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Abstract: Altered dopamine (DA) receptor labelling has been demonstrated in presymptomatic
and symptomatic Huntington's disease (HD) gene carriers, indicating that alterations in
dopaminergic signalling is an early event in HD. We have previously described early
alterations in synaptic transmission and plasticity in both the cortex and hippocampus
of the R6/1 mouse model of Huntington's disease. Deficits in cortical synaptic plasticity
were associated with altered dopaminergic signalling and could be reversed by D1- or
D2-like dopamine receptor activation. In light of these findings we here investigated
whether defects in dopamine signalling could also contribute to the marked alteration in
hippocampal synaptic function. To this end we performed dopamine receptor labelling
and pharmacology in the R6/1 hippocampus and report a marked, age-dependent
elevation of hippocampal D1 and D2 receptor labelling in R6/1 hippocampal subfields.
Yet, pharmacological inhibition or activation of D1- or D2-like receptors did not modify
the aberrant synaptic plasticity observed in R6/1 mice. These findings demonstrate that
global perturbations to dopamine receptor expression do occur in HD transgenic mice,
similarly in HD gene carriers and patients. However, the direction of change and the
lack of effect of dopaminergic pharmacological agents on synaptic function
demonstrates that the perturbations are heterogeneous and region-specific, a finding
that may explain the mixed results of dopamine therapy in HD.

Response to Reviewers: Reviewer #1: In this manuscript, the authors detected expression of dopamine
receptors by immunostaining in HD mice and they found the levels of D1 and D2-like
receptors were increased along with age in R6/1 HD hippocampus. Further they tested
the effect of D1 or D2-like receptor agonists or antagonists on LTD of R6/1 mice
hippocampal slices. There is no alteration on LTD properties presented by
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manipulation of dopamine receptors. The results along with their previous finding
provide systemic understanding of dopamine signaling and synaptic dysfunction in HD.
Several concerns and suggestions are listed below:
1. What's the CAG repeat number in R6/1 mice? Did the authors check the repeat size
occasionally since sometimes repeat size is quite not stable through generations in HD
mice?
All the mice used in the study were genotyped as described in Vatsavayai et al. 2007
as part of a pedigree study (Vatsavayai et al. 2007). As shown in Figure R1, the primer
set used in our genotyping enabled us to verify the repeat length of the transgene in
tail samples collected from each animal prior to weaning. The PCR products
representing approximately 116 repeats are in the region of  394bp (as shown in
Figure R1 lane 1-4 and 6-9). For comparison, lane 5 (Figure R1) shows the PCR
product of a different R6 line containing only 89 CAG repeats, here the size of the PCR
product is 300bp. Stability of the repeat length across generations was maintained by
breeding from male mice that had repeat length of 116.

2. Please replace the representative image of 1m, 3m HD mice in Fig 1 D1 receptor.
The coronal level or presented region is not consistent with other pictures.
We understand that it may seem as if the sections used in Fig1 are from different
coronal planes. This is however likely due to the orientation of the images acquired,
notably with regard to the dendate gyrus. We were indeed careful to pick sections from
-1.8 to -2.0 mm relative to bregma. In order to avoid such ambiguity, we re-centered
images to only show the CA1 region in the correct orientation both in Fig 1 and Fig 2
and updated the captions accordingly.
3. Page 9, "Dopamine receptor expression increases in R6/1 transgenic mice" need
specific to hippocampus since previously the authors found decreased levels of
dopamine receptors in perirhinal cortex and other regions.
We agree and thank the reviewer for this suggestion. We have now replaced the title
"Dopamine receptor expression increases in R6/1 transgenic mice" by "CA1 dopamine
receptor expression increases in R6/1 transgenic mice" p9, l199.

4. Did the authors run western blot for dopamine D1 or D2- like receptors to confirm
their finding? Especially in 7m HD hippocampus they found significant increase of D2-
like receptor by immunostaining.
Western blots are indeed used to quantify protein expression but can lack sufficient
spatial and cellular resolution, the latter is better addressed using fluorescence
immunohistochemistry. In our investigation we aimed at assessing dopamine receptor
expression of different regions of the CA1 area of the hippocampus. Western blots
performed on hippocampal extracts is not the method of choice in our study as the
changes we report would most likely be masked by heterogeneity from different
hippocampal regions.
5. Evidences showed increased DA in early stage and reduced DA in late-stage HD
patients and animal models. Manipulation DA receptor depends on the level of DA
tone. Thus except DA receptors, determine DA level in hippocampus of R6/1 mice may
provide more comprehensive information.
DA levels are indeed altered in HD patients and mice, and we have actually previously
found that striatal release of this important neuromodulator is increased at early
disease stages whilst it is markedly decreased in a late HD mouse model (Dallérac et
al. 2015). We agree that studying DA release and tone in the hippocampus is relevant
in light of the results we report here and of a recent study showing that dopamine
content is reduced by ~30% in symptomatic R6/2 mice (Mochel et al. 2011). We thank
the reviewer for the suggestion, this will however be addressed in a future investigation
as it is beyond the scope of the current negative findings manuscript. In light of this
sensible comment, we have nevertheless improved the discussion of our manuscript
p13 l288:
" The significance of a large increase in dopamine receptor labelling is unclear, but it
might reflect an up-regulation in dopamine receptor number in response to decreased
dopaminergic innervation or signalling. Such a view is supported by a recent study
reporting more than 30% decrease in hippocampal dopamine content in 12 weeks old
symptomatic R6/2 mice (Mochel et al. 2011)."
References reviewer 1

Dallérac, G. M., Levasseur, G., Vatsavayai, S. C., Milnerwood, A. J., Cummings, D. M.,
Kraev, I., et al. (2015). Dysfunctional Dopaminergic Neurones in Mouse Models of
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Huntington’s Disease: A Role for SK3 Channels. Neuro-degenerative diseases, 15(2),
93–108.

Mochel, F., Durant, B., Durr, A., & Schiffmann, R. (2011). Altered dopamine and
serotonin metabolism in motorically asymptomatic R6/2 mice. PloS one, 6(3), e18336.

Vatsavayai, S. C., Dallérac, G. M., Milnerwood, A. J., Cummings, D. M., Rezaie, P.,
Murphy, K. P. S. J., & Hirst, M. C. (2007). Progressive CAG expansion in the brain of a
novel R6 / 1-89Q mouse model of Huntington ’ s disease with delayed phenotypic
onset. Brain Research Bulletin, 72, 98–102.

Reviewer #2: The manuscript by Dallerac et al. nicely demonstrates that in the R6/1
mouse model of Huntington's disease, aberrant LTD in the aged hippocampus is not
due to alterations in dopamine detection.  Specifically, the authors show that aberrant
LTD is dissociated from pathologically elevated hippocampal expression of both D1
and D2 type receptors.  This is important, as abnormal plasticity in the disease state is
clearly linked to abnormal dopaminergic signaling in other brain regions, including the
cortex.  This dissociation helps shed light on one of the many potential limitations of
dopamine-related therapies posited to be useful for HD.  The study is from a well-
established HD group, and should be of interest to researchers in the HD field.  I only
have a few minor comments.

1.      For quantification of fluorescence: how was fluorescence intensity compared
between different slices?  Were wt and mutant slices processed and analyzed in
parallel?  Can you please clarify what is meant by "internally normalized" in the
methods section?
Both transgenic and non-transgenic slices were indeed processed and analysed in
parallel. Following the reviewer's advice we have now replaced the mention "internally
normalized" by a more detailed description of the procedure p6 l140:
"Transgenic and non-transgenic slices were processed and analysed in parallel. Image
stacks (6 m) of 12 sequential scans (0.5 m) were performed and collected for each
section using Leica Confocal Software (Version 2.5, Leica, Heidelberg, Germany).
Fluorescence was calculated by manually selecting the 3 brightest scans from each
stack and generating a composite average. Fluorescence was quantified by generating
a mean fluorescence value (in arbitrary units) from three manually placed non-
overlapping sampling boxes (2000 µm2) in each region of interest (ROI) through the
CA1 field of the hippocampus (capillaries were avoided). Fluorescence intensity was
standardized between slices by imaging sections on the same day using the same
laser and parameters; i.e. gain, offset and PMT intensity."

2.      It may be useful to show where the recording electrode was for LTD experiments
(fig 3), in relation to the immune data shown in figures 1-2.  Perhaps a label in figure(s)
1 or 2.

This is a sensible suggestion and we have now inserted a schematic diagram showing
placement of the electrodes in Figure 3. Figure caption has been amended accordingly
(p21 l543).

3.      Recently, evidence has been published that points to non-dopaminergic
pathologies in HD that lead to impaired synaptic plasticity.  For example, Surmeier's
group recently showed that diminished TrkBR signaling in the striatum impairs LTP.  It
would be benSeficial to add references supporting the findings that non-dopaminergic
impairments alter plasticity in HD models.

We agree with the reviewer and have now improved our manuscript by discussing non-
dopaminergic alterations in synaptic plasticity, p12 l269:

" This indicates that although dopaminergic changes play an important role in HD, the
etiology of the disease is more complex and involves multiple mechanisms. Focusing
on synaptic plasticity, alteration in brain derived neurotrophic factor (BDNF) availability
has for example been reported as an important modifier of synaptic efficacy (Lynch et
al. 2007; Simmons et al. 2009; Zuccato et al. 2003). In this regard, two recent reports
further  indicate that in HD mice striatum (Plotkin et al. 2014) and hippocampus (Brito
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et al. 2014), signalling downstream the BDNF tyrosine-related kinase B (TrkB)
receptors and and p75 neurotrophin receptors (p75NTR) would also be deficient. Other
identified molecular abnormalities underlying synaptic dysfunction in HD include NMDA
receptor composition with an increased NR2B function (Li et al. 2004; Milnerwood et al.
2006; Zeron et al. 2002) and cell adhesion molecules such as PSA-NCAM (van der
Borght and Brundin 2007). Finally, a recent report indicates that astroglial Kir4.1
channels are deficient in HD (Tong et al. 2014); these astroglial channels are involved
in the regulation of synaptic function (Dallerac et al. 2013) and are therefore also likely
to contribute to abnormal neurotransmission in HD. ".
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Abstract 28 

Altered dopamine (DA) receptor labelling has been demonstrated in 29 

presymptomatic and symptomatic Huntington’s disease (HD) gene carriers, 30 

indicating that alterations in dopaminergic signalling is an early event in HD. We 31 

have previously described early alterations in synaptic transmission and plasticity 32 

in both the cortex and hippocampus of the R6/1 mouse model of Huntington’s 33 

disease. Deficits in cortical synaptic plasticity were associated with altered 34 

dopaminergic signalling and could be reversed by D1- or D2-like dopamine 35 

receptor activation. In light of these findings we here investigated whether 36 

defects in dopamine signalling could also contribute to the marked alteration in 37 

hippocampal synaptic function. To this end we performed dopamine receptor 38 

labelling and pharmacology in the R6/1 hippocampus and report a marked, age-39 

dependent elevation of hippocampal D1 and D2 receptor labelling in R6/1 40 

hippocampal subfields. Yet, pharmacological inhibition or activation of D1- or D2-41 

like receptors did not modify the aberrant synaptic plasticity observed in R6/1 42 

mice. These findings demonstrate that global perturbations to dopamine receptor 43 

expression do occur in HD transgenic mice, similarly in HD gene carriers and 44 

patients. However, the direction of change and the lack of effect of dopaminergic 45 

pharmacological agents on synaptic function demonstrates that the perturbations 46 

are heterogeneous and region-specific, a finding that may explain the mixed 47 

results of dopamine therapy in HD. 48 

 49 

50 
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Introduction 51 

 Huntington's disease (HD) is a late-onset and fatal neurological disorder 52 

caused by the repetition of a CAG repeat codon in the first exon of the gene that 53 

codes for the protein huntingtin. This translates into a protein with an expanded 54 

polyglutamine repeat that confers a toxic gain of function, which induces 55 

neurodegenerative changes and neuronal cell death.  A number of studies, 56 

including ours (Cummings et al. 2006; Dallérac et al. 2011; Dallérac et al. 2015; 57 

Milnerwood et al. 2006; Murphy et al. 2000), have demonstrated that  neuronal 58 

dysfunction occurs prior to neurodegeneration. In particular, the loss of 59 

neuromodulatory receptors for dopamine, adenosine, and cannabinoids has 60 

been described in post-mortem human tissues (Glass et al. 2000), in prodomal 61 

and overt HD patients (Andrews et al. 1999; Antonini et al. 1998; Ginovart et al. 62 

1997; Weeks 1997), as well as in several HD mouse models (André et al. 2010).  63 

Dopaminergic signalling is involved in both cognition and the control of 64 

movement (Korchounov et al. 2010; Shohamy and Adcock 2010; Smith and 65 

Villalba 2008), processes that are affected in HD, though the etiology is poorly 66 

understood. Many studies have demonstrated progressive loss of D1 and D2 67 

dopamine receptor in striatal medium spiny neurones and cortical areas of 68 

symptomatic patients as well as asymptomatic HD gene carriers (André et al. 69 

2010) demonstrating that striatal and cortical changes in the dopaminergic 70 

system are detected before clinical diagnosis and prior to gross 71 

neuropathological changes.  Such findings support the notion that the early 72 
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cognitive and emotional disturbances seen in HD gene carriers occur as a 73 

consequence of cellular dysfunction, rather than neuronal loss. 74 

 We have previously found that altered cortical plasticity in prodomal and 75 

symptomatic HD mouse models is attributable to dopaminergic dysfunction in the 76 

perirhinal as well as prefrontal areas, brain regions that are highly sensitive to 77 

dopaminergic neuromodulation (Cummings et al. 2006; Dallérac et al. 2011). 78 

Others have shown that long-term potentiation (LTP) is affected in the striatum of 79 

HD mice, a form of plasticity that is also modulated by dopamine (Kung et al. 80 

2007). Strikingly, the impairment of perirhinal long-term depression (LTD) in R6/1 81 

mice could be reversed by the administration of a D2R agonist (Cummings et al. 82 

2006) whilst prefrontal long-term potentiation (LTP) was fully rescued by 83 

administration of a D1R agonist; suggesting that dopaminergic tone is altered in 84 

HD (Dallérac et al. 2011). Recent findings support further the view that 85 

dopaminergic modulation is abnormal in HD (Dallerac et al 2015).  Dopaminergic 86 

neuronal excitability was shown to be abnormally high in HD mice; importantly, 87 

evoked dopamine release from dopaminergic neurones was increased in the 88 

prodomal state and markedly decreased in symptomatic HD mouse models 89 

(Dallérac et al. 2015). 90 

Cognition is altered in HD patients (Harper 1996) and the hippocampus 91 

plays a central role in memory formation (Colgin et al. 2008). A number of 92 

investigations have reported that hippocampal-dependent cognitive functions are 93 

modulated by midbrain dopaminergic inputs (González-Burgos and Feria-94 

Velasco 2008; Hansen and Manahan-Vaughan 2014; Jay 2003). We and others 95 
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have previously described  markedly altered hippocampal synaptic plasticity in 96 

several HD mouse models (Hodgson et al. 1999; Milnerwood et al. 2006; Murphy 97 

et al. 2000; Usdin et al. 1999). In R6/1 and R6/2 mice this is manifest as impaired 98 

LTP and aberrant LTD (Milnerwood et al. 2006; Murphy et al. 2000). In light of 99 

the finding that alterations in cortical synaptic plasticity are highly sensitive to 100 

dopaminergic modulation in HD mice (André et al. 2010; Cepeda et al. 2014; 101 

Cummings et al. 2006; Dallérac et al. 2011; Dallérac et al. 2015), we 102 

hypothesized that abnormal dopaminergic signalling might also underlie the 103 

changes in synaptic plasticity seen in the hippocampus of HD mice. Therefore, 104 

using immunohistochemistry and electrophysiology, we have assessed the 105 

expression and regulatory functions of D1 and D2 receptors in the hippocampus 106 

of R6/1 mice. 107 

 108 

Materials & Methods 109 

Mice  110 

Hemizygotic R6/1 males (Mangiarini et al. 1996), were mated with 111 

CBAxC57BL/6 females, resulting in ~50% of the offspring being hemizygotic for 112 

the R6/1 transgene.  At weaning (3 weeks), all mice were given identity marks 113 

and tail-tip samples were taken for genotyping by PCR (Mangiarini et al. 1996). 114 

R6/1 and aged-matched non-transgenic littermates (WT) mice were killed by 115 

cervical dislocation and immediate decapitation in accordance with UK legislation 116 

(Animal (Scientific Procedures) Act 1986).  117 

Immunohistochemistry  118 
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Brains were rapidly removed and 400μm coronal slices were prepared on a 119 

vibrating microtome (Campden Instruments Inc. USA). Slices were fixed in 4% 120 

paraformaldehyde (PFA, Sigma-Aldrich, UK) then 2% PFA overnight and 121 

transferred to 0.1M phosphate buffered saline (PBS pH 7.4) and stored at 4ºC. 122 

Slices were temporarily mounted in 5% agar and re-sectioned to 50µm on a 123 

vibrating microtome (VT1000S; Leica, Milton Keynes, UK) washed in PBS, 124 

blocked/permeabilized (2% Fish gelatine; 0.01% sodium azide; 0.1% TritonX-100 125 

in PBS) for 2 h, and peroxidase quenched (3% H2O2 30 min). Subsequently, 126 

sections were incubated with the relevant primary antibody (AB1765P, rabbit 127 

polyclonal anti-dopamine D1A receptor or AB5840P rabbit polyclonal anti-128 

dopamine D2 receptor; 1:1600 dilution of 1 mg/ml stock, Chemicon International 129 

Inc., UK) made up in 2% blocking solution for 48 h. Next, sections were rinsed 130 

(PBS) prior to O/N incubation with peroxidase-conjugated anti-rabbit antibody 131 

(tyramide signal amplification kit, Molecular Probes Inc., USA). Sections were 132 

incubated in a 1:50 dilution of the amplification reagent and 0.0015% H2O2 for 5 133 

h, rinsed in PBS (3x15 min), coverslipped with fluorescence mounting medium, 134 

and left to dry for 48–62h. Consecutive slices were visualized on an inverted 135 

confocal microscope (Leica DM IBRE scanning confocal microscope, Leica 136 

Microsystems, Heidelberg, Germany) under 568 nm excitation (PMT 907) with 137 

the TRIT-C channel optimized for emission at 576 nm. Image stacks (6 mm) of 138 

12 sequential scans (0.5 mm) were collated for each section using Leica 139 

Confocal Software (Version 2.5, Leica). Transgenic and non-transgenic slices 140 

were processed and analysed in parallel. Image stacks (6 µm) of 12 141 
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sequential scans (0.5 µm) were performed and collected for each section 142 

using Leica Confocal Software (Version 2.5, Leica, Heidelberg, Germany). 143 

Fluorescence was calculated by manually selecting the 3 brightest scans 144 

from each stack and generating a composite average. Fluorescence was 145 

quantified by generating a mean fluorescence value (in arbitrary units) from 146 

three manually placed non-overlapping sampling boxes (2000 µm2) in each 147 

region of interest (ROI) through the CA1 field of the hippocampus 148 

(capillaries were avoided). Fluorescence intensity was standardized 149 

between slices by imaging sections on the same day using the same laser 150 

and parameters; i.e. gain, offset and PMT intensity. A minimum of three 151 

consecutive sections (3 measurements were collected per slice, and slice values 152 

collapsed to an animal mean) was used per animal (WT, R6/1 n = 3 animals) and 153 

age (1, 3 and 7 months; three animals per genotype per time point). Negative 154 

control sections were included where the primary antibody was omitted. Antibody 155 

specificity was further confirmed on sections of the brain from mice deficient in 156 

D2 dopamine receptors (Kelly et al. 1997) that were a gift from Professor Michael 157 

Levine (Intellectual and Developmental Disabilities Research Center, UCLA, 158 

USA). Sections prepared from D2 knock-out brains were processed for D2 159 

immunoreactivity together with control and R6/1 tissue. No immunoreactivity was 160 

observed in the D2 knock-out material or negative controls  161 

Electrophysiology 162 

Transverse hippocampal slices (400 μm) were prepared as previously 163 

reported (Milnerwood et al. 2006), area CA3 was excised and slices were 164 
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transferred to an interface recording chamber (Scientific Systems Design Inc., 165 

USA) maintained at 28°C and constantly perfused with oxygenated (95% O2, 5% 166 

CO2) artificial cerebrospinal fluid (ACSF; containing in mM: 120 NaCl, 3 KCl, 2 167 

MgSO4, 2 CaCl2, 1.2 NaH2PO4, 23 NaHCO3, 11 glucose) and left to incubate for 168 

a minimum of 1.5 h prior to experimentation. Hippocampal CA1 field potentials 169 

were evoked by constant current stimuli (40 μs) applied via monopolar 170 

stimulating electrodes (impedance 5 MΩ; AM Systems, USA) to CA3 Schaffer-171 

collateral commissural projections. Field potentials were recorded via 172 

extracellular glass microelectrodes (impedance 5-8 MΩ, filled with 1 M NaCl and 173 

2% pontamine blue) placed in the stratum radiatum of CA1 using either a 174 

Neurolog AC-preamp or Axoclamp 2B amplifier (Digitimer, UK; Axon Instruments 175 

Inc., USA, respectively). Low frequency stimulation (LFS) consisted of 900 176 

shocks at 1 Hz. For the purposes of assessing the probability of the induction of 177 

LTD it was defined as a stable reduction (>10%) of the fEPSP slope 1 h post-178 

conditioning. The fEPSP initial linear slope set at a fixed latency (software: 179 

A/Dvance 3.6) was used as an index of synaptic efficacy. Data are presented as 180 

mean+SEM (n = slice/experiment) and statistical analysis performed by one-way 181 

ANOVA. Stimulus intensity was set to produce a response just below the 182 

threshold for population spike activity detected in the fEPSP, and evoked at 183 

0.033 Hz for at least 20 min, to ensure a stable baseline prior to conditioning. All 184 

drugs (purchased from Tocris Bioscience, UK and Sigma-Aldrich Company Ltd.) 185 

were diluted in ACSF and perfused into the recording chamber for a minimum of 186 

20 minutes prior to experimentation. The D2 dopamine receptor agonist 187 
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quinpirole (10µM, Cummings et al., 2006; Dallérac et al., 2015), the D2 dopamine 188 

receptor antagonist remoxipride (10µM, Cummings et al. 2006), the D1 dopamine 189 

receptor antagonist SCH 23390 (10µM, Huang et al. 2004) and the D1 dopamine 190 

receptor partial agonist SKF 38393 (10µM, Dallérac et al. 2011) were used to 191 

investigate dopamine receptor activity.   192 

Statistical analyses 193 

Data for each condition were pooled and are expressed as mean+SEM. One - 194 

or Two-way ANOVA were performed using Statistica 6.1 (StatSoft Inc.). Fisher 195 

LSD test was used for post-hoc analysis. 196 

 197 

Results 198 

CA1 dopamine receptor expression increases in R6/1 transgenic mice 199 

In order to investigate the potential role of altered dopaminergic signalling in the 200 

R6/1 hippocampus, immunohistochemical investigation of the distribution of both 201 

D1 and D2 dopamine receptors was conducted. Representative confocal 202 

micrographs are shown in figures 1 & 2 for D1 and D2 receptor labelling 203 

respectively. Regions of interest (ROIs: white matter, WM; stratum oriens, SO; 204 

stratum pyramidale, SP; stratum radiatum proximal to SP, SRp; stratum radiatum 205 

distal from SP, SRd; molecular layer, ML) were sampled for fluorescence 206 

quantification.  207 

Two-way ANOVA demonstrated significant effect of age and genotype upon 208 

D1 receptor labelling (p<0.00001, F2,226=18.4), relative to WT. At 1 month of age 209 

there was a trend towards less D1 receptor labelling in all ROIs in R6/1 sections 210 
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(figure 1). D1 labelling was significantly lower in the SP (42.2%, p<0.03) and SRp 211 

(36.9%, p<0.04). By 3 months D1 labelling had increased relative to WT sections 212 

and significantly greater fluorescence was observed in the stratum radiatum 213 

(SRp, 62.9%, p<0.03 & SRd, 75.9%, p<0.03), suggesting that D1 receptor 214 

numbers are altered specifically in the R6/1 stratum radiatum. In the 7-month age 215 

group, D1 labelling also appeared to be increased, although this did not reach 216 

significance. 217 

Significant effects of age and genotype were also observed in D2 receptor 218 

labelling by ANOVA (p<0.00001, F2,220=22.9).  As detailed in figure 2, no 219 

significant differences between R6/1 and WT sections were observed at 1 month 220 

of age. At 3 months D2 labelling was significantly increased in the WM (32.9%, 221 

p<0.02), SR (SRp, 49.6%, p<0.01 & SRd, 63.9%, p<0.001) and SLM (47.4%, 222 

p<0.01).  There was no significant difference between the degree of labelling in 223 

WT and R6/1 SP (p=0.4) or SO, although the latter approached significance 224 

(p=0.06). At seven months of age there was a highly significant increase in D2 225 

labelling in the WM (99.7%, p<0.001), SO (93.7%, p<0.001), SR (SRp, 83.1%, 226 

p<0.001 & SRd, 141.4%, p<0.001) and SLM (86.3%, p<0.001) relative to WT 227 

sections.  The data suggest that D2 receptor numbers are greatly altered in the 228 

R6/1 CA1 field at three months and older.  Taken together, these observations 229 

suggest that large alterations in D1 and D2 receptor expression occur in the R6/1 230 

mouse hippocampus (albeit later for D2) compared to WT littermates, and 231 

furthermore that these differences occur months prior to the onset of the overt 232 

motor phenotype. 233 
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 234 

Dopamine signalling does not underlie aberrant synaptic function 235 

Pharmacological manipulation of D1 and D2 receptors was employed to 236 

investigate whether altered dopaminergic transmission could account for the 237 

aberrant LTD observed in adult R6/1 mice (Milnerwood et al. 2006), which is 238 

normally down-regulated by 1 month in wild type control mice (Milner et al. 2004). 239 

As shown in figure 3, neither D1 nor D2 receptor agonists nor antagonists (all 240 

delivered at 10M) altered the likelihood or magnitude of LTD induced by LFS in 241 

slices prepared from R6/1 mice aged 7-8 months. Indeed, as we reported 242 

previously (Milnerwood et al. 2006), in aged-matched untreated R6/1 slices, LFS 243 

induced significant LTD (12.1 ± 1.4%, n=41, p<0.000001). In the presence of 244 

the D1 receptor antagonist SCH 23390 (23), LTD was also induced (9.3 ± 3.8%, 245 

n=8, p<0.04) in 63% of experiments. Similarly, LTD was induced (14.5 ± 2.2%, 246 

n=7, p<0.001) in the presence of the D2 receptor agonist quinpirole (Cummings 247 

et al. 2006) in 86% of experiments. The presence of the D1 receptor partial 248 

agonist SKF 38393 (Dallérac et al. 2011) did not alter LTD either as it was found 249 

to be induced (14.0 ± 1.4%, n=11, p<0.00005) in 82% of experiments. Finally, 250 

the proportion of LTD induction (12.4 ± 1.9%, n=5, p<0.02) in the presence of 251 

the D2 receptor antagonist remoxipride (Cummings et al. 2006) reached an 252 

equally comparable 80%. There were no significant differences in the mean LTD 253 

produced between activation and inhibition of either D1 (p>0.2) or D2 receptors 254 

(p>0.3), and none of the four drug conditions produced LTD that was significantly 255 

different from that seen in age-matched untreated R6/1 slices. Therefore the data 256 



12 

suggest that, despite alterations to dopamine receptor expression, the 257 

mechanisms responsible for the induction of LTD in adult R6/1 mice is 258 

unperturbed by modulation of dopaminergic neurotransmission. 259 

 260 

Discussion 261 

Neither agonism nor antagonism of D1 or D2 dopamine receptors significantly 262 

altered LTD in R6/1 hippocampal slices (figure 3). This result is in stark contrast 263 

with the full rescue of LTP in the R6/1 prefrontal cortex by D1 receptor activation 264 

as well as restoration of LTD in the R6/1 perirhinal cortex by D2 agonist applied 265 

at similar concentrations (Cummings et al. 2006; Dallérac et al. 2011). The lack 266 

of effect upon hippocampal LTD is not attributable to a loss of dopamine 267 

receptors as we find an increase rather than a decrease in immunostaining for 268 

these receptors in R6/1 CA1 fields, with respect to wild type controls. This 269 

indicates that although dopaminergic changes play an important role in 270 

HD, the etiology of the disease is more complex and involves multiple 271 

mechanisms. Focusing on synaptic plasticity, alteration in brain derived 272 

neurotrophic factor (BDNF) availability has for example been reported as 273 

an important modifier of synaptic efficacy (Lynch et al. 2007; Simmons et 274 

al. 2009; Zuccato et al. 2003). In this regard, two recent reports further  275 

indicate that in HD mice striatum (Plotkin et al. 2014) and hippocampus 276 

(Brito et al. 2014), signalling downstream the BDNF tyrosine-related kinase 277 

B (TrkB) receptors and and p75 neurotrophin receptors (p75NTR) would 278 

also be deficient. Other identified molecular abnormalities underlying 279 
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synaptic dysfunction in HD include NMDA receptor composition with an 280 

increased NR2B function (Li et al. 2004; Milnerwood et al. 2006; Zeron et al. 281 

2002) and cell adhesion molecules such as PSA-NCAM (van der Borght and 282 

Brundin 2007). Finally, a recent report indicates that astroglial Kir4.1 283 

channels are deficient in HD (Tong et al. 2014); these astroglial channels 284 

are involved in the regulation of synaptic function (Dallerac et al. 2013) and 285 

are therefore also likely  to contribute to abnormal neurotransmission in 286 

HD. 287 

The significance of a large increase in dopamine receptor labelling is unclear, 288 

but it might reflect an up-regulation in dopamine receptor number in response to 289 

decreased dopaminergic innervation. Such a view is supported by a recent 290 

study reporting more than 30% decrease in hippocampal dopamine content 291 

in 12 weeks old symptomatic R6/2 mice (Mochel et al. 2011). Another 292 

possibility is that the dopamine receptors are dysfunctional, thus leading to a 293 

compensatory increase in their expression levels. DA release has been found to 294 

be severely reduced in both R6/1 and R6/2 HD mice (Dallérac et al. 2015; 295 

Johnson et al. 2006; Ortiz et al. 2011). Chemical enervation and depletion of the 296 

dopaminergic system in rats, by chronic treatment with 6-hydroxydopamaine, 297 

results in behavioural hyperactivity in the case of limited destruction and 298 

hypoactivity with larger lesions (Koob et al. 1981), reminiscent of the behaviour of 299 

R6/1 mice as they age (Bolivar et al. 2004). This treatment causes a priming 300 

effect in intact rats; subsequent application of D1 and D2 agonists results in 301 

greatly exaggerated behavioural responses (e.g., explosive jumping) in 302 
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comparison to the same agonism of non-treated animals (LaHoste and Marshall 303 

1989).  This priming effect is correlated with large increases in D2 receptor 304 

labelling (LaHoste and Marshall 1989; Savasta et al. 1992) and mRNA levels 305 

(Chritin et al. 1992). The lack of any observed effect of D1 and D2 agonism and 306 

antagonism suggests that although there is an increase in number, the 307 

localisation, activity or downstream cascades resulting from DA receptor 308 

activation are either non-functional or severely impaired. 309 

 Interestingly, changes were not uniform for D1 and D2 labelling throughout 310 

hippocampal subfields, results reminiscent of the changes in dopamine receptors 311 

expression during ageing (Amenta et al. 2001). There is also an important 312 

heterogeneity between brain regions as reduction were seen in the cortex and 313 

striatum of various mouse models of HD including R6/1 and R6/2 mice (Ariano et 314 

al. 2002; Cummings et al. 2006; Heng et al. 2007) whereas we observe an 315 

augmentation in the hippocampus. We thus propose that dynamic modulations of 316 

dopamine receptors occur as a function of the changes in dopamine 317 

bioavailability (Dallérac et al. 2015) that results from transgene expression. 318 

Dopamine therapy has long been used in the palliative treatment of HD with 319 

limited success (van Vugt and Roos 1999); likely because of the diverse actions 320 

of dopaminergic signalling  in the brain. Our previous reports (Cummings et al. 321 

2006; Dallérac et al. 2011; Dallérac et al. 2015) together with the data presented 322 

here demonstrate that pharmacological manipulations may have very different 323 

effects depending on the brain region in which they are active. The results of this 324 
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study add weight to the suggestion that targeted dopamine therapy might better 325 

alleviate symptoms in HD. 326 
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Figure captions 510 

 511 

Figure 1. Hippocampal CA1 D1 receptor labelling. 512 

Representative confocal micrographs (x40 objective) of D1 immunofluorescence 513 

in the CA1 area of the hippocampus of WT (left) and R6/1 (right) mice age as 514 

indicated (months). Regions of interest are marked for reference (top left): WM, 515 

white matter; SO stratum oriens; SP, stratum pyramidale; SRp/d, stratum 516 

radiatum proximal/distal to SP; SLM, stratum lanculosum-moleculare; hf, 517 

hippocampal fissure; dg, dentate gyrus. Bar = 100 µm. Quantification of D1 518 

receptor immunofluorescence is also shown. R6/1 (n=8(3)) sections had 519 

significantly less D1 receptor labelling than WT sections (n=9(3)) in the SRp 520 

(p<0.03) and SP (p<0.04) at 1 month. At 3 months D1 receptor labelling was 521 

significantly increased in the R6/1 stratum radiatum (p<0.03. R6/1, n=9(3). WT, 522 
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n=9(3)). R6/1 labelling was not significantly different from WT at 7 months 523 

(p>0.1. R6/1, n=5(2). WT, n=5(3)).  524 

 525 

Figure 2. Hippocampal CA1 D2 receptor labelling. 526 

Representative confocal micrographs (x40) of D2 immunofluorescence in the 527 

CA1 area of the hippocampus of WT (left) and R6/1 (right) mice from the ages 528 

indicated. Regions of interest are marked for reference in the top left panel: WM, 529 

white matter; SO stratum oriens; SP, stratum pyramidale; SRp/d, stratum 530 

radiatum proximal/distal to SP; SLM, stratum lanculosum-moleculare; hf, 531 

hippocampal fissure; dg, dentate gyrus. Bar = 100 µm. Quantification of D2 532 

immunofluorescence is also shown. R6/1 (n=8(3)) and WT (n=6(2)) D2 receptor 533 

labelling is similar at one month. At 3 months D2 receptor labelling is significantly 534 

increased (with respect to WT) in the R6/1 stratum radiatum and WM. At seven 535 

months a highly significant increase in R6/1 D2 labelling was observed in all 536 

ROIs except the SP (R6/1, n=8(3). WT, n=6(2), p<0.05, p<0.01, p<0.001). 537 

 538 

Figure 3. LTD in R6/1 adults is not blocked by pharmacological 539 

manipulation of dopamine receptors. 540 

Neither D1 nor D2 receptor agonists nor antagonists (10µM) significantly altered 541 

the magnitude (A, B, C, D, E) or probability (F) of LTD induction in slices 542 

prepared from R6/1 mice at 8 months of age. Insert in (A) shows the 543 
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stimulating and recording electrode placement. Double arrows represents 544 

cutting of the CA3 area for which the excised part is depicted in grey. 545 
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394bp (as shown in Figure R1 lane 1-4 and 6-9). For comparison, lane 5 (Figure R1) shows the PCR 

product of a different R6 line containing only 89 CAG repeats, here the size of the PCR product is 

300bp. Stability of the repeat length across generations was maintained by breeding from male mice 

that had repeat length of 116. 

 

 
Figure R1. Example of PCR products enabling verification of the transgene CAG repeat length. 

 

 

 

Point-by-point answer with figures Click here to download Figure Point-by-point answer with
figures.pdf

http://www.editorialmanager.com/nemm/download.aspx?id=15787&guid=7f19daff-316a-4cb5-9744-cdf214aff533&scheme=1
http://www.editorialmanager.com/nemm/download.aspx?id=15787&guid=7f19daff-316a-4cb5-9744-cdf214aff533&scheme=1


2. Please replace the representative image of 1m, 3m HD mice in Fig 1 D1 receptor. The coronal level 

or presented region is not consistent with other pictures. 

We understand that it may seem as if the sections used in Fig1 are from different coronal planes. This 

is however likely due to the orientation of the images acquired, notably with regard to the dendate 

gyrus. We were indeed careful to pick sections from -1.8 to -2.0 mm relative to bregma. In order to 

avoid such ambiguity, we re-centered images to only show the CA1 region in the correct orientation 

both in Fig 1 and Fig 2 and updated the captions accordingly. 

 

Figure 1. Hippocampal CA1 D1 receptor labelling. (p20 l512) 

Representative confocal micrographs (x40 objective) of D1 immunofluorescence in the CA1 area of 

the hippocampus of WT (left) and R6/1 (right) mice age as indicated (months).  



 
 

Figure 2. Hippocampal CA1 D2 receptor labelling. (p21 l526) 

Representative confocal micrographs (x40) of D2 immunofluorescence in the CA1 area of the 

hippocampus of WT (left) and R6/1 (right) mice from the ages indicated. 

 

3. Page 9, "Dopamine receptor expression increases in R6/1 transgenic mice" need specific to 

hippocampus since previously the authors found decreased levels of dopamine receptors in perirhinal 

cortex and other regions. 

We agree and thank the reviewer for this suggestion. We have now replaced the title "Dopamine 

receptor expression increases in R6/1 transgenic mice" by "CA1 dopamine receptor expression 

increases in R6/1 transgenic mice" p9, l199. 

 

4. Did the authors run western blot for dopamine D1 or D2- like receptors to confirm their finding? 

Especially in 7m HD hippocampus they found significant increase of D2- like receptor by 

immunostaining. 

Western blots are indeed used to quantify protein expression but can lack sufficient spatial and 

cellular resolution, the latter is better addressed using fluorescence immunohistochemistry. In our 

investigation we aimed at assessing dopamine receptor expression of different regions of the CA1 

area of the hippocampus. Western blots performed on hippocampal extracts is not the method of 

choice in our study as the changes we report would most likely be masked by heterogeneity from 

different hippocampal regions.  

5. Evidences showed increased DA in early stage and reduced DA in late-stage HD patients and animal 

models. Manipulation DA receptor depends on the level of DA tone. Thus except DA receptors, 

determine DA level in hippocampus of R6/1 mice may provide more comprehensive information. 



DA levels are indeed altered in HD patients and mice, and we have actually previously found that 

striatal release of this important neuromodulator is increased at early disease stages whilst it is 

markedly decreased in a late HD mouse model (Dallérac et al. 2015). We agree that studying DA 

release and tone in the hippocampus is relevant in light of the results we report here and of a recent 

study showing that dopamine content is reduced by ~30% in symptomatic R6/2 mice (Mochel et al. 

2011). We thank the reviewer for the suggestion, this will however be addressed in a future 

investigation as it is beyond the scope of the current negative findings manuscript. In light of this 

sensible comment, we have nevertheless improved the discussion of our manuscript p13 l288: 

" The significance of a large increase in dopamine receptor labelling is unclear, but it might reflect an 

up-regulation in dopamine receptor number in response to decreased dopaminergic innervation or 

signalling. Such a view is supported by a recent study reporting more than 30% decrease in 

hippocampal dopamine content in 12 weeks old symptomatic R6/2 mice (Mochel et al. 2011)." 
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Reviewer #2: The manuscript by Dallerac et al. nicely demonstrates that in the R6/1 mouse model of 

Huntington's disease, aberrant LTD in the aged hippocampus is not due to alterations in dopamine 

detection.  Specifically, the authors show that aberrant LTD is dissociated from pathologically 

elevated hippocampal expression of both D1 and D2 type receptors.  This is important, as abnormal 

plasticity in the disease state is clearly linked to abnormal dopaminergic signaling in other brain 

regions, including the cortex.  This dissociation helps shed light on one of the many potential 

limitations of dopamine-related therapies posited to be useful for HD.  The study is from a well-

established HD group, and should be of interest to researchers in the HD field.  I only have a few 

minor comments. 

 

1.      For quantification of fluorescence: how was fluorescence intensity compared between different 

slices?  Were wt and mutant slices processed and analyzed in parallel?  Can you please clarify what is 

meant by "internally normalized" in the methods section? 

Both transgenic and non-transgenic slices were indeed processed and analysed in parallel. Following 

the reviewer's advice we have now replaced the mention "internally normalized" by a more detailed 

description of the procedure p6 l140:  

"Transgenic and non-transgenic slices were processed and analysed in parallel. Image stacks (6 m) 

of 12 sequential scans (0.5 m) were performed and collected for each section using Leica Confocal 

Software (Version 2.5, Leica, Heidelberg, Germany). Fluorescence was calculated by manually 



selecting the 3 brightest scans from each stack and generating a composite average. Fluorescence 

was quantified by generating a mean fluorescence value (in arbitrary units) from three manually 

placed non-overlapping sampling boxes (2000 µm2) in each region of interest (ROI) through the 

CA1 field of the hippocampus (capillaries were avoided). Fluorescence intensity was standardized 

between slices by imaging sections on the same day using the same laser and parameters; i.e. gain, 

offset and PMT intensity." 

 

2.      It may be useful to show where the recording electrode was for LTD experiments (fig 3), in 

relation to the immune data shown in figures 1-2.  Perhaps a label in figure(s) 1 or 2. 

 

This is a sensible suggestion and we have now inserted a schematic diagram showing placement of 

the electrodes in Figure 3. Figure caption has been amended accordingly (p21 l543). 

 
Figure 3. LTD in R6/1 adults is not blocked by pharmacological manipulation of dopamine receptors 

Neither D1 nor D2 receptor agonists nor antagonists (10µM) significantly altered the magnitude (A, 

B, C, D, E) or probability (F) of LTD induction in slices prepared from R6/1 mice at 8 months of age. 

Insert in (A) shows the stimulating and recording electrode placement. Double arrows represents 

cutting of the CA3 area for which the excised part is depicted in grey. (p21 l543) 



 

3.      Recently, evidence has been published that points to non-dopaminergic pathologies in HD that 

lead to impaired synaptic plasticity.  For example, Surmeier's group recently showed that diminished 

TrkBR signaling in the striatum impairs LTP.  It would be benSeficial to add references supporting the 

findings that non-dopaminergic impairments alter plasticity in HD models. 
 

We agree with the reviewer and have now improved our manuscript by discussing non-dopaminergic 

alterations in synaptic plasticity, p12 l269:  
 

" This indicates that although dopaminergic changes play an important role in HD, the etiology of 

the disease is more complex and involves multiple mechanisms. Focusing on synaptic plasticity, 

alteration in brain derived neurotrophic factor (BDNF) availability has for example been reported 

as an important modifier of synaptic efficacy (Lynch et al. 2007; Simmons et al. 2009; Zuccato et al. 

2003). In this regard, two recent reports further  indicate that in HD mice striatum (Plotkin et al. 

2014) and hippocampus (Brito et al. 2014), signalling downstream the BDNF tyrosine-related kinase 

B (TrkB) receptors and and p75 neurotrophin receptors (p75NTR) would also be deficient. Other 

identified molecular abnormalities underlying synaptic dysfunction in HD include NMDA receptor 

composition with an increased NR2B function (Li et al. 2004; Milnerwood et al. 2006; Zeron et al. 

2002) and cell adhesion molecules such as PSA-NCAM (van der Borght and Brundin 2007). Finally, a 

recent report indicates that astroglial Kir4.1 channels are deficient in HD (Tong et al. 2014); these 

astroglial channels are involved in the regulation of synaptic function (Dallerac et al. 2013) and are 

therefore also likely  to contribute to abnormal neurotransmission in HD. ". 
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