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Abstract

Complicated generative models often result
in a situation where computing the likelihood
of observed data is intractable, while simulat-
ing from the conditional density given a pa-
rameter value is relatively easy. Approximate
Bayesian Computation (ABC) is a paradigm
that enables simulation-based posterior infer-
ence in such cases by measuring the simi-
larity between simulated and observed data
in terms of a chosen set of summary statis-
tics. However, there is no general rule to con-
struct sufficient summary statistics for com-
plex models. Insufficient summary statis-
tics will “leak” information, which leads to
ABC algorithms yielding samples from an
incorrect posterior. In this paper, we pro-
pose a fully nonparametric ABC paradigm
which circumvents the need for manually se-
lecting summary statistics. Our approach,
K2-ABC, uses maximum mean discrepancy
(MMD) to construct a dissimilarity measure
between the observed and simulated data.
The embedding of an empirical distribution
of the data into a reproducing kernel Hilbert
space plays a role of the summary statistic
and is sufficient whenever the corresponding
kernels are characteristic. Experiments on a
simulated scenario and a real-world biologi-
cal problem illustrate the effectiveness of the
proposed algorithm.
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1 INTRODUCTION

ABC is an approximate Bayesian inference framework
for models with intractable likelihoods. Originated in
population genetics [1], ABC has been widely used in
a broad range of scientific applications including ecol-
ogy, cosmology, and bioinformatics [2, 3, 4]. The goal
of ABC is to obtain an approximate posterior distribu-
tion over model parameters, which usually correspond
to interpretable inherent mechanisms in natural phe-
nomena. However, in many complex models of inter-
est, exact posterior inference is intractable since the
likelihood function, the probability of observations y∗

for given model parameters θ, is either expensive or im-
possible to evaluated. This leads to a situation where
the posterior density cannot be evaluated even up to
a normalisation constant.

ABC resorts to an approximation of the likelihood
function using simulated observations that are similar
to the actual observations. Most ABC algorithms eval-
uate the similarity between the simulated and actual
observations in terms of a pre-chosen set of summary
statistics. Since the full dataset is represented in a
lower-dimensional space of summary statistics, unless
the selected summary statistic s∗ is sufficient, ABC re-
sults in inference on the approximate posterior p(θ|s∗),
rather than the desired full posterior p(θ|y∗). There-
fore, a poor choice of a summary statistic can lead to
an additional bias that can be difficult to quantify and
the selection of summary statistics is a crucial step
in ABC [5, 6]. A number of methods have been pro-
posed for constructing informative summary statistics
by appropriate transformations of a set of candidate
summary statistics: a minimum-entropy approach [7],
regression from a set of candidate summary statistics
to parameters [8], or a partial least-squares transfor-
mation with boosting [9, 10]. A review of these meth-
ods is given in [9]. However, they still heavily depend
on the initial choice of candidate summary statistics
and may not suffice for full posterior inference.
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Another line of research, inspired by indirect infer-
ence framework, constructs the summary statistics us-
ing auxiliary models [11, 12, 13]. Here, the estimated
parameters of an auxiliary model become the sum-
mary statistics for ABC. A thorough review of these
method is given in [10]. The biggest advantage of this
framework is that the dimensionality of the summary
statistic can be determined by controlling the com-
plexity of the auxiliary model using standard model
selection techniques such as Bayesian information cri-
terion (BIC) and Akaike information criterion (AIC).
However, even if the complexity can be set in a princi-
pled way, one still needs to select the right parametric
form of the auxiliary model.

In this light, we introduce a method that circum-
vents an explicit selection of summary statistics. Our
method proceeds by applying a similarity measure to
data themselves, via embedding [14, 15] of the empir-
ical data distributions into an infinite-dimensional re-
producing kernel Hilbert space (RKHS), correspond-
ing to a positive definite kernel function defined on the
data space. For suitably chosen kernels called char-
acteristic [16], these embeddings capture all possible
differences between distributions, e.g. all the high-
order moment information that may be missed with
a set of simple summary statistics. Thus, no infor-
mation loss is incurred when going from the posterior
given data p(θ|y∗) to that given the embedding µ(y∗)
of data, p(θ|µ(y∗)). A flexible representation of prob-
ability measures given by kernel embeddings has al-
ready been applied to nonparametric hypothesis test-
ing [17], inference in graphical models [18] and to pro-
posal construction in adaptive MCMC [19]. The key
quantity arising from this framework is an easily com-
putable notion of a distance between probability mea-
sures, termed Maximum Mean Discrepancy (MMD).
When the kernel used is characteristic, a property sat-
isfied by most commonly used kernels including Gaus-
sian, Laplacian and inverse multiquadrics, embeddings
are injective, meaning that the MMD gives a metric
on probability measures. Here, we adopt MMD in the
context of ABC as a nonparametric distance between
empirical distributions of simulated and observed data.
As such, there is no need to select a summary statistic
first and the kernel embedding itself plays a role of a
summary statistic. In addition to the positive definite
kernel used for obtaining the estimates of MMD, we
apply an additional Gaussian smoothing kernel which
operates on the corresponding RKHS, i.e., on embed-
dings themselves, to obtain a measure of similarity be-
tween simulated and observed data. For this reason,
we refer to our method as double-kernel ABC, or K2-
ABC. Our experimental results in section 4 demon-
strate that this approach results in an effective and
robust ABC method which requires no hand-crafted

summary statistics.

The rest of the paper is organised as follows. In sec-
tion 2, we overview classical approaches (rejection and
soft ABC) as well as several relevant recent techniques
(synthetic likelihood ABC, semi-automatic ABC, in-
direct score ABC, and kernel ABC) to which we will
compare our method in section 4. In section 3, we
introduce our proposed algorithm. Experimental re-
sults including comparisons with methods discussed
in section 2, are presented in section 4. We explore
computational tractability of K2-ABC in section 5.

2 BACKGROUND

We start by introducing ABC and reviewing existing
algorithms. Consider a situation where it is possible
to simulate a generative model and thus sample from
the conditional density p(y|θ), given a value θ ∈ Θ of
parameters, while the computation of the likelihood
p(y∗|θ) for the observed data y∗ is intractable. Nei-
ther exact posterior inference nor posterior sampling
are possible in this case, as the posterior p(θ|y∗) ∝
π(θ)p(y∗|θ), for a prior π, cannot be computed up to
a normalizing constant. ABC uses an approximation
of the likelihood obtained from simulation.

The simplest form of ABC is rejection ABC. Let
ε > 0 be a similarity threshold, and ρ be a notion
of distance, e.g., a premetric on domain Y of obser-
vations. The rejection ABC proceeds by sampling
multiple model parameters θ ∼ π. For each θ, a
pseudo dataset y is generated from p(y|θ). The pa-
rameters θ for which the generated y are similar to
the observed y∗, as decided by ρ(y, y∗) < ε, are ac-

cepted. The result is an exact sample {θi}Mi=1 from
the approximated posterior p̃ε(θ|y∗) ∝ π(θ)p̃ε(y

∗|θ),
where p̃ε(y

∗|θ) =
∫
Bε(y∗)

p(y|θ)dy and Bε (y∗) =

{y : ρ(y, y∗) < ε}. Choice of ρ is crucial for the design
of an accurate ABC algorithm. Applying a distance
directly on dataset y is often challenging, when the
dataset consists of a large number of (possibly multi-
variate) observations.

Thus, one resorts to first choosing a summary statis-
tic s(y) and comparing them between the datasets, i.e.
ρ (y, y′) = ‖s(y)− s(y′)‖. Since it is generally difficult
to construct sufficient statistics for complex models,
this will often “leak” information, e.g., if s(y) repre-
sents first few empirical moments of dataset y. It is
only when the summary statistic s is sufficient, that
this approximation is consistent as ε → 0, i.e. that
the ABC posterior p̃ε(θ|y∗) will converge to the full
posterior. Otherwise, ABC operates on the approxi-
mate posterior p(θ|s(y∗)), rather than the full poste-
rior p(θ|y∗).
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Another interpretation of the approximate likelihood
p̃ε(y

∗|θ) is as the convolution of the true likeli-
hood p(y|θ) and the “similarity” kernel κε(y, y

∗) =
1 (y ∈ Bε(y∗)). Being the indicator of the ε-ball
Bε(y

∗) computed w.r.t. ρ, this kernel imposes a hard-
constraint leading to the rejection sampling. In fact,
one can use any similarity kernel parametrised by ε
which approaches delta function δy∗ as ε → 0. A fre-
quently used similarity kernel takes the form

κε(y, y
′) = exp

(
−ρ

q(y, y′)
ε

)
, for q > 0. (1)

Such construction would result in a weighted sam-

ple {(θj , wj)}Mj=1, where wj =
κε(yj ,y

∗)∑M
l=1 κε(yl,y

∗)
, which

can be directly utilised in estimating posterior expec-
tations. That is, for a test function f , the expec-
tation

∫
Θ
f(θ)p(θ|y∗)dθ is estimated using Ê[f(θ)] =∑M

i=1 wjf(θj). This is an instance of what we call soft
ABC, in which parameter samples from the prior are
weighted, rather than accepted or rejected.

Synthetic likelihood ABC (SL-ABC) Intro-
duced in [20], the synthetic likelihood ABC models
simulated data in terms of their summary statistics
and further assumes the summary statistics have mul-
tivariate normal distribution, s ∼ N (µ̂θ, Σ̂θ), with the
empirical mean and covariance defined by

µ̂θ = 1
M

M∑

i=1

si, Σ̂θ = 1
M−1

M∑

i=1

(si − µ̂θ)(si − µ̂θ)>,

where si denotes the vector of summary statistics of
the ith simulated dataset. Using the following simi-
larity kernel to measure the distance from the sum-
mary statistics of actual observations s∗, κε(s∗, s) =

|2πεI|−
1
2 exp

(
−‖s−s

∗‖22
2ε2

)
, the resulting synthetic like-

lihood is given by

p(s∗|θ) =

∫
κε(s

∗, s)N (s|µ̂θ, Σ̂θ) ds

= N (s∗|µ̂θ, Σ̂θ + ε2I).

Relying on the synthetic likelihood, SL-ABC algo-
rithm performs MCMC sampling based on Metropolis-
Hastings accept/reject steps with the acceptance prob-

ability given by α(θ′|θ) = min
[
1, π(θ′)p(s∗|θ′)q(θ|θ′)

π(θ)p(s∗|θ)q(θ′|θ)

]
,

where q(θ|θ′) is a proposal distribution.

Semi-Automatic ABC (SA-ABC) Under a
quadratic loss, [8] shows that the optimal choice of the
summary statistics is the true posterior means of the
parameters E [θ|y] – however, these cannot be calcu-
lated analytically. Thus, [8] proposed to use the simu-
lated data in order to construct new summary statis-
tics – estimates of the posterior means of the parame-
ters – by fitting a vector-valued regression model from

a set of candidate summary statistics to parameters.
Namely, a linear model θ = E [θ|y]+ε = Bg(y)+ε with
the vector of candidate summary statistics g(y) used
as explanatory variables (these can be simply g(y) = y
or also include nonlinear functions of y) is fitted based
on the simulated data {(yi, θi)}Mi=1. Here, assuming
θ ∈ Θ ⊂ Rd and g(y) ∈ Rr, B is a d × r matrix of
coefficients. The resulting estimates s(y) = B̂g(y) of
E [θ|y] can then be used as summary statistics in stan-
dard ABC by setting ρ(y, y∗) = ‖s(y)− s(y∗)‖2.

Indirect score ABC (IS-ABC) Based on an aux-
iliary model pA(y|φ) with a vector of parameters
φ = [φ1, · · · , φdim(φ)]

>, the indirect score ABC uses
a score vector SA as the summary statistic [12]:

SA(y, φ) =
[
∂ log pA(y|φ)

∂φ1
, · · · , ∂ log pA(y|φ)

∂φdim(φ)

]
>. When

the auxiliary model parameters φ are set by the
maximum-likelihood estimate (MLE) fitted with ob-
served data y∗, the score for the observed data
SA(y∗, φMLE(y∗)) becomes zero. Based on this fact,
IS-ABC searches for the parameter values whose corre-
sponding simulated data produce a score close to zero.
The discrepancy between observed and simulated data
distributions in IS-ABC is given by

ρ(s(y), s(y∗))

=
√
SA(y, φMLE(y∗))>J(φMLE(y∗))SA(y, φMLE(y∗)),

where J(φMLE(y∗)) is the approximate covariance ma-
trix of the observed score.

Kernel ABC (K-ABC) The use of a positive def-
inite kernel in ABC has been explored recently in [21]
(K-ABC) in the context of population genetics. In
K-ABC, ABC is cast as a problem of estimating a
conditional mean embedding operator mapping from
summary statistics s(y) to corresponding parameters
θ. The problem is equivalent to learning a regression
function in the RKHSs of s(y) and θ induced by their
respective kernels [22]. The training set T needed
for learning the regression function is generated by
firstly sampling {(yi, θi)}Mi=1 ∼ p(y|θ)π(θ) from which
T := {(si, θi)}Mi=1 by summarising each pseudo dataset
yi into a summary statistic si.

In effect, given a summary statistic s∗ corresponding
to the observations y∗, the learned regression function
allows one to represent the embedding of the poste-
rior distribution in the form of a weighted sum of the
canonical feature maps {k(·, θi)}Mi=1 where k is a ker-
nel associated with an RKHS Hθ. In particular, if
we assume that k is a linear kernel (as in [21]), the
posterior expectation of a function f ∈ Hθ is given
by E[f(θ)|s∗] ≈ ∑M

i=1 wi(s
∗)f(θi) where wi(s

∗) =∑M
j=1((G + MλI)−1)ijk(sj , s

∗), Gij = g(si, sj), g is
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a kernel on s, and λ is a regularization parameter.
The use of a kernel g on summary statistics s im-
plicitly transforms s non-linearly, thereby increasing
the representativeness of s. Nevertheless, the need for
summary statistics is not eliminated.

3 PROPOSED METHOD

We first overview kernel MMD, a notion of distance
between probability measures that is used in the pro-
posed K2-ABC algorithm.

Kernel MMD For a probability distribution Fx on
a domain X , its kernel embedding is defined as µFx =
EX∼Fxk(·, X) [15], an element of an RKHS H associ-
ated with a positive definite kernel k : X × X → R.
An embedding exists for any Fx whenever the kernel
k is bounded, or if Fx satisfies a suitable moment con-
dition w.r.t. an unbounded kernel k [23]. For any two
given probability measures Fx and Fy, their maximum
mean discrepancy (MMD) is simply the Hilbert space
distance between their embeddings:

MMD2(Fx, Fy) =
∥∥µFx − µFy

∥∥2

H
=EXEX′k(X,X ′) + EY EY ′k(Y, Y ′)− 2EXEY k(X,Y ),

where X,X ′
i.i.d.∼ Fx and Y, Y ′

i.i.d.∼ Fy. While simple
kernels like polynomial of order r capture differences
in first r moments of distributions, particularly inter-
esting are kernels with a characteristic property 1 [16],
for which the kernel embedding is injective and thus
MMD defined by such kernels gives a metric on the
space of probability distributions. Examples of such
kernels include widely used kernels such as Gaussian
RBF and Laplacian. Being written in terms of ex-
pectations of kernel functions allows straightforward
estimation of MMD on the basis of samples: given{
x(i)
}nx
i=1

i.i.d.∼ Fx,
{
y(j)
}ny
j=1

i.i.d.∼ Fy, an unbiased es-

timator is given by

M̂MD
2
(Fx, Fy) =

1

nx(nx − 1)

nx∑

i=1

∑

j 6=i
k(x(i), x(j))

+
1

ny(ny − 1)

ny∑

i=1

∑

j 6=i
k(y(i), y(j))

− 2

nxny

nx∑

i=1

ny∑

j=1

k(x(i), y(j)).

Further operations are possible on kernel embeddings
- one can define a positive definite kernel on proba-
bility measures themselves using their representation

1A related notion of universality is often employed.

in a Hilbert space. An example of a kernel on proba-

bility measures is κε(Fx, Fy) = exp
(
−MMD2(Fx,Fy)

ε

)
,

[24] with ε > 0. This has recently led to a thread
of research tackling the problem of learning on distri-
butions, e.g., [25]. These insights are essential to our
contribution, as we employ such kernels on probabil-
ity measures in the design of the K2-ABC algorithm
which we describe next.

K2-ABC The first component of K2-ABC is a non-
parametric distance ρ between empirical data distri-
butions. Given two datasets y =

(
y(1), . . . , y(n)

)
and

y′ =
(
y′(1), . . . , y′(n)

)
consisting of n i.i.d. observa-

tions2, we use MMD to measure the distance between

y, y′: ρ2(y, y′) = M̂MD
2
(Fy, Fy′), i.e. ρ2 is an un-

biased estimate of MMD2 between probability distri-
butions Fy and Fy′ used to generate y and y′. This
is almost the same as setting empirical kernel embed-
ding s(y) = µF̂y =

∑n
j=1 k

(
·, y(j)

)
to be the summary

statistic. However, in that case ‖s(y)− s(y′)‖2H =

MMD2(F̂x, F̂y) would have been a biased estimate of
the population MMD2 [17]. Our choice of ρ is guar-
anteed to capture all possible differences (i.e. all mo-
ments) between Fy and Fy′ whenever a characteristic
kernel k is employed [16], i.e. we are operating on a
full posterior and there is no loss of information due
to the use of insufficient statistics.

Algorithm 1 K2-ABC Algorithm

Input: observed data y∗, prior π, soft threshold ε
Output: Empirical posterior

∑M
i=1 wiδθi

for i = 1, . . . ,M do
Sample θi ∼ π
Sample pseudo dataset yi ∼ p(·|θi)
w̃i = exp

(
− M̂MD

2
(Fyi ,Fy∗ )

ε

)

end for
wi = w̃i/

∑M
j=1 w̃j for i = 1, . . . ,M

Further, we introduce a second kernel into the ABC
algorithm (summarised in Algorithm 1), the one that
operates directly on probability measures, and com-
pute the ABC posterior sample weights,

κε(Fy, Fy′) = exp


−M̂MD

2
(Fy, Fy′)

ε


 , (2)

with a suitably chosen parameter ε > 0. Now, the
datasets are compared using the estimated similarity
κε between their generating distributions. There are

2The i.i.d. assumption can be relaxed in practice, as we
demonstrate in section 4 on time series data.
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two sets of parameters in K2-ABC, parameters of ker-
nel k (on original domain) and ε in the kernel κε (on
probability measures).

K2-ABC is readily applicable to non-Euclidean input
objects if a kernel k can be defined on them. Ar-
guably the most common application of ABC is to
genetic data. Over the past years there have been a
number of works addressing the use of kernel methods
for studying genetic data including [26] which consid-
ered genetic association analysis, and [27] which stud-
ied gene-gene interaction. Generic kernels for strings,
graphs and other structured data have also been ex-
plored [28].

4 EXPERIMENTS

Toy problem We start by illustrating how the
choice of summary statistics can significantly affect the
inference result, especially when the summary statis-
tics are not sufficient. We consider a symmetric Dirich-
let prior π and a likelihood p(y|θ) given by a mixture
of uniform distributions as

π(θ) = Dirichlet(θ;1),

p(y|θ) =
5∑

i=1

θiUniform(y; [i− 1, i]). (3)

The model parameters θ are a vector of mix-
ing proportions. The goal is to estimate E[θ|y∗]
where y∗ is generated with true parameter θ∗ =
[0.25, 0.04, 0.33, 0.04, 0.34]> (see Fig. 1A). The sum-
mary statistics are chosen to be empirical mean and
variance i.e. s(y) = (Ê[y], V̂[y])>.

We compare three ABC algorithms: K2-ABC3, rejec-
tion ABC, and soft ABC. Here, soft ABC refers to an
ABC algorithm which uses a similarity kernel in Eq. 1
with q = 2 and ρ(y, y′) = ‖s(y)−s(y′)‖2. For K2-ABC,
we set M = 1000 and used a Gaussian kernel defined

as k(a, b) = exp
(
−‖a−b‖

2
2

2γ2

)
to compute M̂MD

2
where

γ is set to median({‖y∗(i) − y∗(j)‖}i,j) [29]. We test
different values of ε on a coarse grid, and report the
estimated E[θ|y∗] which is closest to θ∗ as measured
with a Euclidean distance.

The results are shown in Fig. 1 where the top row
shows the estimated E[θ|y∗] from each method, asso-
ciated with the best ε as reported in the third row. The
second row of Fig. 1, from left to right, shows y∗ and
400 realizations of y drawn from p(y|E[θ|y∗]) obtained
from the three algorithms. In all cases, the mean and
variance of the drawn realizations match that of y∗.
However, since the first two moments are insufficient

3Code for K2-ABC is available at https://github.
com/wittawatj/k2abc.

to characterise p(y|θ∗), there exists other θ′ that can
give rise to the same s(y′), which yields inaccurate
posterior means shown in the top row. In contrast,
K2-ABC taking into account infinite-dimensional suf-
ficient statistic correctly estimates the posterior mean.

Ecological dynamic systems As an example of
statistical inference for ecological dynamic systems,
we use observations on adult blowfly populations over
time introduced in [20]. The population dynamics are
modelled by a discretised differential equation:

Nt+1 = PNt−τ exp

(
−Nt−τ

N0

)
et +Nt exp(−δεt),

where an observation at time t+ 1 is denoted by Nt+1

which is determined by time-lagged observations Nt
and Nt−τ as well as Gamma distributed noise realisa-
tions et ∼ Gam( 1

σ2
p
, σ2
p) and εt ∼ Gam( 1

σ2
d
, σ2
d). Here,

the parameters are θ = {P,N0, σd, σp, τ, δ}. We put
broad Gaussian priors on log of parameters as shown
in Fig. 2A. Note that the time series data given the pa-
rameters drawn from the priors vary drastically (see
Fig. 2B), and therefore inference with those data is
very challenging as noted in [30].

The observation (black trace in Fig. 2B) is a time-
series of length T = 180, where each point in time in-
dicates how many flies survive at each time under food
limitation. For SL-ABC and K-ABC, we adopted the
custom 10 summary statistics used in [30]: the log of
the mean of all 25% quantiles of {Nt/1000}Tt=1 (four
statistics), the mean of 25% quantiles of the first-order
differences of {Nt/1000}Tt=1 (four statistics), and the
maximal peaks of smoothed {Nt}Tt=1, with two differ-
ent thresholds (two statistics). For IS-ABC, following
[10], we use a Gaussian mixture model with three com-
ponents as an auxiliary model. In addition, we ran
two versions of SA-ABC algorithm on this example:
SAQ regresses to simulated parameters from the corre-
sponding simulated instances of time-series appended
with the quadratic terms , i.e., g(y) = (y, y2) ∈ R2T ,
whereas SA-custom uses the above custom 10 sum-
mary statistics from [30] appended with their squares
as the candidate summary-statistics vector g(y) (which
is thus 20-dimensional in this instance).4

For setting ε and kernel parameters in K2-ABC, we
split the data into two sets: training (75% of 180 data
points) and test (the rest) sets. Using the training
data, we ran each ABC algorithm given each value of
ε and kernel parameters defined on a coarse grid, then,

4For SL-ABC, we used the Python implementation by
the author of [30]. For IS-ABC, we used the MATLAB
implementation by the author of [10]. For SA-ABC, we
used the R package abctools written by the author of [8].
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Figure 1: A possible scenario for ABC algorithms to fail due to insufficient summary statistics. A: Using
the 5-dimensional true parameters (top), 400 observations (bottom) are sampled from the mixture of uniform
distributions in Eq. 3. B (top): Estimated posterior mean of parameters from each method. We drew 1000
parameters from the Dirichlet prior and 400 simulated data points given each parameter. In rejection and
soft ABC algorithms, we used empirical mean and variance of observations as summary statistics to determine
similarity between simulated and observed data. B (middle): Histograms of 400 simulated data points given
estimated posterior means by each method. Though the mean and variance of simulated data from rejection and
soft ABC match that of the observed data, the shapes of the empirical distributions notably differ. B (bottom):
Euclidean distance between true and estimated posterior mean of parameters as a function of ε. We varied the
ε values to find the optimal range in terms of the Euclidean distance. The magnitude of ε is algorithm-specific
and not comparable across methods.

computed test error5 to choose the optimal values of ε
and kernel parameters in terms of the minimum pre-
diction error. Finally, with the chosen ε and kernel
parameters, we ran each ABC algorithm using the en-
tire data (M = 1000).

We show the concentrated posterior mass after per-
forming K2-ABC in Fig. 2A, as well as an example
trajectory drawn from the inferred posterior mean in
Fig. 2B 6. To quantify the accuracy of each method,
we compute the Euclidean distance between the vec-
tor of chosen 10 summary statistics s∗ = s(y∗) for the
observed data and s(y) for the simulated data y given

the estimated posterior mean θ̂ of the parameters. As
shown in Fig. 3, K2-ABC outperforms other meth-
ods, although SL-ABC, SA-custom, and K-ABC all

5We used Euclidean distance between the histogram
(with 10 bins) of test data and that of predictions made by
each method. We chose the difference in histogram rather
than in the realisation of y itself, to avoid the error due to
the time shift in y.

6Note that reproducing the trajectory exactly is not the
main goal of this experiment. We show the example tra-
jectory to give the readers a sense of what the trajectory
looks like.

explicitly operate on this vector of summary statistics
s while K2-ABC does not. In other words, while those
methods attempt to explicitly pin down the parts of
the parameter space which produce summary statistics
s similar to s∗, insufficiency of these summary statis-
tics affects the posterior mean estimates undesirably
even with respect to that very metric.

5 COMPUTATIONAL TRACTABILITY

In K2-ABC, given a dataset and pseudo dataset
with n observations each, the cost for computing

M̂MD
2
(Fyi , Fy∗) is O(n2). For M pseudo datasets,

the total cost then becomes O(Mn2), which can be
prohibitive for a large number of observations. Since
computational tractability is among the core consider-
ations for ABC, in this section, we examine the per-
formance of K2-ABC with different MMD approxima-
tions which reduce the computational cost.

Linear-time MMD The unbiased linear-time
MMD estimator presented in [17, section 6] reduces
the total cost to O(Mn) at the price of a higher vari-
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Figure 2: Blowfly data. A (top): Histograms of 10, 000 samples for four parameters {logP, logN0, log σp, log τ}
drawn from the prior. A (middle/bottom): Histogram of samples from the posteriors obtained by K2-ABC
/ SL-ABC (acceptance rate: 0.2, burn-in: 5000 iterations), respectively. In both cases, the posteriors over
parameters are concentrated around their means (black bar). The posterior means of P and τ obtained from
K2-ABC are close to those obtained from SL-ABC, while there is noticeable difference in the means of N0 and
σp. Note that we were not able to show the same histogram for K-ABC since the posterior obtained by K-ABC
is improper. B (top): Three realisations of y given three different parameters drawn from the prior. Small
changes in θ drastically change y. B (middle to bottom): Simulated data using inferred parameters (posterior
means) shown in A. Our method (in red) produces the most similar dynamic trajectory to the actual observation
(in black) among all the methods.
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Figure 3: Euclidean distance between the chosen 10
summary statistics of y∗ and y given the posterior
mean of parameters estimated by various methods.
Due to the fluctuations in y from the noise realisa-
tions (εt, et), we made 100 independent draws of y and
computed the Euclidean distance. Note that K2-ABC
achieved nearly 50% lower errors than the next best
method, SL-ABC, although SL-ABC, SA-custom, and
K-ABC all explicitly operate on the summary statis-
tics in the comparison while K2-ABC does not.

ance. Due to its computational advantage, the linear-
time MMD has been successfully applied in large-scale
two-sample testing [31] as a test statistic. The original
linear-time MMD is given by

M̂MD
2

l (Fx, Fy)

=
2

n

n/2∑

i=1

[
k(x(2i−1), x(2i)) + k(y(2i−1), y(2i))

− k(x(2i−1), y(2i))− k(x(2i), y(2i−1))

]
.

Note that we have assumed the same number of ob-
servations nx = ny = n from Fx and Fy. The esti-

mator M̂MD
2

l is constructed so that the independence
of the summands allows derivation of its asymptotic
distribution and the corresponding quantile computa-
tion needed for two-sample testing. However, since
we do not require such independence, we employ a
linear-time estimator with a larger number of sum-
mands, which also does not require nx = ny. With-
out loss of generality, we assume nx ≤ ny Denote

x(j) := x(1+mod(j−1,nx)) for j > nx, i.e., we allow a
cyclic shift through the smaller dataset {x(i)}nxi=1. The
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linear-time MMD estimator that we propose is

M̂MD
2

L(Fx, Fy) =
1

nx − 1

nx−1∑

i=1

k(x(i), x(i+1))

+
1

ny − 1

ny−1∑

i=1

k(y(i), y(i+1))− 2

ny

ny∑

i=1

k(x(i), y(i)),

which is an unbiased estimator of MMD2(Fx, Fy).
The total cost of the resulting K2-ABC algorithm is
O(M(nx + ny)).

MMD with random Fourier features Another
fast linear MMD estimator can be achieved by consid-
ering an approximation to the kernel function k(x, y)
with an inner product of finite dimensional feature vec-

tors φ̂(x)>φ̂(y) where φ̂(x) ∈ RD and D is the number

of features. Given the feature map φ̂(·) such that,

k(x, y) ≈ φ̂(x)>φ̂(y), MMD2 can be approximated as

MMD2
rf (Fx, Fy)

≈ EX φ̂(X)>EX′ φ̂(X ′) + EY φ̂(Y )>EY ′ φ̂(Y ′)

− 2EX φ̂(X)>EY φ̂(Y ) := ‖EX φ̂(X)− EY φ̂(Y )‖22.

A straightforward (biased) estimator is

M̂MD
2

rf (Fx, Fy) =

∥∥∥∥
1

nx

nx∑

i=1

φ̂(x(i))− 1

ny

ny∑

i=1

φ̂(y(i))

∥∥∥∥
2

2

,

which can be computed in O(D(nx + ny)), i.e., lin-
ear in the sample size, leading to the overall cost of
O(MD(nx + ny)).

Given a kernel k, there are a number of ways to ob-
tain φ̂(·) such that k(x, y) ≈ φ̂(x)>φ̂(y). One approach
which became popular in recent years is based on ran-
dom Fourier features [32] which can be applied to any
translation invariant kernel. Assume that k is transla-
tion invariant i.e., k(x, y) = k̃(x−y) for some function
k̃. According to Bochner’s theorem [33], k̃ can be writ-
ten as

k̃(x− y) =

∫
eiω
>(x−y) dΛ(ω) = Eω∼Λ cos(ω>(x− y))

= 2Eb∼U [0,2π]Eω∼Λ cos(ω>x+ b) cos(ω>y + b),

where i =
√
−1 and due to positive-definiteness of

k̃, its Fourier transform Λ is nonnegative and can be
treated as a probability measure. By drawing ran-
dom frequencies {ωi}Di=1 ∼ Λ and {bi}Di=1 ∼ U [0, 2π],
k̃(x− y) can be approximated with a Monte Carlo av-

erage. It follows that φ̂j(x) =
√

2/D cos(ω>j x + bj)

and φ̂(x) = (φ̂1(x), . . . , φ̂D(x))>. Note that a Gaus-
sian kernel k corresponds to normal distribution Λ.

Empirical results We employ the linear-time and
the random Fourier feature MMD estimators in our

K2-ABC algorithm, which we call K2-lin and K2-rf, re-
spectively, and test these variants on the blowfly data.
For K2-rf, we used 50 random features.

Figure 4: K2-ABC
with different
MMD estima-
tors outperform
the best existing
method, SL-ABC,
on the blowfly
data. K2 K2-rf K2-lin SL

1

2

3

0

6 CONCLUSIONS

We investigated the feasibility of using MMD as a dis-
crepancy measure of samples from two distributions
in the context of ABC. Via embeddings of empirical
data distributions into an RKHS, we effectively take
into account infinitely many implicit features of these
distributions as summary statistics. When tested on
both simulated and real-world datasets, our approach
obtained more accurate posteriors, compared to other
methods that rely on hand-crafted summary statistics.

While any choice of a characteristic kernel will guar-
antee infinitely many features and no information loss
due to the use of insufficient statistics, we note that
the kernel choice is nonetheless important for MMD
estimation and therefore also for the efficiency of the
proposed K2-ABC algorithm. As widely studied in the
RKHS literature, the choice should be made to best
capture characteristics of given data, i.e., by utilising
domain-specific knowledge. For instance, when some
data components are believed a priori to be on differ-
ent scales, one can adopt the automatic relevance de-
temination (ARD) kernel instead of the Gaussian ker-
nel. Formulating explicit efficiency criteria in the con-
text of ABC and optimizing over kernel choice, simi-
larly as in the context of two-sample testing [31], would
be an essential extension.
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