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Abstract 
 

Evidence is mounting that cancer development and progression depends on a 

supporting microenvironment or stroma. Pro-tumourigenic and pro-metastatic 

properties of inflammation are long recognised and systemic or intra-tumoural 

presence of the cellular inflammatory mediators neutrophils shows strong 

associations with poor prognosis in the clinic. Thus, we were prompted to 

investigate the contribution of neutrophils to tumourigenesis and metastasis. 

 

Taking advantage of mouse models for lung metastatic breast cancer, we find 

neutrophils to be the predominant inflammatory component to strongly accumulate 

in the pre-metastatic organ of tumour-bearing mice prior to metastatic colonisation 

by cancer cells. Preventing increased neutrophil presence in the lung during 

metastasis initiation resulted in a pronounced decrease of metastatic burden. In 

fact, we unravelled a novel function of mammary tumour-induced neutrophils at the 

distant site to directly aid proliferation and initiation of metastatic outgrowth of 

cancer cells. Neutrophils specifically promote the intrinsically highly potent 

metastasis-initiating subpopulation of mammary cancer cells during initiation of 

metastatic lung colonisation via secretion of Alox5 metabolites, the lipid mediators 

leukotrienes. Engagement of leukotriene receptors with their ligands induced cell 

proliferation by activation of ERK1/2 kinases in mammary cancer cells. Leukotriene 

receptor expression is strongly enriched on metastasis-initiating cells and makes 

them susceptible to the neutrophil-derived proliferation-inducing signals leading to 

their expansion at the metastatic site. In fact, leukotriene receptor expression itself 

might represent a novel marker to identify highly tumourigenic cancer stem cells. 

Interference with neutrophil-derived Alox5 metabolites/leukotrienes holds potential 

to weaken the highly potent cancer stem cell-like subpool, the main cellular cause 

of metastasis initiation and relapse. Importantly, genetic or pharmacologic block of 

the Alox5 enzyme prevents the proliferation and expansion of metastasis-initiating 

cells and subsequently the metastasis-promoting activity of neutrophils. The Alox5 

inhibitor Zileuton, which is routinely used in the clinic to treat asthmatic patients, 

significantly reduced lung metastasis in three mouse models of breast cancer. This 

observation, together with expression of leukotriene receptors in the majority of 
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examined human breast cancers and lymph node metastases, suggests a 

promising novel therapeutic approach targeting the tumour stroma to limit 

metastatic progression. 

 

In summary, we found neutrophils, an inflammatory component of the metastatic 

microenvironment, to act pro-metastatic. Neutrophils specifically promote early 

events of metastasis initiation at the distant site by providing a direct, proliferation-

inducing signal to intrinsically highly potent metastasis-initiating cells. Interference 

with the neutrophil-leukotriene-ERK1/2 axis-dependent support might hold great 

potential to be exploited in the clinic. 

 
Please note that part of the data contained in this PhD thesis was first published by 

the Nature Publishing Group (Wculek and Malanchi, 2015). 
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Chapter 1. Introduction 

Cancer research came a long way since the first proposals of a multi-stage model 

of cancer development in the late 1920s to the 1950s (Fisher, 1958, Frank, 2007). 

This model arose from the notion that cancer risk increases with age (Armitage and 

Doll, 1954) and the observations that multiple applications of chemicals or 

carcinogens are required for or enhancing cancer development (Deelman, 1927, 

Twort and Twort, 1928). The concept of a primary event within a tissue cell leading 

to cancer initiation followed by additional events to promote cancer development (in 

mice) took shape (Nordling, 1953, Friedewald and Rous, 1944) and this general 

principle is still directly reflected in widely used spontaneous carcinogenesis 

protocols for animals (De Robertis et al., 2011, Abel et al., 2009). By the year 2000, 

our knowledge of successful development of cancer was largely refined and 

detailed. Many key features intrinsically acquired by tumour cells were associated 

with specific mutations and it appeared to be the rare event of the right combination 

of those in the right place and at the right time driving the disease (Hanahan and 

Weinberg, 2000). Other, functional differences between cancer cell subpopulations 

were ascribed to variations in their epigenetic status and transcriptional signatures. 

Tumours emerged to contain a variety of cancer cells with different tumourigenic 

competence rather than being a homogeneous mass (Cabrera et al., 2015). This 

notion led to the proposal of a cellular hierarchy in cancer and the idea of special 

subpopulations of cancer cells that are exclusively responsible for tumour 

homeostasis and maintenance. These highly potent cancer cells where named 

“cancer stem cells” (CSCs) to draw a link with the hierarchical organisation in 

normal tissues (Nguyen et al., 2012). There, populations of undifferentiated, multi-

potent adult stem cells persist long term and sustain tissue function by retaining the 

ability to replace the different cell types in the tissue when required (Tetteh et al., 

2015). The very malignant subpopulations of CSCs are distinguished by their 

distinctive epigenetic state and also appear to sustain tumour growth, cause 

therapy-resistance and drive metastatic spread (Kreso and Dick, 2014). 

Adding to the complexity and heterogeneity among cancer cells is the fact that a 

tumour usually undergoes some sort of evolution towards increasing 

aggressiveness over time (McGranahan and Swanton, 2015). This cancer 

evolution does not only involve acquisition of further genetic hits and intrinsic 
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features of cancer cells with increased tumourigenic potential, but also regulatory 

signals from the microenvironment (Lorusso and Ruegg, 2008). In fact, the 

microenvironment might directly shape the heterogeneity of cancer cells and cause 

additional mutations or contribute to epigenetic modulation and maintenance of 

CSC states (Plaks et al., 2015, Ronnov-Jessen and Bissell, 2009). We are 

beginning to understand aspects of the influence of the non-cancer cell 

compartment of tumours (stromal cells, vasculature, inflammatory cells and 

extracellular matrix) to cancer and metastasis development. Tumour-associated 

hosts become skewed in a cancer supporting fashion and, as such, evolve in close 

association with tumour cells. Many cancer types have also been shown to depend 

on a favourable environment, termed niche, which allows cancer initiation to 

progress, likely, by providing the essential “promoting” signals (Hanahan and 

Coussens, 2012, Borovski et al., 2011, Hu and Polyak, 2008, Polyak et al., 2009, 

Quail and Joyce, 2013). On the other hand, several immune cell types within the 

cancer microenvironment emerged to specifically recognise and eradicate growing 

cancer cells (Gajewski et al., 2013, Zitvogel et al., 2008). 

Large efforts are focussed on understanding the unfolding degree of complexity 

within tumours and to elucidate strategies to therapeutically interfere. Likely, it will 

be a combination of approaches targeting multiple levels of cancer cell-acquired 

intrinsic features together with blocking the pro-tumourigenic stromal compartment 

and fostering cancer cell-destruction by immune cells that will provide the next 

leaps in improving cancer therapies. 
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1.1 Cancer and metastasis 

1.1.1 Overview of cancer development with the example breast cancer 

A tumour is abnormal growth of tissue or a neoplasm that can remain benign or 

become a malignant cancer invading adjacent tissue and causing metastasis. The 

main classified cancer types are distinguished by the type of initially transformed 

cells and consist of haematopoietic and lymphoid cancers like lymphomas and 

leukaemias and solid cancers including carcinomas, sarcomas, melanoma and 

gliomas or cancers of the nervous system. Lymphomas originate from lymphocytes, 

leukaemias from haematopoietic cells and sarcomas from non-haematopoietic 

mesenchymal cells. Carcinomas are by far the most common cancer type in 

humans and arise from mutations in epithelial cells (Cooper, 1993). Accumulation 

of somatic mutations in normal cells sparks cancer initiation and subsequent 

genetic, epigenetic and environmental events drive cancer progression. Initially, 

neoplasms undergo different stages with increasing malignancy as illustrated for 

invasive ductal carcinoma, the most frequent type of breast cancer (Fig. 1.1 a). The 

normal duct becomes hyperplastic up to atypical hyperplasia that constitutes of 

proliferating dysplastic, but benign ductal cells (Hartmann et al., 2015). Ductal 

carcinoma in situ (DCIS) is characterised by seemingly malignant proliferative 

growth of transformed ductal cells that does not extent beyond the ductal basement 

membrane and is usually removed by surgery with promising recovery rates. If 

untreated, a significant proportion (about 40%) of DCIS develop into invasive ductal 

carcinoma, where cancer cells breach the basement membrane and become 

invasive and metastatic (Fig. 1.1 b) causing significantly worse overall survival 

(Boughey et al., 2007, Cowell et al., 2013, Fulford et al., 2007). The intrinsic 

molecular subtypes of breast cancer include basal-like, human epidermal growth 

factor (HER2)-enriched, normal breast-like, luminal A, luminal B and claudin-low 

and are divided according to their gene expression (Eroles et al., 2012). Breast 

cancer types can also be classified according to the expression of receptors such 

as HER2 or the receptors for the hormones oestrogen and progesterone (Onitilo et 

al., 2009). Clinically, breast cancer is staged from stage 0 to IV based on primary 

tumour size, microscopic invasion of cancer cells and detection of distant 

metastases (Todd RF et al., 2015). In human patients, the principal sites of distant 
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metastasis by breast cancer cells include the bone, lung, liver and brain (Nguyen et 

al., 2009). 

 

 

 
Figure 1-1 Breast cancer development and metastatic progression to the lung 
(a) Mammary ductal carcinoma develops through pathologically distinct stages from 
the transformation of the normal duct to become hyperplastic up to an invasive 
carcinoma phenotype. Disseminated breast cancer cells then migrate through the 
vasculature to infiltrate secondary sites like the lung. (b) Arriving at the lung, these 
metastatic cancer cells have to survive, overcome dormancy and start proliferating in 
order to establish distant metastases. (a) adapted from (Brisken, 2013). 



Chapter 1 Introduction 

22 

 

1.1.2 The principles underlying metastasis 

Metastasis is the process when cancer cells leave the primary tumour, spread 

within the body and grow a secondary tumour usually at a distant site or another 

position within the same organ. To enable this process, individual carcinoma cells 

or cell clusters have to become migratory, disseminate from the epithelial primary 

tumour mass and intravasate into blood or lymphatic vessels. Cancer cells are then 

trapped or arrest within the vasculature at the target site, extravasate and start 

colonising the new tissue by proliferating to form distant metastases immediately or 

after a latency period (Steeg, 2006) (Fig.1.1 b). Metastatic spread is extraordinarily 

complex and very inefficient. Cancer cells are not only challenged to migrate 

through inhospitable environments away from the primary site, such as the blood 

stream, but also have to acquire the ability to grow in a foreign microenvironment 

(Luzzi et al., 1998). Several models were proposed to explain how cancer cells 

achieve metastatic spread. The most accepted model is the metastatic progression 

model based on a subpopulation of cancer cells gaining malignant and metastatic 

features over time. Other proposals suggest that all cancer cells retain metastatic 

potential, but are impaired due to their position (transient compartment model). 

Metastatic properties of a tumour might also be defined by certain mutations early 

during its development, rather than being acquired through progressive stages 

(Early oncogenesis model) (Hunter et al., 2008).  

The importance of the tumour-associated stroma and microenvironment is 

extraordinarily highlighted in limiting or mediating the complex process of 

metastasis. Tumour-associated stromal cells were shown to be fundamental 

promoters of cancer cell invasion by multiple mechanisms. For example, the 

tumour microenvironment can foster single cell invasion of cancer cells by 

promoting their epithelial to mesenchymal transition (EMT) where epithelial 

carcinoma cells lose their polarity and cell-to-cell adhesion and gain migratory 

properties (Gao et al., 2012). Stromal cells at the primary tumour border were also 

shown to provide matrix-degrading enzymes or chemotactic signals that facilitate 

cancer cell invasion into the surroundings and intravasation into blood vessels 

(Quail and Joyce, 2013). Microenvironmental components can protect cancer cells 

from immune cell-mediated killing within the blood stream (Palumbo et al., 2005) 
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and aid their extravasation into distant tissue (Bendas and Borsig, 2012, Reymond 

et al., 2013). Cancer cells that accomplished metastatic spread and arrive at distant 

sites are then pressured to initialise metastatic colonisation, namely establishing 

metastatic colonies or micro-metastases that can grow to form macro-metastases. 

The enormous difficulty to achieve metastatic colonisation is best illustrated by the 

fact that numerous successfully disseminated, circulating cancer cells appear 

entirely unable to initiate distant metastases in many cancer types (Luzzi et al., 

1998, Meng et al., 2004). Evidently, several of these disseminated cancer cells will 

not die, but enter in a viable state of reversible, long-term dormancy (Aguirre-Ghiso, 

2007, Giancotti, 2013). In breast cancer, for example, these dormant metastatic 

cells can grow macro-metastases many years after surgical removal of the primary 

tumour (Marches et al., 2006), indicating the acquisition of additional properties of 

these cells over time to enable outgrowth. Intrinsic cancer cell dormancy is caused 

when metastatic cancer cells arrest in their cell cycle and become quiescent 

(Aguirre-Ghiso, 2007). Cancer cells can also find themselves in hostile 

surroundings during distant tissue colonisation where local inhibitory signals from 

the extracellular matrix or immune cells cause dormancy (Barkan et al., 2010, Teng 

et al., 2008), again stressing the importance of the microenvironment during 

metastatic colonisation. This idea and the ability of specific cancer cells to 

circumvent and benefit from a new microenvironment (Giancotti, 2013) explain 

many aspects of the tissue tropism of cancer cells for specific metastatic sites. The 

“seed-and-soil” hypothesis of preferential metastatic spread of certain cancer cell 

types to distinct secondary organs (Fidler, 2003) was clearly demonstrated by 

experiments isolating cancer cells from established macro-metastases. Upon re-

inoculation, these metastasised cancer cells showed preferred and improved re-

colonisation ability of the same organ where they originally grew metastases (Minn 

et al., 2005, Nguyen et al., 2009). These experiments also support the idea that 

metastatic cancer cells have to acquire additional, stable features to outgrow at 

secondary organs. In concert, transcriptional signatures correlating with the ability 

of metastatic cells to initiate distant organ colonisation were defined for many 

cancer types (Albini et al., 2008). Interestingly, these gene expression profiles also 

highlight the involvement of the metastatic microenvironment. Functional 

investigation of metastatic cancer cells with these signatures to give rise to 

metastases and their interaction with the microenvironment will hopefully improve 
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our mechanistic understanding of the dauntingly complex process of metastasis. 

Importantly, development of distant metastases poses an enormous risk in the 

clinic and remains the foremost cause for cancer-related mortality (Nguyen et al., 

2009, Steeg, 2006), stressing the necessity to shed light onto it’s complexity to 

develop effective treatments. 

 

1.1.3 Molecular insights into genetic changes driving tumourigenesis 

Cancers arise through a sequential accumulation of mutations in cancer cells in 

concert with a co-developing microenvironment. The ying and yang of intrinsic 

features necessary to be acquired by normal cells for successful cancer 

establishment comprise the ability to ensure continuous proliferation and cell cycle 

progression while avoiding cell death, apoptosis or senescence (Hanahan and 

Weinberg, 2000, Hanahan and Weinberg, 2011). The best example how cancer 

cells manage to sustain proliferation is hijacking proliferation-inducing cellular 

pathways that are crucial during organogenesis, homeostasis and stress responses 

while circumventing their tight regulation. For example, very frequently human 

cancers display continuous stimulation or activation of mitogen-activated protein 

kinase (MAPK) pathways that control the cell cycle, cell survival as well as cell 

proliferation and allow integration of signals following extracellular stress (Samatar 

and Poulikakos, 2014). Ras guanosine triphosphate hydrolases (GTPases) have a 

central role in MAPK signalling as they cycle in an active GTP-bound state and 

inactive GDP (guanosine diphosphate)-bound state and trigger a phosphorylation 

cascade by activation of Raf kinases. Raf kinases subsequently phosphorylate 

MAPK/ERK (MEK) kinases that phosphorylate the MAPKs extracellular signal-

regulated (ERK) kinases that translocate to the nucleus to activate target genes 

controlling growth-related mechanisms, predominantly cell proliferation (Dhillon et 

al., 2007) (Fig. 2.1). The phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt) 

pathway or the transcription factor c-Myc represent other frequently over-activated 

oncogenic features in cancer cells that promote continuous growth and proliferation 

(Fruman and Rommel, 2014, Gabay et al., 2014). 

However, cell proliferation and survival are tightly controlled processes in normal 

physiology, raising the necessity for cancer cells to prevent concomitant induction 
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of apoptotic programmes or senescence. In fact, the master regulators of apoptosis 

and cell cycle arrest, p53, p21 and retinoblastoma (Rb) protein, are activated by 

growth-stimulatory or oncogenic signals, including Ras/MAPK signalling (Agarwal 

et al., 2001, Lavin and Gueven, 2006, Li et al., 2005, Ohtani et al., 2004). Loss-of-

function of the tumour suppressor p53, a nuclear transcription factor is observed in 

over half of human cancers (Ozaki and Nakagawara, 2011). Thereby, its function to 

induce apoptosis in response to DNA damage or cellular stress via, for example, 

mitochondrial cytochrome C release and activation of caspases (Schuler et al., 

2000) is lost, which allows malignant transformation. Additionally, mutant p53 

proteins might also directly contribute to cancer progression (Muller and Vousden, 

2014).  

Cancer cells mostly ensure the continuation of their cell cycle by re-activation of 

telomerase to prevent telomere dysfunction-induced cellular senescence. 

Additionally, the energy metabolism is often altered in cancer cells to facilitate their 

high proliferative rates. Lastly, cancer cells frequently display features of genomic 

instability that is now an accepted hallmark of cancer (Hanahan and Weinberg, 

2000, Hanahan and Weinberg, 2011). 

In summary, accumulation of genetic features in cancer cells over time drives the 

initiation and many aspects of the progression of tumours from benign to malignant 

stages and different types of cancer cells utilise various approaches to ultimately 

achieve tumour growth. 
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Figure 1-2 Cellular signalling cascades frequently altered in cancer cells  
Overview of signalling molecules that are often deregulated in cancer cells. Growth 
factors bind to receptor tyrosine kinases that activate the Ras/MAPK signalling 
cascade via accessory molecules like Grb2 (Growth factor receptor-bound protein 2) 
and SOS (Son of sevenless). Alternatively, PI3K can be induced leading to 
phosphorylation of PIP (Phosphatidylinositol phosphates) and the activation of Akt by 
PDK1 (phosphoinositide dependent kinase 1). PI3K is counteracted by PTEN 
(Phosphatase and tensin homolog). Ras/MAPK and PI3K/Akt signalling often lead to 
activation of Myc and mechanisms to negatively control cell proliferation.  
Telomere dysfunction, DNA damage, p16-INK4a (cyclin-dependent kinase inhibitor 2A, 
multiple tumour suppressor 1) and p19-ARF (ARF tumour suppressor) modulate the 
activity of the key regulators of cellular senescence: p53, p21, and Rb. This network 
involves factors such as Cyclins (Cyc), cyclin-dependent kinases (Cdk), E2F 
transcription factors, Mdm2 (Mouse Double Minute 2, p53 binding protein), caspase 9 
(Casp9) and cytochrome C (Cyto.C). Figure adapted from (Fruman and Rommel, 2014, 
Gabay et al., 2014, Ohtani et al., 2004, Ozaki and Nakagawara, 2011, Samatar and 
Poulikakos, 2014, Schuler et al., 2000). 
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1.1.4 Cancer heterogeneity: Cancer stem cells and clonal evolution 

1.1.4.1 The clonal evolution model in cancer 

A key challenge for successful cancer therapy is the complexity of the disease 

comprised by the vast inter- and intra-tumoural heterogeneity. First reports of the 

existence of multiple, distinguishable cancer cell subpopulations within the same 

tumour mass date back to the 1960s and 70s (Dexter et al., 1978, Henderson and 

Rous, 1962, Heppner, 1984). Studies on functional intra-tumoural heterogeneity 

followed quickly reporting, for example, different proliferative capacity (Danielson et 

al., 1980, Saunders et al., 1967), resistance to chemotherapy (Heppner et al., 1978, 

Yung et al., 1982) and varying metastatic competence (Fidler and Kripke, 1977, 

Raz et al., 1980) among cancer cell subpools originating from the same cancer cell 

population.  

Advanced sequencing techniques offered a possible explanation for this 

heterogeneity. The mutational landscape is highly variable between not only 

different tumour types but also within the same tumour, which might account for the 

observed inter- and intra-tumoural heterogeneity. This idea fuelled the historical 

clonal genetic evolution model of cancer development consistent with sequential 

accumulation of pro-tumourigenic mutations yielding malignant growth (Fig. 1.3 a). 

This acquisition of additional mutations in the initial genetic cancer cell clone would 

lead to sub-clonal genetic diversification that can be detected in different regions of 

the same tumour (Burrell et al., 2013, Gerlinger et al., 2012). According to the 

clonal evolution model, more tumourigenic subclones would outcompete other 

populations and even cause their disappearance over time while additional 

subclones arise (Greaves and Maley, 2012, Nowell, 1976). The nature of the 

acquired mutations can be essential for the tumourigenic properties of the cancer 

cell, a driver mutation, or a rather harmless passenger mutation probably a side-

effect of genomic instability and stochastic mutations (Kreso and Dick, 2014, 

Stephens et al., 2012). Common driver mutations leading to cell expansion are 

usually found in the majority of cancer cells within the same tumour, despite 

considerable variation of further driver mutations. This observation suggests a 

primary genetic hit in a cancer-initiating cell clone, clonal expansion, and its 

maintenance in subclonal lineages (Gerlinger et al., 2012, Kreso and Dick, 2014). 
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Lineage mapping analysis of breast cancer development confirmed not only the 

presence of a dominant clonal lineage with its cytogenetic driver mutations being 

represented in more than half of the tumour cells, but also that the “most recent 

common ancestor” of this cell lineage always emerged at very early stages of 

development of every tested tumour (Nik-Zainal et al., 2012). Genetic cancer 

subclones were further shown to possess distinct metastatic organ tropism and 

cancer cells from metastatic lesions displayed additional mutations to the initial 

parental clone (Campbell et al., 2010, Yachida et al., 2010). However, the 

functional benefits of individual mutational landscapes of different genetic cancer 

cell subclones to their tumourigenicity remains largely elusive, probably due to 

sheer number of acquired mutations and difficulty to distinguish between driver and 

passenger mutations (Garraway and Lander, 2013). Nevertheless, the clinic faces 

the challenge of moderate efficacy of therapy, highly variable responses within very 

similar tumour types and, especially, high resistance and relapse probably due to 

cancer heterogeneity (McGranahan and Swanton, 2015). Indeed, rigid and mostly 

irreversible somatic mutations might form the essential basis for cancer initiation 

and influence progression. However, recent studies showed that developmental, 

epigenetic and microenvironment-associated determinants strongly contribute to 

cancer progression, suggesting that there is more to the tumourigenic abilities of 

individual cancer cells and functional cancer heterogeneity. 

 

1.1.4.2 Concepts of cancer stem cells, tumour- and metastasis-initiating cells 

Another likely explanation for the pronounced intra-tumoural heterogeneity also 

initiated in the 1970s and 80s with studies on haematological and solid cancers 

based on observations that cancers appear to have a hierarchical organisation 

highly reminiscent of a normal organ (Bennett et al., 1978, Clarkson et al., 1967, 

Kreso and Dick, 2014, Pierce and Speers, 1988). Tissues are tightly controlled 

structures organised into functionally different entities or cell types with usually very 

infrequent tissue stem cells residing at the top of a hierarchy. Their self-renewal 

ability ensures the maintenance of the organ by differentiation of its daughter cells 

into all tissue cell lineages present within the organ. Additionally, activation and 

differentiation of tissue stem cells lies at the base of tissue regeneration after injury 
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(Clevers et al., 2014, Nelson and Bissell, 2006, Roh and Lyle, 2006). Cell fate, 

differentiation and self-renewal abilities are not controlled by genetic mutations, but 

by epigenetic mechanisms like histone and DNA modifications or post-

transcriptional regulation by, for example, microRNAs. Epigenetic deregulation and 

thereby non-genetic diversification of cancer cell subsets appears to constitute a 

similar organisation in tumours with accordingly termed “cancer stem cells” (CSCs) 

being responsible for its maintenance (Baylin and Jones, 2011, Easwaran et al., 

2014, Iorio and Croce, 2012, Kreso and Dick, 2014). Additionally, mutations 

regulating epigenetic programmes were found in human cancers with high 

prognostic value and these epigenetic programmes do not only underlie the 

function of normal stem cells, but also “cancer stemness” in liquid cancers (Kreso 

and Dick, 2014, Abdel-Wahab and Levine, 2010, Shah and Licht, 2011). Indeed, 

rare subpopulations of cancer cells within a plethora of tumour types like acute 

myeloid leukaemia (Bonnet and Dick, 1997), breast (Al-Hajj et al., 2003) and 

pancreatic cancer (Hermann et al., 2007) can be distinguished by their 

extraordinary degree of malignant, tumourigenic competence compared to more 

differentiated cancer cells. This notion draws a picture of an organised hierarchy of 

malignancy within cancer cells, despite having lost the tight control observed in 

normal tissues (Fig. 1.3 c). Their abilities include the initiation potential for a 

primary tumour upon transplantation that is completely reminiscent of the original 

tumour. This ability suggests a self-renewal and differentiation competence of 

CSCs to give rise to all cell types to entirely reconstitute their organ of origin, the 

tumour (Kreso and Dick, 2014, Nguyen et al., 2012). For example, 100-200 

CD44+/CD24- primary breast cancer cells formed tumours with phenotypic and 

histologic diversity comparable to the parent tumour upon grafting onto 

immunodeficient mice, while about 100-fold more CD44+/CD24+ cells were 

necessary (Al-Hajj et al., 2003). This profound capability for tumour initiation of only 

a small subset of cancer cells (about 15% in the mentioned study of breast cancer) 

highly reflects the maintenance and regeneration potential of normal stem cells 

within a tissue. Further, CSCs appear to be resistant to many types of anti-cancer 

therapies, which target highly proliferative cells due to their rather quiescent nature 

(Chen et al., 2012, Dean et al., 2005). They have also been shown to drive 

metastatic spread, being especially well equipped to initiate a secondary tumour at 

a distant site (Oskarsson et al., 2014). 
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The variation of cellular states that correlate with the functional ability of a cell 

within a tumour can be expressed by the analysis of gene expression profiles that 

reflect genetic mutational as well as epigenetic modifications. For example, one 

study described colon tumours to display a very similar heterogeneous diversity in 

transcriptional activity and cell morphology compared to normal colon tissue. There, 

maintained signatures of stem/progenitor cells and other cell types were found in 

colon tumours that indicate differentiation into multiple lineages (Dalerba et al., 

2011). This transcriptomic diversity was maintained even when the tumour 

originated from a single genetic subclone (Kreso et al., 2013). Moreover, 

transcriptional signatures or properties of normal stem cells or CSCs are highly 

predictive of poor prognosis for a wide range of cancer types (Eppert et al., 2011, 

Gentles et al., 2010, Merlos-Suarez et al., 2011, Pece et al., 2010). Also, the 

activation of the same pathways is frequently associated with stemness potential 

as well as self-renewal of cancer cells, such as Wnt, NFkB and Notch signalling 

(Holland et al., 2013, Shostak and Chariot, 2011, Takebe et al., 2011, Wang et al., 

2012). This raises the interesting possibility that the functional features ascribed to 

CSCs, including enhanced tumour initiation potential, might represent the ultimate 

goal of varying driver mutations in different contexts. 

However, there is growing confusion and controversy about the term “cancer stem 

cells” and their precise abilities. This issue is largely a caveat of varying definitions 

of CSCs and subsequent differences in testing tumourigenic stemness potential 

among laboratories and the use of simple, but non-sufficient surrogate assays. 

Stemness defines the capability of a cell to initiate multi-lineage differentiation while 

maintaining its own state of potency (self-renewal) mostly by some sort of 

asymmetric cell division generating daughter cells of different cell fate (Kreso and 

Dick, 2014). The underlying, principal molecular mechanisms for stemness are 

based on expression and regulation of transcription-controlling factors like Oct4, 

Nanog and Sox2 (embryonic stem cells) (Martello and Smith, 2014), activation of 

stemness-associated signalling pathways like Wnt, NFkB and Notch pathways 

(Holland et al., 2013, Reya and Clevers, 2005, Shostak and Chariot, 2011, Wang et 

al., 2012), the post-transcriptional regulation of gene expression by, for example, 

microRNAs (Liu and Tang, 2011, Mathieu and Ruohola-Baker, 2013) and, 

especially, the epigenetic landscape of a cell (Easwaran et al., 2014, Lunyak and 

Rosenfeld, 2008, Yamada and Watanabe, 2010). However, these molecular 
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stemness programmes remain rather poorly understood and frequently their 

contributions to the tumourigenic potential of a cell have yet to be experimentally 

proven. Hence, the assessment of tumourigenic stemness potential has to be a 

functional test of the ability of individual cells (Kreso and Dick, 2014). It is a 

technical challenge (if not currently impossible) to monitor cancer cell self-renewal 

or the functions of non-CSCs and thereby cell differentiation within the tumour 

mass. In part, this might be due to the fact that a tumour does not serve a particular 

purpose within an organism like a normal organ and that “cancer stemness” 

appears to be a state of “stemness potential” that a cancer cell can find itself in 

rather than a stable cell population within a tumour. Hence, individual cells 

stemming from a tumour have to be identified and their individual potential tested at 

a given time to establish differential tumour initiation competence among cancer 

cells and thereby a hierarchy within tumours. The gold standard consists of 

assessment of clonal reconstitution or repopulation ability of single cells ideally in 

long-term serial passaging in vivo. However, this xenograft assay only determines 

clonal tumour initiation ability and does not formally test for self-renewing potential. 

Consequently, together with a frequently plastic nature of highly potent tumour cells, 

terming these cancer cells “tumour-initiating cells (TICs)” and thereby with the 

actual function that is being tested for rather than CSCs appears more appropriate 

and avoids confusion (Kreso and Dick, 2014). 

Cytometric cell sorting technology based on fluorescent antibody-mediated 

labelling of cell surface markers on individual cells allowed assessment of 

functional properties of individual tumour cells (Bonner et al., 1972). Cells with 

tumour initiation potential upon serial transplantation (TICs) and, importantly, cells 

without this ability (nonTICs) where identified in many human and mouse tumour 

types (Al-Hajj et al., 2003, Bonnet and Dick, 1997, Cho et al., 2008, Hermann et al., 

2007, Malanchi et al., 2008, O'Brien et al., 2007, Singh et al., 2014). Other ways to 

identify TICs are constantly developed such as cell sorting based on microRNA 

levels (Amendola et al., 2013), cellular reporters for stem cell-associated signalling 

like Wnt (Vermeulen et al., 2010) or activity of efflux transporters and detoxifying 

enzymes like aldehyde dehydrogenase 1 (ALDH1) (Ginestier et al., 2007, van den 

Hoogen et al., 2010). However, the xenograft assay is accompanied by its own 

technical limitations including the tough conditions to obtain single cell suspensions, 

different tissue microenvironments and milieu of secreted factors especially upon 
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ectopic cell grafting or transplantation of human cells. Large efforts went into 

improving the conditions of this transplantation assay, which is of central 

importance for the CSC concept of cancer heterogeneity (Kreso and Dick, 2014, 

Rongvaux et al., 2013).  

Importantly, there are studies using xenotransplantation that suggest a rather 

homogeneous potential of the total cancer cell population to reconstitute a tumour 

under certain conditions (Joo et al., 2008, Quintana et al., 2010, Quintana et al., 

2008). These observations raise the semantic question of the actual nature of 

tumour initiation and maintenance potential. How much is it a purely intrinsic 

feature of a cell to self-renew and differentiate or how much should tumour initiation 

potential also depend on the microenvironment that every tumour finds itself in. 

This idea is highlighted by the importance of the local microenvironment or niche in 

maintaining and influencing (cancer) stem cell populations even in patients 

(Borovski et al., 2011, Li et al., 2013, Sneddon and Werb, 2007, Ye et al., 2014). 

Hence, it is under debate if providing a less restrictive environment for cancer cells 

to grow in a new host is actually of benefit for testing tumour initiation potential or 

prevents the functional differences seen between cell populations under more 

stringent conditions (Malanchi, 2013).  

All these described observations point towards the notion that not all CSCs within a 

tumour have equal competence to initiate and maintain a tumour at the site of 

origin, cause metastatic spread and initiation of metastases at secondary organs 

and chemotherapy resistance. More likely appears a scenario with heterogeneity 

among CSC populations especially for the ability to grow in very different 

microenvironments. It is therefore important to move away from the general “cancer 

stem cell” term towards a classification and nomenclature according to the actual 

tested activity of a cell like tumour-initiating, drug-resistant or metastasis-initiating 

cell (Valent et al., 2012). 

 

The metastasis-initiating ability ascribed to CSC-like cells and the nature of these 

cells is by far less well characterised compared to their tumour initiation potential, 

which appears surprising given the high clinical relevance of metastatic progression. 

The existence of small cell populations within the total tumour mass with notable 

metastatic competence was already reported more than 30 years ago (Fidler and 

Kripke, 1977, Raz et al., 1980). The apparent clonal origin of metastases 
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(Talmadge et al., 1982) suggested individual cancer cells with enhanced metastatic 

activity to initiate distant metastases. However, this clonality of individual 

metastases would not exclude the existence of different metastasis-initiating cell 

(MIC) subpopulations within the same heterogeneous tumour (Campbell et al., 

2010, Yachida et al., 2010). MICs have been functionally identified by grafting 

cancer cells from a primary tumour onto a secondary site and determination of their 

ability to outgrow. They can be distinguished from nonMICs in several cancer types 

in mouse models and human primary cancer or cancer cell lines including breast 

(Liu et al., 2010a, Malanchi et al., 2012), prostate (Hermann et al., 2007, van den 

Hoogen et al., 2010), renal (Khan et al., 2014) and colorectal cancer (Pang et al., 

2010). Overall, MICs appear to be a rarer population among total cancer cells than 

TICs (Hermann et al., 2007, Oskarsson et al., 2014), suggesting the acquisition of 

additional driver mutations or a distinct epigenetic state which might also dictate the 

tissue affinity or organ tropism of MICs (Albini et al., 2008, Campbell et al., 2010, 

Minn et al., 2005, Yachida et al., 2010). Metastatic dissemination has been shown 

to commence at very early stages of tumourigenesis in a “parallel progression 

model” (Klein, 2009, Rhim et al., 2012), arguing against the clonal evolution theory 

and suggesting presence of CSC-like cells with enhanced metastatic competence 

in less evolved tumours. Nevertheless, indications of a late emergence of 

metastatic cells even within the same tumour types exist (Yachida et al., 2010). 

Moreover, MICs might have to acquire further competences after dissemination 

especially with regard to the ability to overcome cell dormancy and grow within the 

distant microenvironment (Marches et al., 2006). In fact, compelling evidence for an 

intrinsically highly potent metastasis-initiating cell subpopulation within a primary 

tumour mass comes from “stemness” or “metastatic” transcriptional signatures that 

correlate with poor prognosis, metastatic progression and relapse in the clinic 

(Albini et al., 2008, Eppert et al., 2011, Merlos-Suarez et al., 2011, Patsialou and 

Condeelis, 2014, Pece et al., 2010, Ramaswamy et al., 2003, van den Hoogen et 

al., 2010, Weigelt et al., 2005). These functionally relevant signatures are present 

in limited numbers of cells within the primary tumour, but are enriched among 

circulating and metastatic cancer cells and correlate with poor prognosis and 

metastatic incidence (Aktas et al., 2009, Yu et al., 2013).  

Collectively, all this evidence strongly suggests the existence of intrinsically highly 

metastatic cancer cell subpopulations – MICs – within the primary tumour or among 
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circulating tumour cells. In fact, these small cell populations were identified, 

isolated and functionally tested in metastasis initiation assays, proving their 

formidable metastatic competence compared to nonMICs (Baccelli et al., 2013, 

Charafe-Jauffret et al., 2010, Khan et al., 2014, Malanchi et al., 2012, Pang et al., 

2010, van den Hoogen et al., 2010). 

 

1.1.4.3 Merging cancer stem cells with clonal evolution 

The clonal evolution model and the hierarchical organisation/cancer stem cell 

model appear insufficient to explain all aspects of scientific evidence addressing 

the significant heterogeneity among cancer cells and its functional consequences 

(Fig. 1.3 a+c). There was historically little overlap between the two points-of-view 

and only rarely an incorporation of genetic, epigenetic and functional analysis 

within the same study or system (Kreso and Dick, 2014). Genetically identical 

subclones have to be tested for their diversity in function and transcriptional 

signature and CSCs (thereby long-term repopulating cells) should be analysed for 

their genetic landscape. Several studies report the existence of different genetic 

subclones within functionally defined TICs in acute lymphoblastic leukaemia 

(Anderson et al., 2011, Clappier et al., 2011, Notta et al., 2011) and genetic 

diversity was described among cancer cells that initiated metastasis (Campbell et 

al., 2010, Yachida et al., 2010). Importantly, certain mutations even correlated with 

altered functional competences of cancer cells and frequency of TICs. In fact, 

genetic mutations of epigenetic regulators were shown to increase cancer 

stemness, initiation and self-renewal abilities (Kreso and Dick, 2014, Notta et al., 

2011). Also the phenotype of TICs appears to be influenced by genetic diversity. 

For example, mouse lung tumours or human colon cancers with a different 

genotype or driver mutation show variations in the phenotype of their TICs as 

observed by different surface marker expression (Curtis et al., 2010, Sahlberg et al., 

2014). These observations suggest a possible clonal evolution of CSCs or cells in 

an epigenetic “stemness” state capable of self-renewal and raise the question of 

the cancer cell of origin. A few reports point towards an initial genetic hit within a 

normal stem cell (Barker et al., 2010, Malanchi et al., 2008, Shlush et al., 2014, 

Visvader, 2011, Woll et al., 2014). Also, transcriptional signatures of normal stem 
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cells, TICs and MICs appear highly similar and integrated into a common signature 

of “stemness” that showed potent prognostic value (Albini et al., 2008, Eppert et al., 

2011, Gentles et al., 2010, Merlos-Suarez et al., 2011, Patsialou and Condeelis, 

2014, Pece et al., 2010, Ramaswamy et al., 2003, Weigelt et al., 2005). However, 

stochastic accumulation of mutations leading to continuous clonal evolution of 

cancer cells towards increased tumourigenicity can occur in TICs and nonTICs as 

well as MICs and nonMICs (Kreso and Dick, 2014, Oskarsson et al., 2014). Hence, 

genetic mutations or other epigenetic alterations might provide nonTICs with self-

renewal and repopulation competences and this notion would explain the plasticity 

of the CSC state rather than a rigid cell population. For example, forced Wnt 

activation in normal colon cells caused their dedifferentiation and acquisition of TIC 

competences (Schwitalla et al., 2013). Recently, an attempt was made to integrate 

the concept of clonal evolution and hierarchical organisation on the basis of these 

observations by combining genetic and functional properties of cancer cells (Kreso 

and Dick, 2014) (Fig. 1.3 b). The authors proposed a dynamic model with a clearly 

defined functional hierarchy among cancer cells similar to the normal organ at early 

stages of tumourigenesis. Increasing acquisition of mutations in TICs that contain 

long-term repopulation ability might enhance their self-renewing potential with 

tumour progression leading to the expansion of the TIC pool within the tumour. In a 

similar fashion, nonTICs might gain functional characteristics of TICs by 

accumulation of somatic mutations and thereby contribute to increased TIC 

frequencies within the tumour. Moreover, TICs might acquire further malignant 

competences. The expansion of cell pools with TIC function within the tumour (that 

might be genetically different) would indicate enhanced malignancy, 

aggressiveness and therapy resistance, consistent with published evidence. Also, 

increased frequency of TIC subpopulations suggests a progressively shallow 

hierarchical organisation of a tumour while it advances and goes hand in hand with 

cancer evolution towards malignancy. This cancer cell evolution might yield very 

advanced TIC clones with ultimate self-renewing ability resulting in such a high TIC 

frequency that basically constitutes a functionally homogeneous, highly potent and 

malignant tumour (Kreso and Dick, 2014). In the same manner, this hypothesis 

might also be true for MICs and nonMICs, especially since increased MIC 

frequency among (circulating) cancer cells correlated with increased metastatic 

incidence (Baccelli et al., 2013, Charafe-Jauffret et al., 2010). However, the 
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development and evolution of MICs is very likely strongly influenced by the 

metastatic microenvironment (Borovski et al., 2011, Sneddon and Werb, 2007, Ye 

et al., 2014). 

In summary, for a convincing linkage of the cancer stem cell and clonal evolution 

models, technically extremely challenging experiments will be necessary (Kreso 

and Dick, 2014). Further research should determine the frequencies of TICs and 

MICs in tumours from early to advanced stages as well as their genetic and 

functional evolution in combination with lineage tracing approaches to monitor 

nonTIC to TIC or nonMIC to MIC conversion. 

 

Ultimately, it emerges impossible to ignore the scientific evidence for genetic 

branching evolution of cancer cell subclones by genetic mutations during tumour 

progression. Also, the existence of genotype-independent functional diversity 

among cancer cells has to be acknowledged, with certain cell subsets retaining 

unique tumour or metastasis initiation and reconstitution potential reminiscent of 

the abilities of normal stem cells. Hence, more sophisticated approaches will be 

necessary to increase our understanding of the emergence and consequences of 

functional cancer heterogeneity to allow therapeutic targeting of the cancer cell 

subpopulations that matter. 
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Figure 1-3 Models explaining heterogeneity among cancer cells 
Schematic representation of the “clonal genetic evolution” model (a), the “hierarchical 
or cancer stem cell” model (c) and the proposed “unified evolution of cancer stem cells” 
model (b). Figure adapted from (Kreso and Dick, 2014). 
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1.2 Tumour microenvironment, angiogenesis, cancer-
associated inflammation and immunity 

Cancer arises in host tissues and, as such, is not only composed of tumour cells 

but lies within a cancer-specific and complex environment that reacts to the 

oncogenic disturbance and evolves with the growing tumour to form a structure 

reminiscent of normal organs (Hanahan and Coussens, 2012). This tumour 

microenvironment (TME) is the usually genetically unaltered, non-cancer cell part 

of the tumour consisting of numerous cell types like stromal, endothelial, 

inflammatory or other immune cells as well as extracellular matrix (ECM) 

components, soluble and matrix-bound signalling factors like cytokines, 

chemokines, developmental and growth factors. The composition and activation of 

the TME varies remarkably between tumour types and even within the same 

tumour reflecting the dynamic nature of the TME (Quail and Joyce, 2013). Cancer 

progression is characterised by continuous cross talk between the tumour cells and 

TME components, which is known to favourably influence almost all hallmarks of 

cancer. The TME even entirely constitutes some of these hallmarks or enabling 

characteristics like neo-angiogenesis and tumour-promoting inflammation 

(Hanahan and Coussens, 2012, Hanahan and Weinberg, 2011). Moreover, the 

TME is involved in inducing and regulating stemness of cancer cells in specialised 

environments accordingly termed cancer stem cell niches (Plaks et al., 2015). The 

dependency of cancer cells on a promoting stroma is especially highlighted during 

metastatic spread and colonisation, which is unlikely to be achieved solely in a cell-

autonomous fashion (Quail and Joyce, 2013). In fact, primary tumours even 

educate distant tissue to form permissive pre-metastatic niches for the arrival of 

disseminated cancer cells which contributes to organ tropism together with cancer 

cell-intrinsic factors and pre-existing features of specific tissues (Sceneay et al., 

2013). 

 

The increasing understanding of intrinsic alterations in cancer cells, including 

genetic mutations or epigenetic regulation, allowed the development of a plethora 

of therapeutic approaches targeting key players in tumourigenicity like the 

Ras/MEK/ERK or PI3K/AKT pathway (Fruman and Rommel, 2014, Samatar and 
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Poulikakos, 2014). Despite these achievements in the development of drugs 

efficiently targeting cancer cell-intrinsic features, treatments are often ineffective or 

fail due to resistance and relapse. We know today that the TME plays a crucial role 

not only in promoting cancer progression, but also susceptibility to therapy and can 

cause resistance (Junttila and de Sauvage, 2013, Olson and Joyce, 2013). Hence, 

the pro-tumourigenic and malignancy-promoting functions of the TME provide a 

promising target for therapeutic intervention due to the lack of genetic instability. 

However, the TME can also have normalising and adverse effects for a growing 

tumour leading to suppression of its growth and eradication. Enhancing these 

features of the TME or re-education of a permissive TME to an anti-tumourigenic 

function offers another line of developing cancer treatments that is creating global 

excitement (Quail and Joyce, 2013). 

 

1.2.1 Cells and factors involved in angiogenesis, hypoxia and coagulation 

A tumour is dependent on supply of nutrients, oxygen, mitogenic and other factors 

from the bloodstream to sustain its growth. The dependence of cancer on 

angiogenesis or vascularisation was first proposed in 1971 (Folkman, 1971). An 

angiogenic switch is necessary for tumour nodules to reach sizes larger than 1-

2mm in diameter (Naumov et al., 2006) because of the limited diffusion of oxygen 

within tissues (MacDougall and McCabe, 1967).  

Blood vessels are formed by tube-like structures of a vascular endothelial cell layer 

held together by tight cell-cell and cell-ECM interactions to ensure vessel integrity. 

These channels are coated by pericytes (or vascular smooth muscle cells) that 

control stability, vessel maturity and perfusion. A basement membrane between 

endothelial cells and pericytes provides additional structural support (Carmeliet and 

Jain, 2011). Existing vasculature is activated to form new vessels by sprouting 

angiogenesis and vascular branching or other mechanisms. These activating 

signals include a plethora of soluble and membrane-bound factors and their 

receptors on endothelial cells, such as vascular-endothelial growth factors (VEGFs), 

platelet-derived growth factor (PDGF), fibroblast growth factors (FGFs), 

angiopoietins and Tyrosine kinase with immunoglobulin-like and EGF-like domains 

(TIE) receptors, transforming growth factor (TGF)-beta, Notch/Delta and Wnt 
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signalling. Endogenous inhibitors of neovascularisation like thrombospondins 

(TSPs) or the statins angiostatin and endostatin also bind transmembrane 

receptors on endothelial cells and prevent unnecessary vessel sprouting (Bergers 

and Benjamin, 2003, Bornstein, 2009, Carmeliet and Jain, 2011). Some tumours 

co-opt existing blood vessels to allow initial growth (Holash et al., 1999), but 

predominantly tumours imbalance the control of angiogenesis to permanent and 

aberrant activation. This process is called the angiogenic switch and leads to the 

formation of tumour blood vessels that remain quite distinct from their normal 

counterparts. Tumour neo-vasculature contains irregular, distorted, dilated and pre-

mature vessels that show excessive branching with dead ends. The interactions 

between endothelial cells and pericytes become interrupted leading to increased 

permeability, haemorrhaging and irregular blood flow (Bergers and Benjamin, 2003, 

Carmeliet and Jain, 2011, Naumov et al., 2006). Moreover, newly recruited bone 

marrow-derived endothelial precursor cells as well as tumour cells “mimicking” 

endothelial cells were reported to form part of the wall of tumour vessels or even 

entire channels (Folberg et al., 2000, Lyden et al., 2001). The poorly organised 

tumour vasculature appears very dynamic, but with limited functionality and often 

hinders supply of anti-cancer drugs or infiltration of anti-tumour immune cells (Chen 

et al., 2003a, Jain, 2005). Likely it is the tumour-individual balance between 

angiogenesis-stimulating or inhibiting signals that accounts for the variations in 

integrity of the tumour vasculature and its aberrant nature (Hanahan and Coussens, 

2012, Hanahan and Weinberg, 2011). A consequence of the uncontrolled tumour 

growth and predominantly insufficient tumour vasculature is the creation of different 

microenvironments with varying levels of hypoxia and oxygen availability within the 

tumour. In general, the core of a tumour is associated with increased hypoxia that 

strongly attracts stromal and inflammatory cells (Quail and Joyce, 2013). 

The inhibition of neo-angiogenesis during tumour progression by blocking VEGF or 

a normalisation of the tumour vasculature to improve drug delivery were the basis 

for the development of several anti-cancer therapies that showed clinical success 

(Chung et al., 2010, Gasparini et al., 2005, Jain, 2005), however not without its 

pitfalls. Frequently, the effects of blocking angiogenesis appear temporal or 

transitory and might even drive tumours into enhanced invasiveness and metastatic 

spread (Bergers and Hanahan, 2008, Ebos et al., 2009). 
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1.2.1.1 Endothelial cells 

Endothelial cells are not only the structural building blocks of blood vessels, but 

directly influence cancer cell proliferation by secretion of growth-stimulating factors 

and provide cancer cell supportive niches (Butler et al., 2010). For example, 

endothelial cells emerge as important niches maintaining cancer cell “stemness” 

via cell-cell contacts, soluble factors and deposition of distinct ECM components 

(Butler et al., 2010, Plaks et al., 2015). However, endothelial cells can also limit 

cancer cell proliferation, invasion and metastatic potential in a partially perlencan-

dependent manner (Franses et al., 2011). Another study showed that endothelial 

cells in mature, organotypic blood vessels kept metastatic breast cancer cells 

quiescent via secretion of TSP-1. In sprouting neo-vessels, endothelial cell-derived 

TSP-1 was lost, which led to enhanced metastatic cancer cell outgrowth associated 

with TGF-beta1 and periostin (Ghajar et al., 2013). Interestingly, hypoxia-induced 

expression of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha isoforms in 

endothelial cells has metastasis-promoting or inhibiting effects, respectively. This 

opposing role of HIFs is due to differential nitric oxide production that influences 

endothelial transmigration by tumour cells (Branco-Price et al., 2012). Hence, the 

pleiotropic pro- or anti-tumourigenic roles of endothelial cells might be 

microenvironment and context dependent. 

 

1.2.1.2 Platelets and coagulation factors 

As non-nucleated products of cytoplasm of megakaryocytes, platelets are the 

smallest haematopoietic cells in the circulation. Platelets are covered with integrins 

and glycoproteins essential for adhesion and platelet aggregation. They are 

activated by numerous stimuli in vivo, for example thrombin and collagen during 

thrombosis, and are essential mediators of coagulation and haemostasis (Bambace 

and Holmes, 2011). 

Tumour cells have been shown to directly activate platelets in the circulation via 

cell-to-cell contact or secretion of paracrine factors like tissue factor (TF) causing 

tumour cell-induced platelet aggregation (Gay and Felding-Habermann, 2011). 

Tumour cell-derived TF generates thrombin that recruits platelets by engaging their 

surface receptor protease-activated receptor 4 (PAR4) (Ruf et al., 2011). Through 
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tumour cell-platelet aggregation, platelets provide a permissive environment for 

disseminated cancer cells in the blood steam and, for example, protect tumour cells 

from being recognised and eliminated by natural killer (NK) cells via a physical 

platelet-composed shield and secretion of fibrinogen (Gay and Felding-Habermann, 

2011, Palumbo et al., 2005). Platelets also drive metastasis by directly promoting 

cancer cells and were shown to favour their survival by activation of NFkB 

signalling and cancer cell EMT features by secretion of TGF-beta (Labelle et al., 

2011). Additionally, cancer cell extravasation is facilitated by platelets that become 

activated at sites of endothelial retraction via interaction if their integrins with the 

exposed collagen of the basement membrane. Platelet activation causes 

stimulation of coagulation and fibrin clot formation that facilitates association of 

tumour cells (Gay and Felding-Habermann, 2011). 

In fact, high platelet count correlates with poor patient prognosis in various cancer 

types (Gay and Felding-Habermann, 2011) and coagulation factors including TF 

are strongly activated in cancer patients (Kakkar et al., 1995). These observations 

highlight the pro-tumourigenic functions of platelets especially in providing a niche 

for metastatic cells in the circulation. 

 

1.2.2 Mesenchymal cells and structural components of the tumour 

microenvironment 

1.2.2.1 Cancer-associated fibroblasts 

Fibroblasts are spindle-shaped stromal cells within connective tissue that show 

pronounced diversity depending on their tissue location. They have multiple 

functions like secretion and deposition of ECM and basement membranes, 

controlling epithelial cell differentiation as well as regulation of immune responses 

and frequently show anti-tumourigenic functions (Kalluri and Zeisberg, 2006). In the 

context of cancer, fibroblasts display an aberrantly activated phenotype and exhibit 

characteristics of myofibroblasts, such as exacerbated proliferation, increased 

secretion of ECM components and growth factors. These altered transcriptional 

signatures of cancer-associated fibroblasts (CAFs) show high prognostic value in 

the clinic (Herrera et al., 2013, Madar et al., 2013, Navab et al., 2011) and CAFs 
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are present in very high numbers in the TME of, for example, breast cancer (Kalluri 

and Zeisberg, 2006, Sappino et al., 1988). 

The origins of CAFs are not restricted to alternative activation of fibroblasts by 

tumour cells, despite this being demonstrated for example via the fibroblast 

activation mediators TGF-beta, PDGF and FGF2 (Elenbaas and Weinberg, 2001, 

Mueller et al., 2007, Ronnov-Jessen and Petersen, 1993). Several studies suggest 

subpopulations of CAFs to emerge from TGF-beta-induced EMT of endothelial, 

epithelial and even tumour cells. Other reported CAF sources include 

mesenchymal stem cells, smooth muscle cells, pericytes and adipose tissue-

derived stem cells. The difficulty to define specific surface markers for CAFs is a 

likely consequence of the heterogeneous origins of CAFs, adding another level of 

complexity in studying these cells (Kalluri and Zeisberg, 2006, Madar et al., 2013). 

The activation state and behaviour of CAFs are strongly influenced by 

microenvironmental factors. For example, cancer cell-derived tumour necrosis 

factor (TNF)-alpha, interleukin (IL)-1 and epidermal growth factor (EGF) modulate 

the activation status and secretome of CAFs (Madar et al., 2013) and increased 

matrix stiffness enhances pro-tumourigenic activities of CAFs via Yap/Taz 

transcription factor activation (Calvo et al., 2013). Moreover, although stromal cells 

are usually associated with genomic stability, fibroblastic-cells in the TME were 

reported to carry diverse somatic mutations (Patocs et al., 2007, Wernert et al., 

2001). 

In the TME, CAFs have been shown to have multiple, pro-tumourigenic features 

likely affecting cancer initiation and progression. CAFs are an important source of 

ECM components and remodel the tumour-associated matrix. Moreover, they 

induce EMT in cancer cells, regulate cancer “stemness” and promote invasion and 

metastasis. Also, CAFs produce tumourigenesis-promoting growth factors and 

modulate the metabolism of cancer cells, induce angiogenesis via production of 

VEGF and secrete pro-inflammatory mediators that enhance tumourigenesis and 

inhibit anti-tumour immunity (Hanahan and Coussens, 2012, Kalluri and Zeisberg, 

2006, Ohlund et al., 2014, Quail and Joyce, 2013). For example, CAFs produce 

several mitogenic growth factors including hepatocyte growth factor (HGF), EGF, 

and FGFs with the ability to promote cancer cell proliferation (Ohlund et al., 2014). 

CAF-derived HGF also induces chemotherapy resistance via induction of PI3K 

signalling in lung cancer cells (Ying et al., 2015) or alternatively, CAF-dependent 
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therapy insensitivity of prostate cancer cells was caused by the CXCL12/CXCR4 

axis (Domanska et al., 2012). 

Collectively, the complexity of the origin and heterogeneity among CAFs is only 

outperformed by the sheer avalanche of CAF-associated functions to exacerbate 

tumourigenesis. CAFs directly influence cancer cells, other stromal cells in the TME 

or the ECM and thereby the entire environment. In fact, CAFs were shown to 

potently affect virtually every hallmark of cancer (Hanahan and Coussens, 2012), 

highlighting their importance in the context of cancer. 

 

1.2.2.2 Mesenchymal stem cells 

Mesenchymal stem cells (MSCs) reside in the bone marrow and can differentiate 

into mesenchymal cells including adipocytes, chondrocytes or osteoblasts. 

Interestingly, they are mobilised to tumour and metastatic tissues where they play a 

controversial role and can both, promote and suppress cancer progression (Yagi 

and Kitagawa, 2013).  

Foetal and adult bone marrow-derived MSCs facilitated growth of subcutaneously 

transplanted cell lines (Zhu et al., 2006) and, in breast cancer, MSCs in the TME 

were shown to increase cancer cell motility and metastatic competence via a direct 

paracrine CCL5/CCR5 axis (Karnoub et al., 2007). In contrast, MSCs co-grafted 

with glioma cells reduced tumour growth by limiting angiogenesis, likely via 

reduction of PDGF (Ho et al., 2013). MSCs also suppressed Kaposi’s sarcoma 

growth by inhibition of AKT activation (Khakoo et al., 2006). Interestingly, MSCs 

also appear to influence cancer “stemness” and increased the frequency of 

CD133+ cancer stem cells-like cells in a gastric carcinoma cell line in vivo via 

induction of Wnt signalling (Nishimura et al., 2012). 

 

1.2.2.3 Adipocytes and adipose tissue 

Dysfunctional adipose tissue and adipocyte-derived cytokines such as Lectin and 

Plasminogen activator inhibitor-1 (PAI-1) promote cancer cell proliferation. For 

example, they can induce ERK1/2 or PI3K signalling in cancer cells and were 

shown to promote tumour growth and counteract apoptosis in various cancer types 
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(Prieto-Hontoria et al., 2011). Cancer-associated adipocytes show lipolysis, 

phenotypically exhibit a fibroblastic shape, remodel the ECM, induce inflammation 

and appear to promote progression of breast cancer via direct cross talk with 

cancer cells (Tan et al., 2011). Importantly, adipose tissue invasion of ductal breast 

carcinoma cells associated with poor outcome and increased metastasis in the 

clinic (Yamaguchi et al., 2008). Moreover, adipocytes confer radioresistance of 

breast cancer cells (Bochet et al., 2011). In ovarian cancer, adipocytes facilitate 

invasion and homing of cancer cells to the omentum via adipokine secretion, 

induce cancer cell growth by direct transfer of lipids and activate beta-oxidation in 

cancer cells altering their energy metabolism. These pro-tumourigenic and pro-

metastatic functions of adipocytes were at least partially dependent on adipocyte 

fatty acid-binding protein 4 (FABP4) (Nieman et al., 2011). Lastly, adipocytes also 

prove their plasticity during cancer progression. Fluorescent-labelling suggested 

the integration of adipose stromal cells into tumour blood vessels as pericyte-like 

cells in an obesity-dependent fashion (Zhang et al., 2012). Taken together, this 

evidence sheds light on the correlation of obesity and cancer, however the 

investigation of the contribution of adipocytes appears to be it’s infancies (Vucenik 

and Stains, 2012).  

 

1.2.2.4 Extracellular matrix and mechanical forces/tissue stiffness 

The extracellular matrix (ECM) is a complex network of macromolecular 

components like proteins, glycoproteins, polysaccharides and proteoglycans with 

varying physical, biomechanical and biochemical characteristics that assemble 

basement membranes and the interstitial matrix of tissues. The ECM was 

traditionally considered as rigid entity providing structural support and anchorage, 

but emerged as highly dynamic structure that is constantly remodelled by stromal 

cells, provides a storage of signalling factors and influences cellular behaviour (Lu 

et al., 2012). The individual composition of the ECM varies between different tissue 

types resulting in various elasticity levels and is largely deregulated in cancer. The 

cancer-associated ECM is aberrantly deposited and remodelled, which leads to 

increasing stiffness and reduced material elasticity during the course of cancer 

progression from a neoplasm, carcinoma in situ to an invasive carcinoma with 
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notable cellular responses (Yu et al., 2011). In fact, the ECM has prognostic value 

in breast cancer with high presence of protease inhibitors correlating with good 

clinical outcome in contrast to an ECM rich in integrins or matrix metallopeptidases 

(MMPs) (Bergamaschi et al., 2008). 

Interestingly, the ECM and matrix stiffness can directly activate the main pathways 

associated with proliferation and transformation in cancer via integrins. Cell surface 

integrins are important mechano-sensors and cluster upon matrix stiffening by, for 

example, collagen cross-linking through enhanced Lysyl oxidase (LOX) production 

of breast cancer cells. Integrins activate focal adhesion kinase (FAK), which results 

in increased PI3K/Akt or Ras/ERK signalling, oncogenic transformation and 

invasion (Levental et al., 2009, Paszek et al., 2005). Cancer accompanied changes 

in the ECM composition and elasticity also influence stromal cells like CAFs 

(section 1.2.2.1). ECM tension at focal adhesions induces Src tyrosine kinases and 

leads to activation of Yap/Taz transcription factors that are crucial for pro-

tumourigenic functions of CAFs such as promotion of matrix stiffening, 

angiogenesis and cancer cell invasion. Yap activation results in stabilisation of the 

actin cytoskeleton facilitating CAF-mediated ECM remodelling that increases 

stiffness and, in turn, enhances Yap/Taz levels in CAFs to foster tumourigenesis 

(Calvo et al., 2013). 

The composition of the ECM influences multiple processes during cancer 

development such as cancer cell invasion, immune cell infiltration and activation as 

well as angiogenesis. Thereby, an aberrant ECM aids the formation of a tumour-

supportive microenvironment (Lu et al., 2012). Hence, improving our understanding 

of ECM components, their composition, deregulation and consequent effects on 

cancer progression might provide a so far unexploited direction for intervention. 

 

1.2.3 Inflammation and immunity – tumour promotion and immune-mediated 

destruction 

Inflammation is a physiological response of the body to infection and injury in order 

to remove pathogens or other destructive factors and restore normal tissue 

homeostasis and function during wound healing. The normal inflammatory 

response is divided into an acute phase characterised by redness, heat, swelling 
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and pain that are mainly caused by an influx of leukocytes. These leukocytes 

include granulocytes followed by macrophages, the activation of tissue-resident as 

well as adaptive immune cells and cause local and systemic amplification of the 

inflammatory response by secreting cytokines and other inflammatory mediators. 

Importantly, the inflammation has to be dampened after elimination of the initial 

insult during a resolution phase. Leukocyte numbers and activation status are 

normalised, which is usually mediated by immunosuppressive soluble signals and 

cells like regulatory T cells (Nathan, 2002). Importantly, inflammation associated 

with tumour development and progression is significantly different to an acute 

inflammatory response following infection and often termed “smouldering 

inflammation” because of its low grade (Balkwill et al., 2005, Grivennikov et al., 

2010). Cancer-related inflammation is characterised by the presence of 

inflammatory cells and inflammatory mediators such as cytokines as well as 

chemokines in concert with tissue remodelling and neo-angiogenesis. This pro-

tumourigenic microenvironmental change is observed in the vast majority of 

malignant cancers and appears independent of the tumour-initiating cause 

(Mantovani et al., 2008). 

The presence of inflammatory cells within tumour tissue was first noted in 1863 by 

Rudolf Virchow (Balkwill and Mantovani, 2001), in 1986 Harold Dvorak proposed 

tumours to resemble “wounds that do not heal” (Dvorak, 1986) and, by today, 

cancer-associated inflammation is a recognised enabling characteristic of cancer 

(Hanahan and Weinberg, 2011). Numerous types of infections and chronic 

inflammatory conditions pre-dispose to cancer development, for example 

Heliobacter pylori infection to gastric cancer, Haemophilus influenza infection to 

lung cancer, hepatitis virus infection or liver cirrhosis to hepatocellular carcinoma 

and inflammatory bowels disease to colorectal cancer (Balkwill et al., 2005, de 

Martel and Franceschi, 2009). The accumulation of inflammatory cells is suggested 

to create a mutagenic environment that fosters tumour initiation. For example, 

immune cell-derived generation of reactive oxygen species (ROS), nitric oxide (NO) 

and other highly reactive compounds cause mutations in surrounding epithelial 

cells. Moreover, inflammation also promotes genetic instability in normal and 

transformed cells triggering further malignant progression and inflammation 

(Colotta et al., 2009, Meira et al., 2008, Pang et al., 2007). Activation of the 

Ras/ERK signalling pathway in cancer cells, that is crucial for cancer cell 
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expansion, also induces cytokine/chemokine expression leading to an inflammatory 

state (Guerra et al., 2007, Mantovani et al., 2008, Sparmann and Bar-Sagi, 2004). 

Moreover, we know from mouse carcinogenesis models that induction of chronic 

inflammation is necessary to drive tumour development after an otherwise non-

effective initial genetic hit, like carcinogen-induced DMBA/TPA or AOM/DSS-

induced multi-stage carcinogenesis protocols (Abel et al., 2009, De Robertis et al., 

2011). In fact, inflammatory cells and mediators were experimentally shown to 

directly promote all stages of tumourigenesis, from cancer initiation, growth, 

angiogenesis, cell invasion, migration, intra- and extravasation as well as 

metastatic growth, which shows promising potential for therapeutic interference 

(Coussens and Werb, 2002, Hanahan and Coussens, 2012).  

 

However, not all immune cells and aspects of inflammation are necessarily pro-

tumourigenic. For example, clinically induced fever and bacterial infections are 

proposed treatments for some cancer types. For example, William Coley developed 

a bacteria-based anti-cancer treatment by mixing toxins from heat-inactivated 

Streptococcus pneumoniae and Serratia marcescens in 1893, the “Coley toxin” 

(Coley, 1893), that was later shown to contain lipopolysaccharide which stimulates 

Toll-like receptor 4 (Rakoff-Nahoum and Medzhitov, 2009). In 1976, Morales, 

Eidinger and Bruce used bacillus Calmette-Guerin for the efficient treatment of 

bladder cancer, which remains an applied therapy for advanced bladder cancer 

(Wei et al., 2008). Moreover, impaired immunity was shown to correlate with 

increased incidence of certain cancer types. Patients under immunosuppressive 

treatment after organ transplantation displayed increased incidence of several 

cancer types such as sarcomas and carcinomas, however reduced risk of breast 

and rectal cancer (Stewart et al., 1997, Stewart et al., 1995, Vajdic and van 

Leeuwen, 2009). A large proportion of these anti-tumourigenic effects of the 

immune system might be attributed to cancer immunosurveillance and the action of 

effector cells of the innate and adaptive immune system that recognise and 

eradicate tumour cells (Igney and Krammer, 2002, Finn, 2012, Quezada et al., 

2011). Moreover, the same inflammatory cell types, like macrophages and 

neutrophils, are known to have opposing roles in cancer progression, depending on 

the environment and context (Piccard et al., 2012, Sica and Mantovani, 2012). 
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In summary, these observations highlight the complexity and context-dependence 

of the functions of inflammation and inflammatory cells in cancer and we are only 

beginning to understand the exact mechanisms.  

 

1.2.3.1 Anti-cancer immunity and cancer cell elimination 

The immune system has an important protective role against cancer. It clears virus-

infections and thereby limits virus-induced tumours, prevents the generation of 

chronic tumour-supportive milieus through eradication of bacterial infections 

followed by quick resolution of inflammation and, importantly, many immune cells 

directly eliminate transformed cells (Schreiber et al., 2011). This fact is best 

illustrated by the observations that impaired immunity of patients showed to be a 

risk factor for several types of cancer (Stewart et al., 1997, Vajdic and van 

Leeuwen, 2009). In concert, immunocompromised mice have a greater 

spontaneous incidence for cancer development and are more susceptible to 

experimental tumour induction by carcinogens or tumour cell transplantation. These 

genotypes include mice genetically deficient for interferon-gamma (IFN-gamma), 

recombining-activating gene (Rag) 1 or 2 and the non-obese diabetic (NOD)/Prkdc-

scid/IL-2rg (NSG) mice (Kanaji et al., 2014, Quezada et al., 2011). IFN-gamma is a 

key cytokine that activates JAK/STAT signalling and, thereby induces Type 1 CD4+ 

T helper cells (Th1). Th1 cells contribute to pro-inflammatory responses by 

stimulating cell-mediated immunity and CD8+ cytotoxic T cells (Zaidi and Merlino, 

2011). Rag1 and Rag2 proteins are essential for V(D)J rearrangement of B and T 

cell receptors (BCRs and TCRs) during lymphocyte generation and their loss 

causes severe combined immunodeficiency (scid), the absence of functional B and 

T lymphocytes (Mombaerts et al., 1992, Shinkai et al., 1992). In a similar fashion, 

NSG mice lack lymphocytes as a result of the scid mutation of Prkdc (protein 

kinase, DNA-activated, catalytic polypeptide), a protein crucial for DNA double-

strand break repair during V(D)J rearrangement of BCRs and TCRs. The NOD 

background of these mice causes loss of the complement system and limited 

macrophage activity (Shultz et al., 1995) and the deficiency for the interleukin-2 

receptor subunit gamma (IL-2rg) results in lack of functional NK cells (Shultz et al., 

2012). Moreover, the presence of specific immune cell subsets like natural killer 
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(NK) cells, cytotoxic CD8+ T cells and Th1 cells in the TME correlates with 

significantly improved prognosis for many different cancer types (Fridman et al., 

2012). 

From these studies, it emerged that anti-cancer immunity is mediated by 

collaboration between arms of the innate and adaptive immune system and has 

proven to be very cancer type and context dependent (Dunn et al., 2002, Dunn et 

al., 2004, Schreiber et al., 2011) (Fig. 1.4). The main innate effector cells involved 

in cancer cell elimination are NK cells that mainly recognise cells that lack major 

histocompatibility complex (MHC)-I expression via their NKG2D receptor – a 

common feature of emerging neoplasms. NK cell cytotoxicity against tumour cells 

is predominantly mediated via secretion of perforin and granzyme that break 

tumour cell membranes and engagement of apoptosis-inducing receptors like 

tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor and Fas 

on tumour cells (Waldhauer and Steinle, 2008). Other types of innate immune cells 

have also been shown to directly kill cancer cells, like macrophages and 

neutrophils (Piccard et al., 2012, Sica and Mantovani, 2012). 

Many cancer cells express and present so-called tumour antigens via MHC-I or 

MHC-II that can mediate their clearance (Coulie et al., 2014). Dendritic cells and 

other antigen-presenting cells take up particles from dying cancer cells – including 

tumour antigens – and present these to cytotoxic CD8+ T cells. CD8+ T cells with 

specific TCRs recognising tumour antigens are then induced to expand and will 

specifically detect and lyse emerging tumour cells (Dunn et al., 2002, Dunn et al., 

2004, Schreiber et al., 2011). Moreover, CD4+ T cells can also display direct anti-

cancer cytotoxicity against, for example, melanoma cells (Quezada et al., 2010). If 

successful, innate and adaptive immunosurveillance can completely eliminate 

neoplastic cells and prevent any clinical significance. Sadly, these anti-tumour 

immunity mechanisms are not bulletproof, but can be circumvented by cancer cells 

by the emergence of poorly immunogenic cancer cells. These cancer cells are 

thought to initially enter an equilibrium phase were adaptive immune cells together 

with cytokines like IL-12 and IFN-gamma keep them in a dormant state and prevent 

outgrowth (Quezada et al., 2011, Schreiber et al., 2011, Dunn et al., 2004, Dunn et 

al., 2002, Aguirre-Ghiso, 2007). During this equilibrium phase, cancer cells are 

under pronounced immune-mediated pressure leading to “immunoediting” – the 

process where anti-cancer immunity is proposed to influence cancer malignancy by 
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forcing cancer cells to alter their immunogenicity. Consequently, cancer cells can 

acquire additional pro-tumourigenic transformations and become immunoevasive, 

for example by loss of tumour antigens or MHC molecules presenting these, and 

escape this equilibrium with adaptive immunity (Dunn et al., 2002, Dunn et al., 

2004, Schreiber et al., 2011). These escapers of immune surveillance and 

elimination can actively suppress NK cells, cytotoxic CD8+ T cells and anti-

tumourigenic macrophages or indirectly create an immunosuppressive 

microenvironment by recruitment of stromal cells. This tumour-supportive milieu 

inhibits anti-cancer immunity and allows cancer growth to clinically relevant stages 

(Dunn et al., 2002, Dunn et al., 2004, Schreiber et al., 2011) (Fig. 1.4). Studies on 

immunomodulatory molecules that control CD8+ T cell activation not only highlight 

their anti-tumourigenic functions, but also provide very promising approaches to re-

initiate and maintain anti-tumour immunity (Quail and Joyce, 2013) (Quail and 

Joyce, 2013, Quezada et al., 2011). 

 

1.2.3.2 Immune suppression – regulatory T cells, myeloid-derived suppressor 

and dendritic cells 

Development and growth of tumours is often associated with the infiltration of 

several T cell subsets, the anti-tumourigenic cytotoxic CD8+ T cells and CD4+ Th1 

cells (section 1.2.3.1) as well as immunosuppressive regulatory T cells (Treg). 

These Treg cells in concert with myeloid-derived suppressor cells (MDSCs) and 

dendritic cells comprise the main cellular components inhibiting or preventing 

immune-mediated eradication of tumours. Moreover, tumour cells and tumour-

educated stromal cells release soluble mediators suppressing anti-cancer immunity 

like IL-10, TGF-beta, VEGF and galectin that create a cancer growth permissive 

milieu (Quezada et al., 2011, Schreiber et al., 2011). 

 

Treg cells are important negative regulators of lymphocyte activation and thereby 

are crucial to prevent chronic inflammation and autoimmune diseases by 

dampening mainly adaptive immune responses. They suppress the effector 

functions and proliferation of an array for leukocytes, most notably antigen-

presenting cells (APCs), CD8+ T cells, NK and Th1 cells globally by release of anti-
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inflammatory cytokines including TGF-beta and IL10 (von Boehmer and Daniel, 

2013). For example, TGF-beta causes downregulation of the NKG2D receptor on 

NK cells limiting their cytotoxicity towards MHC-I-deficient (cancer) cells and IL-10 

prevents T cell proliferation (Ralainirina et al., 2007, Taga et al., 1993). Also, Tregs 

were shown to prevent antigen-presentation to T cells via contact-inhibition of 

APCs such as macrophages or dendritic cells and impede cytotoxic granule 

release by cytotoxic CD8+ T cells (von Boehmer and Daniel, 2013, Quezada et al., 

2011) (Fig. 1.4). Nevertheless, tumour-associated Treg cell functions and 

phenotypes appear quite heterogeneous, as their infiltration into the TME 

correlates with poor clinical prognosis for breast and liver cancer patients and with 

improved survival in many other cancer types (Quail and Joyce, 2013). 

 

MDSCs are a heterogeneous population of immature, multipotent myeloid 

progenitor cells with varying degrees of maturity, plasticity and differentiation 

potential into mature cells that display pronounced immunosuppressive function. 

They are thought to be the result of abnormal myelopoiesis and differentiation in 

the bone marrow occurring in tumour bearing hosts. This altered myelopoiesis is 

mediated by a complex array of often tumour-derived cytokines and growth factors 

including granulocyte-colony stimulating factor (G-CSF), granulocyte-monocyte 

(GM)-CSF, macrophage (M)-CSF, VEGF, IL-6, IL-1-beta, stem cell factor (SCF), 

Prostaglandin E2 (PGE2) and TNF-alpha (Gabrilovich and Nagaraj, 2009, 

Wesolowski et al., 2013). MDSCs often systemically accumulate with increased 

tumour burden and are recruited to tumour sites via the chemokines C-C motif 

ligand (CCL) 2, C-X-C motif ligand (CXCL) 12 and CXCL5 involving selectins and 

integrins (Talmadge and Gabrilovich, 2013, Wesolowski et al., 2013). In mice 

MDSCs comprise at least two clearly different subpopulations that have differential 

gene expression patterns, monocytic CD11b+ Ly6G-/Ly-6C+ M-MDSCs with 

monocytic morphology and granulocytic CD11b+ Ly6G+/Ly6C-low G-MDSC with 

granulocyte-like morphology. M-MDSC display high levels of inducible nitric oxide 

synthase (iNOS) with enhanced T cell suppressive activity and can differentiate into 

mature macrophages, granulocytes and dendritic cells while G-MDSCs have 

increased Arginase 1 (Arg1) production and no known differentiation ability 

(Gabrilovich and Nagaraj, 2009, Talmadge and Gabrilovich, 2013, Youn et al., 

2008). In humans, M-MDSCs are associated with HLA-DR- CD11b+ CD33+ CD14+ 
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and G-MDSCs with HLA-DR- CD11b+ CD33+ CD15+ expression (Wesolowski et 

al., 2013). The phenotypic identification of MDSCs is challenging and M-MDSCs 

and G-MDSCs are very difficult to be distinguished from mature macrophages and 

neutrophils or granulocytes by expression of surface markers, respectively 

(Talmadge and Gabrilovich, 2013, Youn et al., 2008). Hence, it was suggested to 

define this mixed and complex immature myeloid cell population by their function to 

suppress (anti-cancer) immune responses instead of their phenotypes. This 

functional definition would argue for a functional “MDSC” state that is associated 

with particular myeloid cell populations and also let to their nomenclature 

(Gabrilovich et al., 2007, Talmadge and Gabrilovich, 2013, Youn et al., 2008, Youn 

and Gabrilovich, 2010). 

MDSCs trigger this functional inhibition of anti-cancer immune responses via 

various mechanisms. For example, MDSCs produce NO via iNOS and withdraw 

the available non-essential amino acid L-arginine by metabolism with the enzyme 

Arg1. NO inhibits T cell function by suppression of JAK/STAT signalling and MHC-II 

expression and triggers T cell apoptosis. MDSC-mediated reduction of L-arginine 

quantities causes suppression of T cell proliferation via, for example, 

downregulation of cell cycle genes. Moreover, MDSCs were shown to foster the 

development of immunosuppressive Treg cells from naïve CD4+ T cells that was 

dependent on IFN-gamma, IL-10, Arg1 or CTLA-4 in a context specific fashion 

(Gabrilovich and Nagaraj, 2009, Gabrilovich et al., 2012, Gabrilovich et al., 2001). 

MDSCs affected NK cell cytotoxicity predominantly by decreasing perforin but not 

granzyme B production and depended on cell-to-cell contact as well as STAT5 (Liu 

et al., 2007). Importantly, circulating MDSC frequencies positively correlated with 

tumour burden as well as inversely with T cell frequencies and, probably as a 

consequence, high MDSC numbers associated with worse clinical outcome for 

many different cancer types (Gabrilovich et al., 2012, Talmadge and Gabrilovich, 

2013) (Fig. 1.4). 

 

Dendritic cells are mature, bone marrow derived myeloid cells usually residing in 

tissues that are professional APCs dedicated to processing and presentation of 

antigens to lymphocytes. They actively collect cellular material from their 

environment and become potent antigen presenters upon stimulation and activation 

by pathogen-associated molecular patters (PAMPs) or danger-associated 
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molecular patters (DAMPs) (Gabrilovich et al., 2012). Dendritic cells are under 

special attention for the development of anti-cancer therapies to due to their natural 

property to generate potent antigen-specific T cell immune responses. Dendritic 

cell-based immunotherapeutic strategies or “anti-cancer vaccines” aim to 

specifically deliver tumour-antigens and induce anti-tumour T cell activation via 

transfer of dendritic cells pre-incubated with tumour material (Palucka and 

Banchereau, 2012). 

 

1.2.3.2.1 Immune checkpoint blockade in cancer therapy 

Recent evidence points towards a crucial role of immune checkpoint signals – co-

stimulatory or co-inhibitory molecules complementing antigen-recognition by the 

TCR or BCR of lymphocytes – as mechanisms for evasion of immune destruction 

by cancer cells (Postow et al., 2015). Cytotoxic T-lymphocyte antigen (CTLA)-4 is a 

co-inhibitory receptor that is upregulated on CD4+ and CD8+ T cells upon 

activation and constitutes a homeostatic mechanism to contain T cell activation. 

CLTA-4 competes with the T cell-expressed activating molecule CD28 for binding 

of co-stimulatory CD80 and CD86 ligands present on APCs that usually facilitate T 

cell activation and proliferation upon TCR engagement. In contrast, binding of the 

higher affinity CTLA-4 causes T cell cycle arrest and reduction of cytokine release 

leading to T cell exhaustion (Quezada et al., 2011, Topalian et al., 2015). 

Interestingly, CTLA-4 is also expressed on Treg cells and its block limits their 

immunosuppressive function (von Boehmer and Daniel, 2013). PD-1, the receptor 

for programmed cell death ligand (PD-L) 1 and 2, is another activated CD4+ and 

CD8+ T cell-expressed inhibitory molecule that causes effector T cell inactivation 

and exhaustion. PD-L1 is expressed by APCs, Tregs, other cell types and, 

importantly, by many tumour cells and directly correlates with worse clinical 

outcome. Hence, the PD-L1/PD-1 axis provides another promising target to sustain 

cytotoxic CD8+ T cell responses in the context of cancer (Quezada et al., 2011, 

Topalian et al., 2015). In fact, inhibition of CTLA-4, PD-1 or PD-L1 proved very 

effective in the treatment of pre-clinical cancer mouse models and cancer patients 

leading to international excitement and a “revolution” of care for cancer patients 

(Postow et al., 2015, Pardoll, 2012, Allison, 2015). For example, Ipilimumab and 
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Nivolumab, monoclonal antibodies targeting CTLA-4 or PD-1 respectively, 

significantly improved the overall survival of patients with metastatic melanoma, a 

cancer type with very limited therapeutic options (Camacho, 2015, Ascierto and 

Marincola, 2015). In detail, Ipilimumab administration raised the one-year survival 

rate to about 45% compared to about 25% of the patient group treated with gp100 

(melanoma antigen glycoprotein 100) that has also been reported to stimulate 

cytotoxic T cell responses (Hodi et al., 2010). Nivolumab therapy showed a high 

one-year patient survival rate of about 73% while overall survival was only about 

42% upon dacarbazine (an antineoplastic chemotherapy drug) treatment (Robert et 

al., 2015). Moreover, the one-year survival rate of previously–treated advanced 

non-small-cell lung cancer patients was up to 56% (dose-dependent) following 

nivolumab treatment compared to about 31% of current second-line therapies in a 

phase I clinical trial (Gettinger et al., 2015). CTLA-4, PD-1 or PD-L1 inhibition also 

showed promising therapeutic benefits in phase I clinical trials in, among others, 

triple-negative breast cancer, urothelial bladder cancer, pancreatic cancer, prostate 

cancer, colon cancer, renal cancer mesothelioma and Hodgkin's lymphoma. In fact, 

advanced melanoma was the first cancer type to be granted US Food and Drug 

Administration (FDA) approval for the use of drugs targeting CTLA-4, PD-1 or PD-

L1 followed recently by non-small cell lung cancer and the list is likely to be 

extended (Ascierto and Marincola, 2015, Postow et al., 2015, Pardoll, 2012, Allison, 

2015, Topalian et al., 2015, Swaika et al., 2015) and (http://www.fda.gov). 
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Figure 1-4 Mechanisms of immune cell-mediated cancer cell killing and 
immunosuppression 
Schematic representation of cells and molecules involved in mediating cancer cell 
lysis, immunoediting, immunoevasion and growth of cancer cells as well as their 
interplay. Further, cells and molecules are depicted that suppress anti-cancer 
immunity. 
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1.2.3.3 Cancer-promoting inflammation – macrophages, neutrophils, mast 

cells and gut microbiota 

Pro-tumourigenic effects of inflammation go beyond the suppression of anti-cancer 

immunity and especially macrophages and neutrophils (section 1.3.5) have been 

ascribed with potent direct pro-tumourigenic functions. Macrophages are terminally 

differentiated myeloid cells closely related to dendritic cells and their density at 

tumour sites correlates with poor prognosis for patients in 80% of conducted 

studies. Additionally, the macrophage transcriptome as well as expression of 

factors involved in regulating macrophage differentiation and recruitment show 

prognostic value (Qian and Pollard, 2010). The main functions of macrophages 

include the protection from infections and maintenance of tissue homeostasis by 

direct phagocytosis of microbes or dead cells and antigen presentation to T cells. 

Moreover, they release a plethora of growth factors, cytokines, chemokines, 

scavenger receptors and proteolytic enzymes that control tissue morphogenesis 

and growth as well as inflammation and wound healing. During steady state, tissue 

resident macrophage populations such as Kupffer cells in the liver or interstitial and 

alveolar macrophages in the lung play essential roles in tissue homeostasis while, 

during inflammatory responses, bone marrow-derived macrophages that 

differentiate from monocytes infiltrate tissues (De Palma and Lewis, 2013). The 

phenotype, activation state and functions of macrophages are strongly influenced 

by the microenvironment leading to pronounced macrophage plasticity. The 

classically activated M1 state of macrophages is induced by engagement of Toll-

like receptors (TLRs) and Th1 cytokines like IFN-gamma via STAT1 and NFkB 

activation to stimulate their fighting abilities against invading pathogens and is 

associated with anti-tumourigenic properties. M1 macrophages are characterised 

by upregulation of inflammatory type I cytokines such as TNF-alpha, IL-1-beta and 

IL-12 and generation of ROS and NO that foster their phagocytic activity as well as 

by enhanced expression of MHC-II molecules increasing their participation in 

antigen presentation to T cells (Qian and Pollard, 2010, Sica and Mantovani, 2012). 

In contrast, Th2 cytokines like IL-4 and IL-13 cause an alternatively activated M2 

state of macrophages via STAT3 and STAT6 activity to participate in wound 

healing and humoural immunity and is recognised as pro-tumourigenic 
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macrophage polarisation. M2-associated features are intended to foster resolution 

of inflammation after infection and promote tissue regeneration, for example via 

stimulation of angiogenesis and ECM remodelling (De Palma and Lewis, 2013, 

Sica and Mantovani, 2012). In cancer, numerous mechanisms induce the pro-

tumourigenic functions of macrophages and facilitate M2 features apart from Th2 

cells, including B cells, fibroblasts and tumour cells themselves by release of ECM 

components, IL-10, M-CSF and chemokines like CCL2 (Sica and Mantovani, 

2012).  

Tumour cells directly recruit macrophages through secretion of M-CSF, VEGF as 

well as chemokines like CCL2-5 and CCL8 and macrophage presence is 

associated with cancer cell invasiveness and angiogenesis (Lewis and Pollard, 

2006). Active infiltration of macrophages was also reported to occur at early stages 

of tumourigenesis (Qian and Pollard, 2010). In fact, macrophages within the TME 

secrete a variety of factors fostering proliferation and survival of cancer cells, such 

as EGF, PDGF, TGF-beta, HGF and FGF (Lewis and Pollard, 2006). Moreover, 

tumour-associated macrophages have been shown to strongly promote cancer cell 

invasion by multiple mechanisms. For example, macrophages secrete various 

matrix-degrading enzymes, MMPs and cathepsin proteases that facilitate cancer 

cell migration through the ECM (Joyce and Pollard, 2009). A considerable amount 

of evidence also indicates that macrophages contribute an important part to tumour 

angiogenesis. M-CSF release, and thereby macrophage presence in the TME, is 

required for the angiogenic switch and M-CSF overexpression caused acceleration 

of blood vessel formation and tumour progression. Moreover, macrophage 

depletion suppressed angiogenesis in various transplanted tumour models (Qian 

and Pollard, 2010). Macrophages secrete an array of pro-angiogenic cytokines 

including VEGF, angiopoietin, TNF-alpha, FGF as well as IL-8 and ECM-

remodelling enzymes facilitating blood vessel formation (Lewis and Pollard, 2006).  

Importantly, genetic and pharmacologic depletion or reduction of macrophage 

numbers limits tumour growth, malignancy and metastasis while accelerated 

macrophage recruitment promoted tumour progression. These observations were 

made in various mouse and human models for, among others, melanoma, 

rhabdomyosarcoma, breast, ovarian, lung, colon and prostate cancer (Qian and 

Pollard, 2010). Hence, macrophages appear to have predominantly pro-

tumourigenic roles within the TME and a re-education of M2-like to M1-like 
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macrophages, for example via M-CSFR block, might provide a promising 

therapeutic approach (Guiducci et al., 2005, Pyonteck et al., 2013). 

 

Mast cells are a heterogeneous population of bone marrow-derived cells that are 

present in many human tissues in steady state and infiltrate tumour sites. The role 

of mast cells in cancer is rudimentary understood compared to macrophages, but 

they have been shown to directly influence cancer cell proliferation and invasion, 

tumour angiogenesis, TME/ECM remodelling and orchestrate inflammation and 

immune responses (Khazaie et al., 2011). In mice, generation of tumour blood 

vessels and ECM reorganisation was dependent on mast cells (Coussens et al., 

1999) and blocking of mast cell degranulation caused hypoxia, inhibited 

angiogenesis and tumour progression (Samoszuk and Corwin, 2003, Soucek et al., 

2007). During intestinal polyp formation, genetic or pharmacologic mast cell 

reduction caused cancer cell apoptosis, hypoxia and angiogenesis (Gounaris et al., 

2007). Moreover, mast cells recruited to thyroid and breast tumours induced their 

invasion as well as survival (Melillo et al., 2010, Xiang et al., 2010). These pro-

tumourigenic features of mast cells were partially ascribed to mast cell granule-

derived tryptases, histamines, CXCL1 and CXCL10. Additionally, mast cells have 

important immunomodulatory properties and are a source of prostaglandins and 

leukotrienes that recruit macrophages and neutrophils. Also, they secrete 

considerable amounts of TGF-beta and IL-10 that suppress anti-cancer immunity 

and can positively as well as negatively control immunosuppressive properties of 

Treg cells (Gounaris et al., 2009, Khazaie et al., 2011). In the clinic, mast cells 

correlate with cancer progression and poor prognosis for example in different types 

of lymphoma, Merkel cell carcinoma, liver and prostrate cancer. However, other 

studies report contrasting findings and a better prognosis with increased mast cell 

infiltration even in the same cancer types including lymphomas, lung and colorectal 

cancer (Khazaie et al., 2011, Marichal et al., 2013). 

In summary, evidences from pre-clinical models and clinical correlation studies 

suggest promoting as well as protective roles of mast cells in cancer and further 

research will be required to shed light on these controversies. 

 

In colorectal cancer, a significant tumour-promoting function is recognised for gut 

microbiota-elicited inflammation. In fact, inhibition of the bacterial flora by treatment 
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with antibiotic agents ameliorated colorectal cancer-associated inflammation, 

suppressed tumour growth and improved outcome (Zitvogel et al., 2015). Microbes 

can, for example, directly cause DNA damage and facilitate mutations in 

endothelial cells by secretion of toxins and they can also trigger Wnt signalling by 

injection of effector molecules leading to aberrant cell growth. Moreover, breaching 

of the mucosal barrier by microbes during tumour growth activates pro-

inflammatory pathways through engagement of pattern recognition receptors like 

TLRs and may result in NFkB- and STAT3-mediated inflammatory responses 

fostering tumour progression (Garrett, 2015). Antibiotics are suspected to alter the 

composition of the gut microbiota rather than their eradication and thereby create a 

non-permissive environment for tumour growth. Hence, the FDA initiated the 

characterisation of the human microbiome in health and disease (Quail and Joyce, 

2013). 

 

1.2.3.4 Examples for cytokines and chemokines regulating cancer-related 

inflammation 

Soluble mediators like cytokines and chemokines are frequently secreted by cancer 

cells and many stromal and immune cell types likely all influencing the generation 

of an inflammatory microenvironment (Balkwill and Mantovani, 2012). Here a few 

important examples of potent inflammatory mediators and their effects on cancer 

development and progression are summarised: 

Tumour necrosis factor (TNF)-alpha is a central cytokine in the cancer-associated 

inflammatory network and was ascribed with multiple roles mainly acting via its 

receptor TNFR1 rather than TNFR2 activating the c-Jun-N-terminal kinase (JNK) 

pathway. TNF-alpha supports cancer growth and metastatic spread in numerous 

cancer types likely via its promoting effects on inflammation. However, consistent 

with the context-dependence of an inflammatory response in cancer, TNF-alpha 

also shows anti-tumourigenic activity especially in high doses (Balkwill, 2009). 

Interleukin-6 (IL-6) is a direct downstream target of oncogenic Ras/ERK signalling 

and its levels in plasma correlate with worse outcome in advanced cancer stages. It 

stimulates cancer growth, angiogenesis, cell survival and therapy resistance 

predominantly by orchestrating leukocyte infiltration and the inflammatory reaction 



Chapter 1 Introduction 

61 

 

via stimulation of the JAK/STAT pathway (Balkwill and Mantovani, 2012). 

Interestingly, IL-6 from various cellular sources is involved in expanding cancer 

stem cell subpopulations in hepatocellular carcinoma, colitis-associated and breast 

cancer (Grivennikov et al., 2009, Korkaya et al., 2011b, Korkaya et al., 2011a, Wan 

et al., 2014). 

The chemokine (C-C motif) ligand 2 is produced by cancer cells and various types 

of stromal cells and acts as a key regulator of the inter-cellular cross talk. CCL2 

binds the cell surface receptors CCR2 as well as CCR7 and displays many pro-

tumourigenic properties in a plethora of cancers stimulating tumour cell growth, 

metastatic spread, angiogenesis, attraction of innate immune cells such as tumour-

associated macrophages and matrix remodelling (Lu et al., 2006, Tsuyada et al., 

2012, Zhang et al., 2010). Therapeutic approaches neutralising CCL2 showed 

promising outcomes in pre-cancer models and are now evaluated in clinical trials 

(Zhang et al., 2010). 

In summary, the various roles of cytokines and chemokines affecting multiple 

targets suggests that targeting secreted signalling factors within the inflammatory 

TME might be more effective and specific in the clinic than depletion of respective 

cell types or functions, as demonstrated for TNF-alpha inhibition in rheumatoid 

arthritis and psoriasis (Feldmann and Maini, 2001, Gisondi and Girolomoni, 2007). 

 

1.2.3.5 The bioactive lipid signalling factors eicosanoids in cancer 

Eicosanoids are a group of secreted, bioactive pro-inflammatory lipids like 

prostaglandins (PGs) and leukotrienes (LTs) that play important roles in numerous 

pathologies including cancer (Wang and Dubois, 2010). They are synthesised from 

arachidonic acid via a cascade of enzymes producing the different variants of 

eicosanoids with cyclooxygenase (COX) 1 and 2 being essential for synthesis of 

PGs by production of the PGH2 intermediate. PGH2 is further metabolised by the 

respective PG or TX synthase to yield the secreted prostaglandins PGE2, PGD2, 

PGF2, PGI2 and TXA2. Alox5 is the key enzyme for LT synthesis and produces the 

unstable LTA4 metabolite from arachidonic acid when associated with Alox5-

activating protein (FLAP). LTA4 is either converted to LTB4 by LTA4 hydrolase or 

by LTC4 synthase to the cysteinyl leukotriene LTC4 that can be further modified to 
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LTD4 and LTE4 (Homaidan et al., 2002, Peters-Golden and Henderson, 2007) (Fig. 

4.1). PGs and LTs are subsequently secreted via multidrug resistance-associated 

protein (MRP) efflux transporters. COX-1 is constitutively expressed at low levels in 

almost all human tissues producing homeostatic levels of PGs, while COX2 is an 

early response gene mainly induced upon inflammatory stimuli and constitutes the 

predominant enzymatic source for PGE2 in cancer (Dubois et al., 1998). Alox5 

presence is normally restricted to leukocytes, predominantly neutrophils, 

eosinophils, macrophages and mast cells. However, inflammatory stimuli can 

induce Alox5 expression in epithelial cells, some cancer cells have been shown to 

produce Alox5 and epithelial as well as endothelial cells can synthesise 

leukotrienes from leukocyte-secreted LTA4 (Peters-Golden and Henderson, 2007, 

Pidgeon et al., 2007, Wang and Dubois, 2010). COX2-derived PGE2 is the most 

frequent prostaglandin and often elevated at inflammatory sites or within the TME 

of human cancers and binds to its cognate G-protein coupled rhodopsin-type 

receptors EP1-4 as well as peroxisome proliferator-activated receptors (PPARs). 

The less abundant PGD2 binds DP1-2 and TXA2 to the TP receptor (Wang and 

Dubois, 2006). LTB4 receptors include the Leukotriene B4 receptor (BLT) 1 and 

BLT2 and cysteinyl leukotrienes (CysLTs) LTC4, LTD4 and LTE4 bind to their 

receptors CysLT1 and CysLT2 (Fig. 4.1). BLT1 and CysLT1 are high affinity 

receptors that are virtually restricted to leukocytes and the low affinity receptors 

BLT2 and CysLT2 are more ubiquitously expressed on various cell types including 

cancer cells (Kanaoka and Boyce, 2004, Peters-Golden and Henderson, 2007, 

Tager and Luster, 2003). Importantly, altered metabolism of arachidonic acid by 

COX1/2 and Alox5 enzymes is commonly observed in carcinomas with significant 

effects on cancer progression (Wang and Dubois, 2010). 

Prostaglandins are important regulators of homeostasis and involved in many 

pathologies, including inflammatory malignancies and cancer. They have a key 

function in initiating the acute phase of an inflammatory response and are 

significantly increased at inflammatory sites, however their role during resolution of 

inflammation is more debated. PGE2 directly affects a plethora of leukocytes such 

as granulocytes, macrophages, dendritic cells, B and T lymphocytes by binding to 

its 4 different receptors E1, E2, E3 and E4 and exerts a dual role with pro- and anti-

inflammatory properties. In concert with the role of PGE2, other PGs also exert 
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both, stimulatory and antagonistic functions on inflammatory processes (Ricciotti 

and FitzGerald, 2011). 

Leukotrienes are powerful inducers of acute inflammation with essential functions 

in immune defence. LTB4 is mainly produced by neutrophils and lower amounts by 

macrophages and dendritic cells and cysteinyl leukotrienes LTC4, LTD4 and LTE4 

are predominantly secreted by eosinophils, basophils and mast cells, with smaller 

contributions from macrophages, dendritic cells and neutrophils. Virtually all innate 

and adaptive leukocytes express receptors for LTB4 and cysteinyl leukotrienes. 

This directly points towards the essential role of leukotrienes to stimulate and 

amplify immune responses and inflammation (Peters-Golden and Henderson, 

2007).  

Many therapeutic approaches blocking leukotriene generation or signalling are 

proving successfully in the clinics, for example pulmonary function and many other 

features of asthma are improved in patients by Alox5 blockade with the inhibitor 

Zileuton or inhibition of CysLT1 by Montelukast and Zafirlukast (Barnes et al., 2005, 

Wenzel and Kamada, 1996). LTB4 receptor antagonists, for example, also showed 

promising effects in the treatment of rheumatoid arthritis (Diaz-Gonzalez et al., 

2007).  

In summary, prostaglandins and leukotrienes play pivotal physiological roles in 

regulating immune responses and beyond. While the functions of prostaglandins 

appear context-dependent and controversial, leukotrienes appear clearly pro-

inflammatory, maintain normal host defence and are drivers of chronic 

inflammatory diseases. 

 

1.2.3.5.1 The role of eicosanoids in cancer development and progression – with a 

focus on leukotrienes 

Prostaglandins in cancer 

Prostaglandins and leukotrienes were shown to directly affect tumourigenesis by 

binding their receptors expressed on epithelial cancer cells resulting in direct 

induction of pro-tumourigenic properties like increased proliferation or invasion. 

Alternatively, similar to infection processes, eicosanoids are strongly implicated in 

promoting a pro-inflammatory and tumour growth-permissive TME by stimulating 
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secretion of growth, angiogenic and pro-cancer inflammatory factors by cancer or 

stromal cells as well as signals suppressing anti-cancer immunity (Wang and 

Dubois, 2010). 

In the TME, PGE2 appears to have an overall pro-tumourigenic role and targets 

angiogenic, anti-apoptotic and immunosuppressive factors as well as 

chemokines/chemokine receptors via induction of several pathways including 

Ras/ERK, PI3K/AKT, NFkB, Wnt and PPAR pathways and thereby promotes 

tumour growth, angiogenesis, invasion and metastasis (Menter and Dubois, 2012, 

Wang and Dubois, 2006, Wang and Dubois, 2010).  

 

Leukotrienes and their receptors in cancer (Fig. 1.5) 

Leukotrienes and their role in cancer is far less well understood compared to 

prostaglandins (Wang and Dubois, 2010). Human prostate and colon cancers show 

increased levels of LTB4, Alox5 expression is elevated in neuroblastoma, colon 

and oesophageal cancer and LTB4 receptor expression, especially BLT2, is 

enhanced in many different cancer types like pancreatic, skin, oesophagus, breast, 

colon, renal, bladder, ovarian and lung cancer (Chen et al., 2004, Dreyling et al., 

1986, Hennig et al., 2002, Larre et al., 2008, Melstrom et al., 2008, Sveinbjornsson 

et al., 2008, Yoo et al., 2004). However, it remains to be identified if the increased 

LTB4, Alox5 or BLT2 levels are a reflection of an inflammatory infiltrate, cancer cell 

derived or both. Blocking LTB4 synthesis or signalling via BLT1 effectively limited 

tumour burden and progression of human colorectal and pancreatic cancer cell 

lines in mice as well as spontaneous oesophageal adenocarcinoma in rats (Chen 

et al., 2003b, Gunning et al., 2002, Hennig et al., 2004, Hennig et al., 2005, 

Melstrom et al., 2008). Further, Alox5 inhibition prevented cell proliferation and 

resulted in apoptosis while LTB4 treatment induced proliferation in neuroblastoma 

and colon cancer cell lines (Bortuzzo et al., 1996, Ihara et al., 2007, 

Sveinbjornsson et al., 2008). BLT1 was shown to be upregulated in neutroblastoma 

(BLT2 was not determined) (Sveinbjornsson et al., 2008) and BLT2 was elevated in 

breast cancer cells were BLT2 inhibition resulted in apoptosis via loss of a ROS-

dependent survival signalling (Choi et al., 2010). Several studies also examined the 

dual inhibition of COX2 and Alox5 and showed individually and combined efficacy 

in limiting rat spontaneous oesophageal adenocarcinoma and mouse lung cancer 

as well as growth of a cigarette-smoke promoted colon cancer line and a human 
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skin squamous cell carcinoma cell line in mice (Chen et al., 2004, Fegn and Wang, 

2009, Rioux and Castonguay, 1998, Ye et al., 2005). 

More mechanistic studies revealed that LTB4 directly induces MEK/ERK1/2 as well 

as Akt/PI3K activation that results in accelerated proliferation of pancreatic cancer 

cell lines and was prevented by LTB4 receptor inhibition (Tong et al., 2002, Tong et 

al., 2005). In a similar fashion, LTB4 stimulated ROS production and a Rac/ERK 

cascade that facilitated proliferation and chemotaxis of rat fibroblasts (Woo et al., 

2002) and the LTB4/BLT2 axis activated ERK1/2, caused keratin reorganisation 

and induced migration of pancreatic cancer cells (Park et al., 2012). The functions 

of LTB4 in tumour angiogenesis are very rudimentary characterised, however 

activation of endothelial cell-expressed BLT2 was required for VEGF-stimulated 

angiogenesis and LTB4-mediated BLT2 activation induced endothelial cell 

migration and was sufficient to induce angiogenesis in vivo (Kim et al., 2009). 

Additionally, LTB4 appeared to mediate ROS generation and leukocyte adherence 

to the endothelium during hypoxia, a key inducer of angiogenesis (Steiner et al., 

2001). 

Analysis of cysteinyl LT receptor expression was conducted in non-hodgkin 

lymphomas, breast and colorectal cancer with the result that high CysLT1 

expression correlated with worse prognosis and high CysLT2 presence with better 

outcome (Magnusson et al., 2011a, Magnusson et al., 2011b, Magnusson et al., 

2010, Schain et al., 2008). In prostate and bladder cancer, CysLT1 expression 

increased with cancer progression and CysLT1 inhibition decreased tumour growth 

and even caused cancer cell apoptosis (Matsuyama et al., 2009, Matsuyama et al., 

2007). CysLT1 antagonists also limited tumour growth of colon cancer xenografts 

(Savari et al., 2013) and metastatic spread of a lung and colon cancer cell line by 

reducing the extravasation efficiency through brain and peripheral capillaries 

(Nozaki et al., 2010). The CysLT2 receptor was shown to correlate and directly be 

involved in the differentiation of colorectal cancer cells (Bengtsson et al., 2013, 

Magnusson et al., 2007). LTD4 treatment caused activation of Wnt signalling and 

induced migration of colon cancer cells (Salim et al., 2014) as well as proliferation 

and survival of neuroblastoma cells (Sveinbjornsson et al., 2008). A series of 

studies from the same group reported that LTD4-stimulation of intestinal epithelial 

cells caused ERK1/2, PI3K and Wnt signalling activation mainly via CysLT1 leading 

to increased proliferation, survival and migration – a likely cancer-related 
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mechanism in light of inflammatory bowel disease being a clear risk factor for 

neoplastic transformation (Mezhybovska et al., 2006, Ohd et al., 2000, Paruchuri et 

al., 2005, Paruchuri et al., 2002, Paruchuri et al., 2006). Lastly, cysteinyl LTs might 

influence tumour angiogenesis as LTC4 and LTD4 promoted endothelial cells to 

produce inflammatory cytokines via CysLT2/Rho kinase and proliferation via 

CysLT1/ERK (Duah et al., 2013, Modat et al., 1987). Overall, these studies 

suggested a pro-tumourigenic role of the LTD4/CysLT1 axis and rather anti-

tumourigenic properties of CysLT2 in colorectal and other cancer types (Savari et 

al., 2014). 

Inhibitors for COX and Alox5 enzymes or receptors for prostaglandins or 

leukotrienes showed promise in some respects in the clinics in treatment of cancer 

(Wang and Dubois, 2010). Non‐steroidal anti‐inflammatory drugs (NSAIDs) inhibit 

COX1 and 2 and reduce the risk and incidence of many different cancer types such 

as colorectal, breast and lung. However, severe side effects of NSAIDs in regard to 

the cardiovascular system prevent a standardised use (Wang and Dubois, 2006). 

Nevertheless, Celecoxib, a selective COX2 inhibitor, is FDA-approved for treatment 

of patients with elevated colorectal cancer risk (Wang and Dubois, 2010). Moreover, 

long- and short-term use of in particular acetylsalicylic acid (Aspirin) at low doses 

shows promising efficacy to diminish the risk of developing numerous types of 

cancer and metastasis with only minor and dose-dependent side effects of 

gastrointestinal bleeding (Huang et al., 2011, Rothwell et al., 2012a, Rothwell et al., 

2012b). Alox5 and leukotrienes are important mediators during inflammatory 

asthma disease and targeted in the clinic by the specific Alox5 inhibitor Zileuton 

since its initial FDA approval in 1996. Zileuton proved save in long-term use without 

significant side effects, for example in regard to liver injury (Lazarus et al., 1998, 

Watkins et al., 2007, Wenzel and Kamada, 1996). Moreover, Zileuton was 

employed in two cancer-related clinical trials for the prevention or treatment of lung 

cancer (Szabo et al., 2013). The clinical trial by the Alliance for Clinical Trials in 

Oncology tested the combination of the chemotherapeutic agents Carboplatin and 

Gemcitabine with Celecoxib and Zileuton in treating advanced non-small cell lung 

cancer. Additional Zileuton administration did not alter the efficacy of chemotherapy 

alone, despite the improvement of Celecoxib administration for the outcome of high 

COX2 expressing patients (Edelman et al., 2008). The clinical trial run by the 

Barbara Ann Karmanos Cancer Institute is currently evaluating the impact of 
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Zileuton to limit lung cancer development in patients with bronchial dysplasia (U.S. 

National Institutes of Health, clinicaltrials.gov identifier NCT00056004), because 

lung leukotriene levels appear strongly increased in this disease (Mirro et al., 1990, 

Rupprecht et al., 2014). The results of this second clinical trial are pending (Szabo 

et al., 2013). 

 

Regulation of “cancer stemness” by eicosanoids (Fig. 1.5) 

An elegant study showed that BLT2 is required for Ras-mediated transformation of 

rat fibroblast-like cells – a key oncogenic event (Hanahan and Weinberg, 2011, 

Samatar and Poulikakos, 2014). Ras-transformation in turn increased LTB4 

secretion by cancer cells and BLT2 inhibition decreased tumour initiation potential 

(Yoo et al., 2004). BLT2 and Ras collaborated with TGF-beta to induce EMT, that is 

associated with cellular plasticity and stem cell-like properties (Mani et al., 2008), in 

human immortalised mammary epithelial cells via induction of reactive oxygen 

species (ROS) and NFkB signalling (Kim et al., 2014). Also, BLT2 is upregulated 

upon detachment of prostate cancer cells and resulted essential for anoikis 

resistance via mechanisms involving ROS and NFkB (Lee and Kim, 2013). These 

observations suggest a functional role for the LTB4/BLT2 cascade in tumour 

initiation, metastasis and cancer “stemness”. 

Interestingly, LTB4, LTD4 and PGE2 were implicated in modulation of stem cell 

homeostasis. In zebrafish, stimulation of PGE2 synthesis elevates haematopoietic 

stem cell (HSC) numbers and COX enzymes were necessary for HSC formation. 

PGE2 was demonstrated to be essential for zebrafish and murine HSC 

maintenance and function by activation of the Wnt signalling cascade (Goessling et 

al., 2009, North et al., 2007). Also, PGE2 prevented apoptosis of mouse embryonic 

stem cells (Liou et al., 2007). 

LTB4 acted anti-apoptotic and induced proliferation and ex vivo expansion of 

human CD34+ cord-blood HSCs via BLT2 as well as of mouse neural stem cells 

via BLT1 (Chung et al., 2005, Wada et al., 2006). LTD4 stimulated adhesion, 

retention and proliferation of human primary CD34+ hematopoietic progenitor cells 

and cell lines via activation of ERK1/2 through CysLT1 (Boehmler et al., 2009). 

Also, LTD4 stimulated mouse embryonic stem cell proliferation and migration by 

activation of STAT3, PI3K/Akt and Wnt signalling via CysLT1 and CysLT2 (Kim et 

al., 2010b). 



Chapter 1 Introduction 

68 

 

 

In summary, the important roles of eicosanoids like PGE2, LTB4 and cysteinyl 

leukotrienes in promoting cancer progression are beginning to emerge. In order to 

develop effective treatments to be used in the clinics, we have to improve our 

understanding of their functions in the specific contexts of cancer growth and 

metastatic progression (Wang and Dubois, 2010). 

 

 
Figure 1-5 Actions of leukotriene B4 and cysteinyl leukotrienes D4 and C4 
influencing stem cells and cancer cells 
(a) Schematic of the signals and processes influenced by leukotriene B4 (LTB4) and 
(b) cysteinyl leukotrienes D4 and C4 via their receptors BLT1/2 and CysLT1/2, 
respectively. 
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1.2.4 Environmental regulation of cancer stem cells and their functions 

Cancer stem cells (CSCs) or tumour- and metastasis-initiating cells (TICs and 

MICs) are thought to be supported and maintained by niches, just like normal adult 

tissue stem cells (Borovski et al., 2011, Sneddon and Werb, 2007). Niches are 

complex microenvironments controlling stem cell functions and fate by direct 

contact-mediated or soluble signals (Schepers et al., 2015). As part of the TME, 

CSC niches are made up by fibroblastic cells, endothelial cells, pericytes, immune 

cells and their respective progenitors embedded in an ECM and surrounded by a 

specific growth factor and cytokine milieu (Cabarcas et al., 2011, Ye et al., 2014). 

Additionally, nonCSCs are considered to take part in providing a permissive 

environment for CSCs or obtain CSC characteristics (Kreso and Dick, 2014, 

Schwitalla et al., 2013). Importantly, the concept of a CSC niche is only emerging 

and a CSC niche has not been defined for every cancer type often due to a lack of 

identification of a CSC population. Nevertheless, evidence is mounting that the 

TME has a crucial influence on cancer “stemness”, the competence of certain 

cancer cell populations to self-renew, initiate tumours and metastases and survive 

therapeutic interventions causing relapse (Plaks et al., 2015). 

The best-described CSC niche is the leukaemia-induced stem cell niche in the 

bone marrow, which appears like an aberrantly activated haematopoietic stem cell 

(HSC) niche that directly provides instructive cues for leukaemia-initiating cells 

(Schepers et al., 2015). The HSC niche consists of endothelial cells, mesenchymal 

stromal cells, megakaryocytes, osteoblasts and nerve cells as well as a network of 

soluble factors and adhesion molecules. SCF, platelet factor 4 (CXCL4), TGF-beta, 

and angiopoietin 1 (Angpt1) control HSC quiescence; Notch signalling, interleukins 

and erythropoietin (EPO) regulate HSC cell fate and proliferation while the 

CXCL12/CXCR4 interaction, ECM components like fibronectin, selectins and 

vascular cell adhesion protein 1 (VCAM1) modulate HSC niche homing (Schepers 

et al., 2015, Wilson and Trumpp, 2006). As several human myeloid diseases such 

as acute myeloid leukaemia (AML) are know to arise from mutations in HSCs or 

progenitor cells (Shlush et al., 2014, Woll et al., 2014), it does not appear surprising 

that leukaemia-initiating cells also show a strong degree of interaction with their 

bone marrow niche. Leukaemia-initiating cells have an increased requirement for 
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niche-derived CD44-mediated signals and different selectins for adhesion to the 

ECM compared to HSCs in human and animal models. However, they show 

reduced dependency on environment-modulated Wnt signalling for homing and 

engraftment to the bone marrow (Jin et al., 2006, Krause et al., 2014, Krause et al., 

2006, Lane et al., 2011).  

Our knowledge of defined CSCs niches in solid cancers remains rather 

rudimentary, likely due to limited understanding of the regulation of normal tissue 

stem cells. Notably, a potential CSC niche was proposed in breast cancer as 

incorporation of several microenvironmental signals from different cellular sources 

(Korkaya et al., 2011b, Korkaya et al., 2011a). In fact, numerous stromal cells 

clearly collaborate to influence solid cancer cells with increased “stemness” 

potential. Activation of Wnt, Notch and NFkB signalling pathways as well as the 

EMT programme in cancer cells are closely related to increased stemness potential 

and strongly influenced by the microenvironment (Holland et al., 2013, Scheel and 

Weinberg, 2012, Shostak and Chariot, 2011, Takebe et al., 2011, Wang et al., 

2012). For example, CAFs are important inducers of EMT that often goes hand in 

hand with the acquisition of stem cell properties of cancer cells (Giannoni et al., 

2011, Giannoni et al., 2010, Kalluri and Zeisberg, 2006, Scheel and Weinberg, 

2012). CAFs can directly induce Wnt activation and thereby enhance stemness 

potential of cancer cells (Malanchi et al., 2012, Ohlund et al., 2014, Vermeulen et 

al., 2010). Other cancer cell stemness-promoting signals are derived from MSCs, 

for example PGE2 and other cytokines that induce Wnt signalling and stemness in 

colorectal cancer (Li et al., 2012). Endothelial cells were also shown to mediate 

stem cell-like characteristics in a contact-dependent manner by NO-induced Notch 

signalling activation on glioma cells (Charles et al., 2010). Also, platelets were 

suggested to protect and maintain colon carcinoma cells in the circulation and 

promote their stemness via induction of NFkB signalling and an EMT programme 

(Labelle et al., 2011). Tumour-associated macrophages (TAMs) were shown to 

physically interact with breast CSCs via Ephrin A4/Ephrin A4 receptor and promote 

their stem cell state via activation of NFkB signalling (Lu et al., 2014). Also, TGF-

beta secretion by TAMs induced an EMT programme in hepatocellular carcinoma 

cells and conferred cancer stem cell-like properties (Fan et al., 2014) and TAM-

derived IL-6 expanded the hepatocellular carcinoma CSC pool (Wan et al., 2014). 

Additionally, TAM-derived milk-fat globule-epidermal growth factor-VIII (MFG-E8) 
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supported tumourigenicity and drug resistance of lung CSCs via activation of 

STAT3 and Hedgehog pathways (Jinushi et al., 2011). In pancreatic cancer, TAMs 

directly promoted tumour initiation capability and chemoresistance partially by 

induction of STAT3 (Marusyk et al., 2014, Mitchem et al., 2013). Very recently, 

glioblastoma stem cells were shown to recruit TAMs via periostin that in turn 

exacerbate tumour growth (Zhou et al., 2015). 

Collectively, this evidence supports the dependence of stem cell properties of 

cancer cell subpopulations on their environment and suggests an additional CSC 

feature, namely the ability to create and interact with their niche (Malanchi, 2013). 

However, the important aspect of the TME controlling tumour initiation potential of 

cancer cells and vice versa is yet underappreciated when using xenograft 

transplantation assays, probably due to technical limitations and current standards 

(Plaks et al., 2015). 

 

1.2.5 The pre-metastatic niche, cancer cell dormancy and the 

microenvironmental roles during metastatic colonisation 

In 1889, Stephen Paget proposed in his “seed-and-soil” hypothesis that metastatic 

spread in cancer patients is not random, but shows clear preferences of cancer 

cells to colonise certain organs, a feature nowadays often referred to as organ 

tropism (Fidler, 2003). The exact reasons explaining these preferences of cancer 

cells are slowly beginning to unfold. Intrinsically, genome sequencing did not reveal 

specific mutations in cancer cells associated with metastatic traits or organ tropism, 

but alterations of the epigenetic landscape and the translational machinery are 

emerging to be important factors for directing metastatic dissemination. Certain 

metastatic traits are suspected to be present in the primary cancer as gene 

expression signatures show prognostic value for metastasis, however our current 

knowledge on organ tropism establishment remains largely limited (Oskarsson et 

al., 2014). One recent study in mammary cancer reported a mechanism how CAFs 

in the primary TME determine the preference of metastatic cancer cells to colonise 

the bone. CAF-derived CXCL12 and insulin growth factor (IGF) at the primary site 

selected for cancer cells with highly active Src kinase that boosts CXCL12/IGF-

mediated PI3K signalling. Thereby, these cancer cells were favoured to survive in 
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CXCL12-rich microenvironments like the bone marrow and show preferential 

metastasis to bone (Zhang et al., 2013). This observation is already suggesting 

features of the important role of the distant tissue environment in enabling 

metastatic seeding. It is widely accepted that the lack of survival and proliferation 

signals from a supportive environment together with suppressive effects of immune 

surveillance are the challenges to be overcome during distant tissue colonisation, 

making it a remarkably inefficient process. However, metastases do pose the 

highest risk for cancer-associated death, despite the dramatic experiences and 

challenges metastatic cancer cells have to master (Oskarsson et al., 2014, Plaks et 

al., 2015, Psaila and Lyden, 2009, Quail and Joyce, 2013).  

In concert with Paget’s “seed-and-soil” hypothesis, it is becoming increasingly clear 

that primary tumours provide more to facilitate the metastatic process than the 

disseminated cancer cell (the seed). In fact, a cancer and its TME are emerging to 

actively “fertilise” the distant secondary site (the soil) and thereby set the stage for 

metastatic colonisation to occur in specific locations. Evidence is accumulating that 

endocrine-like mechanisms originating from the primary cancer can educate 

secondary sites to be permissive for arriving cancer cells by creating a so-called 

pre-metastatic niche characterised by infiltration of stromal cells and presence of 

secreted cytokines and oncoproteins (Oskarsson et al., 2014, Plaks et al., 2015, 

Psaila and Lyden, 2009, Quail and Joyce, 2013). Pioneering studies implicated the 

influx of myeloid cells in the pre-metastatic site to favour and direct metastatic 

seeding. Primary tumours were shown to upregulate MMP9 in endothelial cells and 

macrophages in the pre-metastatic lung in a VEGFR1-dependent fashion and 

prevention of MMP9 induction ameliorated metastasis (Hiratsuka et al., 2002). 

Further, primary mammary tumour-derived factors such as VEGF, TNF-alpha and 

TGF-beta caused induction of S100A8 and S100A9 in pre-metastatic lung 

endothelial and myeloid cells that directed migration and homing of metastatic 

cancer cells to the lung (Hiratsuka et al., 2006). S100A8 appeared to stimulate 

Serum Amyloid A3 production in the pre-metastatic lung that triggered TLR4/NFkB 

signalling activation in macrophages, which in turn supported cancer cell migration 

and metastasis (Hiratsuka et al., 2008). Macrophages in the pre-metastatic lung of 

mammary cancer-bearing mice were also shown to express integrin-alpha4-beta1 

that serves as a docking site and survival signal for arriving cancer cells via VCAM-

1 and downstream PI3K signalling (Chen et al., 2011). Other reports described the 
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infiltration of bone marrow-derived VEGFR1+ haematopoietic progenitor cells 

(HPCs) into pre-metastatic sites, which was induced by activation of fibroblasts at 

the secondary site prior to cancer cell arrival. These VEGFR1+ HPCs directed 

metastatic cancer cell organ tropism via mechanisms involving integrins and matrix 

remodelling enzymes (Kaplan et al., 2005). Moreover, hypoxia-induced cancer cell 

expression of lysyl oxidase (LOX), a target gene of HIF transcription factors, 

fostered recruitment of myeloid cells to the lung of mammary cancer-bearing mice 

hand in hand with mediating metastatic efficiency (Erler et al., 2006). Bone marrow-

derived myeloid progenitors in the pre-metastatic lung were shown to aid reversion 

of an EMT state in disseminated cancer cells, that was previously described to be 

necessary for metastatic outgrowth (Ocana et al., 2012, Tsai et al., 2012), via 

secretion of the ECM component versican. Myeloid cell-derived versican induced 

mesenchymal-to-epithelial transition of metastatic cancer cells by preventing 

activation of Smad2 and thereby allowed proliferation and metastatic outgrowth 

(Gao et al., 2012). 

Recently, mechanisms of pre-metastatic niche formation were described involving 

material transported by exosomes, small membrane-formed nanovesicles that are 

released into the blood or lymphatic fluids. Tumour cell-derived exosomes 

containing the receptor tyrosine kinase Met fostered a permissive metastatic niche 

by influencing bone marrow-derived (progenitor) cells to promote metastatic 

seeding by facilitating angiogenesis. Interestingly, exosomes affected the organ 

tropism of metastatic cancer cell lines as exosomes originating from different 

melanoma cells redirected transplanted melanoma cells to colonise usually no-

typical organs. The study also determined a signature of exosomes with high 

prognostic value in patients (Peinado et al., 2012). 

These observations suggest a pro-metastatic activity of immature myeloid cells that 

accumulate in pre-metastatic tissues via their potential immunosuppressive 

function, however there is little direct in vivo evidence to prove this notion at the 

moment (Plaks et al., 2015). 

 

One of the key challenges that metastatic cancer cells have to master is 

overcoming dormancy at the distant site. As described in section 1.1.2, cancer cell 

dormancy in hostile environments is induced by nutrient limitation through 

insufficient supply by the vasculature (tumour-mass dormancy), a quiescent cell 
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cycle arrest in G0-G1 (cellular dormancy) or immunosurveillance-mediated 

dormancy (Aguirre-Ghiso, 2007, Marches et al., 2006, Quail and Joyce, 2013). 

Tumour-mass dormancy is characterised by a balance between proliferation and 

apoptosis that can be broken by induction of angiogenesis. Hence, it is perhaps not 

surprising that several metastasising cancer cell types, including melanoma, breast 

and lung cancer, placed themselves around capillaries – the perivascular niche – 

when infiltrating the brain (Carbonell et al., 2009). Pro-angiogenic molecules like 

VEGF and FGF play an important role in neoangiogenesis of metastases (Naumov 

et al., 2006) and endothelial progenitor cells mobilised from the bone marrow were 

shown to induce the angiogenic switch at metastatic sites (Gao et al., 2008). The 

immune system also keeps cancer cells in a dormant state at metastatic sites. 

Adaptive immune cells prevent metastatic cell outgrowth by mechanisms involving 

Th1 cytokines such as IL-12 and IFN-gamma keeping equilibrium. Further cancer 

cell transformations like loss of MHC-I molecules (Khong and Restifo, 2002) as well 

as the creation of an immunosuppressive environment by MDSCs and Treg cells 

were shown to overcome this dormant state. Similar mechanisms are thought to 

occur during metastatic colonisation (Aguirre-Ghiso, 2007, Dunn et al., 2004, 

Schreiber et al., 2011).  

Cellular dormancy or metastatic cancer cells that arrested their cell cycle were 

reported in breast and ovarian cancer patients and significantly increased the risk 

of relapse (Braun et al., 2000, Braun et al., 2001, Pierga et al., 2003). The arrested 

state of disseminated cancer cells was proven in mouse models by absence of 

proliferation markers implying a G0-G1 cell cycle arrest (Naumov et al., 2002). 

Later studies showed this cancer cell cycle arrest to be at least partially induced by 

the microenvironment through, for example, ECM-integrin interactions or activation 

of stress signalling pathways, independent of angiogenesis or immunosurveillance 

(Quail and Joyce, 2013). For example, the urokinase plasminogen activator 

receptor (uPAR) was reported to be expressed by carcinoma cell lines and 

triggered in vivo growth by activating fibronectin-integrin and ligand-independent 

EGFR-ERK signalling to induce cancer cell proliferation (Liu et al., 2002). Absence 

of uPAR signalling caused a shift favouring p38 signalling that suppresses cell 

transformation and growth over ERK1/2 activation and proliferation resulting in 

cancer cell dormancy (Ranganathan et al., 2006). However, mouse models only 

rarely exhibit a comparable degree of dormancy of metastatic cells compared with 
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human patients what hinders the investigation of many aspects of these processes 

(Plaks et al., 2015). 

Nevertheless, it is crucial to understand how cancer cells exit the state of dormancy 

at the metastatic site for therapeutic intervention and CSCs are especially 

suspected to play an important role due to their quiescent nature (Plaks et al., 

2015). Interestingly, the transcriptional signatures of grown metastases show 

similar pathway activation compared to adult stem cell niches (Oskarsson et al., 

2014). Moreover, metastatic cancer cells hijack normal tissue stem cell niches in 

the host to establish distant metastases. For example, human prostate cancer cells 

were shown to infiltrate the HSC niche in the bone marrow in order to profit from an 

environment rich in CXCL12, TGF-beta and hedgehog signals that maintain 

stemness (Shiozawa et al., 2011). Moreover, cancer cells with high CXCR4 (the 

receptor for CXCL12) expression, such as subsets of breast cancer cells, might 

directly be recruited to the HSC niche and, in fact, have highest metastatic affinity 

to the bone (Zhang et al., 2013). Additionally, perivascular niches appear to support 

CSCs or MICs at metastatic sites by supplying paracrine signals such as Notch 

signalling (Butler et al., 2010). Arriving CSCs or metastasis-initiating cells were also 

shown to contribute themselves to create a permissive niche. Mammary CSC-

derived TGF-beta in the metastatic lung induced resident fibroblasts to release and 

deposit periostin, an ECM component. Periostin, in turn, bound stromal Wnt ligands 

and thereby triggered upregulation of Wnt signalling in CSCs that proved essential 

for lung colonisation and metastatic growth (Malanchi et al., 2012). In accordance, 

successful metastatic colonisation was associated with periostin, TGF-beta and 

generation of neo-vessels (Ghajar et al., 2013). Tenascin C (TNC) is another ECM 

component regulating CSCs and their metastatic potential via augmenting Wnt and 

Notch signalling. Hence, TNC-expressing breast cancer cells showed higher 

potential for metastatic initiation and outgrowth (Oskarsson et al., 2011). 

After initiation of metastatic growth and escaping from dormancy, several further 

signalling circuits were reported to sustain metastatic colonisation, for example the 

interaction between EGFR and Met kinase, NFkB signalling and JAK/STAT 

signalling (Oskarsson et al., 2014). Hence, disseminating cancer cells face multiple 

obstacles from arriving at the distant site, finding a hospitable environment, evading 

growth inhibitory signals and dormancy, induce angiogenesis and establish growing 

macro-metastases. All these processes are heavily influenced by the 
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microenvironment and the cancer cells’ ability to modulate or interact with it. 

Considering that CSC-like or metastasis-initiating cells were shown to be the most 

potent cells to spark successful metastatic colonisation, it is intriguing to think that 

the competence to hijack or respond to signals from the metastatic niche might be 

an important hallmark of metastasis-initiating cells (Malanchi, 2013). 

 

In summary, the tumour and metastases-associated microenvironment is as 

complex as the mutational landscape of cancer cells and cannot be ignored as 

important factor and driver of tumourigenesis. Numerous cellular players, soluble or 

bound factors emerged to regulate all stages of carcinogenesis in promoting or 

suppressing manners. In fact, cancer cells evolve together with their 

microenvironment under continuous cross-influences that dictate tumour 

progression and their dynamics. These observations provide tempting targets to 

clinically tackle the supportive basis of the TME or enhance and re-activate its 

suppressed anti-tumourigenic properties. Further research efforts are needed to 

intensify our knowledge on the composition and functions of the TME to design 

effective combinatorial therapeutic strategies targeting both, the cancer cell and the 

stroma, to fight such a multi-facetted disease like cancer. 
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1.3 Neutrophil granulocytes and their role in cancer 

Neutrophils are myeloid, polymorphonuclear leukocytes physiologically present in 

the bone marrow, blood, spleen, liver and lung. They are part of the granulocyte 

lineage generated in the bone marrow from HSCs and myeloid precursors that are 

released into the blood stream upon maturation. In the blood, they are thought to 

live for about 1.5 to 12.5 hours in mice and up to several days in humans before 

returning to the bone marrow to be phagocytised by macrophages. Interestingly, 

the lung seems to be particularly enriched in mature neutrophils that appear to sit 

within the tissue or patrol the vasculature (Kolaczkowska and Kubes, 2013, Kruger 

et al., 2015). 

Neutrophils are the first responders to insults by rapidly infiltrating into target tissue 

from the circulation. Diverse stimuli such as bacterial infection or tissue damage 

cause the immediate recruitment of neutrophils to peripheral tissues where they 

mainly participate in fighting pathogens. Neutrophils can directly kill 

microorganisms by various mechanisms like phagocytosis, degranulation and 

release of an arsenal of anti-microbial factors or by deposition of neutrophil 

extracellular traps (NETs) (Borregaard, 2010, Kruger et al., 2015). Additionally, 

neutrophils play important roles in the induction and activation of a complete 

inflammatory immune response. Neutrophils can be stimulated to express key 

inflammatory mediators and be polarised towards distinct phenotypes by the 

microenvironment. Thereby, they modulate innate and adaptive immunity and play 

pivotal roles in promoting immune responses against pathogens and during 

diseases like autoimmune diseases and cancer (Mantovani et al., 2011). Hence, it 

is crucial to tightly control neutrophil production and activity to avoid chronic 

inflammation (Borregaard, 2010, Kolaczkowska and Kubes, 2013). 

 

1.3.1 Generation and life of neutrophils 

The production of neutrophils consists of 60% of haematopoiesis and is considered 

to be the major workload in the bone marrow leading to the generation of 1-2 x 1011 

cells per day in adults under normal conditions (Borregaard, 2010). In steady state, 

bone marrow HSCs give rise to myeloid precursors – myeloblasts – controlled by 
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the activity of the transcription factor PU.1 (PU-box binding 1). A balance between 

PU.1 and CCAAT/enhancer-binding protein (C/EBP)-alpha determines monocytic 

or granulocytic commitment, respectively. Neutrophils are generated through 

myeloblast, promyelocyte, (meta-)myelocyte, band cell to polymorphonuclear 

granulocyte stages. The transcription factors Gfi-1, C/EBP-alpha, C/EBP-beta, 

C/EBP-gamma, C/EBP-delta, C/EBP-epsilon, C/EBP-zeta and, at later stages, 

PU.1 are required for neutrophil maturation and regulate repression of M-CSF to 

block monocyte maturation, transcription of granule proteins and the exit from the 

cell cycle (Fiedler and Brunner, 2012). Neutrophil granules, the name-giving 

hallmarks of granulocytes, are formed step-wise and filled with temporally 

synthesised factors such as lysosymes and defensins at precise stages during 

neutrophil maturation. Primary azurophil granules containing myeloperoxidase and 

neutrophil elastase (ela2) are formed in promyelocytes, secondary specific 

granules filled with lactoferrin and MMP8 in (meta-)myelocytes, tertiary gelatinase 

granules with gelatinases and MMP9 in band cells and secretory vesicles storing 

organelles and membrane proteins arise in polymorphonuclear granulocytes by 

endocytosis. Proteins produced by neutrophils after release from the bone marrow 

are no longer packed into granules, but directly secreted. Upon neutrophil 

activation, neutrophil granules appear to be sequentially mobilised and released 

inversely to their generation. Secretory vesicles fuse with the cell membrane to 

allow interaction with the endothelium during transmigration and gelatinase, 

specific and azurophilic granules are subsequently exocytosed with decreasing 

efficiency (Borregaard, 2010, Faurschou and Borregaard, 2003, Fiedler and 

Brunner, 2012). 

Neutrophil production is stimulated by, but not dependent on, granulocyte-colony 

stimulating factor (G-CSF) that can be released by various cells in the body such 

as fibroblasts, mesenchymal cells, endothelial cells and resident-tissue 

macrophages in response to insults and activation via, for example, TNF-alpha, 

lipopolysaccharides and IL-1. G-CSF stimulates the proliferation of HSCs and all 

non-cell cycle arrested cell types of the granulocytic lineage up to myelocytes. The 

effect of G-CSF of HSCs depends on co-stimulatory signals, however more 

committed neutrophil progenitor cells are stimulated to divide by solely G-CSF 

(Lieschke and Burgess, 1992a, Lieschke and Burgess, 1992b, Roberts, 2005). 

Release of mature neutrophils from the bone marrow is mainly controlled by their 
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surface receptors CXCR4 as well as CXCR2, G-CSF receptor (G-CSFR) and Toll-

like receptors (TLRs). CXCL12 is constitutively secreted by stromal cells in the 

bone marrow niche and engages its receptor CXCR4 expressed on neutrophils 

resulting in neutrophil retention. CXCR2, G-CSFR and TLRs are expressed late 

during neutrophil maturation and mediate neutrophil release from the bone marrow. 

The ligands for CXCR2, CXCL1 and CXCL2, are produced by bone marrow 

endothelial cells as well as other cell types in peripheral tissues, TLRs respond to 

pathogen-associated molecular patterns (PAMPs) originating, for example, from 

bacteria and G-CSFR engages with G-CSF. G-CSF facilitates neutrophil release by 

downregulating CXCL12 and increasing CXCL1 and 2 secretion by bone marrow 

endothelial cells (Borregaard, 2010, Eash et al., 2010). 

Mature neutrophils are granular and relatively large cells that constitute about 50-

70% of circulating leukocytes in humans and 10-25% in mice. In the blood, 

neutrophils were shown to age leading to upregulation of CXCR4 and re-home to 

the bone marrow to be cleared by macrophages, a process that in turn modulates 

the haematopoietic niche and HSCs (Casanova-Acebes et al., 2013). Alternatively, 

Kupffer cells clear neutrophils that die in the vasculature and dendritic cells also 

contribute to removing apoptotic neutrophils in tissues (Kolaczkowska and Kubes, 

2013). A well understood mechanism to modulate neutrophil production is initiated 

by macrophages and dendritic cells that decrease IL-23 production upon neutrophil 

phagocytosis. IL-23 would otherwise stimulate regulatory T cells, mainly gamma-

delta T cells, to produce IL-17A that in turn enhances G-CSF production in stromal 

and immune cells (Borregaard, 2010).  
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Figure 1-6 Development and maturation of neutrophils in the bone marrow 
Overview of the stages of neutrophil maturation, the involved transcription factors and 
the generated neutrophil granules including examples of their content. Figure adapted 
from (Borregaard, 2010, Fiedler and Brunner, 2012). 
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1.3.2 Neutrophil recruitment to sites of inflammation or tissue damage 

In order to infiltrate peripheral tissues upon inflammatory stimuli, neutrophils have 

to interact with the endothelium and transmigrate, a process that usually takes 

place at postcapillary venules. There, the vessel wall is thin enough and the vessel 

diameter allows neutrophil contact with endothelial cells without occluding the blood 

flow. Endothelial cells are activated by inflammatory or infection-induced stimuli 

such as TNF-alpha, IL-1-beta or IL-17 and upregulate selectins and integrins like 

ICAMs and VCAMs on the luminal side. Neutrophils bind ICAM and VCAM to cross 

the endothelial layer by either penetrating directly through an endothelial cell or 

squeezing past in-between two endothelial cells, with the latter usually accounting 

for 80% of neutrophil transendothelial migrations (Borregaard, 2010, Kolaczkowska 

and Kubes, 2013, Kruger et al., 2015). 

Initial recruitment of neutrophils to peripheral tissues is controlled by tissue-resident 

macrophages and mast cells that serve as sensors for insults and detect PAMPs 

and DAMPs corresponding to infection or tissue damage as well as fibroblasts, 

endothelial cells, pericytes and epithelial cells (Kim and Luster, 2015). Upon 

stimulation, these resident cells influence blood vessel permeability and release of 

neutrophil-attracting chemokines from stromal cells. Platelets subsequently aid 

endothelial transmigration of neutrophils. IL-17-producing T cells also favour the 

recruitment and activation of neutrophils to inflammatory sites by secretion of IL-17, 

CXCL8, IFN-gamma, TNF-alpha and GM-CSF. Additionally, neutrophils are potent 

attractors of neutrophils by directly releasing the potent chemoattractant LTB4 or 

via the production of IL-17 that causes release of pro-inflammatory factors by the 

stroma (Ford-Hutchinson, 1981, Kim et al., 2006, Kolaczkowska and Kubes, 2013, 

Mantovani et al., 2011, Oyoshi et al., 2012, Saiwai et al., 2010). 

 

1.3.3 Finding and eliminating danger in peripheral tissues 

Inflammation is usually initiated by PAMPs during infection and DAMPs during 

sterile injury such as chemical exposure or burn. PAMPs include 

lipopolysaccharides, CpG (C-phosphate-G DNA regions) and other viral and 

bacterial products, while DAMPs are host-derived molecules like ATP (adenosine 
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triphosphate) and HMGB1 (high-mobility group box 1) or structurally altered 

molecules such as collagen. These danger signals bind to the vast repertoire of 

PPRs (pattern recognition receptors) expressed on the surface of neutrophils, such 

as almost all members of the TLR family, C-type lectin receptors as well as 

cytoplasmic sensors of ribonucleic acids. The sensing of PAMPs or DAMPs and 

thereby infection or tissue damage together with lymphocyte-derived signals such 

as IFN-gamma, TNF-alpha and GM-CSF activates neutrophil effector functions 

(Kolaczkowska and Kubes, 2013, Mantovani et al., 2011). 

These effector functions of neutrophils are mainly targeted to kill invading microbes 

or infected cells and consist of direct phagocytosis, lysis by degranulation or 

deposition of toxic NETs. Activated neutrophils that infiltrated tissues have usually 

higher phagocytic activity than blood neutrophils. They efficiently encapsulate 

pathogens in phagosomes followed by degranulation into the phagosome (Nauseef, 

2007). Neutrophil granules, especially azurophilic granules, contain an arsenal of 

anti-microbial substances like defensins, azurocidin and bacterial permeability-

increasing protein, proteases such as cathepsins and neutrophil elastase as well as 

the peroxidase myeloperoxidase. These granules can fuse with the phagosome, 

attack and kill the contained microbe (Faurschou and Borregaard, 2003). In concert, 

phagocytosis triggers a respiratory burst, the rapid generation and release of ROS 

like superoxide radicals and hydrogen peroxide generated by the enzyme complex 

NADPH oxidase. Likely, the oxidants and granule proteins collaborate within the 

phagosome to maximise microbial killing (Nauseef, 2007). Alternatively, neutrophils 

degranulate and release the content of their granules into the environment to kill 

extracellular microorganisms and remodel the ECM, as many granule proteins 

include factors like collagenases, gelatinases and MMPs (Faurschou and 

Borregaard, 2003, Kolaczkowska and Kubes, 2013). NETs are formed during 

netosis, a form of cell death distinct from apoptosis or necrosis, were nuclei swell 

and chromatin dissolves. This process leads to the generation of large 

decondensed DNA strands associated with cytosolic and granule proteins as well 

as histones that are deposited in the ECM. These NETs contain proteins like 

defensins, neutrophil elastase, lactoferrin, myeloperoxidase and S100A8 as well as 

A9 and retain extracellular microbial killing activity long after neutrophil death 

(Brinkmann and Zychlinsky, 2012). 
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The crucial role of neutrophils as first line defence against bacterial and fungal 

infections is highlighted by the detrimental effects of impaired neutrophil 

functionality and neutropenia on the host (Kruger et al., 2015). Neutropenia is a 

disorder characterised by chronically low neutrophil count in the circulation that can 

be congenital or acquired. A large proportion of congenial neutropenias is caused 

by a mutation in the gene encoding neutrophil elastase and leads to loss of 

neutrophils from the myelocyte stage onwards or a loss of function of the G-CSF 

receptor. Congenital neutropenias can be permanent or irregular with cyclic phases 

of deficiency and sufficiency (Donadieu et al., 2011). A variety of factors can lead to 

acquired neutropenia that is not necessarily reversible, these include certain 

infections, drugs (antibiotics or chemotherapeutic agents), diet (copper or vitamin 

B12 deficiency) as well as neutropenia accompanying autoimmune and 

haematopoietic diseases (including leukaemias, lymphomas and myelomas) 

(Gibson and Berliner, 2014). Neutropenia clearly predisposes for susceptibility to 

acute or chronic and life-threatening infections like pneumonia. Moreover, 

neutropenia can lead to febrile neutropenia characterised by high fever and 

presence of bacteria in the circulation as well as largely enhances the risk of lethal 

sepsis (Berliner et al., 2004, Donadieu et al., 2011, Gibson and Berliner, 2014, 

Klastersky et al., 2011). Administration of recombinant G-CSF is routinely used to 

treat congenital and acute neutropenia as it largely normalises neutrophil counts, 

reduces fever and the use of antibiotics (Lieschke and Burgess, 1992a, Lieschke 

and Burgess, 1992b, Smith et al., 2015). 

However, neutrophil presence and activation also has to be tightly controlled, 

because the plethora of toxic and ECM-remodelling enzymes released by 

neutrophils can cause severe tissue damage and chronic inflammation. The 

resolution phase of an inflammation is usually associated with upregulation of anti-

inflammatory cytokines like IL-10 or chemokine receptor antagonists and overall 

downregulation of NFkB signalling. Soluble scavenger receptors such as IL-1R2, 

IL-1Ra, CCR5 or CC-chemokine receptor D6 are secreted by neutrophils and either 

sequester pro-inflammatory cytokines and chemokines or block their signalling 

function (Mantovani et al., 2011). Also, there is a switch in lipid production of 

leukocytes (including neutrophils) from pro-inflammatory arachidonic acid products 

such as LTB4 and prostaglandins to pro-resolving lipids like lipotoxin A4 (LXA4) as 

well as omega-3 polysaturated fatty acid-derived resolvins and protectins. For 
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example, LXA4 blocks neutrophil migration, resolvin E1 inhibits BLT1-LTB4 

interaction-mediated neutrophil recruitment and resolvin D1 dampens neutrophil 

activation by inhibiting actin polymerisation and beta2-integrin activation 

(Kolaczkowska and Kubes, 2013). Other negative feedback mechanisms include, 

mobilisation of inhibitory receptors to the surface of activated neutrophils and 

downregulation of G-CSF signalling. Tissue resident macrophages are stimulated 

by peptides produced by neutrophil-derived proteases via the receptor for chemerin 

and resolvin E1 (ChemR23). Thereby, phagocytic activity of macrophages is 

enhanced leading to clearance of neutrophils (Borregaard, 2010). Ineffective 

resolution of inflammation and continued presence and activation of neutrophils 

can lead to chronic inflammation, extended tissue damage and scarring (Mantovani 

et al., 2011). 

 

Overall, the sheer quantity and speed of neutrophils being recruited to sites of 

inflammation together with their arsenal of antimicrobial and tissue remodelling 

factors makes these innate immune cells a central basis for successful host 

immunity containing infections and tissue damage. 

 

1.3.4 Neutrophils as modulators of immunity 

Historically, neutrophils have been considered to be very short-lived cells with 

limited biosynthetic activity, but crucial for host defence against invading pathogens. 

However, the improvements in genomics, proteomics and transcriptomics within 

the last 20 years together with the notion that microenvironmental factors can 

extend neutrophil survival in tissues supported more complex functions of activated 

neutrophils in various inflammatory settings. In fact, neutrophils newly express an 

arsenal of immune- and microenvironment-modulatory factors either spontaneously 

or upon proper activation by microbial or tissue-damage-associated moieties 

combined with stimulation by G-CSF, GM-CSF, TNF-alpha and type I or II IFNs 

(Colotta et al., 2009, Kruger et al., 2015, Mantovani et al., 2011). These neutrophil-

derived factors include CXC-chemokines, CC-chemokines, pro- and anti-

inflammatory cytokines, colony-stimulating factors, angiogenic and fibrogenic 

mediators. However, there might be differences between the cytokine repertoire of 
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human and mouse neutrophils for example regarding IL-6, IL-10, IL-17A, IL-17F 

and IFN-gamma production (Wright et al., 2010). 

Neutrophils have been shown to crosstalk with numerous cell types during 

inflammatory responses including macrophages, dendritic cells, NK cells, B and T 

lymphocytes as well as mesenchymal stem cells (Kruger et al., 2015). For example, 

Toxoplasma gondii-stimulated neutrophils induce bone marrow-derived dendritic 

cell maturation towards a Th1 immunity-promoting phenotype through contact-

dependent interaction (Megiovanni et al., 2006). However, neutrophils can also limit 

the stimulatory activity of monocyte-derived dendritic cells via neutrophil elastase 

(Maffia et al., 2007). Neutrophil-derived ROS, prostaglandins and granule proteins 

also influence NK cell proliferation, survival and functions such as IFN-gamma 

production or cytotoxic activity. In turn, NK cells support neutrophil survival, 

activation and cytokine biosynthesis by signals like GM-CSF and IFN-gamma 

(Costantini and Cassatella, 2011). Furthermore, T cells and neutrophils engage in 

bi-directional interactions influencing both, each other’s recruitment to sites of 

inflammation and cellular functions. Neutrophils are a source of CCL2, CXCL9 and 

CXCL10 to attract CD4+ Th1 and Th17 cells while Treg and Th17 cells release 

CXCL8 to directly mediate neutrophil infiltration. Alternatively, Th17 cells induce 

endothelial cells to express neutrophil chemoattractants and stimulatory molecules 

(Mantovani et al., 2011). Interestingly, antigen-loaded neutrophils were shown to 

re-circulate to lymph nodes where they modulate T cell priming by dendritic cells, 

suggesting a complex regulatory role of neutrophils in adaptive immunity (Chtanova 

et al., 2008, Yang et al., 2010).  

These various predominantly pro-inflammatory functions of neutrophils make them 

important contributors to pathologic disorders like chronic inflammations and 

autoimmune diseases. For example, cigarette smoke-induced inhibition of LTA4 

hydrolase causes accumulation of LTB4 and the proline-glycine-proline tripeptide 

(PGP) that strongly trigger neutrophil infiltration and chronic lung inflammation 

leading to chronic obstructive pulmonary disease. A similar chronic neutrophilic 

inflammation is also associated with cystic fibrosis (Snelgrove et al., 2010, 

Weathington et al., 2006). Moreover, crucial roles for neutrophils and neutrophil-

derived products have been described in systemic lupus erythematosus, 

rheumatoid arthritis and multiple sclerosis (Chakravarti et al., 2009, Chou et al., 

2010, Liu et al., 2010b, Mantovani et al., 2011). 
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In summary, the functions of neutrophils extend beyond their crucial role as first 

line host defence against infection and they emerge as important regulators of 

immunity that can initiate and sustain inflammatory responses. 

 

1.3.5 Pleiotropic roles of neutrophils in cancer and metastasis 

1.3.5.1 Neutrophils in cancer 

Opposing roles for neutrophils have been reported in cancer and range from direct 

cytotoxicity towards tumour cells and blocking of tumour growth as well as 

angiogenesis to the suppression of anti-tumour immunity and direct proliferative, 

angiogenic, pro-invasive and pro-metastatic functions in animal models (Piccard et 

al., 2012). In the clinic, a majority of correlation reports suggests a worse prognosis 

of patients with elevated blood neutrophil count, increased ratio of neutrophils vs. 

lymphocytes in blood or the presence of tumour-infiltrating neutrophils. Most 

intensely examined where melanoma, renal cell carcinoma, hepatocellular 

carcinoma, colorectal cancer, cholangio-carcinoma, gastrointestinal stromal 

tumours, glioblastoma, gastric, oesophageal, lung, ovarian and head and neck 

cancer (Donskov, 2013) as well as recently breast cancer (Chen et al., 2015, Koh 

et al., 2015, Ozyalvacli et al., 2014). Importantly, high blood or tumour neutrophil 

count was a strong, independent risk factor for poor outcome in multivariate 

analyses and patients with low neutrophil baseline showed greatest response to 

therapy (Donskov, 2013). Neutropenia is a common side-effect of chemotherapy in 

many cancer types and, interestingly, several studies showed that moderate 

chemotherapy-induced neutropenia correlated with improved survival, for example 

for ovarian, cervical, breast, colorectal and lung cancer patients (Cameron et al., 

2003, Di Maio et al., 2005, Shitara et al., 2009, Eskander and Tewari, 2012, Tewari 

et al., 2014). Recombinant G-CSF treatment is frequently used in the clinic to 

prevent the detrimental effects of neutropenia and is usually well tolerated. 

Nevertheless, the use of G-CSF was associated with adverse effects and can 

promote tumourigenesis in cancer patients and pre-clinical models (Aliper et al., 

2014, Kowanetz et al., 2010, Voloshin et al., 2011), while other reports suggest the 

opposite (Souto et al., 2011, Ghalaut et al., 2008, Morstyn et al., 1988). In fact, 

beneficial tumour-suppressive features of bacterial product-mediated or drug-
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induced, sustained neutrophilia are reported in pre-clinical models. Conceptually, 

these bacterial products are thought to mimic an acute, rather than a chronic, 

inflammation and enhance cytotoxic effects of neutrophils. Moreover, several 

reports on the anti-tumourigenic effects of neutrophils in the clinic have been 

published (Souto et al., 2011). 

Interestingly, many types of tumour cells can directly secrete chemoattractants for 

neutrophils such as CXC chemokines, stressing a functional role of neutrophils in 

tumourigenesis. For example, the murine neutrophil chemoattractants CXCL1, 

CXCL2 and human CXCL8/IL-8 are direct transcriptional targets of oncogenic Ras 

signalling via PI3K and ERK effector pathways in transformed lung and HeLa cells. 

CXCL1, 2 and 8 induced neutrophil infiltration and supported tumour cell survival 

and angiogenesis (Jin et al., 2006, Sparmann and Bar-Sagi, 2004). Signals from 

tumour cells or the TME might influence neutrophils, which in turn secrete factors 

like ROS, degrading enzymes and growth factors that might directly affect tumour 

cells (Borregaard, 2010), thereby creating a potential cell-to-cell crosstalk. Also, 

neutrophils are a major source of chemokines and cytokines that stimulate other 

leukocytes and boost inflammatory reactions (Mantovani et al., 2011), which can 

impact on cancerogenesis indirectly. These multiple properties of neutrophils 

represent an important challenge in understanding their role in tumourigenesis. 

 

Early studies in rodents in the 1990s suggested a tumour-influenced pro-

tumourigenic role of neutrophils. Blood neutrophils from mammary carcinoma-

bearing rats enhanced invasiveness in vitro and metastatic potential upon co-

injection in vivo of benign and malignant cancer cell lines in contrast to neutrophils 

from tumour-free controls (Welch et al., 1989). Furthermore, the depletion of 

granulocytes was shown to inhibit sarcoma growth (Pekarek et al., 1995). The 

promoting contribution of neutrophil granulocytes to genetic instability, 

angiogenesis, tumour growth and metastasis was then corroborated in many other 

mouse models (Gregory and Houghton, 2011, Piccard et al., 2012). For instance, 

blocking or genetic deletion of CXCR2 receptors, that went hand in hand with 

decreased neutrophil infiltration, inhibited tumour growth and angiogenesis in 

mouse lung, intestinal and pancreatic cancer models. Although, it has to be noted 

that these pro-tumourigenic effects of CXCR2 could also be mediated through 

other cells expressing this receptor such as endothelial or other stromal cells (Gong 
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et al., 2013, Ijichi et al., 2011, Jamieson et al., 2012, Keane et al., 2004). Also, non-

tumourigenic primary melanoma cells were dependent on neutrophil influx to grow 

tumours in vivo. Non-metastatic melanoma cells gained metastatic competence 

through neutrophil presence and neutrophils also increased aggressiveness of 

malignant melanoma cells (Schaider et al., 2003). 

Further research efforts elucidated mechanisms of pro-tumourigenic actions of 

neutrophils to promote tumour growth, angiogenesis, invasion, metastatic growth 

and suppression of anti-cancer immunity. First of all, neutrophils have to be 

considered as part of the TME and interact not only with cancer cells, but also the 

stroma and modify the ECM. A proposed ability of neutrophils to indirectly promote 

cancer growth and progression is by the suppression of anti-cancer immune 

responses mounted by NK and T cells. Neutrophils can render T cells inactive by 

secretion of Arg1 and ROS or by ROS in an immunological synapse leading to 

limited T cell proliferation by, for example, limitation of L-arginine availability or 

NFkB activation (Pillay et al., 2013). G-CSF was involved in the generation of 

immunosuppressive neutrophil-like cells in breast cancer mouse models that 

inhibited Th1 and CD8+ T cell proliferation in vitro when isolated from the spleen 

(Casbon et al., 2015). Despite not being directly cancer-related, a subset of human 

neutrophils were shown to form an immunological synapse with T cells and 

suppressed their proliferation in a hydrogen peroxide-dependent manner during 

acute inflammatory reactions (Pillay et al., 2012). Also, Arg1 exocytosis from 

neutrophil granules induced by TNF-alpha and ionomycin inhibited T cell 

proliferation by depletion of extracellular L-arginine in vitro in rheumatoid arthritis 

models (Rotondo et al., 2011). In glioblastoma patients, the expansion of a 

population of degranulated, circulating neutrophils was associated with enhanced 

blood Arg1 levels and limited T cell activation. In vitro, these neutrophils directly 

suppressed T cell function and pharmacologic inhibition of Arg1 restored T cell 

activation and function in vitro and in vivo (Sippel et al., 2011). In accordance, a 

subset of circulating granulocytes were found in cancer patients and correlated with 

decreased T cell activation and cytokine expression. These neutrophils showed 

altered density likely due to their activation status and directly suppressed cytokine 

release by T cells via release of the ROS hydrogen peroxide in vitro (Schmielau 

and Finn, 2001). Circulating, low-density neutrophils were also identified in another 

study to be the preferentially propagated neutrophil subpopulation in cancer-
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bearing hosts (Sagiv et al., 2015). The immunosuppressive functions of neutrophils 

might share similarities and overlap with the functions of G-MDSCs, however 

neutrophils and G-MDSCs were shown to be phenotypically, morphologically and 

functionally different. Nevertheless, the field remains divided as the immature G-

MDSCs have been proposed to be clearly distinct from neutrophils or a novel 

immunosuppressive neutrophil subset (Fridlender et al., 2012, Gabrilovich et al., 

2012, Pillay et al., 2013, Sagiv et al., 2015, Youn et al., 2012, Youn and Gabrilovich, 

2010). 

Additionally to influencing stromal and immune cells, neutrophils are also an 

important source of matrix-remodelling enzymes in the TME. These neutrophil-

derived proteases act on cytokines, chemokines, their receptors, integrins and 

ECM components and can mediate tumour cell proliferation, angiogenesis and 

metastatic dissemination (Gregory and Houghton, 2011). MMP9 is released from 

neutrophil secondary, specific granules and is an important component of the TME. 

MMP9 was shown to be upregulated early during epidermal carcinogenesis and 

haematopoietic cell deficiency of MMP9 reduced epidermal proliferation and 

tumour incidence (Coussens et al., 2000). Similar results were obtained using lung 

cancer cell lines, there haematopoietic cell-derived MMP9 supported survival of 

lung tumour cells at early stages after seeding in the lung (Acuff et al., 2006). 

Depletion of neutrophils in a pancreatic cancer mouse model also reduced 

incidence of dysplasias and prevented the angiogenic switch due to limited 

availability of bioactive VEGF which is known to be released from the ECM by 

MMP9 (Nozawa et al., 2006). Moreover, neutrophil-derived MMP9 also promoted 

angiogenesis and invasion of grafted tumours of human fibrosarcoma and prostate 

carcinoma cell lines (Bekes et al., 2011). In contrast, MMP8 is associated with 

better patient prognosis and MMP8 deficiency in mice protects from skin 

carcinogenesis. Despite the exact mechanisms remaining elusive, MMP8 loss 

causes enhanced neutrophil influx that is suggested to promote tumour growth 

(Gregory and Houghton, 2011). Neutrophil elastase is an extracellular protease that 

is almost exclusively produced and released by neutrophils and recognised as 

important mediator of neutrophil functions. Notably, low levels of neutrophil 

elastase were reported to enter lung adenocarcinoma cells via early endosomes 

where it caused hyperactivity of PI3K and uncontrolled cell proliferation by 

degradation of a binding partner of the PI3K regulatory subunit (Houghton et al., 
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2010). Higher neutrophil elastase concentrations cause cancer cell death, 

highlighting the dose-dependency of many neutrophil-derived factors. Another 

study also reported that exaggerated presence of neutrophils has detrimental 

effects on tumourigenesis and metastasis, while moderate increase of neutrophil 

infiltration was pro-tumourigenic. Melanoma cells transduced to express IL-8 

displayed neutrophil infiltration-dependent accelerated tumour growth, however 

very high IL-8 transduction levels caused massive neutrophil presence and tumour 

growth inhibition (Schaider et al., 2003). Moreover, the same dose- and context 

dependency holds true for neutrophil-derived ROS levels in the microenvironment. 

Reactive oxygen species (ROS) are produced by neutrophil NADPH (nicotinamide 

adenine dinucleotide phosphate) oxidase by reduction of molecular oxygen to 

superoxide radicals and further conversion by enzymes like myeloperoxidase. 

Neutrophil-derived ROS is associated with direct cytotoxic effects towards cancer 

cells causing tumour regression (Dallegri et al., 1991, Piccard et al., 2012), 

however low ROS levels may lead to the acquisition of tumour-promoting mutations 

(Knaapen et al., 2006). Co-culture of neutrophils with a variety of cell types showed 

their genotoxic properties to induce mutations, such as sister-chromatid exchanges, 

DNA strand breaks and DNA base modifications, that did not lead to cell death but 

malignant transformation. This carcinogenic function of neutrophils is largely 

attributed to their capacity to generate mutagenic ROS that induces DNA damage, 

which was confirmed by NADPH oxidase-deficient neutrophils or the use of ROS 

inhibitors (Knaapen et al., 2006). For example, activated neutrophils caused DNA 

single-strand breaks and DNA base modifications in several epithelial cell lines 

(Dizdaroglu et al., 1993, Shacter et al., 1988), moderate levels of neutrophil-derived 

HOCl were directly shown to cause DNA damage in epithelial lung cells in vitro 

(Gungor et al., 2010) and neutrophil-mediated sister chromatid exchanges in 

mammalian cells were prevented by agents like superoxide dismutase, catalase 

and radical scavengers (Weitberg et al., 1985). In fact, pre-treatment of normal 

mouse fibroblasts with activated human neutrophils or superoxides caused 

malignant transformation and tumour growth of these cells after transplantation 

(Weitzman et al., 1985). In vivo, a strong correlation with genotoxicity and 

neutrophil influx was reported upon lung exposure to several different stimuli that 

lead to tumour development or chronic inflammation including quartz, carbon black, 

diesel fumes or lipopolysaccharides (Knaapen et al., 2006). For instance, 
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intratracheal instillation of the carcinogen quartz led to neutrophil influx, mutations 

in p53 and subsequent lung tumour growth (Seiler et al., 2001) and neutrophils 

accumulating in high numbers in bronchioalveolar lavage fluid of quartz-induced 

lung tumour-bearing mice showed high mutagenicity to lung epithelial cell lines 

(Driscoll et al., 1997). Moreover, lung neutrophil influx or depletion correlated with 

accumulation or reduction of mutations in the HPRT (hypoxanthine guanine 

phosphoribosyl transferase) gene in lung cells in vivo after lipopolysaccharide 

exposure, respectively (Gungor et al., 2010). Moreover, independent from direct 

carcinogenic insults, cancer cell lines with various expression levels of the 

neutrophil chemoattractant IL-8 displayed different neutrophil frequencies in the 

TME that positively correlated with genomic instability (Haqqani et al., 2000). These 

observations suggest a contribution of neutrophils to tumour initiation processes in 

the lung by neutrophil-derived ROS-mediated mutagenesis. 

 

In contrast, neutrophils were shown to mediate the lysis of cancer cells via 

oxidative burst, release of ROS and antibody-dependent cellular cytotoxicity 

already back in the 1980s and 1990s. These studies showed that activated 

neutrophils lysed a variety of cancer cells, but not fibroblasts, via ROS and oxygen 

radical release mainly in vitro and that these anti-tumourigenic neutrophils could be 

recruited to tumour sites in vivo by injection of bacterial-derived products (Dallegri 

et al., 1991, Dallegri et al., 1984, Fujimura and Torisu, 1987, Gerrard et al., 1981). 

For example, neutrophils mediated antibody-dependent cellular cytotoxicity against 

malignant B cells, melanoma and neuroblastoma cells through Fc receptor RI or RII 

and RIII (Elsasser et al., 1996, Kushner and Cheung, 1992). Also, treatment with 

IL-1beta increased neutrophil frequencies in the circulation that correlated with 

reduced melanoma growth and direct transfer of neutrophils into the tumour also 

inhibited tumour growth (Neville et al., 1990). Another melanoma study showed 

tumour-associated neutrophils in very high numbers preferentially kill primary over 

metastatic cancer cells in vitro (Schaider et al., 2003), suggesting cancer cell 

evolution and evasion from neutrophil cytotoxicity. Neutrophil recruitment, anti-

tumourigenic and anti-metastatic properties of neutrophils are at least partially 

mediated by the receptor Met that is upregulated in neutrophils by tumour cell-

derived signals such as TNF-alpha. Upon HGF engagement of MET, neutrophils 

can extravasate to the primary tumour or metastatic site and upregulate iNOS 
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leading to ROS-mediated cytotoxicity against cancer cells in vitro (Finisguerra et al., 

2015). Neutrophils were also shown to cause tissue damage to stromal cells in the 

TME to limit tumour growth. VCAM1 and E-selectin-mediated leukocyte infiltration 

was associated with neutrophil cytotoxicity towards tumour blood vessels and 

hypoxia-induced tumour cell death (Colombo et al., 1996). This observation goes 

hand in hand with another report that suggested broader, context-dependent 

neutrophil cytotoxicity towards normal mammalian cells (Becker, 1988).  

 

 

 

 

 
 

Figure 1-7 The pleiotropic roles of neutrophils in cancer 
Neutrophils were shown to have both, pro- and anti-tumourigenic functions in the 
tumour microenvironment. Selected examples including the involved processes and 
neutrophil-released factors are depicted. 
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1.3.5.2 Neutrophils in metastasis 

Neutrophils were described as important positive mediators of metastasis. 

Neutrophil recruitment to the primary tumour site was essential for the acquisition 

of metastatic traits by benign fibrosarcoma cells. Interestingly, neutrophil-ablation 

only at early tumour stages promoted metastatic ability, but was negligible at later 

time points (Tazawa et al., 2003), suggesting that the functions of neutrophils 

appear to be influenced by tumour stage. Elegant studies suggested the interaction 

of cancer cells with neutrophils to promote tumour cell invasiveness. Neutrophil-

derived Bv8, a secreted signalling proteins, was identified as mediator of 

neutrophil-dependent angiogenesis in a pancreatic cancer mouse model (Shojaei 

et al., 2008) as well as inducer of cancer cell migration through its cancer cell 

expressed receptor PKR (Prokineticin receptor)-1 (Kowanetz et al., 2010). 

Moreover, breast cancer cell-derived GM-CSF stimulated neutrophils to produce 

oncostatin M that, in turn, promoted cancer cells to release VEGF and supported 

their invasiveness (Queen et al., 2005). Similarly, cholangiocellular or 

hepatocellular carcinoma cells induced HGF expression by neutrophils which also 

enhanced cancer cell invasion (Imai et al., 2005). Neutrophils were likewise shown 

to promote invasion of oral cell carcinoma cells (Glogauer et al., 2015) and 

melanoma cells. UV irradiation, a high risk factor for melanoma, caused release of 

HMGB (high-mobility group box) 1 by damaged keratinocytes and neutrophil 

recruitment via TLR4. These neutrophils stimulated angiogenesis and invasiveness 

of melanoma cells, especially their migration towards and along endothelial cells 

(Bald et al., 2014). Neutrophils were also shown to be involved in facilitating cancer 

cell trapping and extravasation. Melanoma cells entrapped in lung capillaries 

attracted neutrophils that enhanced their integrin-beta2 expression. Subsequently, 

melanoma cells piggybacked neutrophils that transmigrated through the 

endothelium by binding them via their ICAM1 (Huh et al., 2010). A similar 

mechanism of direct extravasation support of neutrophils to tumour cells was 

described for a lung cancer model that metastasises to the liver (Spicer et al., 

2012). In the same model, NET deposition by neutrophils in the liver vasculature 

also aided trapping and subsequent hepatic metastasis formation (Cools-Lartigue 

et al., 2013). These studies clearly demonstrate a promoting effect of neutrophils 
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on cancer cell dissemination and arrival at the metastatic site, but there is little 

known about their function during initiation and outgrowth of metastases. In a 

breast cancer mouse model, tumour-derived IL-1-beta elicited a systemic 

inflammatory state by inducing gamma-delta T cells to express IL-17. In turn, IL-17 

upregulated systemic G-CSF levels and caused neutrophilia, similar to it’s function 

during infection or autoimmune diseases. Subsequently, circulating neutrophils 

were shown to inhibit cytotoxic CD8+ T cell activation and thereby facilitated 

metastatic growth in the lung (Coffelt et al., 2015). Another study corroborated 

these observations and involved mammary cancer cell-derived IL-6 and CCL20 in 

recruiting and activating T cells to upregulate IL-17 which, in turn, led to infiltration 

of pro-tumourigenic neutrophils (Benevides et al., 2015). Additionally, neutrophil-

like cells have been proposed to have pro-metastatic effects in mammary cancer 

mouse models that are independent from immunosuppression. One study identifies 

neutrophil-like cells that are recruited to the mammary tumour and the metastatic 

lung in a CXCL1/2-dependent fashion and promote survival of mammary cancer 

cells, chemoresistance and metastasis via secretion of S100A8/A9 (Acharyya et al., 

2012). 

In contrast, anti-tumourigenic/anti-metastatic properties of neutrophils were 

observed in a xenografted metastatic breast cancer cell line model. There, 

neutrophils infiltrated the pre-metastatic and metastatic lung and their depletion 

promoted metastatic seeding. Circulating neutrophils from these tumour-bearing 

mice, but not G-CSF-stimulated naïve neutrophils, directly induced cancer cell 

death by hydrogen peroxide release in vitro (Granot et al., 2011). Another study 

described neutrophil cytotoxicity towards cancer cells at the metastatic site in two 

cancer cell line models that was dependent on Met receptor expression and iNOS 

upregulation (Finisguerra et al., 2015), suggesting a potential anti-metastatic role of 

neutrophils. 

 

1.3.5.3 Modulation of neutrophil function by the tumour microenvironment 

This conflicting evidence on the role of neutrophils in cancer and metastasis might 

be the result of the TME influencing the neutrophil secretome and functions. For 

instance, transplantation of a melanoma cell line onto IFN-beta-deficient mice 
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resulted in neutrophil recruitment and increased tumour growth, which is 

normalised upon neutrophil depletion. Interestingly, tumour-associated neutrophils 

of IFN-beta-deficient mice showed increased expression of CXCR4, VEGF and 

MMP9 that could be reverted by addition of recombinant IFN-beta (Jablonska et al., 

2010). Moreover, neutrophil depletion resulted in differential effects on tumour 

progression depending on the treatment with a TGF-beta inhibitor (Fridlender et al., 

2009). In non-TGF-beta inhibitor-receiving mice, neutrophil blockade resulted in 

increased CD8+ T cell activation and reduced tumourigenesis. Independent from 

neutrophils, TGF-beta inhibition reduced mesothelioma and lung cancer cell line-

derived tumour growth via activation of cytotoxic CD8+ T cells and macrophages. 

Treatment with TGF-beta inhibitor also caused influx of neutrophils. Neutrophil-

depletion in TGF-beta inhibitor-treated mice blunted the tumour-suppressive effect 

by the TGF-beta inhibitor and impaired CD8+ T cell activation as well as elevated 

tumour growth. The anti-tumourigenic neutrophils in a TME lacking TGF-beta 

expressed pro-inflammatory cytokines such as TNF-alpha, iNOS and ICAM1 and 

were cytotoxic towards tumour cells. In contrast, the pro-tumourigenic neutrophils 

under presence of TGF-beta produced Arg1, CCL2 and CCL5 (Fridlender et al., 

2009). These observations suggest a possible polarisation of neutrophil 

phenotypes by IFN-beta and TGF-beta similar to macrophages. In concert, a follow 

up study identified three different circulating neutrophil populations that differed in 

their maturity, size and pro- or anti-tumourigenic function. These included 

granulocytic-MDSCs, mature low-density neutrophils that display pro-tumourigenic 

and immunosuppressive properties as well as mature high-density neutrophils that 

are anti-tumourigenic and cytotoxic. Interestingly, pro-tumourigenic neutrophils 

appear to be preferentially propagated in cancer bearing hosts, eventually via a 

TGF-beta-mediated transition from high-density neutrophils (Sagiv et al., 2015). 

 

In conclusion, the various contributions of neutrophils to tumour onset and 

progression are only beginning to emerge. In particular, the investigation of the 

functions of neutrophils in metastatic colonisation is in its infancy (Mantovani, 2014, 

Gregory and Houghton, 2011, Houghton, 2010), despite metastasis posing the 

highest risk in the clinic. It appears that neutrophils can both, promote and limit 

tumourigenesis in experimental models. Hence neutrophil activity is very context-

dependent as well as a question of the actual levels and activation status of 
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present neutrophils (Gregory and Houghton, 2011, Piccard et al., 2012). 

Nevertheless, clinical data strongly suggest a pro-tumourigenic role of neutrophils 

in many different cancer types and scenarios (Donskov, 2013), stressing their 

significance within the TME and therapeutic interest. We have to improve our 

understanding of the mechanisms behind the actions of tumour- and metastasis-

associated neutrophils, because neutropenia comes with harmful side effects such 

as susceptibility to infection (Gibson and Berliner, 2014). Re-education of 

neutrophils to anti-tumourigenic, more acute inflammatory roles (Souto et al., 2011, 

Fridlender et al., 2009), however a lot of further research efforts will be necessary 

to improve our understanding of these processes. Hence, dissecting the role of 

neutrophils in cancer initiation and progression and finding targetable neutrophil-

derived mediators is paramount for the development of new therapeutic 

approaches specifically targeting their pro-tumorigenic activity.  
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Chapter 2. Materials & Methods 

2.1 Mouse strains 

The MMTV-PyMT+ mice were a kind gift from Dr Erik Sahai (The Crick Institute, 

London), Actin-GFP (mice expressing GFP under the control of the Actin promoter), 

G-CSF-/-, CXCR2-/-, v-Ha-Ras transgene (TG.AC)+ and Rag1-/- mice were a kind 

gift from Dr Joerg Huelsken (École Polytechnique Fédérale de Lausanne, 

Lausanne), Actin-Luciferase (mice expressing Firefly Luciferase under the control 

of the Actin promoter) transgenic lines were a kind gift from Dr Dominique Bonnet 

(The Crick Institute, London), Rosa26R-EGFP-DTA mice were a kind gift from Dr 

Caetano Reis e Sousa (The Crick Institute, London), ela2-Cre knock in mice were 

purchased from the European Mouse Mutant Archive (EMMA), Alox5 null mice 

were purchased from Jackson Laboratory. All mouse strains have been used and 

described previously (Cacalano et al., 1994, Chen et al., 1994, Guy et al., 1992, 

Ivanova et al., 2005, Lassailly et al., 2013, Leder et al., 1990, Lieschke et al., 1994, 

Mombaerts et al., 1992, Okabe et al., 1997, Tkalcevic et al., 2000). We used 

wildtype, MMTV-PyMT+, Actin-GFP, Actin-Luciferase and Rag1-/- mice in pure 

genetic FVB/N background (Taketo et al., 1991) (more than 10 generations); 

wildtype, MMTV-PyMT+ and Alox5-/- mice in pure C57BL/6 background (Mekada 

et al., 2009); wildtype and CXCR2-/- mice in pure BALB/c background (Potter, 

1985) as well as G-CSF-/-, v-Ha-Ras transgene (TG.AC)+, ela2-Cre and Rosa26R-

EGFP-DTA mice in mixed genetic background with littermate controls. MMTV-

PyMT+ mice in FVB/N background have a very high incidence of lung metastasis, 

while the same transgene in C57BL/6 background shows lung metastasis in only 

about 40-50% of mice at late stages (Roy et al., 2011, Fantozzi and Christofori, 

2006, Guy et al., 1992). 

All mice were bred at our own establishment and typically used at 6-8 weeks of age, 

excluding spontaneous tumour models. Breeding and all animal procedures were 

performed in accordance with United Kingdom regulations under project license 

PPL/80/2531. 



Chapter 2 Materials and Methods 

 

98 

 

2.2 Mouse experiments 

Where applicable, mice were anaesthetised with IsoFlo® (Isoflurane, Abbott Animal 

Health) and temporally treated with the analgesics Vetergesic® (Alstoe Animal 

Health) and/or RimadylTM (Pfizer Animal Health). 

 

2.2.1 Evaluation primary mammary tumour and lung metastasis burden in 

mice (Fig. 2.1) 

Dissecting and weighing the entire mammary tumour (or multiple tumours if 

present) provided the measure for primary tumour burden and it is displayed in 

gram. Images were taken using a digital, handhold camera. Metastatic load was 

quantified by counting nodules on the surface of the lung using the Zeiss SteREO 

Lumar.V12 microscope and is shown as lung metastasis incidence for 

intravenously injected cancer cells or relative to primary tumour burden for 

spontaneous metastasis (Nodules/gram tumour). Alternatively, presence of 

experimental metastases was occasionally determined by sectioning the lung and 

staining with haematoxylin and eosin. Experimental lung metastases derived from 

GFP+ cancer cells were quantified by fluorescent microscopy (Zeiss SteREO 

Lumar.V12 microscope), by flow cytometric analysis of frequencies of GFP+ cells in 

total lung or sectioning the lung and immunohistochemically staining for GFP. 

Metastatic burden of Luciferase-expressing tumour cells was evaluated by 

measuring bioluminescence intensity (section 2.2.16). 
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Figure 2-1 Quantification of lung metastasis burden 
(a) Haematoxylin (blue) and GFP (brown, GFP+ cancer cells) stained histologic lung 
section. (b) Photograph of metastatic lung with spontaneous metastasis. (c) 
Stereomicroscopic image of green fluorescent channel of lung with GFP+ experimental 
metastasis and (d) representative flow cytometric analysis of frequencies of 
GFP+CD24+ metastatic MMTV-PyMT cancer cells in the lung, gated on CD45-
negative CD31-negative cells. Insert in (d) shows relative frequencies of double-
positive cells contained in the displayed gate. (e) Image of bioluminescence intensity 
emitted by Luciferase-expressing cancer cells (experimental metastasis) in the lung. 
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2.2.2 Tumour cell transplantations and induction of experimental metastasis 

FVB/N wildtype mice were used for MMTV-PyMT tumour cell transplantations to 

isolate lung neutrophils and analysis of the pre-metastatic lung microenvironment. 

Rag1-/- mice were used for orthotopic transplantation testing tumour initiation 

potential of transplanted cancer cells or when using MMTV-PyMT G-CSF-/- cancer 

cells. Also, Rag1-/- mice were used for intravenous injection experiments involving 

human or mouse GFP- or Luciferase-expressing tumour cells. Primary MMTV-

PyMT, MMTV-PyMT Actin-GFP or MMTV-PyMT Actin-Luciferase cells (105-106 

cells per injection), the unmarked or stably mPGK-GFP-expressing mouse 

mammary cancer cell line 4T1 (105 cells per injection) and the unmarked or stably 

Actin-GFP-expressing human breast cancer cell line MDA-MB-231 (1-2x106 cells 

per injection) were used to orthotopically graft mammary tumours or to induce 

experimental metastasis by injection via the tail vein. For experimental metastasis, 

tumour cells were re-suspended in 100µl PBS (137 mmol/L NaCl, 2.7 mmol/L KCl, 

10 mmol/L Na2PO4 and 1.8 mmol/L KH2PO4 in distilled water) and tail vein injected. 

For orthotopic transplantations, tumour cells were re-suspended in 50µl growth-

factor-reduced Matrigel (Costar, Cat.Nr. 356231) and transplanted into a small 

pocket within the fourth mammary fat pad on both flanks (MMTV-PyMT and MDA-

MB-231 cells) or one flank only (4T1 cells). 

 

2.2.3 Assessment of tumour and metastasis initiation capacity of MMTV-

PyMT cancer cells 

For determination of tumour initiation potential, 103 flow sorted BLT2+ and/or 

CysLT2+ MMTV-PyMT cancer cells, three-day neutrophil-conditioned medium 

(LuN-wt, LuN-Alox5ko or LuN-Zil) or LTB4 and LTC-D-E4 pre-treated MMTV-PyMT 

cells in adherent conditions and respective controls were grafted onto the 

mammary glands of Rag1-/- mice and tumour burden analysed five weeks 

thereafter. 

For assessment of metastatic lung colonisation competence, 105 three-day 

neutrophil-conditioned medium (LuN) or LTB4 and LTC-D-E4 pre-treated MMTV-
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PyMT cells and respective controls were injected into Rag1-/- mice and lung 

harvested and metastatic burden analysed five weeks thereafter. 

 

2.2.4 Experiments analysing systemic neutrophil mobilisation and immune 

cell infiltration into pre-metastatic or metastatic lung of MMTV-PyMT 

tumour bearing mice 

MMTV-PyMT+ mice in FVB/N background that spontaneously developed a primary 

tumour and had visible lung metastasis were used to determine immune cell 

presence in the lung and neutrophil presence in other organs (bone marrow, spleen, 

liver and mammary tumour) together with tumour-free littermate controls. For 

determination of timing and dynamics of lung infiltration by neutrophils and cancer 

cells, MMTV-PyMT+ mice carrying very small, spontaneously developed mammary 

tumours were used. Neutrophil infiltration was quantified by flow cytometry and 

cancer cell presence by examination of six histological lung sections (100µm apart) 

for Polyoma middle T antigen staining to confirm the pre-metastatic status of the 

lung of MMTV-PyMT+ tumour-bearing mice in these experiments. The timing of 

neutrophil infiltration into the pre-metastatic prior to cancer cells was confirmed in 

FVB/N wildtype mice carrying with two primary tumours originating from orthotopic 

injection of primary MMTV-PyMT cancer cells. These mice were used for analysis 

of pre-metastatic lung neutrophils and neutrophil-dependent immune cell presence 

in the pre-metastatic lung (daily treated with anti-Ly6G or control IgG-antibody 

starting 24 hours prior to tumour cell implantation). 

 

2.2.5 Analysis of MMTV-PyMT+ G-CSF and MMTV-PyMT+ ela2-DTA mice 

Mice were culled and analysed about six weeks after spontaneous primary tumour 

onset together with tumour-free control littermates. The analysed genotypes are 

described in detail in section 2.1. We did not observe any bias in penetrance of 

lung metastasis in these MMTV-PyMT+ mice in mixed background and all controls 

readily displayed lung metastasis at late tumourigenic stages. 
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2.2.6 In vivo treatments with neutrophil-blocking antibody anti-Ly6G or 

Zileuton 

12.5 µg/mouse rat anti-Ly6G antibody (clone 1A8, BioXcell, Cat.Nr. BE0075-1) 

(Daley et al., 2008, Granot et al., 2011) or rat IgG isotype control (kindly provided 

by the Cell Services Unit of the London Research Institute of Cancer Research UK) 

in 100µl PBS were administered daily via intra-peritoneal injection. Zileuton (LKT 

Laboratories Inc., Cat.Nr. 111406-87-2) dissolved in DMSO (Dimethyl Sulfoxide, 

Sigma, Cat.Nr. 41640) or DMSO alone was fed to mice by pipetting on the back of 

the tongue once a day at a dosage of 4mg Zileuton / gram mouse weight. 

 

2.2.7 Experiments analysing the effect of in vivo neutrophil depletion or 

Zileuton treatment on lung colonisation by cancer cells 

Rag1-/- mice were orthotopically transplanted with unlabelled mammary tumour 

cells: 106 MMTV-PyMT cells or MDA-MB-231 cells into both fourth mammary 

glands and 105 4T1 cells into one mammary gland. Two or four weeks later, as 

indicated for individual experiments, labelled tumour cells were injected via the tail 

vein (intravenously): 105 GFP+ MMTV-PyMT cells or GFP+ 4T1 cells and 106 

GFP+ MDA-MB-231 cells. Anti-Ly6G or Zileuton treatment for 10 days, two or four 

weeks, as indicated for individual experiments, started one day prior to intravenous 

injection of cancer cells. Then, total primary tumour burden, neutrophil presence in 

the lung, spontaneous lung metastasis incidence from the transplanted primary 

tumour and/or experimentally induced lung micro-metastasis originating from the 

intravenously injected cancer cells was analysed. 

 

2.2.8 Experiments analysing the tumour and/or metastasis initiation 

potential of sorted leukotriene receptor-positive/negative or of in vitro 

pre-treated primary MMTV-PyMT cells 

Primary MMTV-PyMT cells were either cell sorted for leukotriene receptor presence 

or absence, or treated for three days on collagen-coated dishes with either 

neutrophil-conditioned medium or LTB4 and LTC-D-E4. Subsequently, 103 cells 

were orthotopically transplanted into the mammary gland or 105-106 cells injected 
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via the tail vein into Rag1-/- mice and mammary tumour growth or lung metastasis 

incidence analysed about three weeks or five weeks thereafter, respectively. 

 

2.2.9 Injections of neutrophils and neutrophil-conditioned medium and 

quantification of metastasis-initiating cells at early stages as well as 

metastatic burden in vivo 

To analyse total cancer cells at early stages, Rag1-/- mice were injected with 106 

GFP+ MMTV-PyMT cells via the tail vein followed 12 hours later by intravenous 

injection of 25x106 neutrophils (freshly isolated from the lung of MMTV-PyMT 

tumour-transplanted mice) or 12, 24 and 36 hours later by intravenous injection of 

200µl lung neutrophil-conditioned or control sphere medium. Cancer cells in the 

lung were analysed three days after intravenous tumour cell injection for 

frequencies of CD90+ metastasis-initiating cells (MICs) among GFP+CD24+ 

(nonMIC) cancer cells. For determination of effects of neutrophils or neutrophil-

conditioned medium on metastatic burden at later stages, Rag1-/- mice were 

intravenously injected with 5x105 GFP+ MMTV-PyMT or Luciferase-expressing 

MMTV-PyMT cells followed immediately, two and four days later by injection of 

25x106 neutrophils or five times every 12 hours by injection of 200µl lung 

neutrophil-conditioned medium. Metastatic burden was determined by Flow 

cytometric analysis of GFP+ cancer cells one week (neutrophil injections) or 

bioluminescence imaging of Luciferase-expression cancer cells 2.5 weeks 

(neutrophil-conditioned medium injections) thereafter. 

 

2.2.10 Analysis of functional effects of G-CSF-deficiency of MMTV-PyMT 

cancer cells 

Rag1-/- mice were transplanted with 106 G-CSF-/- primary MMTV-PyMT cancer 

cells or MMTV-PyMT cancer cells isolated from littermate controls into both fourth 

mammary glands and tumour growth, spontaneous metastatic incidence and 

neutrophil presence in the lung analysed four weeks thereafter. 
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2.2.11 Recruitment of neutrophils by metastatic cancer cells into the lung 

Rag1-/- mice were seeded with 106 GFP+ MMTV-PyMT cancer cells into the lung 

by injection via the tail vein. Three days later mice were sacrificed, lungs harvested 

and analysed for the presence of CD11b+Ly6G+ neutrophils and GFP+ MMTV-

PyMT cancer cells in the lung by flow cytometry. 

 

2.2.12 Evaluation of MMTV-PyMT extravasation into lung tissue under 

presence or absence of neutrophils 

Rag1-/- mice were grafted with two MMTV-PyMT mammary tumours and four 

weeks later treated with neutrophil-blocking anti-Ly6G or control IgG antibody. 24 

hours thereafter, mice were intravenously injected with 106 GFP+ MMTV-PyMT 

cancer cells and treated a second time with antibodies. Mice were sacrificed and 

the lungs perfused with PBS 20 hours after intravenous cancer cell injection. Lungs 

were digested and the presence of CD11b+Ly6G+ neutrophils and GFP+ MMTV-

PyMT cancer cells determined by flow cytometry. 

 

2.2.13 Induction of benign skin papilloma growth 

Papilloma development on eight weeks old v-Ha-Ras transgene (TG.AC)-

expressing mice was achieved by topical application of 12.5 µg/mouse TPA (Sigma, 

Cat.Nr. P8139) dissolved in Acetone (Sigma, Cat.Nr. 650501) onto the back skin 

twice weekly for 3.5 months. At this time, the mice carried 4-6 skin papilloma of 0.5-

1 cm in diameter that were superficial and did not penetrate the dermis. Wildtype 

littermate controls were simultaneously treated with TPA but did, as expected, not 

develop detectable skin papilloma. Mice were sacrificed, lungs harvested and 

analysed for the presence of CD11b+Ly6G+ neutrophils by flow cytometry. 

 

2.2.14 Resection of grafted MMTV-PyMT mammary gland tumours 

FVB/N wildtype mice were orthotopically transplanted with primary MMTV-PyMT 

cells into the fourth mammary fat pad on one side and the tumour grown to a size 
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of approximately 1x1x0.5cm. Surgical excision of the tumour was performed two 

weeks after tumour grafting by cutting the skin, sealing of blood vessels, removing 

the tumour and suturing of the skin. Mice recovered from surgery within hours and 

did not display any obvious adverse effects. Presence of CD11b+Ly6G+ 

neutrophils in the lung was analysed in untreated control mice, tumour-bearing 

mice at time of resection, and mice 24 hours or one week post-tumour removal. 

 

2.2.15 Bone marrow transplantation of CXCR2-/- and Alox5-/- bone marrow-

reconstituted mice 

C57BL/6 wildtype mice were lethally irradiated (dosage: 2x 600rad, 4 hours apart) 

and 24 hours later injected via the tail vein with 2x106 bone marrow cells freshly 

isolated from C57BL/6 or Alox5-/- donor mice. Alox5-/- bone marrow-reconstituted 

mice were orthotopically transplanted with 106 MMTV-PyMT cells into the fourth 

mammary fat pad on both sides eight weeks after bone marrow reconstitution and 

sacrificed for analysis of primary tumour burden, neutrophil infiltration into the lung 

and lung metastasis six weeks thereafter. Bone marrow-reconstituted mice where 

generated a pure C57BL/6 due to the background of Alox5-/- mice. Therefore, 

MMTV-PyMT cells from the same C57BL/6 background where used to generate 

primary tumours. In this lower tumourigenic background compared to FVB/N, 

metastasis only occurs in 50% of the mice (Roy et al., 2011, Das Roy et al., 2009, 

Fantozzi and Christofori, 2006, Guy et al., 1992). No alteration in this low 

penetrance was observed between wildtype and Alox5-/- bone marrow-

reconstituted mice, therefore lung metastatic burden was only quantified in animals 

harbouring metastatic disease. Percentage of bone marrow-reconstitution was 

calculated by isolating total DNA from bone marrow of reconstituted mice and semi-

quantitative PCR with a calibration curve from 100% wildtype DNA mixed at defined 

ratios with 100% Alox5 null DNA. Ratio between wildtype and Alox5-/- band was 

calculated for every mouse and percentage bone marrow reconstitution determined 

by comparison with calibration curve. Reconstitution was consistently between 80-

96%. 
BALB/c wildtype mice were irradiated (dosage: 2x 500rad, 4 hours apart) and also 

24 hours later injected with 2x106 bone marrow cells freshly isolated from BALB/c 
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or CXCR2-/- donor mice. 105 cells of the 4T1 mouse mammary cancer cell line that 

is in the syngeneic BALB/c background were grafted onto one mammary gland of 

reconstituted mice and mice analysed 2.5 weeks thereafter. CXCR2-/- mice are in 

BALB/c genetic background; hence bone marrow-reconstituted mice were 

generated in the same background and the syngeneic 4T1 cell line used. The 

efficacy of reconstitution of these mice was determined by flow cytometric analysis 

of lung neutrophils for the surface expression of CXCR2. 

 

2.2.16 In vivo Luciferase-activity detection 

Mice inoculated with Luciferase-expressing MMTV-PyMT cells were shaved around 

the chest area and injected with 3 mg XenoLight D-Luciferin Potassium Salt 

(PerkinElmer, Cat.Nr. 122799) dissolved in PBS into the peritoneum 5 minutes 

prior to imaging for at least 45 minutes using the IVIS® Spectrum Pre-clinical In 

Vivo Imaging System (PerkinElmer). The maximum bioluminescence intensity 

signal for the lung of every mouse was determined using Living Image 4.3.1 

software (PerkinElmer) as total bioluminescence flux detected in the chest area. 

 

2.2.17 In vivo BrdU incorporation assay 

Rag-/- mice carrying MMTV-PyMT tumours were treated daily for three days with 

Zileuton and IV injected with 105 GFP+ MMTV-PyMT cancer cells. BrdU (1mg per 

mouse dissolved in PBS) was intraperitoneally injected 18 hours after GFP+ cancer 

cells and lungs harvested and digested six hours later. APC BrdU Flow Kit (BD 

Bioscience, Cat.Nr. 557892) was used for fixation/permeabilisation and anti-BrdU 

staining of single lung cells according to manufacturer’s instructions followed by 

analysis by flow cytometry. 
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2.3 Analysis of mouse and human tissues 

2.3.1 Tissue staining, immunohistochemistry and light microscopy 

Mouse lung tissue was fixed in 4% paraformaldehyde (Sigma, Cat.Nr. P6148) in 

PBS for 24 hours, dehydrated for one hour each in 70% Ethanol (Sigma Cat.Nr. 

459844), twice in 100% Ethanol and three times in 100% Xylene (Sigma, Cat.Nr. 

247642) followed by three times infiltration with liquid paraffin wax (Sigma, Cat.Nr. 

327204) at 65-70°C by a the Tissue Tek VIP Vaccum Infiltration processor followed 

by embedding into paraffin blocks on the Tissue Tek TEC embedding station. 4µm 

sections were cut with a Leica RM 2135 microtome, dried and re-hydrated with 

Xylene, Ethanol and water before antibody. Breast cancer tissue array paired with 

metastatic tumours, 96 samples (1.5mm) was purchased from Abcam (Cat.Nr. 

ab178118). 

Lung sections were stained with Haematoxylin (Sigma, Cat.Nr. H3136) and Eosin 

(Sigma, Cat.Nr. 861006) with water and one 0.3% Acid alcohol solution (Sigma, 

Cat.Nr. 56694) washing steps in-between followed by dehydration with Ethanol and 

Xylene and mounted with CLARIONTM mounting medium (Sigma, Cat.Nr. C0487). 
For immunohistochemistry, either secondary HRP-conjugated antibodies were 

used in combination with DAP Peroxidase substrate or the VECTASTAIN® ABC kit 

(all Vector Laboratories, Cat.Nrs. SK-4100 and PK-6105). Used primary antibodies 

included monoclonal rat anti-mouse S100A9 (clone 2B10, kindly provided by the 

Experimental Histopathology unit of the London Research Institute, Cancer 

Research UK), monoclonal rat anti-Polyoma virus-middle T antigen (PyMT) (Santa 

Cruz, clone and Cat.Nr. sc-53481), polyclonal goat anti-GFP (Abcam, Cat.Nr. 

ab6556), polyclonal rabbit anti-human BLT2 Receptor (Cayman Chemical, Cat.Nr. 

120124) and polyclonal rabbit anti-human CysLTR2 antibody (Sigma, Cat.Nr. 

SAB2900039). Visualisation of cell nuclei was performed with haematoxylin and 

analysis employed the Nikon Eclipse 90i light microscope and NIS-elements 

software (Nikon). 
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2.3.2 Scoring of leukotriene receptor expression in human breast cancer 

tissue and paired lymph node metastasis (Fig. 2.2) 

All breast cancer and lymph node samples of the Abcam tissue microarray (Cat.Nr. 

ab178118) stained for human BLT2 or human CysLT2 that contained sufficient 

tissue were sored as follows: Staining intensity was determined as negative (score 

0), weak (score 1), moderate (score 2) or strong (score 3) and frequency of stained 

cells as 0% (score 0), <5% (score 1), 5-25% (score 2), 25-50% (score 3), 50-75% 

(score 4) and >75% (score 5). Staining intensity score and cell frequency score 

was added to a final score value for every sample. 

 
Figure 2-2 Scoring system for stained human breast cancer and lymph node 
metastasis tissue 
(a) Overview on calculation of individual score for every sample: staining and 
frequency score are added to one final value. (b) Examples of breast cancer tissue 
stained for leukotriene receptors BLT2 or CysLT (brown) and haematoxylin to visualise 
nuclei (blue) with the indicated final score values. 
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2.3.3 Tissue digestion for cell isolation or analysis 

Primary MMTV-PyMT cells, GFP+ MMTV-PyMT cells, Luciferase-expressing MTV-

PyMT cells and G-CSF-/- MMTV-PyMT cells were isolated from spontaneously 

formed mammary gland carcinomas of MMTV-PyMT+, MMTV-PyMT+ Actin-GFP, 

MMTV-PyMT+ Actin-Luciferase or MMTV-PyMT G-CSF-/- mice, respectively. 

Primary MMTV-PyMT cells, GFP+ MMTV-PyMT cells and Luciferase-expressing 

MTV-PyMT cells were always used in genetic FVB/N background, with the 

exception of Alox5-/- bone marrow-reconstituted mice were C57BL/6 MMTV-PyMT 

cells were used. G-CSF-/- MMTV-PyMT cells were used in mixed genetic 

background. 

Primary MMTV-PyMT tumours, liver, spleen and lung were dissected, minced, 

digested with Liberase TM and TH (Roche, Cat.Nrs. LIBTM-RO and LIBTH-RO) 

and DNaseI (Sigma, Cat.Nr. AMPD1) in HBSS (Sigma, Cat.Nr. H6648) and passed 

through a 100µm cell strainer. Some tumour cells were used for cell culture at this 

point. Bone marrow cells were isolated by crushing the femur and tibia and blood 

collected via bleeding from the tail vein with Heparin (Sigma, Cat.Nr. 84020) as a 

coagulant. For flow cytometric analysis or further purification, single cell 

suspensions of tumour, liver, spleen, lung, bone marrow and blood were subjected 

to hypotonic lysis (Red Blood Cell Lysis Solution, Miltenyi, Cat.Nr. 130-094-183) to 

remove erythrocytes and washed with MACS buffer in PBS, 2mM EDTA and 0.5% 

BSA (Sigma, Cat.Nr. A9418). Cells were immediately used for either re-injection 

into mice, flow cytometric analysis or cell culture. 

 

2.3.4 Flow cytometry and cell sorting 

Prepared single cell suspensions of mouse tissues and in vitro treated cancer cells 

were incubated with mouse FcR Blocking Reagent (Miltenyi, Cat.Nr. 130-092-575) 

followed by incubation with (a combination) of the following pre-labelled antibodies; 

TER119 (clone TER-119), CD24 (clone M1/69), CD31 (clone 390), CD45 (30-F11), 

CD90.1 (clone HIS51), CD11b (clone M1/70), CD19 (clone 1D3), CD49b (clone 

DX5), CD49f (clone GoH3), CD4 (clone GK1.5), CD8a (clone 53-6.7), CD44 (clone 

IM7), CD69 (clone H1.2F3), CD25 (clone PC61.5), CD115 (clone AFS98), CD86 
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(clone GL1), Fas (clone 15A7), MHC-II (clone M5/114.15.2), Ly6G (clone 1A8), 

CD11c (clone HL3), CD3 (145-2C11), Siglec-F (clone E50-244-), ICAM1 (clone 

3E2), H-2kq (MHC-I, clone HK114), F4/80 (clone BM8), CXCR2 (clone 242216), 

polyclonal rabbit anti-BLT1 (Bioss Inc., Cat.Nr. bs-2654R) and polyclonal rabbit 

anti-BLT2 (Bioss Inc., Cat.Nr. bs-2655R); and/or unlabelled antibodies: polyclonal 

rabbit anti-CysLT1 (Santa Cruz, sc-25448) and polyclonal goat anti-CysLT2 (Santa 

Cruz, Cat.Nr. sc-27097) followed by incubation with fluorescently-labelled 

secondary antibodies (Invitrogen). For intracellular Foxp3 (antibody clone FJK-16s) 

staining, pre-stained cells were fixed, permeabilised and stained with the Foxp3 

staining set APC (eBioscience, Cat.Nr. 77-5775-40). 

Antibody fluorescently-labelled cells (including freshly isolated neutrophils for purity 

check) were additionally stained with DAPI (4,6-Diamidino-2-phenylindole 

dihydrochloride, Sigma, Cat.Nr. D9542) or PI (Propidium iodide, Sigma, Cat Nr. 

P4170) to exclude dead cells and analysed with an LSRFortessaTM cell analyser 

running FACSDivaTM software (BD Biosciences) and FlowJo software. Freshly 

isolated MMTV-PyMT tumour cells or 4T1 cancer cells fluorescently stained for 

BLT2 and CysLT2 or CD24 and CD90 were flow-sorted using the Influx™ cell 

sorter running FACS™ Sortware sorter software (BD Biosciences). MMTV-PyMT 

cells were used for in vivo experiments immediately after sorting and sorted 4T1 

cells cultured in adherent conditions for three days prior to Western blot analysis.  
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2.4 Ex vivo experiments with primary cells and cell lines 

2.4.1 Neutrophil isolation and neutrophil-conditioned medium 

Freshly isolated lung cells from wildtype mice orthotopically transplanted with 

MMTV-PyMT tumours were incubated with mouse FcR Blocking Reagent and 

APC-coupled anti-Ly6G (clone 1A8) antibody followed by incubation with magnetic 

anti-APC MicroBeads (Miltenyi, Cat.Nr. 130-090-855). Magnetically labelled 

neutrophils were isolated using LS columns (Miltenyi, Cat.Nr. 130-042-401) and 

washed with MACS buffer according to manufacturers instructions. Neutrophil 

purity and viability was measured by flow cytometry. Some isolated Ly6G+ cells 

were smeared onto a glass slide and air-dried overnight followed by haematoxylin 

and eosin staining to evaluate cell morphology. Remaining neutrophils were kept in 

sphere medium at a concentration of 106 neutrophils per 150µl medium for 14 

hours to allow conditioning. Neutrophils and cell debris were removed by 

centrifugation prior to downstream applications of neutrophil-conditioned medium. 

Lungs of MMTV-PyMT tumour-bearing Alox5-/- or Zileuton-treated wildtype mice 

were used for production of leukotriene-free neutrophil-conditioned medium LuN-

Alox5ko and LuN-Zil, respectively. 

 

2.4.2 Cell culture and in vitro cancer cell treatments 

All used cell lines were kindly provided by the Cell Services Unit or Dr Erik Sahai of 

The Crick Institute, London and cultured in DMEM medium (Sigma, Cat.Nr. D5546) 

supplemented with 10% foetal bovine serum (DMEM/FBS, Invitrogen Cat.Nr. 

12662-011). These included the unmarked or stably mPGK-GFP-expressing 

mouse mammary cancer cell line 4T1 and the unmarked or stably Actin-GFP-

expressing human breast cancer cell line MDA-MB-231. Freshly isolated MMTV-

PyMT cells were cultured overnight on PureCol® collagen (Advanced Biomatrix, 

Cat.Nr. 505B)-coated dishes in growth medium DMEM/F12 with 2% FBS, 

20 ng ml−1 EGF (Invitrogen, Cat.Nr. PHG0314) and 10 μg ml−1 insulin (Sigma, 

Cat.Nr. I9278) before use in experiments. All cultured cells were detached using 
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treatment with 1mM ETDA in PBS for eight minutes followed by incubation with 

0.05% trypsin (Sigma, Cat.Nr. T4799) and 1mM EDTA in PBS for five minutes.  

Neutrophil-conditioned medium treatment in vitro: Primary MMTV-PyMT cells were 

cultured on collagen-coated dishes for three days in control or neutrophil-

conditioned medium followed by further tests. 

Leukotriene treatment in vitro: Primary MMTV-PyMT cells were cultured in sphere 

medium on collagen-coated dishes, 4T1 and MDA-MB-231 cells in DMEM/FBS on 

uncoated dishes for the indicated periods of time or in non-attachment conditions 

under presence of (as indicated for every experiment): 100% Ethanol control 

(EtOH), 1µM Leukotriene B4 (Cayman chemical, Cat.Nr. CAY20110), 100nM 

Leukotriene C4/D4/E4 (Cysteinyl Leukotriene HPLC Mixture I (Cayman chemical, 

Cat.Nr. CAY20001), 3µM BLT2 inhibitor LY255283 (Cayman chemical, Cat.Nr. 

CAY70715), 0.3µM CysLT2 inhibitor BAY-u9773 (Cayman chemical, Cat.Nr. 

CAY70770) and/or pan-MEK inhibitor PD0325901 (kindly provided by Dr Julian 

Downwards, The Crick Institute, London) followed by further tests. 

Zileuton treatment in vitro: Primary MMTV-PyMT cells were cultured in sphere 

medium and 4T1 cells in DMEM/FBS under presence of 1µM Zileuton or control 

DMSO for the indicated periods of time. 
 

2.4.3 Sphere formation assay 

A single cell suspension of 104 MMTV-PyMT cells per well were plated in ultra low-

attachment 96-well plates (Costar) in 100µl sphere medium DMEM/F12 (Invitrogen, 

Cat.Nr. 12634-010) supplemented with B-27® (Invitrogen, Cat.Nr. 10889-038), 

20 ng ml−1 EGF, 20 ng ml−1 FGF (Invitrogen, Cat.Nr. 13256-029) and 4 μg ml−1 

Heparin or neutrophil-conditioned medium. After 7-10 days, if not otherwise 

indicated, all formed spheres were quantified from images taken with the inverted 

Leica DM IRBE light and fluorescence microscope. The area of the plane passing 

through the sphere-centre was measured for every sphere (sphere size) using 

ImageJ software and the areas of all formed spheres were summed up. The 

obtained number was divided by total number of plated cells. This value represents 

the sphere formation index (SFI) per cell for every experimental group and 

incorporates the number and size of all formed spheres. 
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Freshly isolated MMTV-PyMT cells were either only treated for three days in 

adherent conditions prior to sphere assay or directly treated during the sphere 

assay, as indicated for the individual experiments. Treatments included: neutrophil-

conditioned media (control, LuN-wt, LuN-Alox5ko and LuN-Zil), LTB4 and/or LTC-

D-E4, PGE2, Zileuton, recombinant CCL2, recombinant CCL6, recombinant CCL22 

and recombinant MMP9 protein. 

 

2.4.4 Assessment of toxicity after in vitro treatment with neutrophil-

conditioned medium and TUNEL staining 

Lung stromal cells were freshly isolated from the lung of wildtype mice and cultured 

in sphere medium in adherent culture on collagen-coated dishes for two days prior 

to treatment. Lung stromal cells and MMTV-PyMT were seeded in equal numbers 

and cultured in adherent conditions for three or five days in the following media: 

control sphere medium and media conditioned by neutrophils isolated from bone 

marrow or lung of MMTV-PyMT tumour-bearing untreated, DMSO-treated or 

Zileuton-treated wildtype mice or Alox5-/- mice, as indicated. Cells were washed 

with PBS, bright field images taken with the inverted Leica DM IRBE light and 

fluorescence microscope. Cell toxicity of the treatment was determined by 

detachment of cells and quantification of remaining alive cells using a Neubauer 

chamber. Presence of apoptotic cells was determined by fixation of adherent cells 

for ten minutes in ice-cold 100% Methanol (Sigma, Cat.Nr. 34860) and TUNEL 

(Terminal deoxynucleotidyl transferase dUTP nick end labelling) staining using the 

In Situ Cell Death Detection Kit, Fluorescein (Roche, Cat.Nr. 11684795910) 

according to manufacturers’ instructions and mounted with VECTASHIELD 

Mounting Medium with DAPI (Vector Laboratories, Cat.Nr. H-1200) followed by 

analysis with the inverted Leica DM IRBE light and fluorescence microscope. 

 

2.4.5 Detection of intracellular reactive oxygen species (ROS) levels 

Primary MMTV-PyMT cancer cells were detached, prepared in single cell 

suspensions and labelled with the DCF-DA dye that becomes fluorescent upon 

oxidation by ROS using the DCFDA - Cellular Reactive Oxygen Species Detection 
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Assay Kit (Abcam, Cat.Nr. ab113851) according to manufacturers’ instructions. 

Ethanol (EtOH) control, 1µM LTB4 or 100nM LTC-D-E4 was added to cell 

suspensions and developing fluorescent signal in cells was immediately analysed 

by flow cytometry over time for every condition. 

 

2.4.6 In vitro BrdU incorporation assay 

Three-day MMTV-PyMT or 4T1 cells treated as indicated in adherent conditions 

were pulsed with 30µM BrdU for three hours and harvested. Cells were incubated 

with fluorescently labelled anti-CD24 and/or anti-CD90.1 antibody. BrdU Flow Kit 

(BD Bioscience) was used for fixation/permeabilisation and anti-BrdU staining 

according to manufacturer’s instructions followed by analysis by flow cytometry. 

 

2.4.7 Assays for in vitro quantification of metastasis-initiating MMTV-PyMT 

cells and highly tumourigenic sub-pools of cancer cell lines 

Primary MMTV-PyMT cells were either directly used or cultured on collagen-coated 

dishes for three days supplemented with either LTB4 and LTC-D-E4 or Zileuton 

followed by incubation with fluorescently labelled anti-CD90.1 and anti-CD24 

antibodies and/or anti-BLT2 and CysLT2 antibodies and analysis by flow cytometry. 

4T1 and MDA-MB-231 cell lines were either directly used or cultured in DMEM/FBS 

supplemented with LTB4 and LTC-D-E4 for three days in adherent conditions 

followed by either staining with fluorescently labelled anti-CD49f, anti-BLT2, anti-

CysLT2 and/or anti-CD44 antibodies and/or using the ALDEFLUORTM kit (Stemcell 

Technologies, Cat.Nr. 1700) according to manufacturers instructions and analysed 

by flow cytometry. 
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2.5 Molecular biology procedures 

2.5.1 RNA expression analysis and quantitative real-time PCR 

Neutrophils were freshly isolated from the lungs of wildtype or MMTV-PyMT 

tumour-bearing mice. RNA isolation was performed using MagMAX™-96 Total 

RNA Isolation Kit and cDNA synthesis using SuperScript® III Reverse 

Transcriptase. Quantitative PCR reactions were performed using EXPRESS 

SYBR® GreenERTM Supermix universal with the Applied Biosystems® 7500 Fast 

Real-Time PCR System (all Invitrogen, Cat.Nrs. AM1830, 18080-044 and 11784) 

and the primers TNF-alpha (ACCACGCTCTTCTGTCTACT and 

AGGAGGTTGACTTTCTCCTG), Arginase 1 (GATTGGCAAGGTGATGGAAG and 

TCAGTCCCTGGCTTATGGTT), VEGF-A (provided by PrimerDesign), CCL2 

(CAGGTCCCTGTCATGCTTCT and GTCAGCACAGACCTCTCTCT), CCL3 

(ACCATGACACTCTGCAACCA and TCAGGCATTCAGTTCCAGGT), iNOS 

(CCACCTCTATCAGGAAGAAA and CTGCACCGAAGATATCTTCA), CCL5 

(ACCATGAAGATCTCTGCAGC and TGAACCCACTTCTTCTCTGG) and GAPDH 

(CGTGTTCCTACCCCCAATGT and TGTCATCATACTTGGCAGGTTTCT).	  

 

2.5.2 Semi-quantitative PCR of genomic DNA from Alox5-/- bone marrow-

reconstituted mice  

PCR was performed using Redtag® DNA Polymerase (Sigma, Cat.Nr. D4309), 

primers ATCGCCTTCTTGACGAGTTC, GCAGGAAGTGGCTACTGTGGA and 

TGCAACCCAGTACTCATCAAG and 25 amplification cycles on the T3000 

thermocycler (Biometra). A 10% agarose (Sigma, Cat.Nr. A9539) containing 

GelRed Nucleic Acid Stain (Cambridge Bioscience, Cat.Nr. BT41003) was 

prepared with and run in Tris borate buffer (45 mmol/L Tris, 45 mmol/L boric acid 

and 1.25 mmol/L EDTA). Images of DNA gels were taken with the UVP High 

Performance UV transilluminator (UVP Ltd.). 
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2.5.3 EIA/Parameter ELISA for measurement of leukotrienes 

Equal amounts of 100% Ethanol were used to precipitate protein from control or 

neutrophil-conditioned cell culture medium followed by 30 minutes centrifugation at 

15,000 rpm on a table top centrifuge cooled to 4°C prior to analysis. Processed 

samples were analysed using either the EIAs (enzyme immuno-assays) 

Leukotriene C4/D4/E4 Biotrak EIA System (Amersham, Cat.Nr. RPN224) and the 

Leukotriene B4 EIA Kit (Cayman Chemical, Cat.Nr. RPN223) or the Prostaglandin 

E2 Parameter Assay Kit (R&D Systems, Cat.Nr. KGE004B) according to 

manufacturer’s instructions. EIA reactions were read on a CLARIOstar® High 

Performance Monochromator Multimode Microplate Reader (BMG LABTECH). 

 

2.5.4 Western blot analysis and protein detection (Fig. 2.3) 

Primary MMTV-PyMT cells grown on collagen-coated dishes cultured overnight in 

DMEM/F12 with B-27®, and 4 μg ml−1 Heparin before treatment with 1µM LTB4 or 

100nM LTC-D-E4. Unsorted or sorted LTR-reduced 4T1 cells were stimulated with 

1µM LTB4, 100nM LTC-D-E4, 3µM BLT2 inhibitor LY255283 and/or 0.3µM CysLT2 

inhibitor BAY-u9773 as indicated. Cells were washed with PBS and protein isolated 

using RIPA buffer with supplements added freshly followed by centrifugation, 

addition of 2x Protein loading buffer and boiling at 95°C for five minutes. Protein 

separation, blotting and developing was performed as follows: SE260 Mighty Small 

II Deluxe Mini Vertical Electrophoresis Unit (Hofer Inc.) was used to run 10% 

Polyacrylamide protein gels and TE 22 Mighty Small™ Transphor Tank Transfer 

Unit (GE Healthcare) to transfer protein onto Hybond™-P Transfer Membranes 

(Amersham, Cat.Nr. RPN2020F). Protein membranes were blocked with 5% BSA 

in PBS with 0.5% Tween-20 (Sigma, Cat.Nr. P2287) and incubated with the 

following primary antibodies: polyclonal rabbit anti-Phospho-p44/42 MAPK 

(Thr202/Tyr204) (Erk1/2, Cell Signaling Cat.Nr. 9101S), monoclonal mouse anti-

p44/42 MAPK (Erk1/2, clone 3A7, Cell Signaling Cat.Nr. 9107S) and monoclonal 

mouse anti-alpha-Vinculin (clone hVIN-1, Sigma, Cat.Nr. V9131). ECL Western 

Blotting System, Hyperfilm™ ECL (Amersham, Cat.Nrs. RPN2108 and 28906836) 

and JP-33 automatic X-ray film processor (JPI healthcare) were used according to 

manufacturers’ instructions for protein blotting and development. Protein lysates of 
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three-hour LTB4-stimulated MDA-MB-231 cells were analysed using the Proteome 

ProfilerTM Human Phospho-Kinase Array Kit (R&D systems, Cat.Nr. ARY003B), 

which includes antibodies recognising phospho-ERK1/2. Proteins present in 

neutrophil-conditioned (LuN) medium were analysed using Proteome ProfilerTM 

Arrays (Mouse Cytokine Array Kit, Panel A; Mouse Angiogenesis Array Kit; Mouse 

Adipokine Array Kit and Mouse Chemokine Array Kit; Cat.Nrs. ARY006, ARY013, 

ARY015 and ARY020) according to manufacturers’ instructions. Western blot 

quantification was performed on scanned films using ImageJ software. 

 

 

 
Figure 2-3 Western blot reagents, buffers and protein gel compositions 
Overview of the buffers used for protein isolation and analysis as well as the recipe for 
polyacrylamide gel composition for protein separation. 
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2.6 Statistical Analysis 

The data are presented as mean ± standard error of the mean, individual values, 

“Tukey box&whiskers” or “floating bar” graphs and were analysed using Student's t 

tests for paired or unpaired experiments/experimental groups and adapted for 

experimental groups with unequal standard deviation. The exceptions are as 

follows: Column statistics test (value different to 1) for Fig. 3.16 c (mRNA 

expression data), Fig. 4.4 a-f, Fig. 4.6 a and Fig. 4.12 a; Column statistics test 

(value different to 0) for Fig. 3.25 e, Fig. 4.3 c and Fig. 5.1 g (Control vs. LuN-Zil); 

two-way ANOVA test for Fig. 3.21 b+e. Two-way ANOVA was performed when the 

control groups between experiments were significantly different. Differences were 

considered significant when P<0.05 and are indicated as: n.s. not significant, 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001 or the P value directly displayed. 

Data were pooled from at least two experiments and the exceptions are indicated in 

the respective figure legends. The experiments were not randomized and there 

was no blinding as animals or samples were marked. No statistical methods were 

used to predetermine sample sizes, these were based on previous experience with 

the models (Malanchi et al., 2012, Qian et al., 2011). n values represent biological 

replicates, with the exception of the sphere assays, for which both technical and 

biological replicates are shown. All in vitro and in vivo experiments involving 

primary MMTV-PyMT cells were performed with at least two tumour cell 

preparations from different spontaneous MMTV-PyMT+ mice and each in vitro and 

in vivo experiment was performed with a different tumour cell preparation unless 

otherwise specified. 
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Chapter 3. Neutrophils support metastasis-initiating 
cells during lung colonisation in mammary cancer 

3.1 Chapter Introduction 

Metastasis is the leading cause for cancer-related mortality and the role of 

neutrophils during cancer progression appears rather pro-tumourigenic in 

experimental cancer models and in the clinic, but remains controversial (Donskov, 

2013, Hunter et al., 2008, Piccard et al., 2012). Moreover, neutrophils with 

contradicting functions have been reported to accumulate in the lung, the site of 

metastasis, in mammary cancer-bearing mouse models (Acharyya et al., 2012, 

Casbon et al., 2015, Coffelt et al., 2015, Granot et al., 2011). Hence, we aimed to 

investigate how neutrophils affect distant tissue colonisation of metastatic cancer 

cells. To this end, we used mice expressing the Polyoma middle T oncogene 

(PyMT) under the control of the mouse mammary tumour virus promoter (MMTV) 

that spontaneously develop lung-metastatic mammary carcinoma at the age of 2-3 

months (MMTV-PyMT+ mice) (Guy et al., 1992). PyMT is specifically expressed in 

the mouse mammary gland by the MMTV promoter, localises to cell membranes 

and causes activation of kinases like Src, PI3K and ERK1/2 by interacting with their 

regulators proteins. Thereby, PyMT mimics mitogenic signalling of activated 

tyrosine kinase-associated receptors for growth factors and allows malignant 

proliferation and cancer development (Zhou et al., 2011). The cancer progression 

of the MMTV-PyMT mouse model closely resembles human breast cancer 

development and can be divided into a hyperplasia, adenoma/mammary intra-

epithelial neoplasia, early and late carcinoma stage that is characterised by 

downregulation of oestrogen and progesterone receptors, loss of integrin-beta1 

and overexpression of ErbB2/Neu and Cyclin D1 (Lin et al., 2003). The highly 

potent metastasis-initiating cell population within primary tumour cells of this mouse 

model can be identified by the expression of the surface markers CD24 and CD90. 

This cancer cell subpopulation was functionally defined by their increased 

metastasis initiation ability in vivo (Malanchi et al., 2012) and is therefore termed 

metastasis-initiating cells (MICs). On occasions, we used the BALB/c background-

syngeneic mouse mammary cancer cell line 4T1 (Pulaski and Ostrand-Rosenberg, 
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2001) or the triple-negative basal B subtype human breast cancer cell line MDA-

MB-231 (Chavez et al., 2010, Subik et al., 2010).  

 

Functionally, we determined different tumourigenic potential of total, heterogeneous 

cancer cell populations in vitro and in vivo. In in vitro non-adherent growth assays 

cancer cells are plated as single cell suspensions in ultra-low attachment plates 

were they are challenged to survive and grow anchorage independent. In this 

setting, cancer cell subpopulations are able to form and grow in spheres and 

sphere number and size were quantified. Enhanced in vitro sphere formation 

potential is commonly associated with highly potent CSC-like cancer cells, 

including breast cancer cells, due to the required anoikis resistance and self-

renewal abilities (Grimshaw et al., 2008, Shaw et al., 2012) and was previously 

used to assess stemness properties of primary MMTV-PyMT cells (Malanchi et al., 

2012) and human MDA-MB-231 cells (Grimshaw et al., 2008, Wang et al., 2014). In 

vitro sphere formation assays exclusively assess for intrinsic cancer cell potential 

and cross talk of cancer cell subpopulations, while the following in vivo tests 

determine cancer cell potentials together with their interaction ability with the 

microenvironment. We used two different assays to test the tumourigenic potential 

of cancer cells in vivo. Grafting of low dissociated cancer cell numbers 

orthotopically onto the mammary gland and the subsequent formation of tumours 

determines cancer cell tumour initiation and propagation competence and is 

measured by weighing of established tumours (Beck and Blanpain, 2013, Kreso 

and Dick, 2014). Lung colonisation and metastasis initiation potential of cancer 

cells is assessed by intravenous injection of limited cancer cell numbers as single-

cell suspensions. These cancer cells are thereby challenged to survive and grow at 

the metastatic site, the lung, and their ability to do so is quantified by determination 

of lung metastatic burden as described in section 2.2.1 and (Malanchi et al., 2012). 

Neutrophil-involvement in tumourigenic processes was studied taking advantage of 

genetically induced neutropenia or antibody-mediated neutrophil depletion. G-CSF 

(Granulocyte Colony-Stimulating Factor)-deficient mice show impaired mobilisation 

of neutrophils from the bone marrow resulting in strongly reduced neutrophil-counts 

in peripheral blood and tissues (Lieschke et al., 1994). In an alternative genetic 

strategy for genetic neutrophil-deficiency, we exploited mice with a knock-in of the 
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Cre-recombinase gene behind the endogenous neutrophil elastase (ela2) promoter 

(Heit et al., 2008, Thomas et al., 2004, Tkalcevic et al., 2000) and a ROSA-Flox-

GFP-STOP-Flox diphtheria toxin (DTA) cassette (ela2-DTA) (Ivanova et al., 2005). 

The Cre gene was cloned into the endogenous ela2 promoter thereby causing 

ela2-deficiency. Here, Cre recombinase is predominantly expressed by neutrophils 

due to the ela2 promoter and leads to excision of the GFP-STOP sequences 

upstream of the DTA cassette and to ROSA promoter-mediated DTA production. 

DTA is a toxin that causes apoptosis by blockade of protein synthesis when 

intracellular and thereby ela2 promoter-mediated reduction of specifically neutrophil 

numbers in the lung of ela2-DTA mice (Fig. 3.6 and 3.7). Lastly, administration of 

the neutrophil-specific anti-Ly6G (clone 1A8) antibody (Borregaard, 2010, Daley et 

al., 2008, Granot et al., 2011, Kolaczkowska and Kubes, 2013) allowed efficient 

neutrophil depletion in a temporally controlled manner. We monitor neutrophil 

numbers predominantly by their well-described surface markers CD11b and Ly6G 

(Borregaard, 2010, Daley et al., 2008, Granot et al., 2011, Kolaczkowska and 

Kubes, 2013) as well as by immunohistochemistry for the cytosolic S100A9 (also 

known as MRP14) protein (antibody clone 2B10) that is mainly produced by 

neutrophils (Kohler et al., 2011, Stroncek et al., 2005) in the lung. 
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3.2 Results 

3.2.1 Neutrophils accumulate in the metastatic lung and are critical for 

metastatic progression of mammary cancer 

In accordance with previous reports of lung-metastatic mammary cancer mouse 

models (Casbon et al., 2015, Coffelt et al., 2015, Granot et al., 2011), we found 

CD11b+Ly6G+ neutrophils to be systemically mobilised in spontaneous MMTV-

PyMT tumour-bearing mice and detected increased frequencies in the bone 

marrow, spleen, liver and predominantly the metastatic lung by flow cytometric 

analysis, despite comparably low neutrophil numbers within the primary tumour 

microenvironment (Fig. 3.1). Interestingly, neutrophils resulted to be the main 

immune cell type accumulating in metastatic lungs of MMTV-PyMT+ mice. We 

analysed the presence of total leukocytes (CD45+), total macrophages 

(CD11b+F4/80+), alveolar subpopulations of macrophages (CD11b-low F4/80-

high), interstitial subpopulations of macrophages (CD11b-high F4/80-low), dendritic 

cells (CD45+CD11c+), B (CD45+CD19+) and T lymphocytes (CD45+CD3+) in 

wildtype control lung and late-stage metastatic lung of MMTV-PyMT mice without 

detecting any alterations (Fig. 3.2 a-e+g-h). Natural killer (NK) cell (CD45+CD49b+) 

frequencies showed a decrease in the MMTV-PyMT metastatic lung compared to 

wildtype mouse lungs (Fig. 3.2 f), suggesting a possible induction of an 

immunosuppressive environment when metastatic cancer cells are growing in the 

lung of MMTV-PyMT+ mice. 

Next, we addressed the functional relevance of high numbers of tumour-induced 

CD11b+Ly6G+ neutrophils in the metastatic lung by analysing spontaneous 

metastatic progression of MMTV-PyMT+ crossed with G-CSF null mice (MMTV-

PyMT+ G-CSF-/-). Indeed, these mice failed to specifically accumulate neutrophils 

in the lung when harbouring mammary tumours. This state of neutropenia results in 

a robust reduction of spontaneous lung metastasis incidence (Fig. 3.3 b-e). Primary 

tumour growth was not affected (Fig. 3.3 a), likely due to the low neutrophil 

presence in mammary tumours compared to the metastatic lung of MMTV-PyMT+ 

mice (Fig. 3.1 e). Neutropenia in MMTV-PyMT+ G-CSF-/- mice did not correlate 

with altered frequencies of total immune cells, macrophage populations, dendritic 

cells and T cells in the metastatic lung compared to MMTV-PyMT+ mice. Levels of 
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these leukocytes also remained unchanged in tumour-free G-CSF-/- versus 

wildtype mice (Fig. 3.4 a-d+f-g). 

However, lung B lymphocyte frequencies increased in G-CSF-/- and MMTV-PyMT+ 

G-CSF-/- mice compared to wildtype control and MMTV-PyMT+ mice, respectively 

(Fig. 3.4 h). In fact, G-CSF was shown to actively inhibit B lymphopoiesis in mice 

(Day et al., 2015), which likely explains elevated B cell numbers in G-CSF-/- and 

MMTV-PyMT+ G-CSF-/- mice. Hence, accumulation of B cell upon G-CSF 

deficiency appears to be independent of mammary tumour growth and likely also 

not directly related to neutropenia. Interestingly, the reduced NK cell frequencies 

observed in late stage metastatic lungs of MMTV-PyMT+ mice compared to 

wildtype lungs (Fig. 3.2 f) are rescued in lungs of MMTV-PyMT+ G-CSF-/- mice 

while there is no alteration in tumour-free G-CSF-/- mice compared to controls (Fig. 

3.4 e). NK cell activation in the lung was assessed by flow cytometry for their 

activation marker CD69 and did not reveal differences between the four tested 

genotypes (Fig. 3.4 e). Hence, also the presence of activated NK cells is reduced in 

the metastatic lung of MMTV-PyMT+ mice and restored to tumour-free wildtype 

lung levels upon G-CSF deficiency. This observation under neutrophil absence 

throughout the metastatic process strongly points towards a potential neutrophil-

dependent suppression of total and activated NK cell frequencies in the lung at late 

stages of metastasis. NK cells are able to directly eliminate cancer cells and 

represent an important part of the anti-cancer immunity (section 1.2.3.1). Hence, 

suppression of (activated) NK cell recruitment to the metastatic site by neutrophils 

during advanced metastatic growth might contribute to the pro-metastatic functions 

of neutrophils observed in the MMTV-PyMT mammary cancer model. 

G-CSF-deficiency might itself impair the metastatic ability of primary MMTV-PyMT 

cancer cells due to their pronounced secretion of this factor (Casbon et al., 2015). 

To exclude this possibility, we isolated primary MMTV-PyMT G-CSF-/- and MMTV-

PyMT G-CSF+/+ cells from MMTV-PyMT+ G-CSF-/- mice and MMTV-PyMT+ 

littermate controls that spontaneously developed tumours and grafted them 

orthotopically onto the mammary gland of immunocompromised Rag1-/- mice 

(Mombaerts et al., 1992). We did not use wildtype FVB mice for this experiment 

because of the mixed MMTV-PyMT+ G-CSF genetic background and potential 

rejection of transplanted cancer cells. The lack of G-CSF expression by MMTV-

PyMT cancer cells altered neither lung neutrophil accumulation, nor primary tumour 
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growth or spontaneous metastasis burden upon tumour engraftment (Fig. 3.5). This 

evidence indicates that genetically induced neutropenia due to systemic lack of G-

CSF accounts for the reduced metastatic incidence in MMTV-PyMT+ G-CSF-/- 

mice compared to MMTV-PyMT+ controls and not G-CSF deficiency of MMTV-

PyMT cancer cells. 

We corroborated our findings using MMTV-PyMT+ mice crossed with ela2-Cre and 

ROSA-Flox-GFP-STOP-Flox-DTA (MMTV-PyMT+ ela2-DTA) mice. The analysed 

littermate controls included tumour-free wildtype controls and MMTV-PyMT+ ela2-

Cre-negative and/or ROSA-DTA cassette-negative mice. The MMTV-PyMT+ ela2-

DTA mice carried two copies of the Cre recombinase gene and therefore a deletion 

of the ela2 gene because one copy of the Cre recombinase did not result efficient 

enough to significantly reduce CD11b+Ly6G+ neutrophil frequencies in the lung 

(data not shown) and one copy of the ROSA-DTA cassette. In this genetic setting, 

MMTV-PyMT+ ela2-DTA mice displayed reduced CD11b+Ly6G+ neutrophil levels 

in the blood, bone marrow and lung at late carcinoma stages compared to MMTV-

PyMT+ control mice (Fig. 3.6 a+e and Fig. 3.7 g). Notably, spontaneous metastatic 

progression was impaired in neutropenic MMTV-PyMT+ ela2-DTA mice without 

alteration of primary tumour growth (Fig. 3.6 b-d). Also, we analysed the presence 

of macrophages in the lung of MMTV-PyMT+ ela2-DTA mice as ela2-Cre has been 

reported to be expressed in some populations of macrophages (Thomas et al., 

2004). Flow cytometric quantification of frequencies of total macrophages, alveolar 

and interstitial macrophage subpopulations in the lung did not show significant 

differences between MMTV-PyMT+ control and MMTV-PyMT+ ela2-DTA mice at 

advanced carcinoma stages (Fig. 3-6 f-h). Of note, the expression of the 

intracellular toxin DTA is causing neutrophil apoptosis and their ablation in the bone 

marrow in this model, which could potentially influence myelopoiesis or induce an 

immune response in the bone marrow. Hence, we carefully analysed the presence 

of myeloid cells and activated immune effector cells in the bone marrow and/or 

blood of MMTV-PyMT+ ela2-DTA and MMTV-PyMT+ control mice to exclude this 

possibility. Blood and bone marrow CD11b+F4/80+ macrophage and 

CD11b+CD115+ monocyte frequencies appeared to increase in advanced 

spontaneous MMTV-PyMT+ tumour-bearing compared to wildtype animals (Fig. 3.7 

g). Also, MMTV-PyMT+ mice displayed elevated cytotoxic CD8+ T cell activation 

measured by CD44 or CD69 expression in the bone marrow, while the levels of 
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bone marrow NK cell activation remained unaltered in the three tested genotypes 

(Fig. 3.7 h). The increased frequency of activated CD44+ or CD69+ CD8+ T cells in 

the bone marrow might be a reflection of an anti-cancer immune response in 

advanced stage MMTV-PyMT+ tumour-bearing mice (section 1.2.3.1). The altered 

numbers of CD11b+F4/80+ and CD11b+CD115+ cells in the blood and bone 

marrow of MMTV-PyMT+ mice might result from the aberrant myelopoiesis induced 

by growing tumours (section 1.2.3.2). Alternatively, subsets of 

macrophage/monocyte-like cells with immunosuppressive character that 

accumulate in tumour-bearing hosts called monocytic myeloid-derived suppressor 

cells (M-MDSCs) were described to express CD11b, CD115 and F4/80 (Pereira et 

al., 2011, Umemura et al., 2008, Youn et al., 2008). Hence, the CD11b+F4/80+ and 

CD11b+CD115+ cells quantified in the blood and bone marrow might partially 

represent M-MDSCs. However, this hypothesis appears rather unlikely due to the 

potent ability of M-MDSCs to inhibit CD8+ T cells and frequencies of activated 

CD8+ T cells are actually increased. Besides, these observed tumour-dependent 

alterations of bone marrow and blood immune cell frequencies at late disease 

stages appeared to be independent of DTA expression or neutrophil presence. 

There was no difference in blood and bone marrow macrophage and monocyte 

frequencies or in CD8+ T cell activation levels between MMTV-PyMT+ control and 

MMTV-PyMT+ ela2-DTA mice (Fig. 3.7). Moreover, these leukocyte populations 

remained unaltered at the metastatic site in MMTV-PyMT+ mice with reduced 

neutrophil levels compared to controls (Fig. 3.4, Fig. 3.6 and 3.7). Importantly, ela2-

mediated DTA expression in MMTV-PyMT+ mice lowered blood, bone marrow and 

lung neutrophil frequencies and did not affect presence of blood, bone marrow or 

lung macrophage populations as well as bone marrow and blood monocytes (Fig. 

3.6 and 3.7). Hence, we excluded a significant contribution of these alterations in 

leukocyte numbers in the blood and bone marrow to the neutropenia-associated 

decrease in metastatic progression. Lastly, the unaltered numbers of macrophages, 

monocytes as well as activated NK and CD8+ T cells in the bone marrow of MMTV-

PyMT+ control and MMTV-PyMT ela2-DTA mice (Fig. 3.7) indicate that the 

expression of the toxin DTA and associated apoptosis by neutrophils does not 

cause an non-physiological immune response. 

In summary, spontaneous MMTV-PyMT+ tumour-bearing mice develop neutrophilia 

that is most pronounced at the metastatic site, the lung. These CD11b+Ly6G+ 
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neutrophils appear to have pro-metastatic properties, as their constitutive depletion 

throughout the metastatic process by two independent genetic strategies results in 

reduced metastatic incidence. Interestingly, neutrophilia in MMTV-PyMT+ mice 

caused a decrease of NK cell presence in the lung harbouring established 

metastases, suggesting a potential immunosuppressive activity of neutrophils at 

advanced metastatic stages. 
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Figure 3-1 Systemic increase of neutrophils in MMTV-PyMT mice with late stage 
carcinoma 
(a-d) Flow cytometric quantification of CD11b+Ly6G+ neutrophils in the bone marrow 
(a) spleen (b), liver (c) and lung (d) of wildtype and MMTV-PyMT+ mice at advanced 
disease stages (n=4 per group pooled from 4 different litters), gated on alive single 
cells. (e) Comparison of CD11b+Ly6G+ neutrophil frequencies present in primary 
mammary carcinoma and metastatic lung of MMTV-PyMT+ mice (n≥3 per group 
pooled from 3 different litters), gated on alive single cells. WT: wildtype littermate 
control. Met.: MMTV-PyMT+ mice with late stage lung metastases. 
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Figure 3-2 Characterisation of immune cell presence in the lung of MMTV-PyMT+ 
mice at advanced stages 
(a-h) Flow cytometric quantification of immune cell frequencies in wildtype and 
metastatic lungs of MMTV PyMT+ mice (n≥4 per group pooled from 4 different litters) 
including CD45+ total immune cells (a), total CD11b+ F4/80+ macrophages (b), the 
CD11b-low F4/80-high alveolar macrophage subpopulation (c), the CD11b-high F4/80-
low interstitial macrophage subpopulation (d), CD45+CD11c+ dendritic cells (e), 
CD45+CD49b+ natural killer cells (f), CD45+CD19+ B lymphocytes (g) and 
CD45+CD3+ T lymphocytes (h). (a+e-h) gated on alive single cells, (b-d) gated on 
Ly6G-negative cells. WT: wildtype littermate control. Met.: MMTV-PyMT+ mice with late 
stage lung metastases. 
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Figure 3-3 G-CSF deficiency of MMTV-PyMT+ mice causes lung neutrophil 
reduction and significantly ameliorates metastatic burden 
(a-c) Analysis of advanced stage tumour-bearing MMTV-PyMT+ wildtype (MMTV-
PyMT+ G-CSF+/+) and MMTV-PyMT+ G-CSF-/- mice for primary mammary tumour 
burden by resection of all tumours per mouse and weighing (a; n≥12 per group pooled 
from 11 different litters), spontaneous metastasis incidence by quantification of visible 
surface lung metastases relative to tumour load (b; n≥12 per group pooled from 11 
different litters) as well as frequencies of CD11b+Ly6G+ neutrophils in the lung 
together with of tumour-free wildtype (G-CSF +/+) and G-CSF-/- mice by flow 
cytometric quantification (c; n≥5 per group pooled from 5 different litters), gated on 
alive single cells. (d) Representative haematoxylin and eosin-stained histological lung 
sections, scale bar is 500µm. (e) Representative flow cytometric analysis of 
CD11b+Ly6G+ neutrophils in the lung of wildtype, advanced stage tumour-bearing 
MMTV-PyMT+ G-CSF+/+ and MMTV-PyMT+ G-CSF-/- mice of quantification shown in 
(d). Insert shows relative frequencies of double-positive cells in the displayed gate. 
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Figure 3-4 Effect of G-CSF loss on the immune cell presence in wildtype and 
MMTV-PyMT+ mice with advanced carcinoma 
(a-e and g-h) Flow cytometric quantification of frequencies of CD45+ total immune cells 
(a), the CD11b-low F4/80-high alveolar macrophage subpopulation (b), the CD11b-
high F4/80-low interstitial macrophage subpopulation (c), CD45+CD11c+ dendritic cells 
(d), CD45+CD49b+ natural killer cells (e), CD45+CD3+ T lymphocytes (g) and 
CD45+CD19+ B lymphocytes (h) in the lung of tumour-free wildtype (G-CSF+/+) and 
G-CSF-/- mice as well as advanced tumour-bearing MMTV-PyMT+ wildtype (MMTV-
PyMT+ G-CSF+/+) and MMTV-PyMT+ G-CSF-/- mice. (f) Flow cytometric quantification 
of activated CD69+ NK cells in the lung of the same four genotypes. (a+d-h) gated on 
alive single cells, (b-c) gated on Ly6G-negative cells and (f) gated on CD45+CD49b+ 
cells. N≥5 per group pooled from 5 different litters. 
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Figure 3-5 GCSF-deficiency of MMTV-PyMT cancer cells does not affect lung 
neutrophil accumulation, mammary tumour growth or metastatic efficiency 
MMTV-PyMT wildtype (G-CSF+/+) and MMTV-PyMT GCSF-/- primary cancer cells 
(n≥3 biological replicates (≥3 independent primary MMTV-PyMT cancer cell 
preparations)) were freshly isolated from tumour-bearing mice, grafted onto the 
mammary gland of Rag1-/- mice (one mouse (technical replicate) per cancer cell 
preparation) and analysed 5 weeks later. (a) Primary tumour burden was determined 
by weighing of dissected tumours. (b) Spontaneous lung metastasis incidence was 
quantification by counting of visible surface lung metastases and is displayed relative 
to tumour load. (c) CD11b+Ly6G+ neutrophil frequencies in the lung were assessed by 
flow cytometry, gated on alive single cells. (d) Representative flow cytometric analysis 
of CD11b+Ly6G+ neutrophils in the lung of quantification shown in (c). Insert shows 
relative frequencies of double-positive cells contained in the displayed gate. 
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Figure 3-6 MMTV-PyMT+ ela2-Cre mice show reduced lung neutrophil presence 
hand in hand with a marked decrease in lung metastatic burden 
(a-c) Analysis of tumour-bearing MMTV-PyMT+ control and MMTV-PyMT+ ela2-DTA 
mice for presence of CD11b+Ly6G+ neutrophils in the lung by flow cytometric 
quantification and gating on alive single cells (a), primary mammary tumour burden by 
weighing (b) and spontaneous metastasis incidence by quantification of visible surface 
lung metastases relative to tumour load (c); n≥5 per group pooled from 5 different 
litters. (d) Representative haematoxylin and eosin-stained histological lung sections, 
scale bar is 500µm. (e) Representative flow cytometric analysis of CD11b+Ly6G+ 
neutrophils in the lung of quantification shown in (a). Insert shows relative frequencies 
of double-positive cells contained in the displayed gate. (f-h) Flow cytometric 
quantification of frequencies of total CD11b+ F4/80+ macrophages (f), the CD11b-low 
F4/80-high alveolar macrophage subpopulation (g) and the CD11b-high F4/80-low 
interstitial macrophage subpopulation (h) in the lung of tumour-bearing MMTV-PyMT+ 
control and MMTV-PyMT+ ela2-Cre DTA+ mice, gated on alive single Ly6G-negative 
cells (n≥5 per group pooled from 5 different litters). 
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Figure 3-7 Determination of selected leukocyte frequencies and activation in the 
blood and bone marrow of tumour-free wildtype, MMTV-PyMT+ control and 
MMTV-PyMT ela2-DTA mice  
(a) Frequencies of bone marrow and blood CD11b+Ly6G+ neutrophils, CD11b+F4/80+ 
macrophages and CD11b+CD115+ monocytes in wildtype, MMTV-PyMT+ control and 
MMTV-PyMT+ ela2-DTA mice analysed by flow cytometry, gated on alive single cells 
(neutrophils) or Ly6G-negative cells (macrophages and monocytes) (n≥2 per group 
pooled from ≥2 different litters). (b) Exclusion of immune responses against DTA 
expression in the bone marrow by analysis of NK cell and cytotoxic CD8+ T cell 
activation. Flow cytometric quantification of activated CD69+ among total 
CD45+CD49b+ NK cells as well as activated CD44+ or CD69+ among total 
CD45+CD3+CD8+ cytotoxic T cells in the bone marrow of wildtype, MMTV-PyMT+ 
control and MMTV-PyMT+ ela2-DTA mice (n≥2 per group pooled from ≥2 different 
litters). 
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3.2.2 Addressing the mechanisms of tumour-induced systemic neutrophilia 

and neutrophil accumulation in the metastatic lung 

First of all, we aimed to corroborate our and published data that breast cancer cells 

growing on a host are elevating neutrophil counts throughout the body and in the 

metastatic lung (Fig. 3.1) (Acharyya et al., 2012, Casbon et al., 2015, Coffelt et al., 

2015, Granot et al., 2011). In fact, transplantation of the mouse 4T1 mammary 

cancer cell line on syngeneic BALB/c and the MDA-MB-231 human breast cancer 

cell line on immunocompromised Rag1-/- mice also induced robust CD11b+Ly6G+ 

blood and/or lung neutrophil accumulation (Fig. 3.8).  

The mechanisms how tumour presence systemically mobilises neutrophil 

accumulation are as important as complex. A recent study demonstrated one 

mechanism involving tumour-derived IL-1β-mediated activation of IL-17-producing 

gamma-delta T cells that in turn cause a systemic elevation of G-CSF levels 

resulting in neutrophilia (Coffelt et al., 2015). The actual cellular source of G-CSF 

was not identified in this study and we excluded tumour cell-derived G-CSF to be 

involved in lung neutrophil accumulation in the MMTV-PyMT mammary cancer 

model (Fig. 3.5). We were intrigued by the enhanced neutrophil accumulation 

particularly in the lung of mammary tumour-bearing mice, the preferential site of 

metastasis. Breast cancer cells, including MMTV-PyMT cells, have been shown to 

attract pro-tumourigenic neutrophil-like cells to mammary tumours and the 

metastatic lung via secretion of CXCL1/2, the ligands for CXCR2 (Acharyya et al., 

2012). CXCL1 and 2 are highly effective chemokines that attract neutrophils to 

peripheral tissues in numerous pathologic settings through engagement of the 

neutrophil-expressed CXCR2 receptor. CXCR2 deficiency is frequently employed 

in experimental studies to prevent neutrophil infiltration into tissues that contain 

cancer lesions (section 1.3). This CXCL1/2-CXCR2 axis would explain why 

neutrophilia of advanced cancer stage MMTV-PyMT+ mice is most pronounced in 

the lung where cancer cells are present compared to other sites (Fig. 3.1). Hence, 

we aimed to investigate the molecular mediators of neutrophil recruitment to the 

metastatic lung of mammary tumour-harbouring mice and, firstly, wanted to confirm 

the involvement of a CXCL1/2-CXCR2-dependent mechanism. To this end, we 

generated bone marrow chimeric mice either reconstituted with wildtype or CXCR2-
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deficient (CXCR2-/-) bone marrow isolated from donor mice (Cacalano et al., 1994) 

and grafted them with a syngeneic 4T1 mammary tumour (Fig. 3.9 a). The CXCR2-

/- mice were in a BALB/c genetic background. Hence, we used BALB/c recipient 

mice and the BALB/c syngeneic 4T1 mammary cancer cell line instead of the 

spontaneous MMTV-PyMT model. CXCR2-deficiency of used mice was restricted 

to the radiosensitive immune cell compartment to avoid effects of CXCR2 

expressed by other cell types involved in the metastatic process or neutrophil 

recruitment, such as endothelial cells or tumour cells themselves (Saintigny et al., 

2013). We ensured a CXCR2-/- bone marrow reconstitution of more than 90% by 

absence of CXCR2 expression on bone marrow (data not shown) and lung 

neutrophils by flow cytometry for all mice included in the analysis (Fig. 3.9 c-d). 

Surprisingly, CD11b+Ly6G+CXCR2-/- neutrophils were perfectly able to infiltrate 

the metastatic lungs and constituted more than 90% of lung neutrophils of 4T1 

tumour-bearing CXCR2-/- bone marrow-reconstituted wildtype mice (Fig. 3.9 c-d). 

Consequently we did not observe an alteration of total CD11b+Ly6G+ lung 

neutrophil frequencies in 4T1 tumour-bearing CXCR2-/- or wildtype bone marrow-

reconstituted mice (Fig. 3.9 b), despite a study reporting CXCL1/2-dependent 

neutrophil-like cell recruitment to the metastatic lung in a breast cancer model 

(Acharyya et al., 2012). Also, primary tumour burden or spontaneous lung 

metastasis incidence was unaltered in these mice (Fig. 3.9 e-f). This evidence 

suggests that breast cancer-induced neutrophil accumulation in the lung is 

independent of CXCR2 expression by neutrophils, at least in the 4T1 mammary 

cancer model (discussed in detail in section 6.3.1). 

Next, we wanted to determine if disseminated tumour cells present in the 

metastatic lung directly induce neutrophil recruitment via other mechanisms than 

CXCL1/2-CXCR2-mediated chemoattraction. To test this hypothesis, we directly 

seeded MMTV-PyMT cancer cells into the lung of otherwise tumour-free mice. We 

injected primary GFP-labelled MMTV-PyMT cells via the tail vein that were isolated 

from spontaneously developed tumours of MMTV-PyMT actin-GFP mice which 

constitutively express GFP protein under the control of the actin promoter (Okabe 

et al., 1997). Labelling of cancer cells with GFP allows for their quantification and 

analysis at early metastatic stages, however GFP expression triggers an adaptive 

immune response in wildtype animals interfering with the experimental setup. 

Therefore, immunocompromised Rag1-/- mice lacking functional B and T cells were 
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used for all experiments involving labelled cancer cells. We analysed mice three 

days after intravenous cancer cell injection (Fig. 3.10 a) to allow both, sufficient 

time to induce neutrophil recruitment and to assess the ability of single 

disseminated cancer cells and very small colonies (or the consequences of their 

death) to attract neutrophils. Thereby, the establishment of larger metastases that 

would additionally cause tissue damage and activation of the microenvironment 

which likely influences neutrophil infiltration was minimised. Alive GFP+ MMTV-

PyMT cells were readily detected in the lungs of intravenously injected mice by flow 

cytometry (Fig. 3.10 b), however there was no increase in CD11b+Ly6G+ 

neutrophil frequencies in these lungs compared to untreated animals (Fig. 3.10 c). 

Hence, we concluded that neutrophil accumulation particularly in the metastatic 

lung of mammary cancer-bearing mice is likely facilitated by mechanisms 

independent from direct neutrophil recruitment by metastatic cancer cells present in 

the lung. On the same line, we observed that the frequencies of intravenously 

injected MMTV-PyMT cancer cells in the lung decrease about ten-fold within the 

first 24 hours post-injection (Fig. 3.10 d), which is very likely due to their death and 

apoptosis. Thus, death of disseminated cancer cells and potential activation of 

DAMP-associated immune responses in the lung at early metastatic stages 

appears unlikely to cause enhanced neutrophil influx. However, we did not formally 

check for the presence of apoptotic or necrotic cancer cells in the lung in our 

experiments and we also did not address the consequences of tissue damage 

induced by larger lung metastases that might contribute to lung neutrophil 

infiltration. 

Next, we tested if the ability of tumours to induce lung neutrophil accumulation is 

dependent on its metastatic nature and preferential colonisation of the lung. To do 

so, we analysed the frequencies of neutrophils in the lung of a mouse model of 

non-metastatic, benign skin tumours. Viral-Ha-Ras transgene (TG.AC)-expressing 

mice were biweekly treated for 3.5 months with the inflammatory agent TPA (12-O-

Tetradecanoylphorbol 13-acetate) topical on the backskin to develop benign skin 

papillomas (Leder et al., 1990). Interestingly, these mice harbouring non-metastatic 

skin papillomas also showed higher levels of lung neutrophils compared to TPA-

treated wildtype controls (Fig. 3.11). This observation precludes a specific 

association of tumour-induced systemic neutrophil mobilisation or lung 

accumulation with the metastatic potential of a primary tumour. 
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Lastly, we aimed to determine if a growing mammary tumour would induce 

systemic neutrophilia and lung neutrophil accumulation in a persistent or reversible 

manner where tumour-derived signals are constantly required to maintain 

neutrophilia. To this end, we grafted primary MMTV-PyMT cancer cells onto the 

mammary gland of wildtype animals to grow a primary tumour of approximately 

1x1x0.5 cm in size followed by surgical resection. Cancer cells were transplanted 

onto the mammary gland on this occasion to synchronise tumour growth and 

facilitate complete tumour resection. Notably, elevated neutrophil numbers 

persisted in the lungs of tumour-resected mice for at least one week despite the 

absence of a primary tumour (Fig. 3.12). This evidence suggests the interesting 

notion of a systemic “conditioning” of the host by the mammary tumour that 

appears to be an enduring alteration rather than an acute, reversible response that 

requires to be constantly sustained. 

In conclusion, systemic neutrophil mobilisation in mammary tumour-bearing hosts 

is primary tumour-induced and persistent after tumour resection at least at in the 

lung. The mechanisms of neutrophil accumulation particularly in the metastatic lung 

appear to be independent of neutrophil-expressed CXCR2 as well as cancer cell-

derived G-CSF and also not connected to the metastatic nature of a primary 

tumour. Additionally, distantly present metastatic mammary cancer cells do not 

appear to directly recruit neutrophils to the lung. This evidence highlights the 

complexity of the regulation of lung neutrophil presence in mammary cancer-

bearing hosts and, as Coffelt et al. 2015 and Benevides et al. 2015 demonstrated, 

a dedicated study will be necessary to evaluate the precise mechanisms of 

systemic neutrophilia and specific neutrophil accumulation in the lung. 
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Figure 3-8 Lung metastatic mouse and human breast cancer cell lines grafted 
onto the mammary gland also elevate frequencies of lung neutrophils 
(a-c) Flow cytometric quantification of CD11b+Ly6G+ neutrophils in the blood (a) and 
the metastatic lung (b-c) of wildtype mice harbouring late-stage mammary tumours 
after injection of syngeneic mouse 4T1 cells (a-b) or immunodeficient Rag1-/- mice 
grafted with human MDA-MB-231 cells at late carcinoma stages (n≥3 biological 
replicates (control or tumour cell-grafted mice) per group analysed in parallel).  
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Figure 3-9 Neutrophil accumulation in the lung of tumour-bearing hosts is not 
depend on their CXCR2 expression 
(a) Schematic representation of experimental setup and timeline for generation of 
wildtype and CXCR2-deficient (CXCR2-/-) bone marrow (BM)-reconstituted mice, 
grafting of 4T1 mammary tumours and analysis (n≥5 biological replicates (mice) per 
group analysed in parallel). (b-c) Quantification of total CD11b+Ly6G+ neutrophil 
frequencies in the lung (b) and CXCR2 expression on these CD11b+Ly6G+ lung 
neutrophils (c) of mammary tumour-bearing bone marrow-reconstituted mice by flow 
cytometry, gated on alive single cells (b) or CD11b+Ly6G+ cells (c). (d) Representative 
flow cytometric analysis of surface CXCR2 expression on lung CD11b+Ly6G+ 
neutrophils of quantification shown in (c). (e-f) Total primary mammary tumour burden 
in gram (e) and spontaneous metastasis incidence displayed as number of visible 
surface lung metastases relative to tumour load (f) of advanced stage 4T1 tumour-
bearing bone marrow-reconstituted mice at time of lung neutrophil analysis. 
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Figure 3-10 MMTV-PyMT cancer cells directly seeded into the lung of tumour-free 
mice do not induce lung neutrophil accumulation 
(a-c) Schematic representation of experimental setup and timeline for intravenous (IV) 
GFP-labelled MMTV-PyMT cancer cell injection and lung analysis (one primary MMTV-
PyMT cancer cell preparation injected into n≥3 mice per group (technical replicates) 
and analysed in parallel). Flow cytometric quantification of frequencies of total 
CD11b+Ly6G+ neutrophils (b) and GFP+ MMTV-PyMT cancer cells in the lung of 
cancer cell injected mice, gated on alive single cells. (d) Luciferase-labelled MMTV-
PyMT cancer cells were intravenously injected into Rag1-/- mice and their presence in 
the lung analysed one hour or 24 hours after by determination of total flux 
bioluminescence imaging (n=7 mice per group pooled from 3 independent experiments 
using 3 different tumour cell preparations, section 2.2.16). N.d.: not detected. 
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Figure 3-11 Tumour-mediated elevation of lung neutrophil levels does not 
depend on the metastatic potential of the tumour 
(a-b) Flow cytometric quantification (a) and representative analysis (b) of 
CD11b+Ly6G+ neutrophils in the lung of TPA-treated tumour-free control and TPA-
induced skin papilloma-bearing v-Ha-Ras transgenic mice (n≥3 biological replicates 
(control or papilloma-bearing mice) per group analysed in parallel), gated on alive 
single cells. Insert in (b) shows relative frequencies of double-positive cells contained 
in the displayed gate. 
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Figure 3-12 Lung neutrophil accumulation in MMTV-PyMT mammary tumour-
bearing mice persists after surgical tumour resection 
(a) Schematic representation and timeline of the experimental setup to investigate 
neutrophil presence in the lung after surgical removal of primary mammary tumours 
(n≥4 biological replicates (control or grafted mice using one MMTV-PyMT cell 
preparation) per group analysed in parallel). Wildtype mice were orthotopically 
transplanted with MMTV-PyMT mammary cancer cells and the established tumours 
resected two weeks thereafter. (b) Flow cytometric quantification of CD11b+Ly6G+ 
neutrophils in the lung of untreated control mice, MMTV-PyMT tumour-bearing mice at 
tumour resection, 24 hours and 1 week after tumour resection, gated on alive single 
cells. 
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3.2.3 Neutrophils infiltrate the pre-metastatic lung prior to tumour cells and 

are essential for early lung colonisation by mammary cancer cells 

Our data from genetically neutropenic mammary cancer mouse models show a 

clearly overall pro-metastatic role of neutrophils and suggest a potential 

immunosuppressive activity at least at advanced metastatic stages (Fig. 3.3, 3.4 

and 3.6). Neutrophils are highly present in the metastatic lung of mammary cancer 

bearing mice at late stages (Fig. 3.1 and Fig. 3.8), but have also been observed to 

infiltrate the lung earlier during cancer development (Acharyya et al., 2012, Casbon 

et al., 2015, Coffelt et al., 2015, Granot et al., 2011). Overall, the literature on the 

activities of neutrophils during the metastatic process appears controversial, which 

might be dependent on the precise stage of tumourigenesis (section 1.3.5). Hence, 

we focussed on characterising the functional contribution of lung neutrophils to 

metastasis and aimed to carefully determine at which steps of the metastatic 

process neutrophils are involved.  

Firstly, we excluded previously described functions of neutrophils to promote 

angiogenesis or anti-tumour immunosuppression at the primary site (section 1.3.5) 

due to neutrophil-independent primary tumour growth in MMTV-PyMT+ mice (Fig. 

3.3 a and 3.6 b). Neutrophils are also known to support dissemination and 

migration of cancer cells from the primary tumour site (section 1.3.5). To 

specifically address these neutrophil functions in the MMTV-PyMT mammary 

tumour model, we employed an experimental approach of metastasis induction that 

is independent of cancer cell dissemination or intravasation and intravenously 

injected primary GFP-labelled MMTV-PyMT cells isolated form spontaneously 

developed tumours. To test if the neutrophil pro-metastatic activity is independent 

of cancer cell dissemination or intravasation, Rag1-/- mice were grafted with 

primary unlabelled MMTV-PyMT tumour cells to induce neutrophil accumulation in 

the lung. Four weeks after tumour engraftment, mice were intraperitoneally injected 

with either control IgG- or anti-Ly6G antibody every 24 hours to systemically 

deplete neutrophils (Fig. 3.13 a). Daily intraperitoneal injections of the anti-Ly6G 

(clone 1A8) antibody have previously been used also in cancer settings to 

specifically ablate neutrophils in mice in a temporally controlled fashion (Daley et 

al., 2008, Granot et al., 2011). One day after the first antibody administration, GFP-
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labelled MMTV-PyMT cancer cells were intravenously injected into these 

neutrophil-depleted mice and their presence in the lung tissue determined 20 hours 

thereafter. At this time point, cancer cells typically already extravasated into the 

tissue and metastatic lungs were perfused with PBS before analysis to remove 

remaining non-attached cancer cells in the vasculature. Therefore, this assay 

allows to determine if the neutrophil pro-metastatic activity involves both, facilitation 

of cancer cell dissemination from the primary tumour and intravasation as well as 

cancer cell trapping and extravasation at the distant metastatic site as previously 

suggested (section 1.3.5). Anti-Ly6G-treatment starting 24 hours before cancer cell 

intravenous injection efficiently depleted CD11b+Ly6G+ neutrophils from the lung 

of MMTV-PyMT tumour-grafted Rag1-/- mice (Fig. 3.13 b). Importantly, infiltration 

of cancer cells into the lung determined by flow cytometry for GFP+ MMTV-PyMT 

cancer cells was not affected by neutrophil absence/presence (Fig. 3.13 c). This 

observation precludes cancer cell dissemination, intravasation, trapping or 

extravasation to be the main metastatic stages supported by neutrophils during 

metastatic progression of the MMTV-PyMT mammary cancer mouse model. 

Nevertheless, a more detailed analysis would be necessary to assess the precise 

involvement of neutrophils in all individual aspects of these processes. 

This evidence indicates that neutrophils appear to promote metastasis through 

mechanisms affecting cancer cells after arrival at the distant metastatic tissue. 

Previous reports showed neutrophil accumulation in the lung at very early 

tumourigenic stages (Acharyya et al., 2012, Casbon et al., 2015, Coffelt et al., 2015, 

Granot et al., 2011) and neutrophils strongly accumulate at the metastatic site at 

late stages (Fig. 3.1). Hence, we specifically assessed the dynamics of neutrophil 

presence in the lung of MMTV-PyMT+ mice that spontaneously-developed 

mammary tumours at pre-metastatic and metastatic stages. Importantly, 

neutrophils already accumulated in the lung before cancer cells started infiltrating 

the tissue (pre-metastatic lung) and their number progressively increased during 

metastatic outgrowth. We established these findings by assessing neutrophil 

presence in the lung by two independent strategies, quantification of 

CD11b+Ly6G+ cells by flow cytometry (Fig. 3.14 a) and S100A9+ cells by 

immunohistochemistry on lung sections (Fig. 3.14 c). S100A9 is a cytosolic protein 

that can also be released and is predominantly expressed in neutrophils (Kohler et 

al., 2011, Stroncek et al., 2005). We confirmed the pre-metastatic stage of 
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analysed lungs of spontaneously developed MMTV-PyMT tumour-bearing mice by 

the absence of detectable MMTV-PyMT cells by staining for the Polyoma middle T 

antigen (antibody clone sc-53481) in the consecutive histological sections that were 

stained for S100A9+ neutrophils (Fig. 3.14 b-c). This observation strengthens that 

neutrophils in the lung of MMTV-PyMT tumour-bearing mice do not appear to be 

recruited by metastatic cancer cells already present in the lung (Fig. 3.10) and 

suggests a potential role of neutrophils during very early metastatic lung 

colonisation. 

To explore the functional contribution of pre-metastatic lung neutrophils to 

metastatic colonisation, we performed time-controlled neutrophil depletion 

experiments in immunocompromised Rag1-/- grafted with primary unlabelled 

MMTV-PyMT cells to establish tumours and trigger lung accumulation of 

neutrophils. This experimental setting allows for precise synchronisation of primary 

mammary tumour growth, lung neutrophil elevation and spontaneous metastasis, 

which is non-feasible in spontaneously tumour-developing MMTV-PyMT+ mice due 

to the naturally occurring temporal differences in primary tumour onset and burden. 

We administered anti-Ly6G blocking antibody daily from the fourth week post-

tumour engraftment onwards to deplete neutrophils systemically around the time of 

onset of spontaneous metastatic dissemination and lung colonisation (Fig. 3.15 a). 

MMTV-PyMT tumour-bearing mice were sacrificed after two weeks of metastatic 

progression during anti-Ly6G antibody treatment and the lung analysed for 

presence of neutrophils and spontaneous metastasis. Efficacy of anti-Ly6G-

mediated neutrophil depletion was confirmed by absence of CD11b+Ly6G+ 

neutrophils in the lung by flow cytometry (Fig. 3.15 b). Notably, this short-term 

neutrophil absence for only two weeks also caused a significant decrease of 

spontaneous lung metastasis determined by counting of visible, unlabelled surface 

lung metastases (Fig. 3.15 d and f, GFP- blue metastatic nodules). Neutrophil 

depletion did not affect grafted mammary tumour growth in this setting (Fig. 3.15 c). 

These results go hand in hand with our previous findings on the effects of genetic 

neutrophil-deficiency throughout the metastatic process (Fig. 3.3 and 3.6). 

Moreover, this data stresses the importance of the pro-metastatic activity of 

neutrophils in mammary cancer-bearing mice because their absence for only a 

limited time period already significantly impaired lung metastasis. 
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Next, we wanted to test the relevance of lung neutrophils precisely during arrival of 

disseminated cancer cells in the lung and early initiation of metastatic colonisation. 

To this end, lungs of the same unlabelled MMTV-PyMT cancer cell-grafted Rag1-/-

mice used above (Fig. 3.15 a-d) were synchronously seeded with primary GFP-

labelled MMTV-PyMT cancer cells by intravenous injection to induce experimental 

metastasis. GFP+ cells were injected one day after anti-Ly6G treatment start 

directly into neutrophil-depleted lungs. This setting allows the assessment of 

neutrophil activities exactly at the time of cancer cell influx and the very early 

beginning of metastatic growth of cancer cells in the lung. Two weeks after labelled 

cancer cell intravenous injection, their frequencies in the lung of neutrophil-

sufficient or deficient MMTV-PyMT tumour-bearing mice were assessed 

concomitantly with spontaneous metastasis. Labelled MMTV-PyMT cells and 

thereby experimental metastasis could easily be distinguished from spontaneously 

metastasising unlabelled MMTV-PyMT cancer cells by flow cytometric 

quantification of GFP+ cells present in the lung or immunohistochemical staining for 

GFP in lung sections. Remarkably, synchronously seeded GFP+ cancer cells 

directly into neutrophil-depleted lungs were significantly impaired in their ability to 

colonise the lung compared to GFP+ cancer cells injected into neutrophil-

containing lungs (Fig. 3.15 e-f). This result indicates the requirement of pre-

metastatic lung neutrophils for efficient initiation of metastatic colonisation by 

disseminated MMTV-PyMT cancer cells when arriving in the lung of mammary 

tumour-bearing mice. 

Collectively, this evidence indicated that primary mammary tumours might alter the 

microenvironment at the target site for metastatic spread in a promoting manner by 

inducing neutrophil accumulation in the lung prior to cancer cell infiltration. Hence, 

neutrophils present in elevated numbers in the pre-metastatic lung might provide a 

more hospitable environment for arriving cancer cells and aid their growth or 

survival reminiscent of a pre-metastatic niche (section 1.2.5). Hence, we focused 

on characterising these pre-metastatic CD11b+Ly6G+ cells accumulating in the 

pre-metastatic lung due to their notable metastasis-supporting nature during the 

very initial stages of lung colonisation. To phenotypically examine pre-metastatic 

lung neutrophils, MMTV-PyMT tumours were established by orthotopic injection of 

MMTV-PyMT cells into the mammary gland of wildtype mice to synchronise tumour 

growth and distant neutrophil accumulation. Lung pre-metastatic CD11b+Ly6G+ 
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cells were analysed three weeks after primary tumour graft on wildtype mice, which 

still represents the pre-metastatic phase of spontaneous mammary tumour 

progression before growth of metastatic cancer cells in the lung (Fig. 3.16 a). The 

majority of isolated Ly6G+ cells from pre-metastatic lungs of MMTV-PyMT tumour-

bearing mice appear morphologically very similar to mature neutrophils showing 

segmented nuclei (Fig. 3.16 b) (Dumitru et al., 2012, Gabrilovich et al., 2012, Pillay 

et al., 2012, Youn et al., 2012, Youn and Gabrilovich, 2010). Next, we compared 

tumour-induced lung CD11b+Ly6G+ cells three weeks after primary tumour graft 

with CD11b+Ly6G+ neutrophils from healthy lungs. In general, tumour-mobilised 

lung CD11b+Ly6G cells appear bigger and more granular than healthy wildtype 

neutrophils when assessed for flow cytometric parameters of forward and side 

scatter that determine size and granularity, respectively (Fig. 3.16 c). These 

features indicate their increased activation and maturity (section 1.3). We also 

tested the expression of factors previously associated with neutrophils in the 

tumour context in pre-metastatic lung Ly6G+ cells (Fridlender et al., 2009, Joyce 

and Pollard, 2009). Analysis of messenger RNA (mRNA) expression levels of 

secreted factors in isolated Ly6G+ cells and expression of surface markers on 

CD11b+Ly6G+ cells by flow cytometry revealed only some small variations (Fig. 

3.16 c). Two of seven tested neutrophil-secreted factors showed differences on 

mRNA level and two of six analysed surface markers were altered. The 

upregulation of CD31 in the tumour context suggests increased lung infiltration 

activity of tumour-induced neutrophils (Kolaczkowska and Kubes, 2013, Luu et al., 

2003, Malanchi, 2013) and reduction of their surface MHC-II expression a potential 

decline of their antigen presentation to impact T helper cell activation (Abi Abdallah 

et al., 2011). Together, these data indicate that, at this early time point, the tumour-

induced CD11b+Ly6G+ cells in the lung appear to be mature neutrophils similar to 

the ones found in healthy lungs that likely display an activated state (section 1.3). 

Neutrophils in the tumour and metastasis context were also reported to act 

immunosuppressive in a similar fashion as immature granulocytic myeloid-derived 

suppressor cells (G-MDSCs) preventing the activation of especially NK and 

cytotoxic T cell anti-tumour responses (section 1.2.3.2 and 1.3.5). In fact, immature 

G-MDSCs with pronounced immunosuppressive properties have been described to 

infiltrate metastatic sites in the literature (Quail and Joyce, 2013, Sceneay et al., 

2013). Moreover, mature neutrophils and G-MDSCs share similar surface markers 
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and hence have to be distinguished based on their morphology, phenotype and 

function (Dumitru et al., 2012, Gabrilovich et al., 2012, Pillay et al., 2013). The 

morphology and expression of mRNA levels as well as surface markers of 

CD11b+Ly6G+ cells accumulating in the pre-metastatic lung of MMTV-PyMT 

tumour-bearing mice suggests them to rather represent mature neutrophils than 

immature G-MDSCs (Fig. 16 and discussed in detail in section 6.2.3.2). 

Nevertheless, we specifically assessed eventual immunosuppressive properties of 

pre-metastatic CD11b+Ly6G+ neutrophils that might account for their pro-

metastatic activity. To this end, we functionally investigated the presence of an anti-

cancer immune environment within the pre-metastatic lung of immunocompetent 

wildtype mice grafted with MMTV-PyMT mammary tumours. We continuously 

depleted neutrophils during the pre-metastatic stage by anti-Ly6G antibody 

treatment starting one day before tumour engraftment and analysed lungs three 

weeks thereafter (Fig. 3.17 a). As expected, levels of CD11b+Ly6G+ neutrophils 

significantly increased in the pre-metastatic lung, which is also reflected in 

increased total CD45+ immune cell frequencies in these temporally controlled 

experiments, and was prevented by Ly6G administration (Fig. 3.17 b-c and f). No 

significant differences in frequencies and/or activation status of the following 

immune cell types were found in pre-metastatic lungs, neutrophil-depleted pre-

metastatic lungs and lungs of healthy wildtype mice: CD11b+SiglecF+ eosinophils, 

alveolar macrophages, interstitial macrophages, dendritic cells and, most 

importantly, NK cells and cytotoxic T cells including the ratio of immunosuppressive 

regulatory T cells vs. cytotoxic T cells (Fig. 3.17 d-e+g, Fig. 3.18 a-b+e and Fig. 

3.19 a-d). B cell activation seemed to be reduced in the pre-metastatic lung 

compared to tumour-free controls, however in a neutrophil-independent manner 

(Fig. 3.18 c-d+f). Interestingly, while neutrophil absence throughout cancer 

development correlated with rescued NK cell presence in the metastatic lung of 

mammary MMTV-PyMT tumour-bearing mice (Fig. 3.4), we did not observe a 

similar effect of neutrophil-depletion in the pre-metastatic lung. This observation 

highlights the difference in composition of the microenvironment in a pre-metastatic 

compared to a metastatic setting and suggests that neutrophils might gain NK cell 

inhibitory features at later metastatic stages. Alternatively, MMTV-PyMT+ 

neutrophil-deficient mice displayed a decreased metastatic burden compared to 

MTV-PyMT+ controls, which might also contribute to reduced NK cell recruitment to 
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the lung. Nevertheless, the absence of a neutrophil-controlled inhibition of NK and 

cytotoxic T cell presence or activation in the pre-metastatic lung together with a 

paralleled significant lung neutrophil accumulation suggests other mechanisms 

contributing to neutrophil pro-metastatic activity at initial stages of cancer cell lung 

colonisation rather than immunosuppression. 

Additionally, we functionally excluded a dependence of the metastasis-promoting 

features of pre-metastatic lung neutrophils on T or B cell-mediated mechanisms, 

because neutrophil depletion in MMTV-PyMT tumour-bearing Rag1-/- mice 

efficiently impaired metastatic initiation and lung colonisation of cancer cells (Fig. 

3.15). 

Together, our results indicate that primary mammary tumours trigger accumulation 

of neutrophils in the lung that precedes cancer cell arrival and metastatic spread to 

the lung. Pre-metastatic lung neutrophils appear phenotypically mature and likely 

create a favourable pre-metastatic niche in the tissue targeted for metastatic 

dissemination independent of a potential immunosuppressive activity. 
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Figure 3-13 Neutrophils do not appear to significantly influence MMTV-PyMT 
cancer cell extravasation and arrival at the distant lung  
(a) Schematic representation and timeline of the experimental setup to test the 
involvement of tumour-induced neutrophils to MMTV-PyMT cancer cell trapping and 
extravasation in the lung. Rag1-/- mice were orthotopically transplanted with MMTV-
PyMT mammary cancer cells, treated with neutrophil blocking anti-Ly6G antibody 
followed by intravenous injection of labelled MMTV-PyMT cancer cells. 20 hours later 
lungs were perfused to remove cells present in the circulation and analysed (one 
primary MMTV-PyMT cancer cell preparation injected into n≥4 mice per group 
(technical replicates) and analysed in parallel). (b-c) Flow cytometric quantification of 
frequencies of total CD11b+Ly6G+ neutrophils (b) and GFP+ MMTV-PyMT cancer 
cells (c) in the lung, gated on alive single cells. 
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Figure 3-14 Neutrophils infiltrate the pre-metastatic lung of mammary MMTV-
PyMT cancer-bearing mice preceding cancer cell infiltration 
(a) CD11b+ Ly6G+ neutrophils present in wildtype control, pre-metastatic and 
metastatic lungs of MMTV-PyMT+ mice were quantified by flow cytometry (n≥3 per 
group pooled from ≥3 independent litters). (b-c) Histological lung section of a wildtype 
control, pre-metastatic and metastatic MMTV-PyMT+ mouse stained for either the 
neutrophil-marker S100A9 (c, brown) or the exclusively cancer cell-expressed Polyoma 
middle T antigen (PyMT, b, brown) and haematoxylin (blue) to visualise nuclei, scale 
bars are 100µm. Representative of ≥3 analysed lung sections is shown. Pre-metastatic 
status of the lung was confirmed by examination of six sections per lung for PyMT 
staining, 100µm apart. Arrow in (b) indicates a single PyMT+ cancer cell. Close-ups on 
inserts in lung sections in (c) highlight presence of S100A9+ neutrophils in the lung. 
WT: wildtype littermate control. Pre-Met. and Met.: MMTV-PyMT+ mice without 
detectable cancer cells in the lung or with established stage lung metastases, 
respectively. 
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Figure 3-15 Lung neutrophil presence in mammary cancer-bearing mice is 
critical for efficient initiation of early metastatic lung colonisation by 
disseminated cancer cells 
(a) Schematic representation and timeline of the experimental setup for neutrophil-
depletion during lung metastasis initiation. Unlabelled MMTV-PyMT cells were grafted 
onto the mammary gland of Rag1-/- mice and GFP-labelled MMTV-PyMT cells injected 
via the tail vein (IV) 4 weeks thereafter. Daily treatment with control IgG- or anti-Ly6G 
antibody by intraperitoneal injection started one day prior to GFP-labelled cell injection 
and continued for two weeks until analysis. (b) CD11b+Ly6G+ neutrophil presence in 
the lung was determined by flow cytometric quantification at the end of the experiment, 
gated on alive single cells (n≥4 per group pooled from 3 independent experiments 
using different MMTV-PyMT cancer cell preparations). (c-f) Tumour burden was 
assessed by weighing of dissected tumours (c), spontaneous metastatic progression 
by quantification of visible, non-GFP surface lung metastases (d) and experimental 
metastasis initiation by flow cytometric quantification of GFP+CD24+ MMTV-PyMT 
cells in the lung (n≥12 per group pooled from 3 independent experiments using 
different MMTV-PyMT cancer cell preparations). (f) Representative histological lung 
sections were stained with GFP in brown to visualise tail-vein injected GFP-labelled 
MMTV-PyMT cells and with haematoxylin in blue to stain nuclei. Arrows indicate 
spontaneous metastases originating from the primary tumour; scale bar is 100µm. 
Close-ups on inserts highlight spontaneous and experimental, labelled metastases. 
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Figure 3-16 Comparison of wildtype lung neutrophils with tumour-induced, pre-
metastatic lung neutrophils 
(a) Representation of timing and dynamics of neutrophil and cancer cell infiltration into 
the lung of mice grafted with mammary MMTV-PyMT tumours by orthotopic injection of 
MMTV-PyMT tumour cells. (b) Haematoxylin & eosin (H&E) stained Ly6G+ cell isolated 
from a pre-metastatic lung. (c) Flow cytometric analysis for cell size (forward scatter, 
FSC) and granularity (side scatter, SSC), gated on alive single cells, as well as 
expression of surface markers CXCR2, CD31, MHC-I, MHC-II, ICAM1 and Fas, gated 
on CD11b+Ly6G+ cells, of CD11b+Ly6G+ wildtype or pre-metastatic lung neutrophils 
three weeks after primary tumour graft (one primary MMTV-PyMT cancer cell 
preparation injected into n≥3 mice per group (technical replicates) and analysed in 
parallel). Data represent mean intensity ± standard error of the mean (SEM) for flow 
cytometric data. mRNA expression analysis by quantitative PCR of isolated Ly6G+ 
cells from the lung of wildtype or tumour-bearing mice for TNFα, Arginase1, VEGF-A, 
CCL2, CCL3, iNOS and CCL5 (biological triplicates (isolated neutrophils) of the pre-
metastatic lung compared to a representative control (wild-type lung neutrophil) value). 
mRNA expression levels are displayed normalised to internal GAPDH control and 
represent fold-changes ± SEM. 
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Figure 3-17 Immune cell frequencies and activation in the pre-metastatic lung of 
MMTV-PyMT tumour-bearing mice is independent of neutrophil presence (part 1) 
(a) Representation of timing and dynamics of neutrophil and cancer cell infiltration into 
the lung of mice grafted with mammary MMTV-PyMT tumours. Mice were analysed 
three weeks after primary tumour graft (n≥4 biological replicates per group pooled from 
1-2 independent experiments). (b-g) Flow cytometric quantification and representative 
analysis of the following immune cell types in wildtype (WT) or pre-metastatic lungs 
treated daily with either control IgG or anti-Ly6G antibody from tumour onset onwards: 
(b+f) total CD45+ immune cells, (c) CD11b+Ly6G+ neutrophils, (d+g) CD11b+SiglecF+ 
eosinophils, (e+g) CD11b-low F4/80-high alveolar macrophages and CD11b-high 
F4/80-low interstitial macrophages, gated on alive single cells (b-c+f), Ly6G-negative 
cells (d-e) or CD45+ cells (g). Inserts in (f-g) show relative frequencies of positive cells 
contained in the displayed gate. 



Chapter 3 Results 

 

155 

 

 
Figure 3-18 Immune cell frequencies and activation in the pre-metastatic lung of 
MMTV-PyMT tumour-bearing mice is independent of neutrophil presence (part 2) 
(a-f) Flow cytometric quantification and representative analysis of the following immune 
cell types in wildtype (WT) or pre-metastatic lungs treated daily with either control IgG 
or anti-Ly6G antibody from tumour onset onwards (n≥4 biological replicates per group 
pooled from 1-2 independent experiments). (a+e) CD45+CD11c+ dendritic cells, (b+e) 
MHCII+CD86+ activated dendritic cells, (c+f) CD45+CD19+ B cells and (d+f) 
MHCII+CD86+ activated B cells, gated on either: alive single cells (a+c), CD45+ cells 
(e-f), CD45+CD11c+ cells (b+e) or CD45+CD19+ cells (d+f), as indicated. Inserts in (e-
f) show relative frequencies of positive cells contained in the displayed gate. 



Chapter 3 Results 

 

156 

 

 
Figure 3-19 Immune cell frequencies and activation in the pre-metastatic lung of 
MMTV-PyMT tumour-bearing mice is independent of neutrophil presence (part 3) 
(a-d) Flow cytometric quantification and representative analysis of the following 
immune cell types in wildtype (WT) or pre-metastatic lungs treated daily with either 
control IgG or anti-Ly6G antibody from tumour onset onwards (n≥4 biological replicates 
per group pooled from 1-2 independent experiments). (a) CD45+CD49b+ natural killer 
(NK) cells, CD69+ activated NK cells, (b) CD45+CD3+CD8+ cytotoxic T cells, (c) 
CD44+ or CD69+ activated T cells and (d) CD45+CD3+CD4+CD25+Foxp3+ regulatory 
T cells and the ratio of regulatory T cells per activated T cell, gated on either: alive 
single cells, CD45+ cells, CD45+CD49b+ cells, CD45+CD3+CD8+ cells or CD4+ cells, 
as indicated. Inserts show relative frequencies of positive cells in the displayed gate. 
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3.2.4 Neutrophils boost lung colonisation potential of mammary cancer cells 

by directly supporting metastasis-initiating cells 

In light of our previous observations, we hypothesised that neutrophils might 

directly influence arriving metastatic cancer cells in the lung and investigated a 

potential direct effect of neutrophil-secreted factors on tumour cells in vivo and in 

vitro. Cancer cells are very heterogeneous and they might respond differently to 

environmental stimulations (section 1.1.4). Disseminated cancer cells in patients 

also show a high level of heterogeneity (Yu et al., 2013). We therefore probed 

whether neutrophils alter cancer cell heterogeneity in favour of highly metastatic 

cells by monitoring the previously described metastasis-initiating cancer cell (MIC) 

population (CD24+CD90+) of MMTV-PyMT cells (Malanchi et al., 2012). To this 

end, we isolated Ly6G+ neutrophils from the bone marrow and pre-metastatic lung 

of MMTV-PyMT tumour-grafted wildtype mice about three weeks after primary 

mammary tumour graft by magnetic-activated cell sorting (MACS). We confirmed 

viability and purity of bone marrow and pre-metastatic lung neutrophils by flow 

cytometry for percentage of Ly6G+ cells and staining with PI at time of isolation and 

only preparations of ≥85% alive and pure neutrophils were used (Fig. 3.20). 

Neutrophils were not viable for prolonged periods of time in vitro after isolation and 

showed a viability of only about 10-20% after 24-hour culture. Hence, we used 

either freshly isolated bone marrow or lung neutrophils immediately or used them to 

condition cell culture medium for 14 hours, bone marrow neutrophil-conditioned 

(BMN) or lung-neutrophil-conditioned (LuN) medium. To treat cancer cells with lung 

neutrophils or lung neutrophil-derived factors (LuN medium) in vivo, we seeded 

freshly isolated total GFP+ MMTV-PyMT cancer cells into the lung of tumour-free 

Rag1-/- mice by intravenous injection followed 12 hours later by intravenous 

injection of either LuN medium (three injections, every 12 hours) or freshly isolated 

pre-metastatic lung neutrophils (one injection). Lungs of treated mice were 

harvested three days after intravenous cancer cell injection and GFP+ MMTV-

PyMT cancer cells analysed for their expression of CD24 and CD90 by flow 

cytometry (Fig. 3.21 a). Strikingly, both, neutrophil-secreted factors and isolated 

lung neutrophils induced a doubling of MIC frequencies among the total cancer cell 

population (Fig. 3.21b+d-e). Interestingly, the overall presence of MMTV-PyMT 
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cancer cells in the lung of recipient mice did not significantly change after transfer 

of freshly isolated lung neutrophil or LuN medium within three days (Fig. 3.21 c+f). 

In order to show that this relative increase of the MIC subpopulation upon 

neutrophil/LuN medium treatment is functionally relevant, we continued treatment 

of intravenously GFP+ cancer cell-injected mice to assess early metastatic 

colonisation (Fig. 3.22 a). Indeed, five intravenous injections of LuN media every 

twelve hours after Luciferase-expressing MMTV-PyMT cancer cell injection led to 

enhanced metastatic outgrowth in Rag1-/- mice after three weeks as determined by 

bioluminescence imaging for Luciferase activity (Fig. 3.22 b). Luciferase-expressing 

MMTV-PyMT cancer cells were isolated from spontaneously developed tumours in 

MMTV-PyMT+ Actin-Luciferase mice that constitutively express Firefly Luciferase 

under the control of the actin promoter (Lassailly et al., 2013). In an alternative 

setting, freshly purified neutrophils were co-injected with GFP+ MMTV-PyMT 

cancer cells followed by two additional neutrophil injections 48 hours and 96 hours 

later (Fig. 3.22 a) triggered a modest increase of experimental metastatic burden 

within one week (Fig. 3.22 c). Overall, these results suggest that neutrophil-derived 

factors expand the MIC pool among the total cancer cell population to favour 

metastatic lung colonisation. Please note that the observed boosting effects by lung 

neutrophil/LuN medium transfer on metastatic incidence appear partial in these 

experimental settings, which is likely due to the only sporadic injection of either 

neutrophil-conditioned media or purified neutrophils. Our in vivo gain-of-function 

strategy has the limitation of lacking the constant simulation within the metastatic 

microenvironment, where neutrophils are persistently present in a physiologic 

situation. Taking this into consideration, the ability of lung neutrophils to expand the 

MIC population and promote early metastatic seeding of MMTV-PyMT cancer cells 

in the lung seems very potent. 

Intrigued by this possibility, we set out to corroborate the effect of neutrophil-

derived factors to increase “stemness” and metastatic potential of the total cancer 

cell population directly in vitro. We isolated MMTV-PyMT cancer cells from 

spontaneous mammary tumours and cultured them in control, bone marrow 

neutrophil (BMN) or lung neutrophil-conditioned medium (LuN) in either non-

adherent sphere formation or adherent conditions on collagen-coated dishes. 

Notably, LuN medium displayed cell toxicity and reduced viable cancer cell 

numbers exclusively in vitro in adherent conditions, likely as a consequence of 
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potentially toxic factors in the medium, including granzymes, reactive oxygen 

species and lactoferrin, following isolation-induced neutrophil degranulation in vitro 

(Fig. 3.23 a-b). LuN medium triggered apoptosis of cancer cells as detected by 

TUNEL positivity leading to cell death by day five of adherent culture (Fig. 3.23 c-d). 

However, LuN medium showed to be less toxic for MMTV-PyMT cancer cells in 

non-adherent culture conditions and they thrived seven days post-plating (Fig. 24 

a-b). Importantly, in vitro LuN medium toxicity was not restricted to tumour cells in 

adherent conditions, but also affected cultured primary lung stromal cells and 

reduced their remaining cell numbers in a similar fashion (Fig. 23 b-c). Hence, we 

suspected a potentially non-physiological effect of lung neutrophil-derived factors in 

in vitro culture, which does not appear to be relevant but actually notably different 

in vivo in the lung. In fact, the lung microenvironment appears to counteract 

neutrophil-derived harmful factors because, strikingly, the same LuN medium 

caused no obvious lung damage or toxicity towards cancer cells in vivo when 

injected intravenously into Rag1-/- mice (Fig. 3.21 c+f and Fig. 3.22 b-c). 

Nevertheless, we also isolated Ly6G+ neutrophils from the bone marrow and 

produced conditioned cell culture medium (BMN medium) to potentially avoid in 

vitro toxicity. BMN media resulted non-toxic in vitro and remaining cancer cell 

numbers in adherent culture were unaltered compared to untreated culture media 

(Fig. 3.23 a), however in expense of neutrophil immaturity that might not entirely 

reflect the functions of lung neutrophils. Strikingly, freshly isolated MMTV-PyMT 

cancer cells cultured in LuN medium in non-adherent conditions showed enhanced 

sphere formation potential already after seven days of culture (Fig. 3.24 a-b). This 

observation strongly suggests a support of neutrophil-derived factors to specifically 

the cancer cells that intrinsically retain higher anoikis resistance and self-renewal 

activity. BMN medium appeared to be less potent compared to LuN medium, 

however a significant increase in sphere formation was also detected after longer 

cancer cell exposure time (Fig. 3.24 b). Hence, neutrophils appear to have a 

promoting activity that enhances the potential of the total cancer cell population in 

vitro, potentially by directly expanding the subpool of more potent cancer stem cell-

like cells. This pro-tumourigenic feature of lung neutrophils of mammary tumour-

bearing hosts seems to be independent from the side effect of neutrophil-derived 

factor-induced cell toxicity in adherent culture (discussed in detail in section 

6.2.3.1). More immature neutrophils from the bone marrow might not cause in vitro 
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toxicity, but appear to be less potent in supporting cancer stem cell-like cells than 

tumour-induced neutrophils in the pre-metastatic lung. Hence, we focussed on lung 

neutrophils and their derived factors that comprise part of the pre-metastatic lung 

microenvironment in vivo. 

Next, we aimed to substantiate our hypothesis that neutrophil-derived factors might 

modify the composition of the total cancer cell population favouring more 

tumourigenic or metastatic subpools. To this end, we tested the potential of total 

cancer cells after short-term treatment with neutrophil-derived factors, rather that 

continuous exposure. We pre-treated primary MMTV-PyMT cancer cells with LuN 

medium for three days in adherent culture (Fig. 3.25 a) followed by plating them in 

fresh, unmodified culture medium in non-adherent conditions in vitro to form 

spheres. Alternatively, we injected three-day LuN-treated cancer cells orthotopically 

into the mammary gland to assess tumour initiation potential or intravenously into 

the lung of Rag1-/- mice to determine their ability to initiate metastases in vivo. For 

some experiments, we used primary Luciferase-expressing MMTV-PyMT cancer 

cells to quantify metastatic growth in the lung. Short-term LuN medium pre-

treatment boosted the tumourigenic potential of MMTV-PyMT cancer cells in vitro 

as well as in vivo and enhanced both, their sphere formation as well as their tumour 

formation potential in 4 independent experiments (Fig. 3.25 b-d). Importantly, LuN 

exposure also significantly enhanced the experimental metastatic initiation and lung 

colonisation competence of the total cancer cell population assessed by 

quantification of visible surface nodules or bioluminescence imaging for Luciferase 

activity (Fig. 3.25 e-f). Unfortunately, we were unable to monitor the expression of 

MIC markers CD24+CD90+ on MMTV-PyMT cells cultured in LuN medium to prove 

our hypothesis that neutrophil-derived factors mediate an expansion of the MIC 

pool in vitro, likely due to the side effect of cell toxicity in adherent culture. 

Nevertheless, we confirmed direct cancer cell-promoting functions of neutrophil-

derived factors that significantly enhance the tumourigenic and metastatic potential 

of MMTV-PyMT cancer cells. 

Collectively, we observe that neutrophil-derived factors alter the heterogeneity of 

cancer cells favouring CD24+CD90+ metastasis-initiating cells (MICs) and expand 

the MIC subpool among the total cancer cell population in vivo (Fig. 3.21). This 

expansion might be caused by induction of MIC proliferation or, eventually, a 
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reversion of nonMICs to a MIC state due to high plasticity among cancer cells 

(Plaks et al., 2015). Thereby, neutrophils directly enhance the tumourigenic and 

metastatic competence of mammary cancer cells in vitro and in vivo that results in 

increased sphere formation, initiation of primary tumour formation as well as 

metastatic colonisation ability of total cancer cells (Fig. 3.22, Fig. 3.24 and Fig. 

3.25). 

 

 
Figure 3-20 Neutrophil Purity and viability of neutrophils isolated from the bone 
marrow and the pre-metastatic lung of MMTV-PyMT tumour-bearing mice 
(a) Representative flow cytometric analysis of neutrophil purity after isolation from the 
bone marrow or lung compared to total lung tissue, gated on alive single cells. Only 
neutrophil purity of ≥90% was used for further experiments. (b) Neutrophil viability was 
assessed by flow cytometry for propidium iodide (PI) after isolation (n=8 biological 
replicates per group pooled from 8 independent experiments). 
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Figure 3-21 Lung neutrophils of MMTV-PyMT cancer-bearing mice enrich for the 
subpool of cancer cells driving metastatic initiation 
(a) Schematic representation and timeline of the experimental setup to assess 
neutrophil-mediated effects on the heterogeneous cancer stem cell population. Rag1-/- 
mice were intravenously (IV) injected with GFP-labelled MMTV-PyMT cells and 
subsequently three times with control or LuN medium or once with neutrophils freshly 
isolated from the pre-metastatic lung (n≥3 per group per experiment, two independent 
experiments are shown individually (b+e) or merged into the same graph (c+f)). (b-f) 
Flow cytometric quantification of frequencies of total present GFP-labelled MMTV-
PyMT cells, gated on alive single cells (c+f) or frequencies of CD24+CD90+ MICs 
among total GFP-labelled MMTV-PyMT cells, gated on GFP+ cells (b+e) in the lung 
three days after cancer cell injection. (d) Representative flow cytometric analysis of 
surface CD90+ MMTV-PyMT cancer cells among GFP+CD24+ cells in the lung of 
quantification shown in (d). 
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Figure 3-22 Transfer of mammary tumour-induced lung neutrophils or their 
secreted factors enhance lung colonisation competence of MMTV-PyMT cancer 
cells in vivo 
(a) Schematic representation and timeline of the experimental setup to determine if 
neutrophil-mediated enrichment of MICs within the total MMTV-PyMT cancer cell 
population leads to enhanced metastatic burden. (b-c) Rag1-/- mice were intravenously 
(IV) injected with total Luciferase-expressing (b) or GFP-labelled MMTV-PyMT cells (c) 
followed by either three to five times intravenous injection with control or LuN medium 
(b) or by three times intravenous injection with neutrophils freshly isolated from a pre-
metastatic lung (c). Quantification of experimental metastatic incidence by 
determination of bioluminescence intensity at 2.5 weeks relative to 24 hours post-
cancer cell injection (b, n≥11 per group pooled from 3 independent experiments using 
different MMTV-PyMT cancer cell preparations) or flow cytometric analysis of GFP+ 
cancer cells in the lung, gated on CD24+ cells (c, one primary MMTV-PyMT cancer cell 
preparation injected into n≥4 mice per group (technical replicates) and analysed in 
parallel) is shown. 
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Figure 3-23 Pre-metastatic lung neutrophil-conditioned medium is toxic towards 
different cell types in adherent conditions in vitro that is likely a side effect of 
culture 
(a) Quantification of remaining, alive primary MMTV-PyMT cancer cells cultured in 
control, BMN or LuN medium in adherent conditions for three days by detaching, 
trypan blue-staining and cell counting (n≥4 biological replicates per group pooled from 
≥4 independent experiments). (b-c) Bright field microscopic images of primary MMTV-
PyMT cancer cells or freshly isolated lung stromal cells grown in control, BMN or LuN 
medium for three (b) or five (c) days in adherent conditions, magnification 10x. (d) 
Immunofluorescence microscopic images of primary MMTV-PyMT cancer cells after 
three-day culture in control or LuN media in adherent condition stained for DAPI (blue) 
to visualise nuclei and TUNEL reagent (green) to detect apoptotic cells, magnification 
20x. Arrows indicate TUNEL+ cells. (b-d) Representative experiment of at least two 
independent repetitions is shown. 
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Figure 3-24 Lung neutrophil-derived factors promote self-renewal and anoikis 
resistance of the total MMTV-PyMT cancer cell population  
(a-b) Bright field microscopic images (a) and quantification (b) of ≥7 independent 
experiments using different primary MMTV-PyMT cell preparations grown for seven 
days or two weeks in ultra low-attachment conditions that promote tumour cell sphere 
formation in control cell culture medium or medium conditioned by neutrophils isolated 
from the bone marrow (BMN) or the lung (LuN) of MMTV-PyMT mammary tumour-
bearing mice, scale bar is 10µm. Sphere formation index (SFI) in (b) was calculated as 
the combination of area of all formed spheres per experiment to incorporate sphere 
number and size. 
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Figure 3-25 A pre-metastatic lung neutrophil-derived paracrine mechanism 
promotes in vitro self-renewal as well as in vivo tumour initiation and metastatic 
lung colonisation potential of mammary cancer cells 
(a) Schematic representation of in vitro pre-treatment of MMTV-PyMT cancer cells with 
control or lung neutrophil-conditioned (LuN) medium in adherent culture for three days 
followed by a functional test of tumourigenic potential. (b-f) LuN-medium pre-treated 
unlabelled or Luciferase-expressing MMTV-PyMT cells were detached and plated in 
ultra-low attachment conditions followed by sphere-quantification at day 10 post-
seeding for ≥3 independent experiments using different MMTV-PyMT tumour cell 
preparations (b), orthotopically injected into the mammary gland of Rag1-/- mice and 
tumour burden assessed by dissection and weighing (c-d; n≥2 per group of 4 
independent experiments and average tumour weights per experiment are depicted) or 
intravenously injected into Rag1-/- mice and the resulting surface lung metastases 
counted 20 days after injection (e-f, n≥8 per group pooled from 2 independent 
experiments using different MMTV-PyMT cancer cell preparations). (d) Representative 
photograph of dissected mammary tumours quantified in (c). (f) Representative image 
of cancer cell-derived bioluminescence intensity in intravenously injected mice shown 
in (e). Sphere formation index (SFI) in (b) was calculated as the combination of area of 
all formed spheres per experiment to incorporate sphere number and size. 
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3.3 Chapter conclusion 

Neutrophils appear to be systemically mobilised by growing (mammary gland) 

tumours and their increase is most pronounced in the lung, the predisposed site of 

distant metastasis. This lung neutrophil accumulation does not seem to be 

instigated by metastatic cancer cells in the lung or their secretion of G-CSF and is 

also independent of CXCR2 presence on neutrophils. Strikingly, tumour-induced 

lung neutrophils appear very similar to wildtype lung neutrophils and their 

frequencies increase prior to infiltration of metastatic cancer cells. 

Importantly, neutrophils act in a pro-metastatic fashion, as their genetic or antibody-

mediated depletion reduces metastatic burden, and directly supports early lung 

colonisation by arriving cancer cells. This pro-metastatic activity of neutrophils 

driving metastasis initiation is independent from effects on cancer cell 

dissemination from the primary tumour or extravasation in the lung. Neutrophils 

appear to be involved in recruitment of NK cells to the metastatic site at late 

metastatic stages, however they do not create an immunosuppressive environment 

during the onset of metastatic lung colonisation by cancer cells in vivo. In fact, pre-

metastatic lung neutrophils provide a likely coincidental niche for arriving metastatic 

cancer cells in the organ targeted for metastasis. Neutrophil-derived paracrine 

signals appear to change the composition of the heterogeneous cancer cell 

population in favour of cells in the lung that are intrinsically more competent for 

metastatic initiation (Fig. 3.21 and Fig. 3.22) and thereby facilitate metastatic lung 

colonisation (Fig. 3.26). 
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Figure 3-26 Lung neutrophils expand the metastasis-initiating subpopulation of 
mammary cancer cells to drive metastatic lung colonisation a direct fashion 
In order to metastasise, mammary cancer cells disseminate from the primary tumour, 
migrate through the circulation to arrive at the distant metastatic site, the lung. There, 
neutrophils are present in elevated numbers and provide a direct pro-tumourigenic 
signal that promotes expansion of the subpool of cancer cells that intrinsically has a 
superior metastatic initiation potential (MICs) within the total cancer population. 
Thereby, neutrophils directly facilitate successful metastatic lung colonisation of 
mammary cancer cells. 
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Chapter 4. Alox5-derived metabolites mediate the 

metastasis supporting activity of neutrophils by 

induction of proliferation in metastasis-initiating 

cells during early lung colonisation 

4.1 Chapter Introduction 

We unravelled a previously unknown function of pre-metastatic lung neutrophils to 

support lung colonisation of mammary cancer cells by directly promoting the highly 

metastatic cancer cell subpopulation (section 3). In order to improve our 

understanding of the mechanisms behind this neutrophil activity, we set out to 

identify the responsible neutrophil-derived factor(s). In fact, neutrophils can secrete 

a plethora of factors, many of which with known pro-tumourigenic functions 

including proteins like CCL2, MMP9, HGF and IL-1 (section 1.3) and (Mitchem and 

DeNardo, 2012, Tamassia et al., 2012). Various cells in the tumour 

microenvironment can be an additional source of these mediators (sections 1.2) 

and might likely compensate for neutrophil depletion, therefore we concentrated on 

factors more characteristic of innate leukocytes. 

The eicosanoid inflammatory mediators leukotrienes comprise a family of lipids that 

are mainly produced by innate leukocytes including neutrophils, macrophages, 

monocytes, eosinophils, basophils and mast cells via the lipoxygenase pathway 

(section 1.2.3.5). The enzyme Arachidonate 5-lipoxygenase (Alox5) is crucial for 

leukotriene synthesis as it converts arachidonic acid into an unstable intermediate 

Leukotriene A4 (LTA4). LTA4 is further metabolised by Leukotriene-A4 hydrolase 

into the dihydroxy-leukotriene B4 (LTB4) or by Leukotriene C4 synthase into the 

cysteinyl-leukotriene C4 (LTC4). LTB4 and LTC4 are secreted by innate leukocytes 

and extracellular LTC4 can additionally be modified to leukotriene D4 and E4 

(LTD4 and LTE4). LTB4 acts on its two receptors LTB4 receptor 1 and 2 (BLT1 and 

2) and cysteinyl leukotrienes LTC4, LTD4 and LTE4 (LTC-D-E4) signal via their 

receptors cysteinyl leukotriene receptor 1 and 2 (CysLT1 and 2), all G protein-

coupled receptors that are expressed on a variety of cell types (section 1.2.3.5 and 

Fig. 4.1). Leukotrienes have previously been reported to be involved in 
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tumourigenic processes with rather pro-tumourigenic roles for LTB4 and more 

antagonistic functions of cysteinyl leukotrienes LTC-D-E4 (section 1.2.3.5.1).  

We addressed the role of neutrophil-derived Alox5 metabolites/leukotrienes in 

metastatic lung colonisation of mammary cancer mouse models taking advantage 

of Alox5-deficient mice (Chen et al., 1994) and the Alox5 inhibitor Zileuton (section 

1.2.3.5.1) as well as the leukotriene receptor inhibitors LY255283 (BLT2 inhibitor) 

(Herron et al., 1992) and BAY-u9773 (CysLT2 inhibitor) (Tudhope et al., 1994). 

Also, we stimulated cancer cells with the lipids LTB4 or a mixture of cysteinyl-

leukotrienes LTC4, LTD4 and LTE4 (LTC-D-E4). 

 

 
Figure 4-1 Overview on leukotriene synthesis and their signalling through cell 
surface receptors 
Leukotrienes are lipid signalling mediators that are synthesised from arachidonic acid 
by the enzyme Alox5. Subsequently, they are secreted by leukocytes like neutrophils 
and eventually further modified. Leukotrienes signal via their cell surface receptors on 
target cells, for example BLT2 and CysLT2. 
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4.2 Results 

4.2.1 Pre-metastatic lung neutrophils secrete the Alox5 

products/leukotrienes which enhance the metastatic potential of 

mammary cancer cells comparably to the cocktail of neutrophil-

derived factors 

Lung neutrophil-conditioned medium (LuN) contains the factors facilitating the 

neutrophil-mediated pro-metastatic activity because we obtained similar results 

when treating MMTV-PyMT cancer cells with LuN medium or freshly isolated pre-

metastatic lung neutrophils (section 3.2.4). Hence, we performed a candidate 

screening approach to identify present protein and lipid signalling mediators. 

Commercially available Protein Profiler Arrays (R&D systems) were used to assess 

presence of proteins and Enzyme Immunoassays to measure the content of lipids. 

Numerous secreted factors were detected in LuN medium and we selected proteins 

and lipids present in high levels as well as more innate immune cell-specific factors 

for further functional tests, in particular LTB4 as well as LTC4, LTD4 and LTE4, 

prostaglandin E2 (PGE2), CCL2, CCL6, CCL22 and MMP9 (Fig. 4.2 and Fig. 4.3). 

Importantly, direct leukotriene-treatment of MMTV-PyMT cancer cells in ten-day 

non-adherent culture recapitulated the features of LuN medium by boosting 

tumourigenic sphere formation potential, while all other tested factors failed to do 

so even in different concentrations (Fig. 4.4). Hence, we suspected the Alox5 

products leukotrienes to be the potential paracrine mediators of lung-neutrophil pro-

metastatic activity. To address this hypothesis, we firstly tested if leukotrienes 

enhance the tumourigenic and metastatic potential of primary mammary cancer 

cells. To this end, we stimulated total MMTV-PyMT cancer cells for three days in 

adherent culture with both types of leukotrienes simultaneously followed by 

detachment and the determination of their tumourigenic and metastatic potential 

(Fig. 4.5 a) in equal settings like for lung neutrophil-derived factors (Fig. 3.25). We 

decided to test the effects of co-stimulation of cancer cells with LTB4 and cysteinyl 

leukotrienes together because both leukotriene types are produced by the same 

enzyme and readily present in lung neutrophil-conditioned medium. Hence, 

leukotrienes are likely to be released by pre-metastatic lung neutrophils 

simultaneously in vitro and in the lung tissue (discussed in detail in section 6.2.2). 
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Three-day leukotriene pre-treatment of MMTV-PyMT cancer cells increased cancer 

cell in vivo competence for initiation of mammary tumour formation upon injection 

into the mammary gland of Rag1-/- mice compared to control Ethanol (EtOH)-

treated cells as measured by increased tumour burden in 4 out of 5 independent 

experiments (Fig. 4.5 b-c). Moreover, leukotriene-stimulated GFP-labelled MMTV-

PyMT cancer cells showed a significantly enhanced lung metastasis initiation 

potential in vivo when intravenously injected in Rag1-/- mice determined by flow 

cytometric analysis of GFP+ cells present in the lung (Fig. 4.5 d-e). Thus, the Alox5 

products leukotrienes recapitulated the features of LuN medium to boost 

tumourigenicity of mammary cancer cells in vitro. Next, we tested the ability of 

leukotrienes to induce a similar alteration of the composition of the total MMTV-

PyMT cancer cell population in favour of intrinsically highly metastatic cells (MICs) 

in vitro that we observed by lung neutrophil-conditioned medium treatment. In line 

with functionally superior metastatic ability of the total MMTV-PyMT cancer cell 

population after in vitro leukotriene-exposure, we observed that leukotrienes 

increased MIC frequency within MMTV-PyMT tumour cells as assessed by flow 

cytometric analysis for CD24 and CD90 (Fig. 4.6 a). Importantly, this data shows 

that the Alox5 products leukotrienes corroborate the effects of neutrophil-derived 

factors/LuN medium on mammary cancer cells seeded in the lung (Fig. 3.21) and 

appear to expand the MIC subpopulation in vitro. In concert, leukotriene-stimulation 

of mouse 4T1 mammary cancer cells enriched the CD49f-high cell subpool (Fig. 

4.6 b), a surface marker previously described to correlate with highly tumourigenic 

cancer stem cell-like populations (Chou et al., 2013, Stingl et al., 2006, Yu et al., 

2012). 

In summary, the Alox5 metabolites leukotrienes appear to shift heterogeneous 

cancer cell populations in favour of intrinsically highly tumourigenic or metastatic 

cells and thereby increase metastatic competence in a similar fashion as pre-

metastatic lung neutrophil-conditioned medium. This evidence indicates that 

leukotrienes might be the neutrophil-derived paracrine factors mediating their pro-

metastatic activity during early lung colonisation of mammary cancer cells. 
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Figure 4-2 Analysis of secreted proteins present in conditioned media from pre-
metastatic lung neutrophils of MMTV-PyMT+ mice 
(a-b) R&D Proteome ProfilerTM Array dot blot membranes were incubated with either 
untreated control or LuN medium from lung neutrophils of MMTV-PyMT+ mice to 
identify present proteins (one membrane array was used per group). A list of all 
detected proteins in LuN medium including their array position (a) as well as the films 
showing chemiluminescence signal for all 4 used arrays (b) are shown. FGF basic 
served as a positive control as the recombinant protein was added to the medium. 
Cat.Nr. Catalogue number of R&D. 
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Figure 4-3 Determination of lipid factors present in conditioned media from pre-
metastatic lung neutrophils of MMTV-PyMT+ mice 
(a-c) Enzyme immunoassay (EIA) analysis was used to identify lipid components in 
control and LuN medium. The detailed results of the EIA analysis for LTB4 (a), 
cysteinyl leukotrienes (b) and PGE2 (c) are depicted (n≥4 different media preparations 
per group analysed in 2 independent experiments). Results are displayed in arbitrary 
units relative to background signal detected in negative controls without added 
medium. Of note, the EIA for cysteinyl leukotrienes equally detected leukotriene C4, D4 
and E4. N.d.: not detected. 
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Figure 4-4 Effect of selected neutrophil-derived factors on self-renewal ability of 
MMTV-PyMT cancer cells in sphere formation assays 
MMTV-PyMT cells were seeded in single cell suspensions in ultra-low attachment 
plates and treated with the indicated concentrations of lipid mediators or recombinant 
(r) proteins for ten days followed by quantification of size and number of formed 
spheres. Quantification was made of ≥3 independent experiments using different 
MMTV-PyMT tumour cell preparations for every condition. Sphere formation index 
(SFI) was calculated as the combination of area of all formed spheres per experiment 
to incorporate sphere number and size and is shown relative to Ethanol (EtOH) or PBS 
(Phosphate-buffered saline)-treated control. LT: Leukotriene 
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Figure 4-5 Leukotrienes promote primary tumour initiation and metastatic lung 
colonisation potential of the total MMTV-PyMT cancer cell population 
(a-c) Three-day LTB4- and LTC-D-E4-treated MMTV-PyMT cells in adherent culture (a) 
were detached and analysed for primary tumour initiation potential by orthotopic 
transplantation in Rag1-/- mice, tumour resection and weighing (b; n≥2 per group of 5 
independent experiments and average tumour weights per experiment are depicted). 
Representative image of resected tumours (c) is shown. (d-e) Experimental metastasis 
initiation competence of leukotriene pre-treated GFP-labelled MMTV-PyMT after IV 
injection was determined by quantification of CD24+GFP+ cells in the lung by flow 
cytometry, gated on alive single cells (d, n=6 per group pooled from 2 independent 
experiments with different MMTV-PyMT cell preparations), and representative 
stereomicroscopic images of GFP+ cancer cell colonies in the lung is shown (e). 
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Figure 4-6 Leukotrienes specifically enrich for cancer cell subpopulations with 
superior tumourigenic or metastatic competence 
Three-day LTB4- and LTC-D-E4-treated MMTV-PyMT (a, n=8 per group pooled from 4 
independent experiments with different MMTV-PyMT preparations, relative to EtOH 
control) or 4T1 cells (b, n=6 per group pooled from 6 independent experiments) in 
adherent culture were analysed for the MIC marker CD90, gated on CD24+ cells (a), or 
the CSC marker CD49f, gated on alive single cells (b), by flow cytometry. LT: 
Leukotriene. 
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4.2.2 Leukotrienes induce proliferation of specifically the metastasis-

initiating cancer cell subset because it is enriched for expression of 

leukotriene receptors 

Our results demonstrate that leukotriene-treatment increases the tumourigenic and 

metastatic potential of cancer cells likely by expanding the intrinsically more potent 

subpopulations. Hence, we set out to unravel the molecular mechanisms behind 

the actions of leukotrienes on the target cancer cells. First of all, we focussed on 

examining the presence of leukotriene receptors (LTRs) on mammary cancer cells. 

The Alox5 products leukotrienes signal through their cell surface receptors, LTB4 

through BLT1 and BLT2 and cysteinyl-leukotrienes LTC-D-E4 through CysLT1 and 

CysLT2 and, in fact, leukotriene receptor expression has been previously observed 

in cancer cells (section 1.2.3.5). We analysed expression of all 4 known leukotriene 

receptors on the surface of primary MMTV-PyMT, 4T1 and MDA-MB-231 cells by 

flow cytometry and found BLT2 and CysLT2 to be present on a small proportion. 

However, we did not detect surface expression of BLT1 or CysLT1 (Fig. 4.7 a-b). 

The fact that BLT2 and CysLT2 are expressed on small subsets of mammary 

cancer cells (about 2.5% or 5% respectively) is a very interesting observation in 

light of metastasis-initiating or cancer stem cell like cells also being small 

subpopulations of total cancer cells that are expanded upon leukotriene treatment 

(Fig. 4.6). Hence, we hypothesised that leukotriene receptors might be 

preferentially present on these cancer cell subpools which intrinsically have a 

higher tumourigenic or metastatic potential. In fact, we observed a noteworthy 

expression pattern of both, BLT2 and CysLT2, within the heterogeneous mammary 

cancer cell population. Leukotriene receptors appear to be highly enriched on the 

MIC subpopulation of primary MMTV-PyMT cancer cells compared to nonMICs (Fig. 

4.7 c-e) as well as on other well-known higher tumourigenic subsets of breast 

cancer cell lines. These include Aldefluor-active (Ginestier et al., 2007, Hiraga et al., 

2011) or CD44-high (Al-Hajj et al., 2003, Sheridan et al., 2006) human MDA-MB-

231 cells and CD49f-high mouse 4T1 cells (Stingl et al., 2006, Yu et al., 2012) (Fig. 

4.7 f-h). The enrichment of leukotriene receptor-expressing cells in mammary 

cancer cell subsets with higher tumour initiation potential suggests that leukotriene 

receptors themselves might identify a cancer cell population with enhanced 
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tumourigenic competence. In order to test this hypothesis, freshly isolated MMTV-

PyMT cancer cells were flow-sorted based on the presence (LTR+) or absence 

(LTR-) of BLT2 and/or CysLT2 followed by two functional tests for tumourigenic 

potential. Firstly, LTR+ and LTR- MMTV-PyMT cancer cells were cultured in non-

adherent conditions to assess their self-renewal ability by quantification of sphere 

formation. Secondly, these cancer cell subpopulations were orthotopically injected 

into Rag1-/- mice to compare their tumour formation competence. Strikingly, LTR+ 

MMTV-PyMT cells showed enhanced sphere formation and mammary tumour 

initiation ability compared to LTR- cancer cells (Fig. 4.8). Here, we analysed 

MMTV-PyMT cancer cell populations that contained single BLT2 or CysLT2 as well 

as double-expressing cells with the reason that both of their ligand types, LTB4 and 

cysteinyl leukotrienes, enhance tumourigenic and metastatic potential of cancer 

cells and cause metastasis-initiating and cancer stem cell-like cell expansion (Fig. 

4.5 and 4.6). However, the individual potential of BLT2 and CysLT2 single-positive 

or double-positive mammary cancer cell populations would have to be analysed in 

dedicated experiments (discussed in detail in section 6.3.2). Nevertheless, in 

agreement with the enrichment of leukotriene receptor-expressing cells in cancer 

stem cell-like cell subsets, leukotriene receptor expression identifies a novel 

subpopulation of MMTV-PyMT cancer cells with enhanced intrinsic tumourigenic 

potential independent from ligand stimulation. 

Next, we aimed to elucidate the signalling downstream of BLT2 and CysLT2 

induced by leukotriene stimulation in mammary cancer cells. In line with previous 

reports on LTB4-mediated signalling (Choi et al., 2010, Kim et al., 2010a, Woo et 

al., 2002), the analysis of the intracellular response in cancer cells revealed that 

both, LTB4 and LTC-D-E4, increased levels of intracellular reactive-oxygen-species 

(ROS) immediately upon stimulation (Fig. 4.9 a). Further, we were intrigued by 

reports in the literature that demonstrate the LTB4-BLT2 axis-dependent activation 

of the mitogen-activated protein kinases ERK1/2 in cancer cells, which is directly 

triggering cell proliferation (Ihara et al., 2007, Park et al., 2012, Tong et al., 2002, 

Tong et al., 2005, Woo et al., 2002, Zhai et al., 2010). In general, activation of the 

MAPK/ERK pathway is usually associated with increased cell proliferation and a 

well-studied target in cancer therapy (section 1.1.3). Hence, the induction of 

proliferation via ERK1/2 activation in leukotriene receptor-expressing cells would be 

a likely explanation for the observed leukotriene-mediated enrichment of MICs and 
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cancer stem cell-like cells (Fig. 4.6) as these subpopulations are enriched for 

leukotriene receptor expression (Fig. 4.7). In fact, we observed enhanced activation 

of ERK1/2 in primary MMTV-PyMT cells starting 30 minutes after stimulation with 

LTB4 or LTC-D-E4 in adherent culture as determined by Western blotting for 

phosphorylated ERK1/2 (pERK1/2) on protein lysates (Fig. 4.9 b-d). Moreover, we 

confirmed that LTB4 treatment leads to activation of ERK1/2 also in the human 

breast cancer cell line MDA-MB-231 (Fig. 4.9 e). In order to validate that LTR-

expressing cells are required within the total cancer cell population to detect a 

leukotriene-mediated pERK1/2 increase, we largely depleted mammary 4T1 cancer 

cells from LTR+ cells by flow sorting. Next, we stimulated cancer cells with 

leukotrienes three days after sorting, at which time the frequency of LTR+ cells was 

significantly reduced (Fig. 4.10 a). This LTR+ cell-reduced cancer cell population 

failed to activate ERK1/2 upon LTB4 treatment, while unsorted total 4T1 cancer 

cells showed a clear increase in ERK1/2 phosphorylation (Fig. 4.10 b-c). In an 

alternative approach to test the functional relevance of leukotriene receptors for 

leukotriene-mediated ERK1/2 stimulation, we took advantage of specific 

leukotriene receptor inhibitors. Both, the BLT2 inhibitor LY255283 and the CysLT2 

inhibitor BAY-u9773 interfered with LTB4 or LTC-D-E4-mediated ERK1/2 activation 

in 4T1 cancer cells, respectively (Fig. 4.11). Of note, leukotrienes and leukotriene 

receptor inhibitors are supplied in 100% Ethanol, therefore cancer cells are 

exposed to elevated Ethanol levels in culture when adding both. This high Ethanol 

concentration (about 2%) led to unexpected reactions of primary MMTV-PyMT 

cancer cells and made this experiment unfeasible. The 4T1 cancer cell line 

appeared to be more resistant, however addition of elevated amounts of Ethanol to 

the culture medium caused an initial decrease of ERK1/2 phosphorylation for 5-15 

minutes. Hence, we displayed pERK1/2 levels in 4T1 cancer cells starting at five 

minutes after leukotriene-stimulation under presence of leukotriene receptor 

inhibitors. Nevertheless, these data demonstrate that LTB4 and LTC-D-E4 trigger 

an intracellular increase of ROS levels in concert with ERK1/2 activation in a BLT2 

or CysLT2-dependent manner, respectively. 

Next, we aimed to determine if this leukotriene-induced ERK1/2 phosphorylation 

leads to enhanced proliferation of leukotriene receptor-expressing cells, which are 

enriched among intrinsically highly metastatic or tumourigenic cell subsets. Indeed, 

three-day leukotriene-treatment of total human MDA-MB-231 cancer cells resulted 
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in an increased frequency of LTR+ cells, suggesting that ERK1/2 activation 

functionally boosts their proliferation (Fig. 4.12 a). Also, leukotriene-stimulation 

specifically increased the proliferation of MICs, but not nonMICs, in accordance 

with the MIC subpopulation being enriched for leukotriene receptor-expressing cells 

(Fig. 4.12 b-d). Cell proliferation was assayed by pulse-chase incorporation of BrdU 

followed by BrdU detection by flow cytometry. Inhibition of MEK1/2, the upstream 

kinases of ERK1/2, using the specific inhibitor PD0325901 prevented the 

leukotriene-mediated elevation in MIC proliferation, stressing its functional 

dependency on ERK1/2 activation (Fig. 4.12 c). 

In summary, the Alox5 products leukotrienes appear to alter the composition of the 

total mammary cancer cell population by providing a selective proliferative signal 

and ERK1/2 activation to cancer cell subsets that retain intrinsically higher 

tumourigenic and metastatic competence due to their enrichment for leukotriene 

receptor-expressing cells. 
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Figure 4-7 Leukotriene receptors BLT2 and CysLT2 are expressed on mouse and 
human breast cancer cells and enriched in the metastasis-initiating or cancer 
stem cell-like cell subpopulations 
(a-b) Representative flow cytometric analyses of primary MMTV-PyMT cancer cells, 
the mouse mammary cancer cell line 4T1 and the human breast cancer cell line MDA-
MB-231 for expression of the leukotriene B4 receptors 1 (BLT1) and 2 (BLT2) (a) as 
well as the cysteinyl leukotriene receptors 1 (CysLT1) and 2 (CysLT2) (b). (c-e) 
Quantification (c-d) and representative flow cytometric analysis (e) of BLT2+ (c) and 
CysLT2+ cells (d) among MMTV-PyMT non-MICs and MICs (n≥4 per group, 2 
independent experiments). (f-h) Flow cytometric quantification of frequencies of 
leukotriene receptor BLT2+ and CysLT2+ single or double-positive cells (LTR+) among 
cancer stem cell-like Aldefluor (ALDH)+ or CD44-high subpopulations of human MDA-
MB-231 cells (f-g) or CD49f+ mouse 4T1 cells (h), (n≥4 per group, 4 independent 
experiments). All flow cytometric analyses were gated on alive single cells. 



Chapter 4 Results 

 

183 

 

 
Figure 4-8 BLT2 and CysLT2 leukotriene receptor expression identifies a novel 
MMTV-PyMT cancer cell population with enhanced tumourigenic potential 
(a-b) Sorted leukotriene receptor (LTR)+ or LTR- MMTV-PyMT tumour cells were 
plated in non-attachment conditions followed by sphere-quantification at day ten post-
seeding for 3 independent experiments (a) or grafted onto the mammary gland of 
Rag1-/- mice for analysis of tumour formation potential (b). Tumour burden was 
determined by weighing (n=8 per group pooled from 2 independent experiments 
isolating cells from different spontaneous primary tumours) after three weeks and (c) 
representative image of tumours is shown. Sphere formation index (SFI) was 
calculated as the combination of area of all formed spheres per experiment to 
incorporate sphere number and size. 
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Figure 4-9 LTB4 and cysteinyl leukotriene-stimulation induces ERK1/2 activation 
in primary MMTV-PyMT cancer cells and human MDA-MB-231 breast cancer cells 
(a) Primary MMTV-PyMT cancer cells were stimulated with Ethanol (EtOH) control, 
LTB4 or LTC-D-E4 in suspension under presence of the DCF-DA dye that becomes 
fluorescent upon oxidation by reactive oxygen species (ROS) and immediately 
analysed by flow cytometry. Mean fluorescence intensity relative to unstimulated 
control is shown over time (4 independent experiments). (b-d) Western blots of ERK1/2 
phosphorylation and total ERK1/2 levels (b-c) and quantification (d) of LTB4- or LTC-D-
E4-treated MMTV-PyMT cells for the indicated period of time (≥2 independent 
experiments). Quantification of ERK1/2 phosphorylation in (d) is shown relative to the 
internal loading control alpha-Vinculin. (e) Dot blot and quantification of ERK1/2 
phosphorylation in MDA-MB-231 cells after three-hour stimulation with LTB4 measured 
by R&D Proteome ProfilerTM Human Phospho-Kinase Array (ARY003B). Quantification 
of ERK1/2 phosphorylation is relative to reference spot on the array membrane (one 
membrane array was used). 
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Figure 4-10 ERK1/2 phosphorylation upon treatment with LTB4 is dependent on 
the presence of leukotriene receptor-expressing cells within total mammary 4T1 
cancer cells  
(a) Flow cytometric quantification of leukotriene receptor expression (BLT2 and 
CysLT2) of sorted LTR-reduced 4T1 cells, gated on alive single cells (n=3). (b-c) 
Representative analysis (b) and quantification (c) of 3 independent experiments of 
Western blots for total ERK1/2 and ERK1/2 phosphorylation relative to internal alpha-
Vinculin of unsorted 4T1 cells or 4T1 cells sorted for LTR negativity shown in (a). 
EtOH: Ethanol. 
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Figure 4-11 BLT2 and CysLT2 inhibitors prevent LTB4 and cysteinyl leukotriene-
induced ERK1/2 activation in mammary 4T1 cancer cells 
(a-d) Analysis and quantification of Western blot for total ERK1/2 and ERK1/2 
phosphorylation relative to internal loading control alpha-Vinculin of 4T1 cells following 
(a-b) LTB4 or (c-d) LTC-D-E4-stimulation for the indicated period of time in presence of 
BLT2 inhibitor LY255283 or CysLT2 inhibitor BAY-u9773, respectively (n=1). Dotted 
lines in (b+d) indicate the Ethanol only control level of ERK1/2 phosphorylation. Note 
the decrease of ERK1/2 phosphorylation observed after 5-15 minutes when adding 
both, leukotrienes and their receptor inhibitors, is due to the increase in Ethanol 
concentration. Data are shown as ERK1/2 phosphorylation recovery and increase from 
5 to 45 minutes after stimulation. These experiments were performed once. 
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Figure 4-12 Leukotriene directly expand the metastasis-initiating MMTV-PyMT 
cancer cell subpopulation by specifically inducing their proliferation 
(a) Flow cytometric quantification of 5 independent experiments of three-day LTB4 and 
LTC-D-E4-treated MDA-MB-231 cells for frequency of leukotriene receptor (BLT2 and 
CysLT2)-expressing cells displayed relative to Ethanol (EtOH)-treated control, gated on 
alive single cells. (b-d) Three-day leukotriene-treated MMTV-PyMT cells in adherent 
culture were analysed for BrdU incorporation of CD24+CD90+ MICs and CD24+CD90- 
nonMICs three hours after BrdU addition by flow cytometry, gated on alive single cells. 
Fold change of percentage of BrdU+ cells among CD24+CD90+ or CD24+CD90- cells 
is displayed relative to Ethanol (EtOH)-treated control in (b, 3 independent 
experiments). (c-d) BrdU incorporation upon leukotriene-stimulation in CD24+CD90+ 
MICs (c) or CD24+CD90- nonMIC MMTV-PyMT cells in additional presence of 
PD0325901 MEK inhibitor (MEKi, 3 independent experiments). DMSO=Dimethyl 
sulfoxide-treated control. 
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4.2.3 Neutrophil-derived Alox5 metabolites/leukotrienes are required to 

promote lung metastasis in vivo 

So far, we established that the Alox5 products leukotrienes induce the proliferation 

of specifically the highly metastatic subset of mammary cancer cells leading to their 

relative expansion (Fig. 4.6 and 4.12). Consequently, the total cancer population 

showed increased tumourigenicity and metastatic competence upon leukotriene 

treatment in vitro (Fig. 4.4 and Fig. 4.4) thereby mimicking the effects of neutrophil-

derived factors in vitro and in vivo (Fig. 3.21, 3.24 and 3.25). Next, we intended to 

test if Alox5-derived leukotrienes are functionally relevant in mediating the pro-

metastatic activity of neutrophils supporting early lung colonisation in vivo. We took 

advantage of a knock-out mouse model for the gene encoding Alox5, Alox5-/- mice 

(Chen et al., 1994). Firstly, to test the immune cell-specific relevance of Alox5 

during metastatic progression in vivo, we generated bone marrow chimeric mice 

where genetic Alox5 deficiency is restricted to the radiosensitive immune cell 

compartment. Wildtype recipient mice were lethally irradiated and 24 hours later 

intravenously injected with either wildtype or Alox5-/- bone marrow isolated from 

donor mice (Fig. 4.13 b). Percentage of bone marrow reconstitution was 

determined by semi-quantitative PCR for the Alox5 null allele of DNA isolated from 

the bone marrow at the end of the experiment (Fig. 4.13 a). Alox5-/- bone marrow-

reconstituted mice were grafted with MMTV-PyMT cells onto the mammary gland 

(Fig. 4.13 b) and displayed elevated levels of neutrophils in the lung compared to 

tumour-free controls. Importantly, there was no difference in lung neutrophil 

accumulation between MMTV-PyMT tumour-grafted wildtype and Alox5-/- bone 

marrow-recipient mice (Fig. 4.13 c-d). Also, Alox5-/- bone marrow chimeric mice 

showed unaltered primary tumour growth compared to controls (Fig. 4.13 e). 

Significantly, the efficiency of spontaneous lung metastasis was impaired in the 

absence of leukotriene production from bone marrow-derived cells in these mice 

(Fig. 4.13 f), thus being similar to the effects of neutropenia (Fig. 3.3, 3.6 and 3.15). 

This observation highlights the importance of Alox5-derived products from bone 

marrow-derived cells, likely neutrophils that accumulate in the lung, for 

spontaneous lung metastasis of mammary MMTV-PyMT tumours. To address the 

potentially pro-metastatic function of exclusively neutrophil-derived leukotrienes, we 
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isolated pre-metastatic lung Alox5-/- neutrophils from Alox5-/- mice grafted with 

MMTV-PyMT mammary tumours. These neutrophils were used to generate 

leukotriene-deficient neutrophil-conditioned medium (LuN-Alox5ko), which showed 

the same extend of cell toxicity as wildtype LuN medium (Fig. 4.14 b). Three-day in 

vitro pre-treatment of Luciferase-expressing MMTV-PyMT cancer cells with LuN-

Alox5ko medium in adherent conditions (Fig. 4.14 a) showed mildly reduced 

potency to increase sphere formation compared to wildtype LuN medium. Strikingly, 

leukotriene-deficient lung neutrophil-conditioned medium failed to boost metastatic 

competence of pre-treated MMTV-PyMT cancer cells following intravenous 

injection into Rag1-/- mice (Fig. 4.14 d-e). This loss-of-function approach validates 

the importance of specifically neutrophil-derived leukotrienes to promote efficiency 

of lung metastasis initiation of mammary cancer cells.  

Taken together, these data confirm the Alox5 products leukotrienes as crucial 

mediators of lung neutrophil pro-metastatic in vivo activity in altering the 

composition of heterogeneous cancer cell populations favouring highly metastatic 

cells and thereby enhancing metastatic potential. 
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Figure 4-13 Alox5-/- bone marrow-reconstituted mice display significantly 
ameliorated lung metastatic burden when grafted with a primary mammary 
MMTV-PyMT tumour 
(a-b) Wildtype mice were lethally irradiated and one day later intravenously injected 
with either wildtype (WT) or Alox5-/- (KO) bone marrow. Two months post-irradiation 
primary MMTV-PyMT cells were engraftment onto the mammary gland (b; n≥6 per 
group pooled from 2 independent experiments). Bone marrow reconstitution efficiency 
was determined by semi-quantitative PCR analysis of DNA isolated from the bone 
marrow (a). A calibration curve of the ratio between the PCR-band amplified from the 
wildtype and Alox5 null allele was used to calculate the percentage of reconstitution. 
Tests of eight representative mice are shown. Only mice with >80% Alox5 null bone 
marrow reconstitution where used for experiments. (c-f) Bone marrow-reconstituted 
mice 1.5 months post-tumour-graft and/or tumour-free controls were analysed. 
Quantification (c) and representative flow cytometric analysis (d) of CD11b+Ly6G+ 
neutrophil present in the lung, gated on alive single cells. Primary tumour load was 
determined by weighing (e) and spontaneous metastasis to the lung by quantification 
of surface lung metastases shown relative to tumour load (f). 
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Figure 4-14 The lung neutrophil-derived Alox5 products leukotrienes mediate the 
activity of neutrophils to boost metastatic competence of mammary cancer cells 
(a) Luciferase-expressing MMTV-PyMT cells were treated with control, wildtype LuN 
(LuN-wt) or Alox5-deficient neutrophils-derived LuN (LuN-Alox5ko) medium for three 
days in adherent culture. (b) Level of toxicity after three-day LuN treatment displayed 
as number of remaining alive MMTV-PyMT cells (one representative experiment of 3 
repetitions is shown. (c-e) Neutrophil-conditioned medium pre-treated MMTV-PyMT 
cells were plated in non-adherent conditions and their sphere formation assessed (c; 3 
independent experiments) or intravenously injected into Rag1-/- mice for determination 
of experimental metastasis initiation (d-e). Quantification of cancer cell-derived 
bioluminescence intensity in the lung over time is depicted relative to 24 hours (d; n≥8 
per group pooled from 2 independent experiments) and representative image is shown 
(e). Sphere formation index (SFI) in (c) was calculated as the combination of area of all 
formed spheres per experiment to incorporate sphere number and size. 
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4.3 Chapter conclusion 

The Alox5 products leukotriene B4 and cysteinyl-leukotrienes C4, D4 and E4 are 

secreted by pre-metastatic lung neutrophils of mammary cancer bearing mice and 

increase the tumourigenic and metastatic potential of mammary cancer cells 

comparably to the cocktail of neutrophil-derived factors. Leukotrienes specifically 

promote proliferation of the metastasis-initiating subset of cancer cells in an 

ERK1/2 activation-dependent manner. This function is mediated by the enrichment 

of leukotriene receptor BLT2 and CysLT2-expressing cells among metastasis-

initiating cancer cells. In fact, BLT2 and/or CysLT2-expressing MMTV-PyMT cells 

represent a distinct cancer cell population, which is significantly enriched among 

mammary cancer cells that retain an intrinsically higher tumourigenic potential. 

Hence, leukotriene receptors BLT2 and CysLT2 might serve as novel, functional 

markers for cancer stem cell-like cells at least in the MMTV-PyMT mammary 

cancer mouse model. Overall, LTB4 and cysteinyl leukotriene stimulation appears 

to lead to an alteration of the composition of the total cancer cell population in 

support of leukotriene receptor-expressing, intrinsically highly metastatic cancer 

cells. This observation reflects the novel neutrophil-mediated pro-metastatic 

function identified earlier (chapter 3). Moreover, depleting neutrophils from 

leukotriene synthesis by genetically targeting the Alox5 enzyme deprives them from 

their ability to facilitate the metastatic competence of total cancer cell populations. 

Hence, we are providing a mechanism for the metastasis initiation/lung 

colonisation-promoting activity of neutrophils in vitro and in vivo via a neutrophil-

mediated leukotriene-leukotriene receptor-ERK1/2 axis that drives proliferation 

specifically of intrinsically highly metastatic cancer cells among the total population 

(Fig. 4.15). 
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Figure 4-15 Pre-metastatic lung neutrophils  
Neutrophils accumulate in the pre-metastatic lung of mammary cancer bearing mice 
prior to arrival of disseminated cancer cells. These neutrophils secrete the eicosanoid 
mediators leukotrienes LTB4, LTC4, LTD4 and LTE4 that are synthesised by the 
enzyme Alox5. Leukotrienes differentially affect arriving mammary cancer cell 
populations. Subsets of cancer cells with intrinsically minimal lung colonisation ability 
do express very limited amounts of leukotriene receptors BLT2 and CysLT2, while their 
potent metastasis-initiating counterparts are strongly enriched for leukotriene receptor 
expressing cells. Hence, specifically the metastasis-initiating cancer cell subpool is 
susceptible to leukotriene-induced activation of ERK1/2 kinases that stimulate cell 
proliferation leading to the expansion of the population. Thereby, neutrophils directly 
provide a selective growth-promoting signal for intrinsically highly potent mammary 
cancer cells and facilitate initiation of metastatic lung colonisation. 
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Chapter 5. Pharmacologic inhibition of leukotrienes-
producing enzyme Alox5 limits mammary cancer 
metastatic progression to the lung 

5.1 Chapter Introduction 

Metastatic spread of primary tumours remains the main cause of cancer-related 

deaths (section 1.1), hence the discovery of a novel function of neutrophils to 

promote metastatic progression of breast cancer to the lung provides a promising 

opportunity for therapeutic intervention. This approach would allow the combination 

of drugs targeting disseminated cancer cells directly with tackling the pro-

metastatic microenvironment and might increase efficacy. However, directly 

targeting neutrophils is therapeutically unfeasible, as neutropenia is associated with 

severe side effects especially during chemotherapy of cancer patients, mainly 

because of an increased susceptibility to lethal infections (section 1.3). 

The identification of the mechanism behind the neutrophil pro-metastatic activity 

offers the unique opportunity to specifically deprive neutrophils from their ability to 

promote metastasis while maintaining other crucial functions to manage infections. 

The specific Alox5 inhibitor Zileuton is regularly used to treat inflammatory asthma 

because of the important role of leukotrienes in this disease (Lazarus et al., 1998, 

Watkins et al., 2007, Wenzel and Kamada, 1996) and the therapeutic and 

preventive effect of Zileuton was/is tested in two clinical trials for lung cancer 

(Edelman et al., 2008, Szabo et al., 2013). Given the efficacy of genetic Alox5 

depletion in mouse models, we wondered if pharmacologic inhibition of Alox5 using 

Zileuton would prove effective to prevent early stages of lung colonisation and 

metastasis of mammary cancer. To this end, we explored Zileuton-mediated 

inhibition of Alox5/leukotriene synthesis and thereby the neutrophil-mediated 

leukotriene-leukotriene receptor-ERK1/2 axis in a therapeutic approach to treat 

metastatic breast cancer in mouse models. 
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5.2 Results 

5.2.1 Zileuton inhibits Alox5 activity in neutrophils when systemically 

administered to mammary tumour-bearing mice and Zileuton-treated 

neutrophils lose metastasis-supporting activity 

In order to test the efficacy of Zileuton to block leukotriene synthesis in lung 

neutrophils in mammary tumour-bearing mice, we treated wildtype mice daily with 

Zileuton via the oral route and grafted MMTV-PyMT cells onto the mammary gland 

one day after treatment start (Fig. 5.1 a). Neutrophils readily accumulated in the 

pre-metastatic lung of Zileuton-treated mice (data not shown) and mammary 

tumour growth was not affected (Fig. 5.1 b). We isolated pre-metastatic lung 

neutrophils four weeks after tumour graft and used to them to condition in vivo 

Zileuton-treated neutrophil-conditioned medium (LuN-Zil). Enzyme Immunoassay 

analysis of LuN-Zil medium showed a significant reduction of LTB4 levels, 

confirming the activity of the drug (Fig. 5.1 c). Adherent culture of MMTV-PyMT 

cells for three days in LuN-Zil medium caused an equal toxicity like wildtype LuN 

medium (Fig. 5.1 d-e). In accordance with previous results using leukotriene-

deficient LuN-Alox5ko medium, LuN-Zil medium was slightly less potent in boosting 

in vitro sphere formation after pre-treatment (Fig. 5.1 f). Strikingly, primary MMTV-

PyMT cancer cells cultured for three days in LuN-Zil medium displayed dramatically 

decreased in vivo metastatic initiation competence compared to wildtype LuN 

medium (Fig. 5.1 g). This evidence indicates that pharmacologic inhibition of Alox5 

by Zileuton is effective in mammary tumour mouse models and limits the 

metastasis-boosting ability of neutrophils in vitro. 
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Figure 5-1 In vivo pharmacological inhibition of leukotriene synthesis in lung 
neutrophils limits their potential to enhance metastatic competence of mammary 
cancer cells 
(a) Neutrophils were isolated from the lungs of MMTV-PyMT mammary tumour-grafted 
wildtype mice treated daily with Zileuton for four weeks and used to condition culture 
media (LuN-Zil). (b) Quantification of mammary tumour growth of control DMSO- or 
Zileuton-treated wildtype mice by dissection and weighing (n≥8 per group, pooled from 
2 independent experiments). (c) Enzyme immunoassay analysis of leukotriene B4 
levels in control, wildtype LuN or LuN-Zil medium (b, n≥3 per group pooled from 3 
independent experiments). (d) Primary MMTV-PyMT cells were treated with control, 
LuN-wt, LuN-Alox5ko or LuN-Zil medium for three days in adherent culture. (e) Level of 
toxicity after three-day LuN treatment displayed as number of remaining MMTV-PyMT 
cells (3 independent experiments). (f-g) Neutrophil-conditioned medium pre-treated 
MMTV-PyMT cells were plated in non-adherent conditions and their sphere formation 
assessed (f; 2 independent experiments) or intravenously injected into Rag1-/- mice for 
determination of experimental metastasis initiation (g; n≥8 per group pooled from 2 
independent experiments). Lung metastasis was quantified by counting of visible 
surface nodules. Sphere formation index (SFI) in (f) was calculated as the combination 
of area of all formed spheres per experiment to incorporate sphere number and size. 
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5.2.2 Therapeutic Zileuton treatment phenocopies neutrophil depletion and 

inhibits metastatic initiation ability of mammary cancer cells 

Next, we aimed to test if pharmacological Alox5 inhibition limits metastatic 

progression of mammary cancer to the lung in a therapeutic setting. We grafted 

Rag1-/- mice with MMTV-PyMT cells onto the mammary gland followed by daily 

Zileuton treatment starting four weeks later for two weeks during stages of 

spontaneous metastasis initiation in the lung followed by analysis (Fig. 5.2 a). 

Strikingly, Zileuton-treated MMTV-PyMT tumour-harbouring mice showed a 

significant reduction of spontaneous metastasis without consistent alterations in 

primary tumour growth or lung neutrophil recruitment (Fig. 5.2 b-d+f). Additionally, 

we used the same mice to investigate the effects of Zileuton treatment on initiation 

of metastatic lung colonisation, similar to previous experiments when blocking 

neutrophils (Fig. 3.15). To this end, we seeded GFP-labelled MMTV-PyMT cancer 

cells directly into the lung by intravenous injection 24 hours after Zileuton treatment 

start (Fig. 5.2 a). Significantly, experimental metastasis initiation was diminished 

when cancer cells were injected during pharmacologic inhibition of Alox5 (Fig. 5.2 

e-f) corroborating the promoting effect of leukotrienes on early lung colonisation. 

We also confirmed that metastatic MMTV-PyMT cancer cells were impaired in 

proliferation very early after infiltrating lungs of Zileuton-treated, mammary tumour-

bearing mice by determination of in vivo BrdU incorporation 24 hours after 

intravenous injection of cancer cells (Fig. 5.2 g). Importantly, these data validate 

our findings of the pro-metastatic activity of lung neutrophil-derived leukotrienes 

and shows the efficacy of pharmacological targeting of the Alox5 enzyme to limit 

mammary cancer metastasis to the lung. 

Next, we aimed to determine if Zileuton treatment during later stages of growth of 

established metastases in the lung would also result effective. To test this 

hypothesis, we employed a comparable setting used previously (Fig. 5.2 a) and 

grafted Rag1-/- mice with MMTV-PyMT mammary tumours followed by intravenous 

injection of GFP-labelled cancer cells two weeks after tumour graft. We started 

daily Zileuton treatment another two weeks post-cancer cell intravenous injection 

and analysed mice two weeks thereafter (Fig. 5.3 a). This setting allows formation 

of established metastases in the lung prior to Alox5 inhibition and the assessment 
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of effects during progression of metastatic growth. To our surprise, primary tumour 

burden was ameliorated in Zileuton-receiving mice (Fig. 5.3 c), which is probably 

due to the induction of an altered, Alox5-sensitive growth dynamic of MMTV-PyMT 

cancer cells in the mammary gland because of the injection of large amounts of 

circulating tumour cells very early during cancer development. This trend is not 

consistent among our experimental approaches (Fig. 5.1 b and Fig. 5.2 c) and 

would, if at all, even improve the anti-tumourigenic effects of Zileuton therapy. 

Importantly, neutrophil accumulation in the lung of these MMTV-PyMT tumour-

bearing Zileuton-receiving mice was unaltered compared to controls (Fig. 5.3 b). 

However, Zileuton treatment of established lung metastases showed only a non-

significant trend of reducing experimentally induced metastatic burden (Fig. 5.3 d-

e). This observation highlights the crucial role of neutrophil-derived Alox5 products 

to induce proliferation and formation of cancer cell colonies very early during the 

process of metastatic lung colonisation. Nevertheless, the effects of Zileuton in 

limiting initiation of metastatic lung colonisation are vital for the overall efficiency of 

lung metastasis development, as spontaneous metastasis originating from the 

primary mammary tumour showed a significant reduction upon Alox5 blockade (Fig. 

5.2 d+f).  

Importantly, the efficacy of Zileuton treatment to limit initiation of metastatic lung 

colonisation was also confirmed in two metastatic breast cancer cell lines, mouse 

4T1 cells and human MDA-MB-231 cells in comparable settings. Rag1-/- mice were 

grafted with unlabelled 4T1 or MDA-MB-231 cells onto the mammary gland and 

Zileuton administered daily starting four weeks thereafter. GFP-labelled 4T1 or 

MDA-MB-231 cancer cells were intravenously injected into these mice one day 

after start of Zileuton treatment and experimental metastasis quantified 1.5 weeks 

(4T1 cells) or two weeks later (MDA-MB-231 cells) (Fig. 5.4 a). This experimental 

setting reflects our approach for the analysis of Zileuton treatment on the potential 

of MMTV-PyMT cells to initiate metastatic lung colonisation (Fig. 5.2). As expected, 

Zileuton administration did not alter 4T1 or MDA-MB-231 tumour-induced lung 

neutrophil infiltration or growth of grafted tumours (Fig. 5.4 b-c+f-g). Importantly, 

experimental metastasis initiation originating from both, GFP-labelled intravenously 

injected 4T1 and MDA-MB-231 cancer cells, was significantly reduced upon 

Zileuton treatment (Fig. 5.4 d-e+h-i). These results confirm the efficacy of Zileuton 

therapy to impede lung colonisation of mammary cancer cells. 
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In summary, our observations suggest pharmacological inhibition of Alox5 by the 

inhibitor Zileuton as promising therapeutic approach to limit breast cancer 

metastasis to the lung. Alox5 products appear to play their most crucial pro-

metastatic role during initiation of lung metastases rather than their continuous 

growth, consistent with the identified novel activity of leukotrienes towards 

intrinsically highly potent metastasis-initiating cells. The effects of pharmacological 

Alox5 inhibition complement our findings of genetic Alox5 deficiency and 

strengthen leukotrienes as mediators of the neutrophil-derived pro-metastatic 

activity. Taken together, these data suggest a potential therapeutic approach to 

target the Leukotriene/Alox5-dependet function of neutrophils supporting early 

metastatic colonisation. 
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Figure 5-2 Pharmacological inhibition of leukotriene synthesis significantly 
decreases initiation of metastatic lung colonisation by MMTV-PyMT cancer cells 
(a) Unlabelled MMTV-PyMT cells were grafted onto the mammary gland of Rag1-/- 
mice and GFP-labelled MMTV-PyMT cells intravenously (IV) injected. Daily Zileuton or 
DMSO treatment started one day prior to GFP-labelled cell injection and continued for 
two weeks (n≥7 per group pooled from 2 independent experiments). (b-f) Flow 
cytometric quantification of CD11b+LyG6+ neutrophils in the lung (b), primary tumour 
burden (c) and spontaneous metastatic progression determined by quantification of 
visible, non-GFP surface lung metastases (d). (e) Experimental metastasis initiation in 
Zileuton-treated or control mice assessed by flow cytometric quantification of GFP+ 
MMTV-PyMT cells in the lung, gated on CD24+ cells. (f) Representative histological 
lung sections stained with GFP in brown to visualise experimental metastasis and 
haematoxylin in blue to stain nuclei. Arrows indicate spontaneous metastases 
originating from the transplanted primary tumour, scale bar is 100µm. Close-ups on 
inserts highlight spontaneous and experimental, labelled metastases in the lung. (g) 
Determination of in vivo cancer cell proliferation 24 hours after intravenous injection of 
GFP-labelled MMTV-PyMT cancer cells into MMTV-PyMT tumour-bearing, Zileuton-
treated mice by six hours BrdU chase and flow cytometric quantification of BrdU+ 
cancer cells in the lung, gated on GFP+ cells (n≥3 per group, one experiment). 
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Figure 5-3 Zileuton administration does not significantly affect growth of 
established metastases in the lung 
(a-e) Unlabelled MMTV-PyMT cells were grafted onto the mammary gland of Rag1-/- 
mice and GFP-labelled MMTV-PyMT cells intravenously (IV) injected. Daily Zileuton or 
control DMSO treatment started two weeks after GFP-labelled cell injection and 
continued for two weeks prior to analysis (a, n=5 per group, one experiment). 
Mammary gland tumour burden was assessed by resection and weighing at the end of 
the experiment (c). Presence of CD11b+Ly6G+ neutrophils (b) and experimental 
metastasis as frequency of GFP+ MMTV-PyMT cancer cells in the lung (d) was 
determined by flow cytometry, gated on alive single cells in (b) and CD24+ cells in (d). 
Representative stereomicroscopic images of GFP signal in the lung (e) are shown. 
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Figure 5-4 Pharmacological blockade of Alox5 activity decreases lung 
metastasis initiation in several advanced breast cancer models 
(a-i) Unlabelled mouse 4T1 mammary (b-e) or human MDA-MB-231 breast cancer 
cells (f-i) were grafted onto the mammary gland of Rag1-/- mice, GFP-labelled cancer 
cells intravenously (IV) injected followed by daily Zileuton or control DMSO 
administration (a, n≥5 per group, one experiment). Flow cytometric quantification of 
CD11b+LyG6+ neutrophils in the lung, gated on single alive cells (b+f), primary tumour 
burden at time of analysis (c+g) and experimental metastasis initiation analysed by flow 
cytometric quantification of GFP+ cancer cells in the lung, gated on CD24+ cells, (d+h) 
of mice intravenously injected with the GFP-labelled mouse cancer cell line 4T1 (b-e) 
or GFP-labelled human cancer cell line MDA-MB-231 (f-i) and treated with Zileuton. 
Representative haematoxylin and eosin-stained lung sections are shown of mice that 
were grafted and intravenously injected with 4T1 (e) or MDA-MB-231 cancer cells (i). 
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5.2.3 Zileuton treatment does not directly affect mammary cancer cells, but 

the tumour microenvironment 

We propose a novel strategy to target the tumour microenvironment to limit 

metastatic progression of breast cancer using the Alox5 inhibitor Zileuton. In order 

to elucidate eventual effects of Zileuton directly on mammary cancer cells, we did 

the following series of experiments. Firstly, we already established that Zileuton 

treatment had no effect on long-term primary tumour growth in wildtype mice (Fig. 

5.1 b). Further, we treated primary MMTV-PyMT or 4T1 cancer cells in adherent 

culture with Zileuton for 24 hours followed by determination of cell proliferation by 

BrdU incorporation after a three-hour pulse (Fig. 5.5 a). Also, we monitored the 

frequencies of metastasis-initiating MMTV-PyMT cancer cells (CD90+ MICs) 

among the total cancer cell population after three day Zileuton exposure in vitro 

(Fig. 5.5 b). Lastly, MMTV-PyMT cells treated with Zileuton in non-adherent culture 

for three days were plated in non-attachment conditions and their self-renewal 

ability determined by assessment of sphere formation potential (Fig. 5.5 c). In short, 

Zileuton treatment did not influence cancer cell behaviour in vitro in all these 

assays and in vivo mammary tumour growth, indicating that Alox5 products are not 

part of an autocrine loop of cancer cells but derived from the lung 

microenvironment in vivo (Fig. 5.1 b and 5.5). 
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Figure 5-5 Breast cancer cell proliferation and self-renewal are not directly 
affected by treatment with the Alox5 inhibitor Zileuton 
(a) Flow cytometric quantification of BrdU incorporation after a 3 hour-pulse of primary 
MMTV-PyMT cells (2 independent experiments) and the mouse 4T1 mammary cancer 
cell line (one experiment) treated with 1µM Zileuton or control DMSO for 24 hours in 
adherent culture, gated on alive single cells. (b) Flow cytometric analysis of frequency 
of CD90+ MICs in total MMTV-PyMT cells after three-day treatment with 1µM Zileuton 
in adherent culture, gated on CD24+ cells (3 independent experiments). (c) 
Quantification of sphere formation of MMTV-PyMT cancer cells in presence of 1µM 
Zileuton (2 independent experiments). Sphere formation index (SFI) was calculated as 
the combination of area of all formed spheres per experiment to incorporate sphere 
number and size. 
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5.2.4 Leukotriene receptors are expressed in the majority of examined 

human breast cancers and maintained in lymph node metastases with 

varying intensities and frequencies 

Finally, we aimed to investigate if the leukotriene receptors BLT2 and CysLT2 are 

expressed in breast cancer cells in patient tissue, which would be crucial for a 

potential clinical application of blocking the neutrophil-mediated leukotriene-

leukotriene receptor-ERK1/2 axis by Zileuton. We obtained commercially available 

sections of paraffin-embedded breast cancer tissue biopsies with paired lymph 

node metastases (n≥30) and immunohistologically stained them with antibodies 

detecting either human BLT2 or CysLT2. The human breast cancer samples 

comprised metastatic ductal as well as lobular carcinoma of stages II to IV. 

Frequency of stained cancer cells, not stromal cells, and staining intensity was 

determined and combined to a final score value for every sample (Fig. 5.6, details 

on analysis are discussed in section 2.3.2). BLT2 is expressed in about 50% of 

analysed human breast cancers and CysLT2 in about 75% of cases with increased 

intensity compared to BLT2. Of note, the antibody detecting CysLT2 is very 

efficient, while the BLT2 antibody shows an in general weaker signal. Importantly, 

expression of leukotriene receptors is maintained in metastases, suggesting 

susceptibility to the promoting signal of neutrophil-derived leukotrienes (Fig. 4.15). 

No significant correlation was found between staining score and cancer stage, 

probably due to the quite small number of samples. 

This evidence further suggests that a comparable neutrophil-mediated pro-

metastatic mechanism via a leukotriene-leukotriene receptor-ERK1/2 axis, as 

observed in mammary cancer mouse models, might boost human breast cancer 

progression to the lung. 
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Figure 5-6 The leukotriene receptors BLT2 and CysLT2 are expressed in human 
breast cancer tissue 
(a-d) Primary human breast cancer samples and matched lymph node (LN) 
metastases were stained by immunohistochemistry for leukotriene receptors BLT2 (a-
b) and CysLT2 (c-d; brown) and haematoxylin (blue). Representative microscopic 
images of human breast cancer tissue (b+d) and scoring (score 0 to 7) of BLT2 and 
CysLT2 presence determined by incorporation of staining intensity and frequency on 
breast cancer cells (a+c; section 2.3.2) is shown, scale bar is 50µm. n numbers are 
depicted below the respective quantifications. 
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5.3 Chapter conclusion 

We show here that systemic Zileuton treatment/Alox5 inhibition reduced metastatic 

progression to the lung, specifically the initiation of lung colonisation, of three 

different models for breast cancer with a varying degree of metastatic potential 

(mouse spontaneous, mouse and human cell lines). Pharmacological inhibition of 

leukotriene synthesis appears to impair the ability of neutrophils to directly increase 

the metastatic competence of the total cancer cell population in a similar fashion as 

genetic Alox5 deficiency and does not directly affect cancer cells in vivo or in vitro. 

These results stress the importance of a pro-metastatic neutrophil-mediated 

leukotriene-leukotriene receptor-ERK1/2 axis during early lung colonisation and 

provide a strategy for therapeutic intervention. Importantly, the majority of human 

breast cancers and metastases express the receptors for Alox5 

metabolites/leukotrienes, BLT2 and CysLT2, and are, hence, theoretically 

responsive to leukotriene stimulation. Considering that generalised neutrophil-

blocking approaches are unsuitable to treat cancer patients, Zileuton allows 

targeting of the novel pro-metastatic activity of neutrophils, without inducing the life-

threatening consequences of neutropenia. Overall, Zileuton administration might 

provide a well-tolerated therapeutic approach to target the metastasis-supporting 

microenvironment (neutrophils) to complement conventional breast cancer 

treatments and reduce the risk of initiation of cancer cell growth at a distant site.  
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Chapter 6. Discussion 

Please note that part of the data contained in this PhD thesis was first published by 

the Nature Publishing Group (Wculek and Malanchi, 2015). 
 

6.1 Summary of findings 

Collectively, we demonstrate a pro-tumourigenic role of neutrophils during early 

phases of metastatic colonisation of breast cancer cells to the lung. In detail, 

neutrophils are systemically mobilised by a primary mammary tumour and 

accumulate at the metastatic site prior to infiltration of disseminated cancer cells, 

and further increase during metastatic progression in three independent in vivo 

mouse models for spontaneous metastasis; one genetic mammary cancer model, 

one mouse and one human breast cancer cell line. Three different approaches for 

neutropenia, two genetic models and one antibody-mediated ablation, resulted in 

the reduction of metastatic burden without affecting primary tumour growth, 

indicating a supportive role of neutrophils during metastasis. We excluded potential 

effects of neutrophils on cancer cell invasion, intra- or extravasation by directly 

seeding cancer cells into the lung and detected no difference following neutrophil 

depletion. Hence, we hypothesised that neutrophils aid cancer cell colonisation of 

the metastatic organ and metastatic growth. In fact, as suggested by neutrophil 

accumulation in the pre-metastatic lung, we established an essential role of 

neutrophils during the very early stages of metastatic initiation at the distant site 

through temporal neutrophil-depletion experiments. We did not observe any 

changes of NK or T cell frequencies or their activation upon neutrophil deficiency at 

this early stage of metastatic colonisation and we corroborated our findings of the 

pro-metastatic activity of neutrophils in immunocompromised mice lacking 

functional B and T cells. Thus, we dismissed a functional contribution of 

suppression of anti-cancer immunity towards the observed neutrophil-mediated 

boost of metastatic potential in our system. In fact, in a series of in vitro and in vivo 

experiments using lung neutrophil-conditioned medium or adoptive transfer of lung 

neutrophils, we established that neutrophils enrich for the subpopulation of cancer 

cells that show an intrinsically superior competence for metastatic colonisation 
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(MICs) at the metastatic site that goes hand in hand with promoting overall 

metastatic competence. Mechanistically, we elucidated that the neutrophil-

mediated increase of MIC frequencies in the lung is a result of a direct neutrophil-

derived proliferative signal. Screening for neutrophil-secreted factors present in 

conditioned medium and receptor expression on cancer cells, we noticed an 

enrichment of leukotriene receptors BLT2 and CysLT2 on the MIC subpopulation 

as well as other CSC-like population in cell lines and confirmed the release of 

leukotrienes LTB4 and Cysteinyl leukotrienes LTC4, LTD4 and LTE4 by pre-

metastatic lung neutrophils. Ex vivo leukotriene stimulation of the total cancer cell 

population mirrored neutrophil-conditioned medium treatment and enhanced 

cancer stemness, tumour initiation potential and metastatic competence. 

Additionally, LTB4 and Cysteinyl leukotrienes induced phosphorylation of ERK1/2 

in cancer cells in a BLT2 and CysLT2-dependent manner, respectively. This 

ERK1/2 activation caused proliferation of the highly potent MIC subpool of cancer 

cells specifically leading to their expansion within the total cancer cell population. 

We also confirmed the increase of leukotriene receptor-expressing cancer cells 

upon leukotriene treatment in a human breast cancer cell line. Strikingly, Alox5 

deficiency in the haematopoietic system and treatment with a pharmacologic Alox5 

inhibitor in vivo also mirrored the lack of neutrophils and significantly decreased 

overall metastatic burden by, specifically, limiting initial metastatic lung colonisation 

with moderate effects on progression of established metastases. This observation 

went hand in hand with a reduction of cancer cell proliferation in the lung at very 

early stages of metastatic initiation upon Alox5 inhibition. Importantly, we confirmed 

that neutrophil-derived leukotriene mediate these observed effects as ex vivo 

neutrophil-mediated boost of stemness and metastatic competence of the total 

cancer cell population dependent on leukotriene presence. In fact, the ability of 

Alox5-deficient or in vivo Alox5 inhibitor-treated neutrophils to enhance cancer cell 

tumourigenicity or metastasis initiation was largely diminished compared to 

wildtype lung neutrophils. These results confirm that neutrophils promote 

metastasis by directly supporting the proliferation of intrinsically highly metastatic 

cells within the total cancer cell population at the metastatic site via a neutrophil-

derived leukotriene–leukotriene receptor–ERK1/2 axis. We corroborated the 

metastasis-decreasing effect of Alox5 inhibition in three different pre-clinical models 

for spontaneous lung metastasis of mammary cancer cells including one human 
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breast cancer cell line and detected expression of the leukotriene receptors BLT2 

and CysLT2 on the majority of human breast cancer tissue and lymph node 

metastases. These data suggest that a neutrophil-leukotriene-ERK1/2 axis might 

also be relevant for supporting human breast cancer metastasis. 
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6.2 Novelty and context of findings 

We report a novel activity of neutrophils to support metastatic lung colonisation of 

breast cancer cells by secretion of Alox5 products/leukotrienes. In detail, we show 

that pre-metastatic lung neutrophil-derived leukotriene boost the most recognised 

hallmark of cancer, the ability to proliferate indefinitely, and directly induce one of 

the best-described mechanisms to facilitate that, the MAPK kinase ERK1/2. 

Thereby, neutrophil-derived leukotrienes promote specifically mammary MIC 

proliferation by engagement of leukotriene receptors that are preferentially 

expressed on MICs. This promotion of MIC proliferation likely overcomes cancer 

cell dormancy at the target site and allows successful establishment of metastases. 

Metastasis constitutes the highest cause of cancer-related mortality and neutrophils 

largely correlate with poor survival in the clinic, which includes breast cancer 

patients. Despite that, our knowledge about the precise roles of neutrophils in the 

metastatic process are mainly confined to their potential to induce cancer cell 

invasiveness and tumour angiogenesis and only very few reports address their 

functions during distant organ colonisation (as discussed in section 1.3.5.2). Hence, 

our identification of a previously unknown ability of neutrophils to promote 

metastatic colonisation and outgrowth has high relevance for experimental science, 

but also for a potential clinical application. 

 

6.2.1 A previously unknown function of neutrophils and leukotrienes in 

metastasis 

Metastatic colonisation is a very inefficient process with only 0.02% cells that arrive 

at the target site actually being able to successfully initiate metastases as the vast 

majority of cells remain dormant (Luzzi et al., 1998). This observation might not be 

surprising in light of metastatic cancer cells arriving in a rather inhospitable 

environment at the metastatic site without established survival or proliferative 

support. In fact, dormancy of disseminated cancer cells in distant organs has been 

observed in the clinic (sections 1.1.2 and 1.2.5), most notably in breast cancer 

(Braun et al., 2000, Pierga et al., 2003), and suggests that cancer cells survive in a 

non-proliferative state for up to several years. Cancer cell dormancy is mainly 
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caused by nutrient limitation/autophagy, cell cycle arrest or inhibitory signals from 

immune cells and has to be overcome for successful establishment of metastases 

(Aguirre-Ghiso, 2007, Barkan et al., 2010, Giancotti, 2013, Kenific et al., 2010, 

Naumov et al., 2006, Teng et al., 2008). 

Firstly, we propose that neutrophils that accumulate in the pre-metastatic lung of 

breast-cancer bearing hosts provide a niche for arriving cancer cells and help them 

to exit dormancy and grow by providing the proliferation-inducing signal 

leukotrienes. Most likely, neutrophils specifically aid overcoming the cellular type of 

dormancy caused by an arrest in the cell cycle as we characterise a direct 

stimulation of proliferation of cancer cell subsets by neutrophils/leukotrienes and 

thereby cell cycle progression. A lack of available nutrients is likely an issue at 

slightly later metastatic stages that require neo-vessel formation (section 1.1.2 and 

1.2.5) and we did not observe effects of neutrophils/leukotrienes on anti-cancer 

immunosuppression during initiation of metastatic colonisation (Fig. 3.17, Fig. 3.18 

and Fig. 3.19). Hence, we cannot conclude neutrophils to be involved in modulation 

of cancer cell exit from nutrient limitation- or immunity-induced dormancy at least at 

very early stages of metastatic colonisation. In general, sustained proliferation is 

one of the hallmark features of cancer (Hanahan and Weinberg, 2011) and 

activation of ERK1/2 in cancer cells was shown to be crucial for induction of cancer 

cell proliferation as well as overcoming cellular dormancy (section 1.2.5). EGFR-

ERK signalling triggered in vivo growth as well as proliferation of carcinoma cells 

(Liu et al., 2002) and limitation of ERK1/2 activation caused cancer cell dormancy 

(Ranganathan et al., 2006). Also, leukotrienes themselves have been shown to 

promote tumourigenesis and their receptors are often upregulated in many types of 

human cancers (section 1.2.3.5.1). For example, the LTB4-BLT2 cascade was 

functionally implicated in tumourigenesis as Ras-mediated transformation of a rat 

fibroblast cell line enhanced their LTB4 production and depended on BLT2 

expression by these cells while BLT2 suppression reduced tumour formation (Yoo 

et al., 2004). In breast cancer cells, increased BLT2 expression was reported and 

BLT2 inhibition caused apoptosis via loss of a ROS-dependent survival signalling 

(Choi et al., 2010). In particular, leukotrienes induced proliferation of cancer cells 

via induction of ERK1/2 phosphorylation in several studies (section 1.2.3.5.1). 

LTB4 stimulation directly enhanced proliferation of fibroblasts, neutroblastoma, 

colon and pancreatic cancer cell lines via, among others, activation of ERK1/2 and 
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that was prevented by inhibition of LTB4 receptors BLT1 or BLT2 (Bortuzzo et al., 

1996, Ihara et al., 2007, Sveinbjornsson et al., 2008, Tong et al., 2002, Tong et al., 

2005, Woo et al., 2002). LTD4 induced proliferation of neutroblastoma cells 

(Sveinbjornsson et al., 2008) and caused ERK1/2 activation mainly via CysLT1 in 

intestinal epithelial cells enhancing proliferation (Mezhybovska et al., 2006, Ohd et 

al., 2000, Paruchuri et al., 2005, Paruchuri et al., 2002, Paruchuri et al., 2006). 

Importantly, our study is the first one to directly link cancer cell proliferation by 

leukotriene receptor-mediated ERK1/2 activation at the (pre-) metastatic site with 

locally accumulating neutrophils and their direct stimulation of metastatic cancer 

cells with Alox5 products/leukotrienes. Moreover, we show that this neutrophil-

leukotriene-receptor-ERK1/2 axis is essential for efficient establishment of 

metastasis as depleting neutrophils or blocking the Alox5 enzyme limits metastatic 

burden (Fig. 3.3, Fig. 3.6, Fig. 3.15, Fig. 4.14, Fig. 5.2 and Fig. 5.4). 

Secondly, neutrophil-derived leukotrienes selectively support proliferation of 

specific cancer cell subsets at the metastatic site and not the entire population, 

likely due to the differential expression of leukotriene receptors BLT2 and CysLT2. 

The cancer cell subpool that was experimentally proven to have the highest ability 

to form metastases, and is therefore referred to as metastasis-initiating cells 

(Malanchi et al., 2012), is strongly enriched for leukotriene receptor-expressing 

cells (Fig. 4.7). In fact, leukotrienes and their receptors have previously been 

involved in the modulation of homeostasis and induction of proliferation of very 

potent cells, tissue stem cells (section 1.2.3.5.1). For example, LTB4 activated 

proliferation and expansion of human haematopoietic stem cells via BLT2 and 

mouse neural stem cells via BLT1 (Chung et al., 2005, Wada et al., 2006). LTD4 

stimulated proliferation of human haematopoietic progenitor cells by activation of 

ERK1/2 through CysLT1 and of mouse embryonic stem cells via CysLT1 and 

CysLT2 (Boehmler et al., 2009, Kim et al., 2010b). We provide the previously 

unknown finding that neutrophils/neutrophil-derived leukotrienes can directly 

support the highly potent metastasis-initiating cells (MICs), enrich for them within 

the total cancer cell population and thereby promote the metastatic process. We 

show that MIC enrichment in the lung during metastatic colonisation is directly 

proportional to increased metastasis formation (Fig. 3.21 and 3.22) and clinical 

studies correlate the frequency of MICs or cancer stem cells (CSCs) with poor 

clinical/metastatic outcome (Baccelli et al., 2013, Charafe-Jauffret et al., 2010, 
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Terwijn et al., 2014, Zeppernick et al., 2008). Our observations further suggest that 

at least part of the superior potency of these mammary MICs to colonise the lung is 

based on their responsiveness to the neutrophil-derived proliferative signal 

leukotrienes. This microenvironmentally-induced stimulation of proliferation might 

provide cancer cells with a way to circumvent cellular dormancy and, thereby, could 

contribute to their enhanced metastasis-initiating potential (Malanchi, 2013).  

 

During initiation of metastatic colonisation we observed that 

neutrophils/leukotrienes induce a pronounced enrichment of MICs over nonMICs 

(Fig. 3.21 and Fig. 4.6) that is likely a combination of nonMIC death or continued 

dormancy and induction of MIC proliferation. However, this effect of neutrophils on 

MIC expansion appears transient and affects only the very initial stage of single 

cancer cells/small clusters arriving at the metastatic site that are then challenged to 

grow. Upon successful establishment of metastases, MIC frequencies normalise 

and they subsequently reconstitute a small percentage within the total cancer cell 

population similar to the primary tumour (Malanchi et al., 2012). The fact that 

neutrophils continue to accumulate in the lung throughout the metastatic process 

raises the question why MICs are not longer enriched. The most straightforward 

explanation would be that neutrophils decrease their leukotriene secretion and shift 

to other functions due to tumour cell- or metastatic environment-derived signals at 

late metastatic stages, such as the suppression of NK (Fig. 3.2 f) and other anti-

tumour immune responses (Coffelt et al., 2015). The leukotriene-mediated 

induction of MIC proliferation could also reach a threshold level where the ratio of 

available leukotriene versus MICs in the lung is not longer sufficient. Alternatively, 

MICs could simply be not susceptible to the neutrophil-derived proliferative signal 

anymore. This feature could be achieved by downregulation of expression of 

leukotriene receptors by MICs induced by the established metastasis 

microenvironment at later stages or, alternatively, the withdrawal of a 

complementary signal that is required in concert with leukotrienes and their 

receptors to induce MIC proliferation. In fact, it appears likely that the nonMICs or 

the metastasis microenvironment influence the proliferative ability of MICs. Our 

preliminary experiments indicate that isolated MICs alone do not appear to react to 

leukotriene stimulation in the same fashion as they do within the total cancer cell 

population in vitro. Hence, MICs might require an additional signal from the 
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nonMICs or the pre-metastatic microenvironment together with neutrophil-derived 

leukotriene stimulation to activate ERK1/2 and/or induce their proliferation. 

Additionally, MICs have been shown to directly modulate and depend on their 

microenvironment, precisely involving the ECM components periostin or tenascin C, 

at the metastatic site (Malanchi et al., 2012, Oskarsson et al., 2011). Another 

plausible mechanism preventing MIC proliferation in response to leukotrienes in 

established metastases could be a direct inhibitory signal specifically for MICs from 

the nonMICs or the now established metastasis microenvironment. In a way it 

sounds tempting that MICs might be uniquely responsive to growth inhibitory 

factors as they are to proliferative factors like leukotrienes, depending on the 

specific context. Rather non-proliferative MICs arriving in the lung are acutely 

challenged to divide and establish successful metastases, reminiscent of a wound 

response of tissue stem cells. However, MIC proliferation has to be tightly 

controlled to avoid induction of apoptotic or senescence-inducing pathways and 

prevent susceptibility to pool exhaustion or – in the case of cancer – therapy-

induced death. In concert with the rather quiescent nature of highly tumourigenic 

cells or cancer stem cells, a growing metastatic nodule that is not longer entirely 

dependent on MIC proliferation might ensure the quiescent status of its most potent 

and precious cells for their protection. Importantly, similar mechanisms might 

explain the very low frequencies of leukotriene receptor-expressing cells in the 

primary tumour, which is probably further explained by the largely limited presence 

of neutrophils and hence their proliferative signal (Fig. 3.1 e). Overall, the ability of 

highly potent cancer cells to respond to a proliferation-promoting signal from 

neutrophils might represent an acquired and eventually risky backup mechanism to 

react to exceptional challenge. This notion would make neutrophil-derived signals 

ideal candidates to be hijacked by cancer cells, as neutrophil presence in 

peripheral tissues is usually very low at steady state but they naturally respond very 

quickly and potently to numerous insults a tissue can be faced with. 

 



Chapter 6. Discussion 

 

216 

 

6.2.2 Proposal of a novel, potential therapeutic strategy for breast cancer 

metastasis 

Numerous approaches to target key cancer cell-intrinsic pathways causing tumour 

growth and progression are routinely used in the clinic, but often result in 

heterogeneous responses of cancer cells and subsequently ineffective due to 

therapy resistance (section 1.1). Hand in hand with our increasing knowledge on 

the positive interactions of a tumour with its tumour microenvironment (TME) grows 

the notion to target supportive functions of stromal cells together with therapies 

directed to cancer cells in order to improve current anti-cancer treatments (Quail 

and Joyce, 2013). Additionally, metastasis is not only the most detrimental feature 

of cancer progression, but has also been shown to be strongly dependent on a 

supportive microenvironment. However, successful therapies for metastatic cancer 

are currently rare (Malanchi, 2013, Nguyen et al., 2009, Steeg, 2006). 

In specific regard to inflammatory and immune cells in the TME, a few successful 

approaches reached the clinic, such as immune checkpoint inhibitor blockade 

therapies that sustain anti-cancer immunity like inhibition of CTLA-4, PD-L1 or PD-

1 (section 1.2.3.2.1). These treatments show outstanding success in the clinic 

(Postow et al., 2015, Allison, 2015, Pardoll, 2012, Topalian et al., 2015), however 

our understanding of the exact mechanisms behind and their controlled modulation 

have to be improved as immune checkpoint blockade can be accompanied by 

drug-related adverse side effects (Camacho, 2015, Gelao et al., 2014, Postow, 

2015). Additionally, mimicking an acute rather than a chronic smouldering 

inflammation at cancer sites by treatment with bacterial products based on Coley’s 

toxin or bacillus Calmette-Guerin-related vaccination showed promising results in 

animal models and the clinic (section 1.2.3 and 1.3.5). However, these approaches 

or the use of bacterial strains for cancer therapy could not yet be sufficiently 

improved to be routinely used in patient therapy – except in a few cases of late-

stage ovarian cancer where little other options are currently available (Wei et al., 

2008) – despite their discoveries many decades ago followed by long-term 

research efforts. Another proposed approach to target the inflammatory TME is 

changing the polarisation of microenvironmental cells from pro-tumourigenic to anti-

tumourigenic features or limit their recruitment to tumour sites, for example for 

macrophages (section 1.2.3.3). This idea is based on a potential re-education of 
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myeloid cells towards acute inflammatory functions, which might be difficult to 

control on an individual cancer patient-basis and can come with the high risks of 

lacking specificity due to potential damaging of tumour-adjacent tissue by activated 

inflammatory cells (section 1.2.3 and 1.3). Nevertheless, blockade of CSF-1R, 

CCR2 and CXCR2 are currently being investigated in clinical trials based on the 

success in pre-clinical models (Quail and Joyce, 2013). 

Neutrophils largely represent a pro-tumourigenic problem in the clinic due to the 

correlation of their increased presence with worse prognosis (section 1.3.5); 

however, they cannot be entirely depleted due to the detrimental effects of 

neutropenia (section 1.3.3). A mechanism of re-polarising neutrophils towards 

cancer toxicity rather than pro-tumourigenic activities via TGF-beta has been 

described (Fridlender et al., 2009) and might have clinical relevance. However, the 

potential of modulating neutrophil functions has to be carefully controlled because 

over-activated cytotoxic neutrophils represent an enormous danger for uncontrolled 

tissue damage (section 1.3.3), similar to potential issues with inflammation induced 

by Coley’s toxin and the Calmette-Guerin-related vaccination. Hence, the most 

straightforward approach to tackle tumour-supportive activities of neutrophils by 

identifying and specifically blocking the molecular mediators of these functions 

might be the most promising and controllable therapeutic strategy and should at 

least be considered. Additionally, this approach theoretically does not interfere with 

anti-tumourigenic functions of neutrophils as their depletion or blocking their 

recruitment would.  

We propose the novel complementary therapeutic strategy of inhibiting Alox5 

function to limit metastasis of breast cancer to the lung based on our findings in 

pre-clinical models. We show that the Alox5 inhibitor Zileuton successfully reduced 

initiation of metastatic colonisation and overall metastatic burden in three lung 

metastatic mammary cancer mouse models, including one of spontaneous 

mammary tumour formation and one human breast cancer cell line (Fig. 5.2 and 

Fig. 5.4). This approach might hold promise to treat breast cancer patients with the 

risk of metastasis due to the expression of leukotriene receptors BLT2 and CysLT2 

in a subset of cancer cells in the majority of examined breast cancer tissue 

samples (Fig. 5.6). Moreover, were observed that human cancer cells functionally 

responded to leukotriene stimulation in vitro with activation of ERK1/2 and an 

enrichment of LTR-expressing cells over time (Fig. 4.9 e and Fig. 4.12 a). 



Chapter 6. Discussion 

 

218 

 

Our data suggest that Alox5 products facilitate metastasis establishment by 

stimulating the exit of disseminated cancer cells from cellular dormancy and 

reactivating the cell cycle. In fact, dormancy of disseminated breast cancer cells 

has been described to occur in patients (Braun et al., 2000, Pierga et al., 2003). 

Zileuton treatment might reduce the risk of cancer cells overcoming cellular 

dormancy by depleting a proliferation-inducing neutrophil-derived signal that might 

likely come along during an inflammatory response. Additionally, we show the 

persistence of elevated neutrophil numbers in the lung of mice even after resection 

of the primary mammary tumour (Fig. 3.12). This observation suggests a pro-

metastatic “conditioning” of the host by the tumour and the creation of a cancer 

cell-supportive pre-metastatic niche in the lung that appears to be long lasting. This 

concept would suggest the administration of Zileuton to breast cancer patients with 

inoperable tumours as well as patients post-surgical tumour resection, since both 

groups might carry a sufficient risk for relapse due to disseminated, dormant cancer 

cells. However, Zileuton treatment would have to be continued long-term, if not for 

life. Importantly, the usage of Zileuton in the clinic poses one advantage in contrast 

to many other emerging cancer therapies; the safety of long-term administration of 

Zileuton in the clinic was already assessed and no severe side effects have been 

reported. In fact, it has been routinely used in the treatment of asthma since 1996 

(section 1.2.3.5.1). 

Eicosanoids, their producing enzymes and receptors attracted previous attention in 

the cancer field, however the focus lied on the prostaglandin-producing enzymes 

COX1 and COX2 (section 1.2.3.5.1). In regard to the use of the Alox5 inhibitor 

Zileuton in cancer, two clinical trials were conducted for treatment of lung cancer 

based on successful pre-clinical data and correlations in human patients. Zileuton 

administration did not show beneficial effects for advanced lung cancer patients 

(Edelman et al., 2008) and the assessment of Zileuton efficacy in preventing 

development of lung cancer in high risk patients with bronchial dysplasia is on-

going (Szabo et al., 2013). It is in general difficult to comment on the outcome of 

studies conducted in different cancer types. However, some general concepts may 

be considered due to the common affected organ of the clinically assessed tumour 

type and our pre-clinical metastases (the lung). Our data in mouse lung metastatic 

breast cancer shows efficacy of Zileuton to limit initial outgrowth of metastatic 

cancer cells in the lung and is less effective at later stages of growth of established 
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metastases. These data could eventually be related to the unaltered outcome of 

Zileuton treatment in the clinical trial for advanced lung cancer. Following this 

notion, the result of the clinical trial determining the risk of actual cancer 

development in the lung might be more related to our findings. Nevertheless, 

primary lung cancer and lung metastases of breast cancer cells are clearly two 

different types of disease. No data for the expression of leukotriene receptors on 

cancer tissue is available for the aforementioned clinical trials testing the efficacy of 

Zileuton treatment in lung cancer. Furthermore, different cancer cell types could 

respond differently to the same stimulus even if it would be transmitted through the 

same receptor. Therefore, the effect of Zileuton on metastatic progression of 

human breast cancer has to be assessed in a dedicated, independent clinical trial 

to allow conclusions on Zileuton efficacy in the same clinical setting and cancer 

type where our pre-clinical observations were made in. 

Our data do not suggest blocking of individual leukotriene receptors in the clinic as 

an alternative to Alox5 inhibition and we did not attempt this strategy in our pre-

clinical models. We observe a functional overlap and the induction of the same 

signalling effector ERK1/2 in cancer cells being mediated by two distinct receptors 

for Alox5 products. Moreover, these different Alox5 products are secreted by the 

same cell and, hence are simultaneously available in the environment. This 

observation indicates a potential compensation mechanism when inhibiting only 

one leukotriene receptor rather than the production of the entire group of lipid 

signalling mediators. 

In summary, we demonstrate strong evidence for the use of Zileuton as a novel 

treatment strategy for the clinically highly relevant metastatic progression of breast 

cancer. This therapeutic approach might represent a novel way to directly tackle 

cancer stem cell-like cells as its functionality is based on depleting the metastasis-

supportive microenvironment from a factor that directly induces proliferation of 

cancer cells with enhanced metastatic potential. However, the exact nature and 

potential of human leukotriene receptor-expressing breast cancer cells has to be 

assessed before Zileuton can be considered to prevent leukotriene-mediated 

proliferation of human cancer stem cell-like cells during metastasis initiation. 
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6.2.3 The novel pro-metastatic neutrophil function driving lung colonisation 

in the context of current knowledge 

6.2.3.1 Controversial role of neutrophils during metastasis – cytotoxicity and 

killing of metastatic cells 

Mouse neutrophils have been frequently reported to have direct cytotoxic activity 

against cancer cells and can distinguish between target cells in vitro. Isolated 

human neutrophils showed similar potential in culture and a few clinical 

observations suggest anti-tumourigenic activities of neutrophils. However, 

neutrophils mostly have to be strongly activated either ex vivo or by tumour-

associated factors in vivo to mediate cancer cell lysis. All this evidence together 

with contradicting pro-tumourigenic functions of neutrophils is described in section 

1.3.5.  

In the context of metastasis, three studies in lung-metastatic breast cancer reports 

pro-tumourigenic activities of neutrophils (Acharyya et al., 2012, Benevides et al., 

2015, Coffelt et al., 2015), while another work characterises direct killing of lung 

metastatic mouse mammary cancer cells by neutrophils (Granot et al., 2011). This 

evidence appears to be in concert or clear contrast to our data, highlighting the 

controversial roles ascribed to neutrophils in cancer. Granot et al. 2011 show that 

isolated circulating mouse or human neutrophils are cytotoxic towards mammary 

cancer cells in vitro and direct in vivo evidence in the non-manipulated situation 

was not shown. Moreover, these neutrophils have been isolated from the blood and 

needed to be activated by direct exposure to cancer cells in vitro. It appears that 

this strategy might not be physiologic as cancer cells on a plate are different from 

those in the lung because other TME factors as well as the changes happening in 

cancer cells upon seeding in the lung might significantly contribute to cancer cell 

behaviour. Additionally, there was no difference in primary cancer burden of 4T1 

cell line-derived tumours upon neutrophil ablation that is rather reminiscent of 

cultured 4T1 cancer cells than metastases and, unfortunately, no explanation was 

provided. Hence, it would probably have been the more ideal approach to isolate 

naturally in vivo activated neutrophils from the lung were they are in normal contact 

with cancer cells. Also, it would have been desirable to confirm the direct cytotoxic 

activity of neutrophils towards cancer cells in vivo by, for example, histological 
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stainings of lung sections for apoptosis or necrosis markers. In a gain-of-function 

approach, the authors transferred in vitro stimulated neutrophils into mice and 

suggest that they limit metastasis, however this experiment did not actually reach 

significance. Nevertheless, the authors clearly show that neutrophil depletion 

increased spontaneous metastatic burden of two mammary cancer mouse models, 

including the 4T1 mammary cancer cell line that we also employed for leukotriene 

inhibition experiments (Granot et al., 2011). Moreover, another study in several 

mouse cancer models, including the MMTV-PyMT mammary cancer mouse model, 

reported that HGF-stimulation of Met receptor expressed on neutrophils induced a 

cytotoxic phenotype of neutrophils that rendered them anti-tumourigenic with 

cancer cell killing properties (Finisguerra et al., 2015). In contrast, Benevides et al. 

2015 utilised the same 4T1 mammary cancer mouse model like Granot et al. 2011 

and observed a pro-tumourigenic role of neutrophils likely by secretion of CXCL1, 

MMP9, VEGF and TNF-alpha, despite not directly addressing metastasis 

(Benevides et al., 2015, Granot et al., 2011). 

4T1 cells mediate a pronounced neutrophilia were the amount of neutrophils in the 

lung appears to largely exceed physiologic levels comparable to human patients. 

Granot et al. 2011 show an approximately 100-fold increase of neutrophils in the 

lung of tumour bearing mice, however do not give a precise number. Their 

immunohistochemistry data indicates that clearly more than 50% of cells present in 

the lung are neutrophils at late metastatic stages. Additionally, our own 

observations indicate that up to 60% of cells in the lung are neutrophils at late 

stages in this mammary cancer model (Fig. 3.8 b). Interestingly, several studies 

show the dose-dependency of neutrophil functions, where moderate neutrophil 

levels are pro-tumourigenic and excessive neutrophil frequencies show anti-

tumourigenic properties (section 1.3.5). For instance, a melanoma study, where 

melanoma cells modulated neutrophil recruitment into the TME by different levels 

of IL-8 expression, clearly demonstrated this notion (Schaider et al., 2003). Hence, 

the presence of extraordinarily high neutrophil numbers in the lung is a likely 

explanation for the controversial effects of neutrophil depletion on metastatic 

outcome in different mouse mammary cancer models. However, Granot et al. 2011 

also used a probably more physiological mouse cancer model in regard to 

neutrophil accumulation, the MMTV-PyMT/MMTV-cMyc model. There, they saw an 

increased primary tumour burden upon neutrophil deletion that they did not explain 
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in the context of their studies, which as the authors indicate precludes conclusions 

of spontaneous metastasis (Granot et al., 2011). 

Additionally, this difference in neutrophil functions in individual contexts could be 

explained by a modulation of neutrophil activity by their microenvironment and 

tumour cells itself. A polarisation of neutrophil phenotypes by TGF-beta presence in 

the TME was elegantly demonstrated (Fridlender et al., 2009). For example, 

engagement of the kinase receptor Met by its ligand HGF provided by the 

microenvironment or the tumour was shown to be required for cytotoxic functions of 

neutrophils and, additionally, Met expression was dependent on tumour cell-

derived TNF-alpha (Finisguerra et al., 2015). Also, Granot et al. 2011 report a 

dependency of cytotoxic ability of neutrophils on tumour cell-derived CCL2. 

Nevertheless, in light of tumour cells themselves inducing an anti-tumourigenic 

phenotype of neutrophils, it appears tempting to think that these cancer cells might 

easily downregulate or lose the expression of anti-cancer neutrophil-stimulating 

factors over the course of the long-term disease in humans compared to mouse 

models and thereby escape neutrophil cytotoxicity. Additionally, neutrophil 

cytotoxicity was usually assessed in vitro in the present literature and in vivo data 

are largely based on correlations or neutrophil injections after initial isolation 

(section 1.3.5). Hence, direct evidence in the non-manipulated state in vivo is rare. 

In light of several reports describing a direct lysis of non-malignant cells by 

neutrophils in vitro (Becker, 1988) and over-activated neutrophils posing a risk for 

tissue damage during inflammatory reactions (section 1.3.3), a proof for the specific 

killing activity of neutrophils towards cancer cells and not normal host cells in vitro 

and in vivo during metastasis would have been desirable in the studies of Granot et 

al. 2011 and Finisguerra et al. 2015. 

Our data show how isolation and use of neutrophils ex vivo can lead to potential 

miss-interpretations of neutrophil activities in the context of cancer in vivo. In fact, 

conditioned medium from neutrophils isolated from the pre-metastatic lung showed 

toxicity against cancer cells and stromal lung cells and reduced the amount of 

viable cells approximately by half upon three-day exposure (Fig. 3.23). This in vitro 

observation stood in clear contrast to our in vivo data, where continuous genetic 

neutrophil absence using two strategies and short-term antibody-mediated 

neutrophil depletion reduced metastatic burden while not affecting primary 

mammary cancer growth (Fig. 3.3, Fig. 3.6 and Fig. 3.15). Additionally, there was 
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no obvious damage or toxicity of neutrophils towards lung cells in metastatic lungs 

of control tumour-bearing mice when examining histological sections. Hence, we 

hypothesised an artificial activation of neutrophils during the isolation process that 

led to degranulation and toxicity of the conditioned medium. However, when 

injecting the very same neutrophil-conditioned medium that was toxic towards 

cancer cells in vitro intravenously into the lungs of mice, no adverse effects on 

metastatic cancer cell presence or normal lung cell viability were observed (Fig. 

3.21). In fact, neutrophil-conditioned media injection and lung neutrophil transfer 

experiments displayed the opposite effect and boosted lung metastasis burden with 

one of our two approaches reaching statistical significance (Fig. 3.22). These 

observations have important implications for the use of anti-tumourigenic and 

cytotoxic neutrophils in the clinic, as their potency appears to be sufficiently 

prevented in vivo. Our in vivo evidence suggests that the in vitro toxicity of 

neutrophil-conditioned medium could be regarded as a side effect of culture and, 

also, appears to be entirely independent from the pro-metastatic function of 

neutrophils that we report. Importantly, lung neutrophil conditioned medium from 

Alox5-deficient or in vivo Zileuton-treated neutrophils exhibited the same level of in 

vitro toxicity compared to wildtype lung neutrophil-conditioned medium, but the 

promoting effect on cancer cell sphere formation potential and in vivo metastatic 

growth competence was significantly reduced (Fig. 4.14 and Fig. 5.1). Moreover, 

we confirmed our findings using 4T1 mammary cancer cells, the same cancer cell 

line as employed in the study of Granot et al. 2011 that characterises cytotoxic 

effects of metastatic lung neutrophils. We did not graft 4T1 cells onto syngeneic 

wildtype BALB/c mice due to our observations of exceedingly high neutrophil levels 

in this particular mouse strain and the fact that we used GFP-labelled 4T1 cells that 

were rejected by wildtype mice. In FVB/N Rag1-/- mice with grafted 4T1 tumours, 

we still observed pronounced neutrophil levels in the lung (about 50% of lung cells), 

however inhibition of Alox5/leukotriene production in this model by administration of 

Zileuton significantly decreased metastatic burden (Fig. 5.4). Moreover, leukotriene 

stimulation of 4T1 cells caused ERK1/2 activation and enrichment of a the CD49f+ 

cancer cell subpool previously reported to have higher tumourigenic potential 

(Stingl et al., 2006, Yu et al., 2012) (Fig. 4.6 b, Fig. 4.10 and Fig. 4.11). These 

observations went hand in hand with the increased frequency of leukotriene 

receptor-expressing cells among CD49f+ 4T1 cells within the total population (Fig. 
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4.7 h). These data suggest that the novel mechanism of the proliferative support of 

neutrophil-derived leukotrienes towards highly potent metastasis-initiating cells 

seems to be preserved in the 4T1 mammary cancer model, despite the reported 

anti-cancer cytotoxicity of at least some neutrophil subpopulations (Granot et al., 

2011). Additionally, as mentioned above, a cytotoxic role of 4T1 tumour-induced 

neutrophils was recently challenged (Benevides et al., 2015). In fact, Benevides at 

al. 2015 demonstrated that neutrophil depletion in 4T1 tumour-bearing BALB/c 

mice significantly reduced primary tumour burden and growth when using the same 

anti-Ly6G neutrophil blocking antibody like Granot et al. 2011. We only used the 

4T1 cancer cell line complementary to the spontaneous MMTV-PyMT and the 

human MDA-231 mammary cancer models due to the issues of extremely high 

neutrophil mobilisation and the controversies around neutrophil function in this 

mouse model. 

In conclusion, neutrophils might release toxic factors that kill cultured cells in a 

direct artificial exposure in vitro, however – at least in our system – cytotoxicity of 

these identical factors in vivo is somehow balanced or counteracted by the 

microenvironment and not sufficient in vivo. Hence, the observed killing effect 

towards cancer and stromal cell types of prolonged exposure to in vitro produced 

neutrophil-conditioned medium appears irrelevant for the in vivo establishment of 

lung metastases. However, there is convincing evidence in the literature for 

context-dependent anti-tumourigenic functions of neutrophils (section 1.3.5), 

highlighting the need for further research efforts in order to understand the complex 

role of neutrophils in cancer. 

 

6.2.3.2 Pro-metastatic effects of neutrophils at the target site: 

immunosuppression and promoting cancer cell survival 

In cancer, neutrophils have been ascribed to promote metastasis by aiding cancer 

cell dissemination, invasion and extravasation (section 1.3.5). We assessed if 

neutrophils facilitate cancer cell extravasation by intravenous injection of mammary 

cancer cells into the circulation in vivo. Mammary tumour-induced neutrophil 

presence or absence did not alter the ability of circulating cancer cells to infiltrate 

the lung (Fig. 3.13). Moreover, adoptive transfer of neutrophils or neutrophil-derived 
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factors also did not affect the presence of intravenously injected cancer cells in the 

lung shortly after cancer cell extravasation is usually accomplished (Fig. 3.21 c+f). 

Hence, we excluded a significant contribution of the ability of neutrophils to aid 

cancer cell dissemination or extravasation to the identified novel pro-metastatic 

function of neutrophils. 

Additionally, neutrophils were shown to possess immunosuppressive properties 

that prevent proper anti-cancer T and NK cell responses and therefore facilitate 

cancer progression and metastasis (section 1.3.5). Casbon et al. 2015 reported the 

systemic increase of neutrophil-like or G-MDSC-like cells in the MMTV-PyMT 

breast cancer mouse model. These Ly6G+ neutrophils were isolated from the 

spleen and did suppress CD4+ and CD8+ T cell proliferation likely via ROS release 

in vitro, however these findings were not corroborated in vivo. Also, the authors 

prevented systemic neutrophilia in the MMTV-PyMT mammary cancer model by 

administration of a G-CSF blocking antibody or genetic deficiency for G-CSFR in 

the bone marrow, however they do not comment on the effects of these 

manipulations on cancer progression (Casbon et al., 2015). Coffelt et al. 2015 

describe a pro-metastatic function of neutrophils in suppressing CD8+ T cell 

responses that prevents T-cell mediated killing of lung-metastatic breast cancer 

cells in the K14cre, Cdh1flox/flox, Trp53flox/flox mammary cancer mouse model. 

Puzzlingly, they report a reduced metastatic burden hand in hand with reduced 

lung neutrophil presence in the lung when crossing their mammary tumour model 

with B and T cell-deficient Rag1-/- mice (Coffelt et al., 2015). These data strongly 

suggest other pro-metastatic functions of neutrophils that are independent from T 

cells. Nevertheless, our observations partially corroborate the ability of neutrophils 

to inhibit immune cells that can mount potent anti-cancer responses at advanced 

metastatic stages. Interestingly, NK cell frequencies were decreased in late stage 

metastatic lungs of spontaneous MMTV-PyMT cancer-bearing mice and 

normalised in neutrophil-deficient mice (Fig. 3.4 e). Hence, neutrophils might be 

involved in recruitment or survival of NK cells that have a potent ability to directly 

eliminate cancer cells (section 1.2.3.1) at the metastatic site and thereby positively 

contribute to tumourigenesis. In contrast, activation CD8+ T cells in the bone 

marrow, which also show powerful cancer cell killing functions (section 1.2.3.1), 

appeared partially enhanced in late stage mammary cancer and is prevented upon 

neutropenia (Fig. 3.7 b). This observation might suggest an opposing effect of 
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neutrophils on anti-cancer immunity. However, these data could simply be a 

reflection of the difference in late stage lung metastasis burden between tumour-

bearing wildtype and neutrophil-deficient mice or, in regard to the bone marrow, 

alterations in the aberrant myelopoiesis in cancer-bearing hosts upon neutrophil 

loss. 

 

In general, analysis of neutrophils during long lasting processes like cancer is 

hindered by limitation of available genetic markers or surface marker overlap in 

mice. Inhibition of the receptor involved in neutrophil recruitment, CXCR2, was 

frequently used to block neutrophil infiltration into peripheral tissues. This strategy 

might not always be effective (Fig. 3.9) and CXCR2 is expressed on many other 

cells than neutrophils such as endothelial cells and tumour cells (discussed in detail 

in section 6.3.1). Also, G-CSF deficiency or inhibition might not be sufficient to 

deplete neutrophils in every setting, as it causes neutropenia but does not entirely 

ablate neutrophils (Fig. 3.3 d). Similarly, neutrophil elastase and myeloperoxidase 

are suggested genetic markers for neutrophils, but are not very effective, probably 

due to their limited expression during neutrophil maturation (section 1.3). Hence, 

neutrophil studies mostly employed the Gr.1 antibody that recognises both, the 

Ly6C molecule on monocytes/macrophages and the Ly6G molecule on neutrophils, 

and might therefore be suboptimal to specifically study the role of neutrophils in 

cancer. Despite the proposed specificity of the anti-Ly6G (clone 1A8) antibody for 

neutrophils (Daley et al., 2008), it does also sufficiently deplete 

CD11b+Ly6G+/Ly6C-low G-MDSCs. Moreover, neutrophil-like cells with MDSC 

properties have been reported to accumulate in MMTV-PyMT cancer-bearing mice 

in a G-CSF-dependent manner (Abrams and Waight, 2012, Casbon et al., 2015). 

Hence, in the context of suppression of anti-cancer immunity by neutrophils and 

when using the anti-Ly6G antibody or G-CSF deficiency, the population of 

immature neutrophil-like myeloid cells that shows pronounced capacity to inhibit NK 

an T cell activity has to be addressed. These immature bone marrow-derived cell 

populations have been termed myeloid-derived suppressor cells (MDSCs) 

according to their predominant activity to suppress anti-cancer NK and T cell 

responses. MDSCs accumulate in cancer-bearing hosts and comprise a 

heterogeneous population containing a granulocytic, neutrophil-like (G-MDSCs, 

CD11b+Ly6G+/Ly6C-low) and a monocytic or macrophage-like (M-MDSCs, 
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CD11b+Ly6G-/Ly-6C+) component, which are present in the spleen upon tumour 

development. Their pro-tumourigenic actions due to potent immunosuppressive 

activity have been reported numerous times to be a driving force of cancer 

progression (section 1.2.3.2). In metastasis, the accumulation of G-MDSCs at  

(pre-) metastatic sites and their pro-metastatic effect mainly by protection of 

disseminated cancer cells from T and NK-cell mediated killing is widely accepted 

(Condamine et al., 2015). Interestingly, Alox5 products released by mast cells 

during intestinal polyposis were shown to attract MDSCs (Cheon et al., 2011) in a 

similar fashion like neutrophils. In light of our findings, neutrophils and neutrophil-

derived Alox5 products might further enhance breast cancer metastasis to the lung 

by recruitment of MDSCs and thereby immunosuppression, which might also 

explain the reinstated NK cell frequencies upon neutropenia at late metastatic 

stages (Fig. 3.4 e). Nevertheless, transcriptomic analysis of cancer-associated 

neutrophils that are found in the proximity of tumours or neutrophils from healthy 

mice compared with G-MDSCs stress their differences (Fridlender et al., 2012, 

Youn et al., 2012, Youn and Gabrilovich, 2010). Moreover, circulating immature G-

MDSCs were also clearly differentiated from more mature neutrophils in cancer 

settings (Sagiv et al., 2015). Hence, G-MDSCs and neutrophils are considered to 

be morphologically, phenotypically and functionally distinct cell populations, despite 

common origins, related mechanisms of their generation and shared surface 

markers (Dumitru et al., 2012, Gabrilovich et al., 2012) while some reports consider 

G-MDSC as novel, distinct phenotype of neutrophils (Pillay et al., 2013). 

Our data indicate that CD11b+Ly6G+ myeloid cells, which are mobilised by G-CSF 

and express neutrophil elastase, play an important promoting role during the 

initiation phase of metastatic lung colonisation before the presence of established 

lung metastases. We draw this conclusion from the decreased metastasis 

incidence in G-CSF-deficient or neutrophil elastase-expressing cell-depleted 

mammary cancer mouse models (Fig. 3.3 and Fig. 3.6) together with the same 

observation in mammary cancer bearing mice where Ly6G+ cells were only 

depleted during the initiation phase of lung metastases (Fig. 3.15). Moreover, co-

injection of lung neutrophils or neutrophil-derived products with cancer cells 

intravenously into healthy mice followed by only sporadic additional treatments 

enhanced metastatic burden (Fig. 3.22). These very limited time frames (one or 2.5 

weeks) may already insinuate limited involvement of activated CD8+ T cells that 
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specifically recognise tumour-associated antigens, since antigen-specific T cell 

responses in mice usually need about seven days to fully develop in, for example, 

acute and chronic viral infections (Althaus et al., 2007). Nevertheless, we 

specifically assessed the relevance of a potential immunosuppressive function of 

neutrophils to our observed pro-metastatic neutrophil activity at very early 

metastatic initiation stages. Additionally, these approaches were also evaluating 

the potential that our anti-Ly6G antibody neutrophil-depleting strategy might target 

G-MDSCs by assessing their characteristic functions of immunosuppression and 

their mediators. Firstly, we investigated surface marker and mRNA expression of 

wildtype lung and PyMT-tumour-induced pre-metastatic lung Ly6G+ cells. Pre-

metastatic lung cells appeared bigger and more granular than wildtype lung Ly6G+ 

cells, indicating their maturity (section 1.3). Also, they expressed similarly high 

CXCR2, increased CD31 and decreased MHC-II surface levels compared to 

wildtype Ly6G+ lung cells and their mRNA levels of TNF-alpha, Arg1, iNOS and 

VEGF were unaltered while some CCL chemokines were downregulated (Fig. 3.16). 

This phenotypic and transcriptional comparison of healthy lung and tumour-induced 

pre-metastatic lung Ly6G+ cells revealed only minor changes and in general 

suggests the similarity of wildtype lung neutrophils with tumour-induced Ly6G+ 

cells. Importantly, Arg1 and iNOS are the classic molecules to be present at 

increased levels and CXCR2 is usually downregulated in immature G-MDSCs 

compared to mature neutrophils (Dumitru et al., 2012, Gabrilovich et al., 2012, 

Pillay et al., 2013, Youn et al., 2012). Overall, pre-metastatic Ly6G+ cells appeared 

mature with segmented nuclei, pronounced expression of CXCR2 and increased 

CD31 levels, which are characteristics of neutrophils (Borregaard, 2010, Joyce and 

Pollard, 2009, Luu et al., 2003). Secondly, we performed an immune cell profile of 

the pre-metastatic lung of immunosufficient MMTV-PyMT cancer-bearing control 

IgG-treated or Ly6G+ cell-depleted mice and observed no differences in NK or 

cytotoxic T cell frequencies or activation status (Fig. 3.19). This observation 

suggests the absence of a Ly6G+ cell-dependent anti-cancer immune response in 

the pre-metastatic lung during the early stages of metastasis initiation. Lastly, the 

experiment demonstrating that Ly6G+ cell-ablation during only initial stages of 

metastatic lung colonisation by mammary cancer cells significantly reduced 

metastatic burden was performed in Rag1-/- mice (Fig. 3.15) that lack functional B 

and T cells. This observation functionally excludes the involvement of T cells in the 
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Ly6G+ cell-dependent promotion of early metastatic initiation. Of note, T cells 

represent the main cell type mediating anti-cancer immune responses that was 

reported to be suppressed by neutrophils in lung metastatic mouse mammary 

cancer models (Casbon et al., 2015, Coffelt et al., 2015). Overall, these series of 

experiments show that neutrophils play a clearly pro-metastatic role in the pre-

metastatic lung of mammary cancer-bearing mice during the onset of metastatic 

initiation, which is independent from the suppression of anti-tumourigenic NK or T 

cells. Together with the very neutrophil-like morphological and transcriptional 

characterisation of pre-metastatic lung Ly6G+ cells, we functionally and 

phenotypically exclude the contribution of G-MDSCs at this early metastatic stage. 

Hence, we propose that pre-metastatic lung Ly6G+ cells in the MMTV-PyMT 

mammary cancer model are mature neutrophils, which display a novel, pro-

metastatic and non-immunosuppressive function. 

Additionally, neutrophil-like cells that are recruited to the mammary tumour and the 

metastatic lung were directly shown to have non-immunosuppressive, pro-

metastatic effects. Acharyya et al. 2012 demonstrated that neutrophil-like cell-

derived S100A8/A9 is protecting mammary cancer cells from chemotherapeutic 

agent-induced death, at least partially via p38 kinase, and promotes mammary 

cancer cell survival during metastasis (Acharyya et al., 2012). Importantly, this 

action of S100A8/A9 was entirely independent from ERK1/2 activity and, hence, 

constitutes a pro-metastatic activity of neutrophil-like cells that is distinct from the 

novel leukotriene-leukotriene receptor-ERK1/2 axis we report. Benevides et al. 

2015 describe 4T1 tumour-induced neutrophils to possess properties promoting 

mammary tumour and metastatic growth likely via the secretion of CXCL1, MMP9, 

VEGF and TNF-alpha. However, the authors did not address the mechanisms 

behind this pro-tumourigenic activity of neutrophils due to another focus of this 

study (Benevides et al., 2015). We excluded the potential of MMP9 to enhance 

cancer stemness in sphere formation assays with mammary MMTV-PyMT cells 

(Fig. 4.4 f), suggesting that MMP9 is not involved in enriching or promoting 

mammary cancer stem cell-like cells. 

 

Neutrophils or neutrophil-like cells such as G-MDSCs that share common surface 

markers certainly have the potential to prevent NK and T cell activation during the 

process of metastasis. The mechanisms for some immunosuppressive features of 
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neutrophils in lung-metastatic mammary cancer mouse models were previously 

reported in the literature (Casbon et al., 2015, Coffelt et al., 2015). In fact, 

neutrophil-mediated inhibition of NK cells or recruitment of G-MDSCs is likely to 

contribute to the pro-tumourigenic features of neutrophils that we observe upon 

genetic neutropenia throughout the metastatic process in mammary cancer models. 

This notion is illustrated by a neutrophil-dependent limitation of NK cell presence at 

advanced metastatic stages (Fig. 3.2 f). However, our data demonstrate that 

neutrophils have another, previously unknown pro-metastatic function that is 

independent from cancer cell dissemination or extravasation, immunosuppression, 

metastatic cancer cell survival and MMP9 (Fig. 3.13, Fig. 3.17, Fig. 3.18, Fig. 3.19 

and Fig. 4.4 f). We report for the very first time that neutrophils directly aid initiation 

of metastatic lung colonisation of breast cancer cells by selectively inducing 

ERK1/2-mediated proliferation of the highly potent metastasis-initiating cancer cell 

subset via the secretion of Alox5 products/leukotrienes (Fig. 4.15). 

 

6.2.3.3 Integration of neutrophil and macrophage functions aiding metastatic 

lung colonisation of mammary cancer cells in mice 

The establishment of successful secondary tumours or metastases at distant 

organs is a process consisting of several steps. In general, disseminated cancer 

cells have to arrest within blood or lymphatic vessels at the target site, extravasate 

to infiltrate the tissue, survive in the foreign microenvironment and start to 

proliferate while preventing apoptosis to form micro- and at later stages macro-

metastases (Nguyen et al., 2009, Valastyan and Weinberg, 2011) and (Fig. 1.1). 

Our work identified a distinct activity of neutrophils to promote metastatic lung 

colonisation of mammary cancer cells during the stages of initiation of cell 

proliferation and micro-metastasis establishment (section 6.2.3.2.). 

Other myeloid cells like macrophages are also known to aid multiple steps of 

distant lung tissue colonisation by breast cancer cells. First of all, in murine 

melanoma models, tumour cell-induced clot formation within the lung vasculature 

recruited CD11b+CD68+F4/80+ macrophages that enhanced tumour cell survival 

(Gil-Bernabe et al., 2012). CD45+F4/80+ macrophages in the pre-metastatic lung 

of mammary cancer-bearing mice express Integrin-alpha4-beta1 that serves as a 
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docking site and survival signal for arriving human breast cancer cells via VCAM-1 

and downstream PI3K signalling (Chen et al., 2011). Moreover, in concert with 

known functions of neutrophils in promoting metastatic cancer cell transendothelial 

migration and extravasation (Reymond et al., 2013, Wu et al., 2001) and (section 

1.3.5.2.); a distinct, recruited population of macrophages that likely differentiated 

from inflammatory monocytes (metastasis-associated macrophages, MAMs) 

engaged with arriving mammary cancer cells and also aided their extravasation 

from blood vessels in the metastatic lung at least partially via VEGF-A (Qian et al., 

2009, Qian et al., 2011). MAMs were also suggested to support growth of 

established metastases, since their depletion or prevention of their recruitment after 

seeding of mammary cancer cells into the lung reduced metastatic burden at later 

stages (Qian et al., 2009, Qian et al., 2011), this effect appears to be partially 

mediated by a Flt1/MCSF cascade in macrophages (Qian et al., 2015). Potential 

macrophage-mediated mechanisms supporting metastatic growth in the lung 

include promotion of angiogenesis, inhibitory activity towards anti-cancer immunity 

and activation of an inflammatory programme in macrophages  (Mazzieri et al., 

2011, Qian and Pollard, 2010, Qian et al., 2015) and (section1.2.3.3.). Interestingly, 

these CD11b+F4/80+ MAMs were shown to be recruited to the metastatic lung by 

metastatic mammary cancer cell-derived CCL2, in contrast to CD11b+Ly6G+ 

neutrophils that we and others detected in pre-metastatic lungs before cancer cell 

arrival (Fig. 3.14 and section 6.3.1). In fact, CCR2+ inflammatory monocytes 

migrated to the metastatic lungs instead of the primary mammary tumour that 

expresses low levels of CCL2 and these monocytes further differentiated to cancer 

cell extravasation- and survival-promoting MAMs (Qian et al., 2011). Further, 

CCL2-CCR2 signalling-induced chemokine secretion (CCL3) by these 

macrophages mediated the retention of MAMs in the lung and deficiency of CCL3 

or its receptor CCR1 decreased MAM numbers in the lung of mammary cancer-

bearing mice likely by limiting their interactions with metastatic cancer cells 

(Kitamura et al., 2015). Importantly, recruited CD11b+ MAMs appear to be distinct 

from resident CD11c+ (alveolar) lung macrophages, because only ablation of 

CD11b+, but not CD11+ macrophages reduced extravasation and metastatic 

growth of breast cancer cells in the lung (Qian et al., 2009, Qian and Pollard, 2010). 

Additionally, it has to be mentioned that the currently available tools for in vivo 

macrophage depletion might also target CD11b+Ly6G+ neutrophils. The mainly 
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used strategies to interfere with macrophages in the mentioned studies consist of 

CD11b-DTR and clodronate-containing liposome-mediated ablation, Mac1 and 

MCSF-deficient mice or administration of CCL2-blocking antibodies. Importantly, 

Qian et al. 2009 also observed the increase of CD11b+Gr.1+ neutrophils in the 

metastatic lung of mammary cancer-bearing mice, however the effect of 

macrophage-depletion on lung neutrophil levels was not assessed in these studies 

(Gil-Bernabe et al., 2012, Qian et al., 2011, Qian et al., 2009). 

Here, we report a novel function of neutrophils to promote lung metastasis of 

mammary cancer cells by leukotriene-mediated promotion of ERK1/2-dependent 

proliferation during very early stages of lung colonisation. Despite known functions 

of macrophages at the primary tumour site to promote cancer cell proliferation via 

secretion of growth factors (Lewis and Pollard, 2006), direct evidence for MAM-

mediated support of metastatic mammary cancer cell proliferation during initial 

stages of metastatic establishment are missing. This notion together with the timing 

of neutrophil increase in the pre-metastatic lung prior to the described macrophage 

recruitment suggests likely functionally and temporally distinct activities of 

neutrophils and macrophages to foster metastasis. Nevertheless, these myeloid 

cell types might secrete the same or similarly acting factors (such as leukotrienes) 

that would likely mediate similar cancer cell responses and could act in concert or 

during different stages (Fig.6.1). Further research will be necessary to shed light on 

potentially distinct or complementary functions of neutrophils and macrophages 

during lung metastasis establishment in mammary cancer-bearing hosts. 
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Figure 6-1 Overview on main pro-metastatic activities of macrophages and 
neutrophils during early metastatic colonisation 
Schematic representation of the stages cancer cells likely undergo to establish 
metastatic nodules (red) and their support by macrophages (brown) or neutrophils 
(purple). 
 

 

6.2.3.4 Restoring normal neutrophil levels during chemotherapy in the clinic 

Neutrophilia represents an independent risk factor in multivariate analyses for poor 

clinical outcome in many cancer types including breast cancer. Neutropenia is a 

frequent issue arising during the treatment of cancer patients with 

chemotherapeutic agents. Normal neutrophil counts are routinely restored by the 

administration of recombinant G-CSF and reduce the risk of non-cancer related 

complications like the susceptibility to infections and, hence, appear to extend the 

life of cancer patients (sections 1.3.3 and 1.3.5). This notion should not necessarily 

be influenced by our and other data demonstrating a pro-tumourigenic function of 

neutrophils, despite several reports that patients developing neutropenia during 

chemotherapy have a better cancer-related prognosis (Cameron et al., 2003, Di 

Maio et al., 2005, Shitara et al., 2009, Eskander and Tewari, 2012, Tewari et al., 

2014). In our pre-clinical MMTV-PyMT mammary cancer mouse model, complete 

neutrophil depletion strongly reduced the incidence of lung metastasis (Fig. 3.3, Fig. 
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3.6 and Fig. 3.15). Also, in the clinic, G-CSF administration was correlated with 

cancer progression (Aliper et al., 2014, Voloshin et al., 2011). However, the 

likelihood of a life-threatening infection in mouse experiments in isolated facilities 

that last several weeks or months is far lower than that for cancer patients who are 

in continuous contact with potential pathogens for years. In the clinic, enhancing 

the risk of cancer progression by increasing neutrophil levels has to be 

counterbalanced with additional, possibly life-threatening side effects like the 

inability to fight infections. Additionally, restoring normal neutrophil counts in cancer 

patients does not necessarily mean causing drug-induced neutrophilia. In fact, G-

CSF is only administered to neutropenic cancer patients in controlled doses and 

usually normalises neutrophil counts but does not continuously enhance their 

presence above the physiological baseline (Morstyn et al., 1989). Therefore, the 

neutrophil levels of cancer patients receiving G-CSF with chemotherapy are 

unlikely to represent the ones of a patient with tumour-induced neutrophilia that 

constitutes a worse prognosis. 

In fact, this issue of balancing neutrophil counts to an acceptable but not cancer-

promoting level highlights the potential power of our suggested novel therapeutic 

strategy for the limitation of breast cancer metastasis. Zileuton specifically blocks a 

pro-tumourigenic function of neutrophils likely without interfering with neutrophil 

presence or their additional essential functions. Moreover, leukotriene blockade in 

long-term use in the clinic was proven to be safe for asthmatic patients (section 

6.2.2). 
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6.3 Outlook and arising questions 

6.3.1 Neutrophil recruitment to the pre-metastatic site 

Our study confirmed systemic mobilisation and lung accumulation of neutrophils in 

additional pre-clinical mouse models of lung-metastatic breast cancer 

complementing previous reports (Acharyya et al., 2012, Casbon et al., 2015, Coffelt 

et al., 2015, Granot et al., 2011). Coffelt et al. 2015 conduced an entire study 

dedicated to uncover the mechanism for neutrophil accumulation in the lung of 

K14cre, Cdh1flox/flox, Trp53flox/flox breast cancer-bearing hosts. They describe that 

mammary cancer cell-derived IL-1-beta activates circulating gamma-delta T cells to 

increase IL-17 production, which in turn upregulates systemic G-CSF levels and 

causes neutrophil expansion. In fact, tumour-bearing K14cre, Cdh1flox/flox, 

Trp53flox/flox crossed with T and B cell-deficient Rag1-/- mice showed reduced 

systemic IL-17 and G-CSF levels in concert with decreased presence of neutrophils 

in the lung (Coffelt et al., 2015). Moreover, Benevides et al. 2015 corroborated the 

importance of IL-17 in supporting mammary tumour progression by promoting 

neutrophil influx to the metastatic site. The authors describe that tumour cell 

derived-IL-6 and CCL20 induce the recruitment of T lymphocytes to the primary 

mammary tumour and their differentiation towards an IL-17-secreting phenotype 

(Benevides et al., 2015). The IL-17/G-CSF axis is central to regulate neutrophil 

mobilisation during infection and other inflammatory processes, where tissue-

resident macrophages and mast cells were shown to release IL-23 which 

stimulates IL-17 production by T cells (Borregaard, 2010). However, we observe 

that neutrophils readily infiltrate the pre-metastatic and metastatic lung of T and B 

cell-deficient Rag1-/- mice when grafted with MMTV-PyMT, 4T1 and MDA-MB-231 

mammary tumours (Fig. 3.17 c, Fig. 5.2 b and Fig. 5.4 b+f), in contrast to K14cre, 

Cdh1flox/flox, Trp53flox/flox Rag1-/- mice (Coffelt et al., 2015). This evidence indicates 

the existence of T cell-independent mechanisms that lead to neutrophil 

accumulation in the lung of mammary tumour-bearing hosts, at least for the three 

mouse models that we employed. However, systemic expansion of neutrophils by 

elevated levels of G-CSF does not entirely clarify the preferential accumulation of 

neutrophils in the pre-metastatic lung of mammary tumour-bearing mice before the 

arrival of disseminated cancer cells. A likely explanation would be the fact that the 
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lung is one of the very few organs where neutrophils are present in significant 

amounts at steady state (Kolaczkowska and Kubes, 2013, Kreisel et al., 2010, 

Kruger et al., 2015) and, accordingly, their presence would increase predominantly 

at this sites upon neutrophilia independent of the lung becoming the site of 

metastasis. Additionally, tumour-induced G-CSF increase could directly mediate 

the expansion and proliferation of this lung-resident neutrophil pools. However, 

lung-resident neutrophil populations would have to be replenished by radiosensitive 

bone marrow-derived cells based on our observation of the pronounced presence 

of CXCR2-/- neutrophils in the lung of mammary tumour-bearing mice that were 

reconstituted with CXCR2-/- bone marrow (Fig. 3.9). 

Interestingly, another study is partially addressing elevated neutrophil presence in 

the metastatic (but not the pre-metastatic) lung of mammary cancer-bearing mice 

and implicated CXCR2 ligands-mediated neutrophil recruitment (Acharyya et al., 

2012). The authors report cancer cell-derived CXCR2 ligands CXCL1/2-induced 

attraction of neutrophils to primary mammary tumours as well as metastatic lungs. 

They clearly demonstrate that CXCL1/2-depleted cancer cells seeded into the 

mammary gland or the lung show diminished growth correlating with reduced 

neutrophil infiltration in two different lung metastatic mammary cancer models. 

Additionally, they show that systemic CXCR2 inhibition enhances the effect of 

chemotherapy in pre-clinical mouse models while CXCR2 blockade itself did not 

inhibit mammary tumour growth. CXCL1 and CXCL2, the murine homologs of IL-8, 

are strong chemoattractants for neutrophils and CXCR2 deletion is commonly 

associated with limiting neutrophil infiltration into peripheral tissues even in cancer 

settings (Gong et al., 2013, Jamieson et al., 2012, Keane et al., 2004). Based on 

these observations, Acharyya et al. 2012 hypothesise a direct cancer cell-derived 

CXCL1/2-mediated recruitment of pro-tumourigenic neutrophils via engagement of 

their CXCR2 receptor. Interestingly, our data demonstrate that the neutrophil 

accumulation in the metastatic lung is independent from neutrophil-expressed 

CXCR2. We detected unaltered levels of CXCR2-deficient neutrophils in the 

metastatic lungs of mammary tumour-bearing mice compared to wildtype controls, 

however using a different lung metastatic mammary cancer model (Fig. 3.9). 

Moreover, cancer cells in the mammary tumour itself express CXCL1/2 that is 

attracting neutrophils (Acharyya et al., 2012), but we found only minimal neutrophil 

presence at the primary site (Fig. 3.1 e). This evidence raises the interesting 
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possibility of the existence of another (unknown) CXCL1/2 receptor on neutrophils 

in a cancer setting, eventually a result of the aberrant myelopoiesis in cancer-

bearing hosts. Alternatively, there might be an additional cellular player that is 

responsive to cancer cell-derived CXCL1/2 and facilitates neutrophil recruitment to 

the lung, but less to the mammary gland. In fact, Acharyya et al. 2012 did not 

directly investigate if cancer cell-derived CXCL1/2-mediated neutrophil recruitment 

was dependent on CXCR2 expression by neutrophils in mammary cancer mouse 

models. Also, the authors did not confirm reduced neutrophil frequencies in 

mammary tumours or the lung when systemically inhibiting CXCR2. CXCR2 is 

expressed on numerous other, non-haematopoietic cells and correlates with poor 

prognosis when present on tumour cells that could additionally account for the 

observed effects on neutrophil infiltration or cancer response to chemotherapy 

when systemically blocking CXCR2 (Acharyya et al., 2012, Ijichi et al., 2011, 

Mestas et al., 2005, Saintigny et al., 2013, Warner et al., 2008). The CXCL1/2-

mediated chemoattraction via neutrophil-expressed CXCR2 might be crucial for 

neutrophil recruitment by cancer cells present in several different organs, however 

does not seem to directly mediate neutrophil influx in the metastatic lung of 4T1 

tumour-bearing mice. 

Our findings that pro-metastatic neutrophils accumulate in the pre-metastatic lung 

prior to disseminated cancer cell infiltration and promote metastasis initiation might 

indicate that neutrophils represent an initial part of a pre-metastatic niche. Elevation 

of neutrophil levels that induce cancer cell proliferation could be a means of the 

primary tumour to create a more hospitable environment at the pre-metastatic 

organ, hence paving the way for disseminated cancer cells. However, enhanced 

neutrophil presence in the distant metastatic organ might be a coincidental event, 

since we also observed lung neutrophil accumulation in non-metastatic tumour-

bearing mice (Fig. 3.11). This observation was not corroborated when grafting the 

non-metastatic mammary cancer cell line 67NR (Benevides et al., 2015), however 

that is likely a reflection of the slow in vivo growth of this cell line and the analysis 

of neutrophil mobilisation in this study before the grafted mammary tumour reached 

a sufficient size. Nevertheless, changes in the pre-metastatic environment through 

primary cancer cell or stromal cell-derived factors might be the cause for neutrophil 

infiltration. Known niche-inducing factors include soluble mediators like cytokines 

and chemokines as well as exosomes that contain a plethora of factors (Oskarsson 
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et al., 2014, Plaks et al., 2015, Psaila and Lyden, 2009, Quail and Joyce, 2013). 

For example, VEGF, TNF-alpha and TGF-beta are known to be secreted by 

mammary tumours and caused production of S100A8 and S100A9 by pre-

metastatic lung endothelial and myeloid cells (Hiratsuka et al., 2006). S100A8/A9, 

in turn, are potent inducers of neutrophil chemotaxis (Ryckman et al., 2003) and 

could mediate neutrophil recruitment to the lung, apart from their described role in 

promoting mammary cancer cell survival when secreted from neutrophil-like cells in 

the primary tumour (Acharyya et al., 2012). Moreover, ECM remodelling by 

upregulation of MMP9 in the pre-metastatic microenvironment (Hiratsuka et al., 

2002) might cause a subtle tissue damage response by resident mast cells and 

macrophages that facilitate neutrophil recruitment (Kim and Luster, 2015, 

Kolaczkowska and Kubes, 2013). In fact, lung macrophages have been shown to 

be activated in mammary-cancer bearing hosts prior to cancer cell arrival (Chen et 

al., 2011). Metastatic colonisation-preceding activation of tissue resident fibroblasts 

by soluble or exosome-transported factors might also promote lung neutrophil 

attraction. Activated fibroblasts are known to attract bone marrow-derived 

VEGFR1+ haematopoietic progenitor cells to the metastatic site (Kaplan et al., 

2005) and fibroblasts can mediate neutrophil recruitment to the lung via LTB4, IL-8 

or G-CSF release upon inflammatory insults like bleomycin or cigarette smoke 

(Sato et al., 1999, Takamizawa et al., 1999). Granot et al. 2011 did not directly 

address this question of neutrophil recruitment to the pre-metastatic lung in 

mammary cancer-bearing hosts, although they did provide some insights. They 

excluded 4T1 cancer cell-derived CCL2 as a neutrophil chemoattractant to the 

metastatic lung in mice carrying 4T1 mammary tumours since cancer cell-specific 

knock down of CCL2 did not alter neutrophil accumulation in the lungs. Also, the 

involvement of stromal cell-derived CCL2 in the recruitment of neutrophils appears 

unlikely, since the authors shown that cancer cell-derived CCL2 is required for 

functional properties of neutrophils and that these are not induced by the stroma 

(Granot et al., 2011). However, CCL2 was also reported to facilitate recruitment of 

monocytes and neutrophil-like myeloid-derived suppressor cells (G-MDSCs) to 

tumour or metastatic sites (Qian et al., 2011, Talmadge and Gabrilovich, 2013, 

Wesolowski et al., 2013), stressing the difference between these cell types and 

neutrophils. 
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In summary, the accumulation of neutrophils in the pre-metastatic lung in breast 

cancer mouse models emerges as a very complex process. It appears connected 

to a systemic IL-17/G-CSF axis-induced neutrophil mobilisation (Benevides et al., 

2015, Coffelt et al., 2015), but is likely also mediated by a combination of additional 

mechanisms including CXCL1/2 at least at later metastatic stages (Acharyya et al., 

2012). 

 

6.3.2 Leukotriene receptors as functional cancer stem cell markers? 

A common definition of stem cells is their ability to self-renew and differentiate into 

multiple lineages that are distinct from their current state. This notion led to the 

proposal of the existence of stem cells within tumours that showed the unique 

potential to re-initiate the entity of a tumour even from a single cell level onwards. 

However, “stemness” in cancer appears to be a dynamic cell state and not 

comprised within rigid cell populations. Also, monitoring the key feature of 

stemness, the ability to self-renew, appears very challenging within tumour tissues. 

Hence, the term “cancer stem cell” has to be used with caution (section 1.1.4). In 

fact, the most accepted assay to determine stem cell potential of cancer cells is 

their competence to initiate an entire tumour upon xenografting them into 

immunocompromised mice (Kreso and Dick, 2014). We show that mouse BLT2 

and/or CysLT2-expressing spontaneous MMTV-PyMT tumour cells have enhanced 

competence to grow a mammary tumour upon injection of 103 cells into 

immunocompromised Rag1-/- mice compared to leukotriene receptor-deficient cells 

(Fig. 4.8 b+c). Also, leukotriene receptor-expressing MMTV-PyMT cells show 

enhanced sphere-forming ability (Fig. 4.8 a). Moreover, leukotriene treatment of the 

total cancer cell population is increasing the frequency of cancer cell subpools that 

are enriched for leukotriene receptor-expressing cells as well as the overall 

competence of cancer cells for sphere formation, tumour and metastasis initiation 

(Fig. 4.6, Fig. 4.7 and Fig. 4.12 a). These results indicate that leukotriene receptor-

expressing mouse cancer cells have a functional growth/proliferation advantage 

over leukotriene receptor-deficient cells and at least contain a population of cancer 

cells with increased tumour-formation potential. However, additional studies are 

necessary to confirm leukotriene receptor-expressing cells as tumour-initiating cells. 
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We attempted xenografting experiments of BLT2 and/orCysLT2-expressing 4T1 

mammary cancer cells, however this cancer cell line was exceedingly aggressive 

and even as little as 10 transplanted cells always formed a mammary tumour upon 

transplantation independent from their leukotriene receptor expression. Additionally, 

the tumour formation potential of individually grafted leukotriene receptor-

expressing cancer cells compared to leukotriene receptor-deficient cells has to be 

tested according to current definitions of tumour-initiating cells (Kreso and Dick, 

2014). Given the difficulty of single cells derived from solid tumours to grow after 

injection into mice, this approach would likely require more immunocompromised 

hosts (Rongvaux et al., 2013). However, this strategy might actually be 

counterproductive and diminish the authentic potential of these cancer cells, as we 

propose the leukotriene receptor-mediated growth advantage to be dependent on 

the interaction with the microenvironment/neutrophils. This notion might also tackle 

the general view of intrinsic potency of cancer stem cells or tumour-initiating cells 

(Kreso and Dick, 2014) that mostly ignores the importance of the microenvironment 

regulating the potential of a cell, especially in cancer (Malanchi, 2013, Plaks et al., 

2015, Quail and Joyce, 2013). 

Another related question is if leukotriene receptor expression would identify a 

population of metastasis-initiating cells. This idea is very attractive, due to BLT2 

and CysLT2 being enriched but not restricted to previously functionally defined 

CD90+ MICs (Fig. 4.7 c-e) and both leukotriene receptors providing increased 

responsiveness to neutrophil-derived proliferation-promoting signals (Fig. 4.9, Fig. 

4.10 and Fig. 4.11). Unfortunately, proof of this hypothesis is missing. The fact that 

leukotriene receptor-expressing MMTV-PyMT cells are a very small subpopulation 

(Fig. 4.7 a-b) represents a key technical caveat and all trials to isolate and 

intravenously inject a sufficient cell number ended up failing. We also tried the 

intravenous injection of up to 4x104 isolated leukotriene receptor-expressing 4T1 

cells, which are more aggressive and metastatic. In this experiment, we found that 

0/6 leukotriene receptor-deficient and 1/6 leukotriene receptor-expressing cells 

established metastases, which is again not conclusive enough. However, the 

intravenous injection of cancer cells into healthy mice represents a test for their 

intrinsic metastasis initiation potential without taking the influence of a pre-

metastatic niche into account (Malanchi, 2013), which we demonstrated to be the 
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crucial mechanism how leukotriene receptors confer a growth advantage to 

metastasis-initiating cells. 

The tumour or metastasis initiation potential of spontaneous human LTR+ breast 

cancer cells was to our knowledge never reported to be tested. Expression of 

leukotriene receptors including BLT2 and CysLT2 was demonstrated on subsets of 

many different types of human cancer tissues and cancer cell lines including breast 

cancer, frequently even in increased levels. Interestingly, expression of CysLT1 

correlated with worse prognosis while cancer cell CysLT2 expression indicated 

better outcome (section 1.2.3.5.1). However, it largely remains to be seen if 

leukotriene receptor expression in different combinations correlates with metastatic 

prognosis for breast cancer patients. We confirmed that both leukotriene receptors, 

BLT2 and CysLT2, are expressed on cancer cells of more than 50% of tested 

primary breast cancer and lymph node metastases samples with largely varying 

intensity and frequency of positive cells (Fig. 5.6). This observation confirms 

phenotypic differences between human cancer cell subpopulations according to 

leukotriene receptor expression, however the functional consequence is largely 

unknown. Of note, BLT2- and CysLT2-expressing human cancer cells of the 

human breast cancer cell line MDA-MB-231 are enriched within the CD44-high cell 

and Aldefluor+ cell subset (Fig. 4.7 f-g) that was previously reported to exhibit 

cancer stem cell-like properties (Al-Hajj et al., 2003, Sheridan et al., 2006). In vitro, 

leukotriene treatment of the human MDA-MB-231 cell line caused ERK1/2 

phosphorylation and enrichment of LTR+ cells among the total cancer cell 

population (Fig. 4.9 e and Fig. 4.12 a), confirming the responsiveness of human 

cells to a leukotriene-mediated proliferation signal. In xenograft assays, MDA-MB-

231 cells displayed a generally very low tumour initiation capacity. 0/6 LTR- cells 

and 1/6 LTR+ cells formed tumours after five months upon injection of 103 cells into 

the mammary gland, suggesting a tendency that is not yet convincing. 

To eventually refine a cancer cell subset with enhanced cancer stem cell/tumour-

initiating ability by leukotriene receptor expression, the individual potential of BLT2+ 

and CysLT2+ cancer cells should to be assessed. In vitro, engagement of either 

receptor on mammary cancer cells by its respective ligand is sufficient to cause 

ERK1/2 phosphorylation (Fig. 4.9, Fig. 4.10 and Fig. 4.11), suggesting a functional 

commonality that made us assess BLT2 and CysLT2 receptors and their 

stimulation jointly in our metastasis study. Our in vivo experiments so far assessed 
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the tumour initiation potential of a cancer cell population expressing at least one 

leukotriene receptor and, therefore, contained single BLT2+, single CysLT2+ and 

double leukotriene receptor-expressing cells (Fig. 4.8). Preliminary experiments 

xenografting BLT2+ or CysLT2+ MMTV-PyMT cancer cells suggested a clear 

tumour formation advantage of BLT2+ over BLT2- cells, which was not as 

pronounced for CysLT2. Additionally, testing the tumour initiation potential of 

double BLT2+ and CysLT2+ MMTV-PyMT cancer cells versus leukotriene receptor-

deficient cells might provide an additional approach to refine markers for highly 

potent mammary cancer cells. 

At this point, we can conclude that leukotriene receptor-expressing cancer cells 

have a higher potency for tumour formation compared to cells lacking leukotriene 

receptors at least in the MMTV-PyMT mammary cancer mouse model. However, it 

remains to be established if leukotriene receptor-expressing cancer cells have an 

intrinsically higher tumour formation potential or, more likely, if this is at least 

partially mediated by the crosstalk with the microenvironment/neutrophils, which is 

the crucial functional relevance of leukotriene receptor expression during 

metastasis. In any case, normal and some types of tumour or metastasis-initiating 

cancer cells are known to depend on a microenvironmental niche that regulates 

their maintenance and differentiation (Li and Neaves, 2006, Oskarsson et al., 2014, 

Plaks et al., 2015). A main hallmark of cancer cells is their ability to proliferate 

(Hanahan and Weinberg, 2011), however cancer stem cells or tumour-initiating 

cells are frequently in a rather quiescent state (Plaks et al., 2015). Leukotriene 

receptors appear to functionally provide highly potent cancer stem cell-like cells 

with the ability to respond to microenvironmental, neutrophil-derived signals 

inducing proliferation in challenging situations, such as during cancer cell dormancy, 

metastatic colonisation or relapse after therapy. Hence, leukotriene receptor-

expressing cells likely define a more potent population of mammary cancer cells, 

despite the need of further experimental proof. 
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