00001, F_{2,220}=22.9). As detailed in figure 2, no 220 significant differences between R6/1 and WT sections were observed at 1 month 221 of age. At 3 months D2 labelling was significantly increased in the WM (32.9%, 222 p<0.02), SR (SRp, 49.6%, p<0.01 & SRd, 63.9%, p<0.001) and SLM (47.4%, 223 p < 0.01). There was no significant difference between the degree of labelling in 224 WT and R6/1 SP (p=0.4) or SO, although the latter approached significance 225 (p=0.06). At seven months of age there was a highly significant increase in D2 226 labelling in the WM (99.7%, p<0.001), SO (93.7%, p<0.001), SR (SRp, 83.1%, p<0.001 & SRd, 141.4%, p<0.001) and SLM (86.3%, p<0.001) relative to WT 227 228 sections. The data suggest that D2 receptor numbers are greatly altered in the 229 R6/1 CA1 field at three months and older. Taken together, these observations 230 suggest that large alterations in D1 and D2 receptor expression occur in the R6/1 231 mouse hippocampus (albeit later for D2) compared to WT littermates, and 232 furthermore that these differences occur months prior to the onset of the overt 233 motor phenotype.

234

235 Dopamine signalling does not underlie aberrant synaptic function

236 Pharmacological manipulation of D1 and D2 receptors was employed to 237 investigate whether altered dopaminergic transmission could account for the 238 aberrant LTD observed in adult R6/1 mice (Milnerwood et al. 2006), which is 239 normally down-regulated by 1 month in wild type control mice (Milner et al. 2004). 240 As shown in figure 3, neither D1 nor D2 receptor agonists nor antagonists (all 241 delivered at 10µM) altered the likelihood or magnitude of LTD induced by LFS in 242 slices prepared from R6/1 mice aged 7-8 months. Indeed, as we reported 243 previously (Milnerwood et al. 2006), in aged-matched untreated R6/1 slices, LFS 244 induced significant LTD (-12.1 \pm 1.4%, n=41, p<0.000001). In the presence of 245 the D1 receptor antagonist SCH 23390 (23), LTD was also induced ($-9.3 \pm 3.8\%$, 246 n=8, p<0.04) in 63% of experiments. Similarly, LTD was induced (-14.5 ± 2.2%, 247 n=7, p<0.001) in the presence of the D2 receptor agonist quinpirole (Cummings 248 et al. 2006) in 86% of experiments. The presence of the D1 receptor partial 249 agonist SKF 38393 (Dallérac et al. 2011) did not alter LTD either as it was found 250 to be induced (-14.0 \pm 1.4%, n=11, p<0.00005) in 82% of experiments. Finally, 251 the proportion of LTD induction (-12.4 \pm 1.9%, n=5, p<0.02) in the presence of 252 the D2 receptor antagonist remoxipride (Cummings et al. 2006) reached an 253 equally comparable 80%. There were no significant differences in the mean LTD 254 produced between activation and inhibition of either D1 (p>0.2) or D2 receptors 255 (p>0.3), and none of the four drug conditions produced LTD that was significantly 256 different from that seen in age-matched untreated R6/1 slices. Therefore the data

257 suggest that, despite alterations to dopamine receptor expression, the 258 mechanisms responsible for the induction of LTD in adult R6/1 mice is 259 unperturbed by modulation of dopaminergic neurotransmission.

260

261 **Discussion**

262 Neither agonism nor antagonism of D1 or D2 dopamine receptors significantly 263 altered LTD in R6/1 hippocampal slices (figure 3). This result is in stark contrast 264 with the full rescue of LTP in the R6/1 prefrontal cortex by D1 receptor activation as well as restoration of LTD in the R6/1 perirhinal cortex by D2 agonist applied 265 at similar concentrations (Cummings et al. 2006; Dallérac et al. 2011). The lack 266 of effect upon hippocampal LTD is not attributable to a loss of dopamine 267 268 receptors as we find an increase rather than a decrease in immunostaining for 269 these receptors in R6/1 CA1 fields, with respect to wild type controls. This 270 indicates that although dopaminergic changes play an important role in 271 HD, the etiology of the disease is more complex and involves multiple 272 mechanisms. Focusing on synaptic plasticity, alteration in brain derived 273 neurotrophic factor (BDNF) availability has for example been reported as 274 an important modifier of synaptic efficacy (Lynch et al. 2007; Simmons et 275 al. 2009; Zuccato et al. 2003). In this regard, two recent reports further 276 indicate that in HD mice striatum (Plotkin et al. 2014) and hippocampus 277 (Brito et al. 2014), signalling downstream the BDNF tyrosine-related kinase 278 B (TrkB) receptors and and p75 neurotrophin receptors (p75NTR) would also be deficient. Other identified molecular abnormalities underlying 279

280 synaptic dysfunction in HD include NMDA receptor composition with an 281 increased NR2B function (Li et al. 2004; Milnerwood et al. 2006; Zeron et al. 2002) and cell adhesion molecules such as PSA-NCAM (van der Borght and 282 283 Brundin 2007). Finally, a recent report indicates that astroglial Kir4.1 284 channels are deficient in HD (Tong et al. 2014); these astroglial channels 285 are involved in the regulation of synaptic function (Dallerac et al. 2013) and 286 are therefore also likely to contribute to abnormal neurotransmission in 287 HD.

288 The significance of a large increase in dopamine receptor labelling is unclear, 289 but it might reflect an up-regulation in dopamine receptor number in response to 290 decreased dopaminergic innervation. Such a view is supported by a recent 291 study reporting more than 30% decrease in hippocampal dopamine content 292 in 12 weeks old symptomatic R6/2 mice (Mochel et al. 2011). Another 293 possibility is that the dopamine receptors are dysfunctional, thus leading to a 294 compensatory increase in their expression levels. DA release has been found to 295 be severely reduced in both R6/1 and R6/2 HD mice (Dallérac et al. 2015; 296 Johnson et al. 2006; Ortiz et al. 2011). Chemical enervation and depletion of the 297 dopaminergic system in rats, by chronic treatment with 6-hydroxydopamaine, 298 results in behavioural hyperactivity in the case of limited destruction and 299 hypoactivity with larger lesions (Koob et al. 1981), reminiscent of the behaviour of 300 R6/1 mice as they age (Bolivar et al. 2004). This treatment causes a priming 301 effect in intact rats; subsequent application of D1 and D2 agonists results in 302 greatly exaggerated behavioural responses (e.g., explosive jumping) in

303 comparison to the same agonism of non-treated animals (LaHoste and Marshall 304 1989). This priming effect is correlated with large increases in D2 receptor 305 labelling (LaHoste and Marshall 1989; Savasta et al. 1992) and mRNA levels 306 (Chritin et al. 1992). The lack of any observed effect of D1 and D2 agonism and 307 antagonism suggests that although there is an increase in number, the 308 localisation, activity or downstream cascades resulting from DA receptor 309 activation are either non-functional or severely impaired.

310 Interestingly, changes were not uniform for D1 and D2 labelling throughout 311 hippocampal subfields, results reminiscent of the changes in dopamine receptors 312 expression during ageing (Amenta et al. 2001). There is also an important 313 heterogeneity between brain regions as reduction were seen in the cortex and 314 striatum of various mouse models of HD including R6/1 and R6/2 mice (Ariano et 315 al. 2002; Cummings et al. 2006; Heng et al. 2007) whereas we observe an 316 augmentation in the hippocampus. We thus propose that dynamic modulations of 317 dopamine receptors occur as a function of the changes in dopamine 318 bioavailability (Dallérac et al. 2015) that results from transgene expression.

Dopamine therapy has long been used in the palliative treatment of HD with limited success (van Vugt and Roos 1999); likely because of the diverse actions of dopaminergic signalling in the brain. Our previous reports (Cummings et al. 2006; Dallérac et al. 2011; Dallérac et al. 2015) together with the data presented here demonstrate that pharmacological manipulations may have very different effects depending on the brain region in which they are active. The results of this

- study add weight to the suggestion that targeted dopamine therapy might betteralleviate symptoms in HD.
- 327

328 Disclosure/Conflict of interest

- 329 None
- 330

331 Acknowledgements

332 We would like to thank Mr Steve Walters, Mrs Dawn Sadler, Mrs Karen Evans

333 and Dr Verina Waights at the Open University for their excellent technical

assistance and Drs Tony Hannan and Anton van Dellen of Oxford University for

their help in establishing our R6/1 colony. We would also like to thank Professor

- 336 Michael Levine and Mr Ehud Gruen for providing D2 knock-out mouse brains.
- 337 This work was funded by the Open University Research Development Committee
- 338 and the Royal Society.
- 339

340 References

- 341
- Amenta, F., Mignini, F., Ricci, A., Sabbatini, M., Tomassoni, D., & Tayebati, S. K.
 (2001). Age-related changes of dopamine receptors in the rat hippocampus:
 a light microscope autoradiography study. *Mechanisms of ageing and development*, 122(16), 2071–83.
- André, V. M., Cepeda, C., & Levine, M. S. (2010). Dopamine and glutamate in
 Huntington's disease: A balancing act. *CNS neuroscience & therapeutics*,
 16(3), 163–78.
- Andrews, T. C., Weeks, R. A., Turjanski, N., Gunn, R. N., Watkins, L. H.,
 Sahakian, B., et al. (1999). Huntington's disease progression: PET and
 clinical observations. *Brain*, *122*(12), 2353–2363.

- Antonini, A., Leenders, K. L., & Eidelberg, D. (1998). [11C]raclopride-PET studies
 of the Huntington's disease rate of progression: relevance of the
 trinucleotide repeat length. *Ann Neurol*, *43*(2), 253–255.
- Ariano, M. A., Aronin, N., Difiglia, M., Tagle, D. A., Sibley, D. R., Leavitt, B. R., et
 al. (2002). Striatal neurochemical changes in transgenic models of
 Huntington's disease. *Journal of neuroscience research*, 68(6), 716–29.
- Bolivar, V. J., Manley, K., & Messer, A. (2004). Early exploratory behavior
 abnormalities in R6/1 Huntington's disease transgenic mice. *Brain Res*,
 1005(1-2), 29–35.
- Brito, V., Giralt, A., Enriquez-Barreto, L., Puigdellívol, M., Suelves, N., ZamoraMoratalla, A., et al. (2014). Neurotrophin receptor p75(NTR) mediates
 Huntington's disease-associated synaptic and memory dysfunction. *The Journal of clinical investigation*, *124*(10), 4411–28.
- Cepeda, C., Murphy, K. P. S., Parent, M., & Levine, M. S. (2014). The role of dopamine in Huntington's disease. *Progress in brain research*, *211*, 235–54.
- Chritin, M., Savasta, M., Mennicken, F., Bal, A., Abrous, D. N., Le Moal, M., et al.
 (1992). Intrastriatal Dopamine-rich Implants Reverse the Increase of
 Dopamine D2 Receptor mRNA Levels Caused by Lesion of the Nigrostriatal
 Pathway: A Quantitative In Situ Hybridization Study. *The European journal of neuroscience*, 4(7), 663–672.
- Colgin, L. L., Moser, E. I., & Moser, M.-B. (2008). Understanding memory
 through hippocampal remapping. *Trends in neurosciences*, *31*(9), 469–77.
- Cummings, D. M., Milnerwood, A. J., Dallérac, G. M., Waights, V., Brown, J. Y.,
 Vatsavayai, S. C., et al. (2006). Aberrant cortical synaptic plasticity and
 dopaminergic dysfunction in a mouse model of Huntington's disease. *Human molecular genetics*, 15(19), 2856–68.
- 379 Dallerac, G., Chever, O., & Rouach, N. (2013). How do astrocytes shape
 380 synaptic transmission? Insights from electrophysiology. *Front Cell Neurosci*,
 381 7, 159.

- Dallérac, G. M., Levasseur, G., Vatsavayai, S. C., Milnerwood, A. J., Cummings,
 D. M., Kraev, I., et al. (2015). Dysfunctional Dopaminergic Neurones in
 Mouse Models of Huntington's Disease: A Role for SK3 Channels. *Neuro-*degenerative diseases, 15(2), 93–108.
- Dallérac, G. M., Vatsavayai, S. C., Cummings, D. M., Milnerwood, A. J., Peddie,
 C. J., Evans, K. A., et al. (2011). Impaired Long-Term Potentiation in the

- Prefrontal Cortex of Huntington's Disease Mouse Models: Rescue by D(1)
 Dopamine Receptor Activation. *Neurodegenerative Diseases*, *8*(4), 230–9.
- Ginovart, N., Lundin, A., Farde, L., Halldin, C., Bäckman, L., Swahn, C. G., et al.
 (1997). PET study of the pre- and post-synaptic dopaminergic markers for
 the neurodegenerative process in Huntington's disease. *Brain*, *120*(3), 503–
 514.
- Glass, M., Dragunow, M., & Faull, R. L. M. L. (2000). The pattern of
 neurodegeneration in Huntington's disease: a comparative study of
 cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the
 human basal ganglia in Huntington's disease. *Neuroscience*, *97*(3), 505–
 519.
- González-Burgos, I., & Feria-Velasco, A. (2008). Serotonin/dopamine interaction
 in memory formation. *Progress in brain research*, *172*, 603–23.
- Hansen, N., & Manahan-Vaughan, D. (2014). Dopamine D1/D5 receptors
 mediate informational saliency that promotes persistent hippocampal longterm plasticity. *Cerebral cortex (New York, N.Y.: 1991)*, 24(4), 845–58.
- Harper, P. (1996). Huntington's Disease. In W. B. Saunders (Ed.), *Major Problems of Neurology. 2nd ed. Philadelphia, Pa: WB Saunders; 1996.* PA,
 USA.
- Heng, M. Y., Tallaksen-Greene, S. J., Detloff, P. J., & Albin, R. L. (2007).
 Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of
 Huntington's disease. *The Journal of neuroscience : the official journal of the*Society for Neuroscience, 27(34), 8989–98.
- Hodgson, J. G. G., Agopyan, N., Gutekunst, C.-A. A., Leavitt, B. R., LePiane, F.,
 Singaraja, R., et al. (1999). A YAC mouse model for Huntington's disease
 with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal
 neurodegeneration. *Neuron*, 23(1), 181–192.
- Huang, Y.-Y. Y., Simpson, E., Kellendonk, C., & Kandel, E. R. (2004). Genetic
 evidence for the bidirectional modulation of synaptic plasticity in the
 prefrontal cortex by D1 receptors. *Proc Natl Acad Sci U S A*, *101*(9), 3236–
 3241.
- 419 Jay, T. M. (2003). Dopamine: a potential substrate for synaptic plasticity and 420 memory mechanisms. *Progress in neurobiology*, *69*(6), 375–90.
- Johnson, M. A., Rajan, V., Miller, C. E., & Wightman, R. M. (2006). Dopamine
 release is severely compromised in the R6/2 mouse model of Huntington's
 disease. *Journal of neurochemistry*, *97*(3), 737–46.

- Kelly, M. A., Rubinstein, M., Asa, S. L., Zhang, G., Saez, C., Bunzow, J. R., et al.
 (1997). Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in
 dopamine D2 receptor-deficient mice. *Neuron*, *19*(1), 103–13.
- Koob, G. F., Stinus, L., & Le Moal, M. (1981). Hyperactivity and hypoactivity
 produced by lesions to the mesolimbic dopamine system. *Behavioural brain research*, *3*(3), 341–59.
- 430 Korchounov, A., Meyer, M. F., & Krasnianski, M. (2010). Postsynaptic
- 431 nigrostriatal dopamine receptors and their role in movement regulation.
- 432 Journal of neural transmission (Vienna, Austria : 1996), 117(12), 1359–69.
- Kung, V. W. S., Hassam, R., Morton, A. J., & Jones, S. (2007). Dopaminedependent long term potentiation in the dorsal striatum is reduced in the
 R6/2 mouse model of Huntington's disease. *Neuroscience*, *146*(4), 1571–80.
- LaHoste, G. J., & Marshall, J. F. (1989). Non-additivity of D2 receptor
 proliferation induced by dopamine denervation and chronic selective
 antagonist administration: evidence from quantitative autoradiography
 indicates a single mechanism of action. *Brain research*, *502*(2), 223–32.
- Li, L., Murphy, T. H., Hayden, M. R., & Raymond, L. A. (2004). Enhanced striatal
 NR2B-containing N-methyl-D-aspartate receptor-mediated synaptic currents
 in a mouse model of Huntington disease. *J Neurophysiol*, *92*(5), 2738–2746.
- Lynch, G., Kramar, E. A., Rex, C. S., Jia, Y., Chappas, D., Gall, C. M., &
 Simmons, D. A. (2007). Brain-derived neurotrophic factor restores synaptic
 plasticity in a knock-in mouse model of Huntington's disease. *The Journal of neuroscience : the official journal of the Society for Neuroscience*, 27(16),
 4424–34.
- Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington,
 C., et al. (1996). Exon 1 of the HD gene with an expanded CAG repeat is
 sufficient to cause a progressive neurological phenotype in transgenic mice. *Cell*, 87(3), 493–506.
- Milner, A. J., Cummings, D. M., Spencer, J. P., & Murphy, K. P. S. J. (2004). Bidirectional plasticity and age-dependent long-term depression at mouse
 CA3-CA1 hippocampal synapses. *Neurosci Lett*, 367(1), 1–5.
- Milnerwood, A. J., Cummings, D. M., Dallerac, G. M., Brown, J. Y., Vatsavayai,
 S. C., Hirst, M. C., et al. (2006). Early development of aberrant synaptic
 plasticity in a mouse model of Huntington's disease. *Hum Mol Genet*, *15*(10),
 1690–1703.

- Mochel, F., Durant, B., Durr, A., & Schiffmann, R. (2011). Altered dopamine and
 serotonin metabolism in motorically asymptomatic R6/2 mice. *PloS one*,
 6(3), e18336.
- Murphy, K. P. S. J., Carter, R. J., Lione, L. A., Mangiarini, L., Mahal, A., Bates, G.
 P., et al. (2000). Abnormal synaptic plasticity and impaired spatial cognition
 in mice transgenic for exon 1 of the human Huntington's disease mutation. *J Neurosci, 20*(13), 5115–5123.
- 466 Ortiz, A. N., Kurth, B. J., Osterhaus, G. L., & Johnson, M. a. (2011). Impaired
 467 dopamine release and uptake in R6/1 Huntington's disease model mice.
 468 *Neuroscience letters*, 492(1), 11–4.
- Plotkin, J. L., Day, M., Peterson, J. D., Xie, Z., Kress, G. J., Rafalovich, I., et al.
 (2014). Impaired TrkB receptor signaling underlies corticostriatal dysfunction
 in Huntington's disease. *Neuron*, *83*(1), 178–88.
- Savasta, M., Mennicken, F., Chritin, M., Abrous, D. N., Feuerstein, C., Le Moal,
 M., & Herman, J. P. (1992). Intrastriatal dopamine-rich implants reverse the
 changes in dopamine D2 receptor densities caused by 6-hydroxydopamine
 lesion of the nigrostriatal pathway in rats: an autoradiographic study. *Neuroscience*, *46*(3), 729–38.
- Shohamy, D., & Adcock, R. A. (2010). Dopamine and adaptive memory. *Trends in cognitive sciences*, *14*(10), 464–72.
- Simmons, D. A., Rex, C. S., Palmer, L., Pandyarajan, V., Fedulov, V., Gall, C.
 M., & Lynch, G. (2009). Up-regulating BDNF with an ampakine rescues
 synaptic plasticity and memory in Huntington's disease knockin mice. *Proceedings of the National Academy of Sciences of the United States of America*, *106*(12), 4906–11.
- Smith, Y., & Villalba, R. (2008). Striatal and extrastriatal dopamine in the basal
 ganglia: an overview of its anatomical organization in normal and
 Parkinsonian brains. *Movement disorders : official journal of the Movement Disorder Society, 23 Suppl 3*, S534–47.
- Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., et al.
 (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal
 dysfunction in Huntington's disease model mice. *Nature neuroscience*,
 17(5), 694–703.
- Usdin, M. T., Shelbourne, P. F., Myers, R. M., & Madison, D. V. (1999). Impaired
 synaptic plasticity in mice carrying the Huntington's disease mutation. *Hum Mol Genet*, 8(5), 839–846.

- 495 van der Borght, K., & Brundin, P. (2007). Reduced expression of PSA-NCAM in
 496 the hippocampus and piriform cortex of the R6/1 and R6/2 mouse models of
 497 Huntington's disease. *Experimental neurology*, 204(1), 473–8.
- Van Vugt, J., & Roos, R. (1999). Huntington's Disease: Options for Controlling
 Symptoms. *CNS Drugs*, *11*(2), 105–123.
- 500 Weeks, R. (1997). Cortical control of movement in Huntington's disease. A PET 501 activation study. *Brain*, *120*(9), 1569–1578.
- Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin,
 P., et al. (2002). Increased Sensitivity to N-Methyl-D-Aspartate in a Mouse
 Model of Huntington 's Disease, 33, 849–860.
- Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., Conti, L., et al.
 (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. *Nature Genetics*, *35*(1), 76–83.
- 509
- 510 **Figure captions**
- 511

512 Figure 1. Hippocampal CA1 D1 receptor labelling.

513 Representative confocal micrographs (x40 objective) of D1 immunofluorescence in the CA1 area of the hippocampus of WT (left) and R6/1 (right) mice age as 514 515 indicated (months). Regions of interest are marked for reference (top left): WM, 516 white matter; SO stratum oriens; SP, stratum pyramidale; SRp/d, stratum 517 radiatum proximal/distal to SP; SLM, stratum lanculosum-moleculare; hf, hippocampal fissure; dg, dentate gyrus. Bar = 100 µm. Quantification of D1 518 519 receptor immunofluorescence is also shown. R6/1 (n=8(3)) sections had 520 significantly less D1 receptor labelling than WT sections (n=9(3)) in the SRp 521 (*p<0.03) and SP (*p<0.04) at 1 month. At 3 months D1 receptor labelling was 522 significantly increased in the R6/1 stratum radiatum (*p<0.03. R6/1, n=9(3). WT, 523 n=9(3)). R6/1 labelling was not significantly different from WT at 7 months 524 (*p>0.1. R6/1, n=5(2). WT, n=5(3)).

525

526 Figure 2. Hippocampal CA1 D2 receptor labelling.

527 Representative confocal micrographs (x40) of D2 immunofluorescence in the 528 CA1 area of the hippocampus of WT (left) and R6/1 (right) mice from the ages 529 indicated. Regions of interest are marked for reference in the top left panel: WM, 530 white matter; SO stratum oriens; SP, stratum pyramidale; SRp/d, stratum 531 radiatum proximal/distal to SP; SLM, stratum lanculosum-moleculare; hf, 532 hippocampal fissure; dg, dentate gyrus. Bar = 100 µm. Quantification of D2 533 immunofluorescence is also shown. R6/1 (n=8(3)) and WT (n=6(2)) D2 receptor 534 labelling is similar at one month. At 3 months D2 receptor labelling is significantly 535 increased (with respect to WT) in the R6/1 stratum radiatum and WM. At seven months a highly significant increase in R6/1 D2 labelling was observed in all 536 537 ROIs except the SP (R6/1, n=8(3). WT, n=6(2), *p<0.05, **p<0.01, ***p<0.001).

538

539 Figure 3. LTD in R6/1 adults is not blocked by pharmacological 540 manipulation of dopamine receptors.

541 Neither D1 nor D2 receptor agonists nor antagonists (10µM) significantly altered 542 the magnitude (**A**, **B**, **C**, **D**, **E**) or probability (**F**) of LTD induction in slices 543 prepared from R6/1 mice at 8 months of age. Insert in (**A**) shows the

- 544 stimulating and recording electrode placement. Double arrows represents
- 545 cutting of the CA3 area for which the excised part is depicted in grey.

±

Dear Dr Mattson,

We thank you and the reviewers for examining our work and for the positive comments it received. Please find below our point-by-point answer to reviewers' comments.

Best regards

Kerry Murphy & Glenn Dallérac.

Her

Reviewer #1: In this manuscript, the authors detected expression of dopamine receptors by immunostaining in HD mice and they found the levels of D1 and D2-like receptors were increased along with age in R6/1 HD hippocampus. Further they tested the effect of D1 or D2-like receptor agonists or antagonists on LTD of R6/1 mice hippocampal slices. There is no alteration on LTD properties presented by manipulation of dopamine receptors. The results along with their previous finding provide systemic understanding of dopamine signaling and synaptic dysfunction in HD.

Several concerns and suggestions are listed below:

1. What's the CAG repeat number in R6/1 mice? Did the authors check the repeat size occasionally since sometimes repeat size is quite not stable through generations in HD mice?

All the mice used in the study were genotyped as described in *Vatsavayai et al. 2007* as part of a pedigree study (Vatsavayai et al. 2007). As shown in Figure R1, the primer set used in our genotyping enabled us to verify the repeat length of the transgene in tail samples collected from each animal prior to weaning. The PCR products representing approximately 116 repeats are in the region of 394bp (as shown in Figure R1 lane 1-4 and 6-9). For comparison, lane 5 (Figure R1) shows the PCR product of a different R6 line containing only 89 CAG repeats, here the size of the PCR product is 300bp. Stability of the repeat length across generations was maintained by breeding from male mice that had repeat length of 116.

Figure R1. Example of PCR products enabling verification of the transgene CAG repeat length.

2. Please replace the representative image of 1m, 3m HD mice in Fig 1 D1 receptor. The coronal level or presented region is not consistent with other pictures.

We understand that it may seem as if the sections used in Fig1 are from different coronal planes. This is however likely due to the orientation of the images acquired, notably with regard to the dendate gyrus. We were indeed careful to pick sections from -1.8 to -2.0 mm relative to bregma. In order to avoid such ambiguity, we re-centered images to only show the CA1 region in the correct orientation both in Fig 1 and Fig 2 and updated the captions accordingly.

D1 Receptors

Figure 1. Hippocampal CA1 D1 receptor labelling. (p20 I512)

Representative confocal micrographs (x40 objective) of D1 immunofluorescence **in the CA1 area of the hippocampus** of WT (left) and R6/1 (right) mice age as indicated (months).

D2 Receptors

Figure 2. Hippocampal CA1 D2 receptor labelling. (p21 I526) Representative confocal micrographs (x40) of D2 immunofluorescence **in the CA1 area of the hippocampus** of WT (left) and R6/1 (right) mice from the ages indicated.

3. Page 9, "Dopamine receptor expression increases in R6/1 transgenic mice" need specific to hippocampus since previously the authors found decreased levels of dopamine receptors in perirhinal cortex and other regions.

We agree and thank the reviewer for this suggestion. We have now replaced the title "Dopamine receptor expression increases in R6/1 transgenic mice" by "CA1 dopamine receptor expression increases in R6/1 transgenic mice" p9, 1199.

4. Did the authors run western blot for dopamine D1 or D2- like receptors to confirm their finding? Especially in 7m HD hippocampus they found significant increase of D2- like receptor by immunostaining.

Western blots are indeed used to quantify protein expression but can lack sufficient spatial and cellular resolution, the latter is better addressed using fluorescence immunohistochemistry. In our investigation we aimed at assessing dopamine receptor expression of different regions of the CA1 area of the hippocampus. Western blots performed on hippocampal extracts is not the method of choice in our study as the changes we report would most likely be masked by heterogeneity from different hippocampal regions.

5. Evidences showed increased DA in early stage and reduced DA in late-stage HD patients and animal models. Manipulation DA receptor depends on the level of DA tone. Thus except DA receptors, determine DA level in hippocampus of R6/1 mice may provide more comprehensive information.

DA levels are indeed altered in HD patients and mice, and we have actually previously found that striatal release of this important neuromodulator is increased at early disease stages whilst it is markedly decreased in a late HD mouse model (Dallérac et al. 2015). We agree that studying DA release and tone in the hippocampus is relevant in light of the results we report here and of a recent study showing that dopamine content is reduced by ~30% in symptomatic R6/2 mice (Mochel et al. 2011). We thank the reviewer for the suggestion, this will however be addressed in a future investigation as it is beyond the scope of the current negative findings manuscript. In light of this sensible comment, we have nevertheless improved the discussion of our manuscript p13 l288:

" The significance of a large increase in dopamine receptor labelling is unclear, but it might reflect an up-regulation in dopamine receptor number in response to decreased dopaminergic innervation or signalling. Such a view is supported by a recent study reporting more than 30% decrease in hippocampal dopamine content in 12 weeks old symptomatic R6/2 mice (Mochel et al. 2011)."

References reviewer 1

- Dallérac, G. M., Levasseur, G., Vatsavayai, S. C., Milnerwood, A. J., Cummings, D. M., Kraev, I., et al. (2015). Dysfunctional Dopaminergic Neurones in Mouse Models of Huntington's Disease: A Role for SK3 Channels. *Neuro-degenerative diseases*, *15*(2), 93–108.
- Mochel, F., Durant, B., Durr, A., & Schiffmann, R. (2011). Altered dopamine and serotonin metabolism in motorically asymptomatic R6/2 mice. *PloS one*, *6*(3), e18336.
- Vatsavayai, S. C., Dallérac, G. M., Milnerwood, A. J., Cummings, D. M., Rezaie, P., Murphy, K. P. S. J., & Hirst, M. C. (2007). Progressive CAG expansion in the brain of a novel R6 / 1-89Q mouse model of Huntington's disease with delayed phenotypic onset. *Brain Research Bulletin*, *72*, 98–102.

Reviewer #2: The manuscript by Dallerac et al. nicely demonstrates that in the R6/1 mouse model of Huntington's disease, aberrant LTD in the aged hippocampus is not due to alterations in dopamine detection. Specifically, the authors show that aberrant LTD is dissociated from pathologically elevated hippocampal expression of both D1 and D2 type receptors. This is important, as abnormal plasticity in the disease state is clearly linked to abnormal dopaminergic signaling in other brain regions, including the cortex. This dissociation helps shed light on one of the many potential limitations of dopamine-related therapies posited to be useful for HD. The study is from a wellestablished HD group, and should be of interest to researchers in the HD field. I only have a few minor comments.

1. For quantification of fluorescence: how was fluorescence intensity compared between different slices? Were wt and mutant slices processed and analyzed in parallel? Can you please clarify what is meant by "internally normalized" in the methods section?

Both transgenic and non-transgenic slices were indeed processed and analysed in parallel. Following the reviewer's advice we have now replaced the mention "internally normalized" by a more detailed description of the procedure p6 1140:

"Transgenic and non-transgenic slices were processed and analysed in parallel. Image stacks (6 μm) of 12 sequential scans (0.5 μm) were performed and collected for each section using Leica Confocal Software (Version 2.5, Leica, Heidelberg, Germany). Fluorescence was calculated by manually

selecting the 3 brightest scans from each stack and generating a composite average. Fluorescence was quantified by generating a mean fluorescence value (in arbitrary units) from three manually placed non-overlapping sampling boxes (2000 μ m²) in each region of interest (ROI) through the CA1 field of the hippocampus (capillaries were avoided). Fluorescence intensity was standardized between slices by imaging sections on the same day using the same laser and parameters; i.e. gain, offset and PMT intensity."

2. It may be useful to show where the recording electrode was for LTD experiments (fig 3), in relation to the immune data shown in figures 1-2. Perhaps a label in figure(s) 1 or 2.

This is a sensible suggestion and we have now inserted a schematic diagram showing placement of the electrodes in Figure 3. Figure caption has been amended accordingly (p21 I543).

Figure 3. LTD in R6/1 adults is not blocked by pharmacological manipulation of dopamine receptors Neither D1 nor D2 receptor agonists nor antagonists (10μ M) significantly altered the magnitude (A, B, C, D, E) or probability (F) of LTD induction in slices prepared from R6/1 mice at 8 months of age. Insert in (A) shows the stimulating and recording electrode placement. Double arrows represents cutting of the CA3 area for which the excised part is depicted in grey. (p21 I543)

3. Recently, evidence has been published that points to non-dopaminergic pathologies in HD that lead to impaired synaptic plasticity. For example, Surmeier's group recently showed that diminished TrkBR signaling in the striatum impairs LTP. It would be benSeficial to add references supporting the findings that non-dopaminergic impairments alter plasticity in HD models.

We agree with the reviewer and have now improved our manuscript by discussing non-dopaminergic alterations in synaptic plasticity, p12 l269:

" This indicates that although dopaminergic changes play an important role in HD, the etiology of the disease is more complex and involves multiple mechanisms. Focusing on synaptic plasticity, alteration in brain derived neurotrophic factor (BDNF) availability has for example been reported as an important modifier of synaptic efficacy (Lynch et al. 2007; Simmons et al. 2009; Zuccato et al. 2003). In this regard, two recent reports further indicate that in HD mice striatum (Plotkin et al. 2014) and hippocampus (Brito et al. 2014), signalling downstream the BDNF tyrosine-related kinase B (TrkB) receptors and and p75 neurotrophin receptors (p75NTR) would also be deficient. Other identified molecular abnormalities underlying synaptic dysfunction in HD include NMDA receptor composition with an increased NR2B function (Li et al. 2004; Milnerwood et al. 2006; Zeron et al. 2002) and cell adhesion molecules such as PSA-NCAM (van der Borght and Brundin 2007). Finally, a recent report indicates that astroglial Kir4.1 channels are deficient in HD (Tong et al. 2014); these astroglial channels are involved in the regulation of synaptic function (Dallerac et al. 2013) and are therefore also likely to contribute to abnormal neurotransmission in HD. ".

References reviewer 2

- Brito, V., Giralt, A., Enriquez-Barreto, L., Puigdellívol, M., Suelves, N., Zamora-Moratalla, A., et al. (2014). Neurotrophin receptor p75(NTR) mediates Huntington's disease-associated synaptic and memory dysfunction. *The Journal of clinical investigation*, *124*(10), 4411–28.
- Dallerac, G., Chever, O., & Rouach, N. (2013). How do astrocytes shape synaptic transmission? Insights from electrophysiology. *Front Cell Neurosci*, 7, 159. doi:10.3389/fncel.2013.00159
- Li, L., Murphy, T. H., Hayden, M. R., & Raymond, L. A. (2004). Enhanced striatal NR2B-containing Nmethyl-D-aspartate receptor-mediated synaptic currents in a mouse model of Huntington disease. J Neurophysiol, 92(5), 2738–2746.
- Lynch, G., Kramar, E. A., Rex, C. S., Jia, Y., Chappas, D., Gall, C. M., & Simmons, D. A. (2007). Brainderived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease. *The Journal of neuroscience : the official journal of the Society for Neuroscience, 27*(16), 4424–34.
- Milnerwood, A. J., Cummings, D. M., Dallerac, G. M., Brown, J. Y., Vatsavayai, S. C., Hirst, M. C., et al. (2006). Early development of aberrant synaptic plasticity in a mouse model of Huntington's disease. *Hum Mol Genet*, *15*(10), 1690–1703.
- Plotkin, J. L., Day, M., Peterson, J. D., Xie, Z., Kress, G. J., Rafalovich, I., et al. (2014). Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington's disease. *Neuron*, *83*(1), 178–88.
- Simmons, D. A., Rex, C. S., Palmer, L., Pandyarajan, V., Fedulov, V., Gall, C. M., & Lynch, G. (2009). Upregulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. *Proceedings of the National Academy of Sciences of the United States of America*, 106(12), 4906–11.

- Tong, X., Ao, Y., Faas, G. C., Nwaobi, S. E., Xu, J., Haustein, M. D., et al. (2014). Astrocyte Kir4.1 ion channel deficits contribute to neuronal dysfunction in Huntington's disease model mice. *Nature neuroscience*, *17*(5), 694–703.
- van der Borght, K., & Brundin, P. (2007). Reduced expression of PSA-NCAM in the hippocampus and piriform cortex of the R6/1 and R6/2 mouse models of Huntington's disease. *Experimental neurology*, *204*(1), 473–8.
- Zeron, M. M., Hansson, O., Chen, N., Wellington, C. L., Leavitt, B. R., Brundin, P., et al. (2002). Increased Sensitivity to N-Methyl-D-Aspartate in a Mouse Model of Huntington's Disease, *33*, 849–860.
- Zuccato, C., Tartari, M., Crotti, A., Goffredo, D., Valenza, M., Conti, L., et al. (2003). Huntingtin interacts with REST/NRSF to modulate the transcription of NRSE-controlled neuronal genes. *Nature Genetics*, *35*(1), 76–83.

Figure 1

D1 Receptors evision.pdf

±

Figure 2

D2 Receiptors to download Figure Figure_2_revision.pdf

