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Abstract. We give a procedure for establishing the invalidity of logi-
cal entailments in the symbolic heap fragment of separation logic with
user-defined inductive predicates, as used in program verification. This
disproof procedure attempts to infer the existence of a countermodel
to an entailment by comparing computable model summaries, a.k.a.
bases (modified from earlier work), of its antecedent and consequent.
Our method is sound and terminating, but necessarily incomplete.
Experiments with the implementation of our disproof procedure indi-
cate that it can correctly identify a substantial proportion of the invalid
entailments that arise in practice, at reasonably low time cost. Accord-
ingly, it can be used, e.g., to improve the output of theorem provers by
returning “no” answers in addition to “yes” and “unknown” answers to
entailment questions, and to speed up proof search or automated theory
exploration by filtering out invalid entailments.

1 Introduction

Separation logic [23] is a well known and relatively popular formalism for Hoare-
style verification of heap-manipulating programs. There are now a number of
analyses and tools based on separation logic that are capable of running on
industrial-scale code (see e.g. [7, 14, 20]). These tools typically limit the separa-
tion logic assertion language to the so-called symbolic heap fragment [6] in which
only a single fixed restricted inductive predicate, defining linked list segments, is
permitted. This fragment is tractable — for example, logical entailment becomes
polynomial [17] — but the restrictions come at the cost of expressivity: analyses
based on this fragment cannot effectively reason about non-list data structures.

Recently, however, there has been significant research interest in developing
analyses for the fragment of separation logic in which arbitrary user-defined in-
ductive predicates over symbolic heaps are permitted (see e.g. [11, 15, 21, 22]).
This fragment is much more expressive than the simple linked-list fragment,
but is also computationally much harder. In particular, entailment in this frag-
ment is undecidable [3], although satisfiability is decidable [10] and entailment
is decidable when predicates are restricted to have bounded treewidth [19].

In this paper, we focus on the little-considered problem of disproving logical
entailments in the aforementioned fragment. Any proof procedure for entailment
is necessarily incomplete, so the failure of proof search does not tell us whether



or not an entailment is valid. A sound disproof procedure would enable us to
receive “no” answers to entailment questions as well as “yes” or “don’t know”
answers. In particular, this has the potential to speed up proof search: we need
not try to prove an entailment that is known to be invalid.

Our approach builds on the decision procedure for satisfiability in [10], which
builds a summary of the models of a symbolic heap called its base. The base of a
symbolic heap A is a finite set of base pairs recording, for each way of building a
model of A, the variables in A that must be allocated on the heap (plus, in this
paper, the “types” of the records they point to), and the equalities and disequal-
ities that must hold. In [10] it is shown that satisfiability of a symbolic heap is
exactly nonemptiness of its base. Here we go further: we attempt to disprove an
entailment A ⊢ B by using the bases of A and B to infer the existence of a coun-
termodel without computing it. This approach yields an algorithm for disproof
that is both sound and terminating, but therefore necessarily incomplete.

Our method is partly reminiscent of the disproof method for separation logic
(with fractional permissions [8] but without inductive predicates) in [18], which
attempts to show that the maximum size of any model of A is strictly less than
the minimum size of any model of B. However, this approach does not work
well for our fragment since, if A contains an inductive predicate, its models are
generally of unbounded size.

We have implemented our disproof algorithm in the Cyclist theorem prov-
ing framework [1, 13]. Our experimental evaluation indicates that our disproof
method can identify a significant proportion of invalid entailments arising in
three different benchmark suites, and that it is inexpensive on average. Our al-
gorithm might therefore be used to improve both the quality and performance
of automatic theorem provers (and the program analyses relying on them).

The remainder of this paper is structured as follows. Section 2 gives an
overview of our separation logic fragment, and Section 3 briefly reprises the
key concept of base pairs from [10]. In Section 4 we then develop our entailment
disproof method in detail. Section 5 describes the implementation of the disproof
algorithm and our experimental evaluation, and Section 6 concludes.

2 Separation logic with inductive predicates

In this section we present our fragment of separation logic, which restricts the
syntax of formulas to symbolic heaps as introduced in [5, 6], but allows arbitrary
user-defined inductive predicates over these, as considered e.g. in [9–11].

We often write vector notation to abbreviate tuples, e.g. x for (x1, . . . , xm),
and we write X # Y , where X and Y are sets, as a shorthand for X ∩ Y = ∅.

Syntax. A term is either a variable in the infinite set Var, or the constant nil. We
assume a finite set P1, . . . , Pn of predicate symbols, each with associated arity.

Definition 2.1. Spatial formulas F and pure formulas π are given by:

F ::= emp | x 7→ t | Pit | F ∗ F π ::= t = t | t 6= t
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where x ranges over variables, t over terms, Pi over predicate symbols and t over
tuples of terms (matching the arity of Pi in Pit). A symbolic heap is given by
∃z. Π : F , where z is a tuple of variables, F is a spatial formula and Π is a
finite set of pure formulas. Whenever one of Π,F is empty, we omit the colon.
We write FV (A) for the set of free variables occurring in a symbolic heap A.

Definition 2.2. An inductive rule set is a finite set of inductive rules, each of
the form A ⇒ Pit, where A is a symbolic heap (called the body of the rule), Pit
is a formula (called its head), and all variables in FV (A) appear in t.

As usual, the inductive rules with Pi in their head should be read as ex-
haustive, disjunctive clauses of an inductive definition of Pi. To avoid ambiguity,
we write existential quantifiers in the bodies of inductive rules explicitly, rather
than leaving them implicit as is done e.g. in [10].

Semantics. We use a RAM model employing heaps of records. We assume an
infinite set Val of values of which an infinite subset Loc ⊂ Val are addressable
locations ; we insist on at least one non-addressable value nil ∈ Val \ Loc.

A stack is a function s : Var → Val; we extend stacks to terms by setting
s(nil) =def nil , and write s[z 7→ v] for the stack defined as s except that s[z 7→
v](z) = v. We extend stacks pointwise to act on tuples of terms.

A heap is a partial function h : Loc ⇀fin (Val List) mapping finitely many
locations to records, i.e. arbitrary-length tuples of values; we write dom(h) for the
set of locations on which h is defined, and e for the empty heap that is undefined
everywhere. We write ◦ for composition of domain-disjoint heaps: if h1 and h2

are heaps, then h1 ◦ h2 is the union of h1 and h2 when dom(h1) # dom(h2),
and undefined otherwise. If ℓ ∈ dom(h) then we call |h(ℓ)| (i.e. the length of the
record h(ℓ)) the type of ℓ in h, and we define the footprint fp(h) of a heap h by
{(ℓ, |h(ℓ)|) | ℓ ∈ dom(h)}, i.e. by pairing each location in dom(h) with its type.

Definition 2.3. Given an inductive rule set Φ, the relation s, h |=Φ A for satis-
faction of a symbolic heap A by stack s and heap h is defined by:

s, h |=Φ t1 = t2 ⇔ s(t1) = s(t2)

s, h |=Φ t1 6= t2 ⇔ s(t1) 6= s(t2)

s, h |=Φ emp ⇔ h = e

s, h |=Φ x 7→ t ⇔ dom(h) = {s(x)} and h(s(x)) = s(t)

s, h |=Φ Pit ⇔ (s(t), h) ∈ JPiK
Φ

s, h |=Φ F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |=Φ F1 and s, h2 |=Φ F2

s, h |=Φ ∃z. Π : F ⇔
∃v ∈ Val

|z|. s[z 7→ v], h |=Φ π for all π ∈ Π

and s[z 7→ v], h |=Φ F

where the semantics JPiK
Φ of the inductive predicate Pi under Φ is defined below.

We say that (s, h) is a model of a symbolic heap A (under Φ) if s, h |=Φ A.

The following definition gives the standard semantics of the inductive pred-
icate symbols P = (P1, . . . , Pn) as the least fixed point of an n-ary monotone
operator constructed from Φ. We write πi for the ith projection on tuples.
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Definition 2.4. For each predicate Pi ∈ P with arity αi say, we define τi =
Pow(Valαi ×Heap) (where Pow(−) is powerset). Next, let Φ be an inductive rule
set, and partition Φ into Φ1, . . . , Φn, where Φi is the set of all inductive rules in
Φ of the form A ⇒ Pix. Letting each Φi be indexed by j, for each inductive rule
Φi,j of the form ∃z. Π : F ⇒ Pix, we define an operator ϕi,j : τ1× . . .× τn → τi:

ϕi,j(Y) =def {(s(x), h) | s, h |=Y Π : F}

where Y ∈ τ1 × . . . τn and |=Y is the satisfaction relation given in Defn. 2.3,
except that JPiK

Y =def πi(Y). We then define the n-tuple JPKΦ by:

JPKΦ =def µY. (
⋃

j ϕ1,j(Y), . . . ,
⋃

j ϕn,j(Y))

We write JPiK
Φ as an abbreviation for πi(JPKΦ).

Note that satisfaction of pure formulas depends neither on the heap nor on
the inductive rules; we write s |= Π , where Π is a set of pure formulas, to
mean that s, h |=Φ Π for any heap h and inductive rule set Φ. Indeed, whether
s |= Π depends only on the values s assigns to the variables in FV (Π), which is
finite; when considering such satisfaction questions, we typically consider “partial
stacks”, defined in the obvious way, with finite domain denoted by dom(s).

3 Base pairs of symbolic heaps

In [10] it is shown how to construct a computable “summary” of the models of a
symbolic heap A under any rule set Φ, called its base and written as baseΦ(A).
Each such summary is a set of so-called base pairs, each of which essentially
records a way of constructing models (s, h) of A under Φ, as projected onto the
free variables in A. Each base pair in baseΦ(A) comprises

1. a set X of “typed” variable expressions x : n, where x ∈ FV (A) and n ∈ N,
whose intuitive meaning is that the address s(x) must be allocated with type
(record length) n in h; and

2. a set Π of pure formulas (i.e. (dis)equalities) over FV (A) ∪ {nil} that must
be satisfied by s.

The following example is intended to illustrate the intuition behind our “base
pair” summaries of symbolic heaps.

Example 3.1. Let Φ be the inductive rule set defining the standard predicates
ls and bt, for linked list segments and nil-terminated binary trees respectively:

emp ⇒ lsxx

∃z. x 6= nil : x 7→ z ∗ ls z y ⇒ lsx y

x = nil : emp ⇒ btx

∃y, z. x 6= nil : x 7→ (y, z) ∗ bt y ∗ bt z ⇒ btx
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We obtain the following bases for lsx y and btx:

baseΦ(lsx y) = {(∅, {x = y}), ({x : 1}, {x 6= nil})}

baseΦ(btx) = {(∅, {x = nil}), ({x : 2}, {x 6= nil})}

The intuitive reading of baseΦ(lsx y) is that s, h |=Φ lsx y if and only if either:
(a) s |= x = y and neither s(x) nor s(y) is allocated by h; or (b) s |= x 6= nil and
s(x) is allocated with record type 1 in h.

Similarly, the intuitive reading of baseΦ(btx) is that s, h |=Φ btx if and only
if either: (a) s |= x = nil (and therefore s(x) cannot be allocated in h); or (b)
s |= x 6= nil and s(x) is allocated with record type 2 in h.

The set baseΦ(A) is always finite, since FV (A) is finite and the maximum
type numeral of any allocated location in a model of A can be shown to be finite
as well. The full details3 of the construction of baseΦ(A) can be found in [10].
However, for the purposes of the present paper, these details are in fact not
especially relevant. The information from [10] that we do however rely on is (a)
the fact that baseΦ(A) is computable, and (b) the precise relationship between
baseΦ(A) and the models of A under Φ. The latter is captured formally by the
following pair of technical results, where we define s(x : n) = (s(x), n), and
extend by pointwise union to sets.

Lemma 3.2 (Soundness [10]). Given a base pair (X,Π) ∈ baseΦ(A), a stack
s such that s |= Π, and a finite “footprint” W ⊂ Loc× N such that W # s(X),
one can construct a heap h such that s, h |=Φ A and W # fp(h).

Lemma 3.3 (Completeness [10]). If s, h |=Φ A, there is a base pair (X,Π) ∈
baseΦ(A) such that s(X) ⊆ fp(h) and s |= Π.

An immediate consequence of Lemmas 3.2 and 3.3, used in [10], is that sat-
isfiability of a symbolic heap A, i.e. the existence of at least one model of A,
exactly corresponds to nonemptiness of baseΦ(A), and is therefore decidable.

4 An algorithm for entailment disproof

In this section, we develop the main contribution of our paper: an algorithm for
disproving entailments in our separation logic fragment.

Definition 4.1. An entailment is given by A ⊢ B, where A and B are symbolic
heaps. The entailment A ⊢ B is said to be valid if for all stacks s and heaps h it
holds that s, h |=Φ A implies s, h |=Φ B, and invalid otherwise.

Thus, as usual, to disprove (i.e. show invalid) an entailment A ⊢ B, we need to
exhibit a countermodel (s, h) such that s, h |=Φ A but s, h 6|=Φ B. Unfortunately,

3 In fact, the original construction does not include the record types of allocated
variables in its base pairs, but the required adaptations are quite straightforward.

5



this is not straightforward, since the entailment problem for our fragment of
separation logic is undecidable [3].

One naive approach would simply be to generate and test possible counter-
models (s, h) of increasing heap “sizes” (defined in some reasonable way). This
approach has only just become potentially viable at the time of going to press,
following the very recent development of a model checking procedure for our
logic [12]. However, this approach still presents some fairly significant obstacles.
Firstly, the generation of possible counter-models is not simply a matter of blind
enumeration, since the values of stack variables, the addresses of allocated heap
cells and the contents of those cells all range over infinite sets (Val and Loc).
That is to say, there are infinitely many distinct models of a given size, and so
some quotienting over these values is required so as to restrict these models to
finitely many “representative cases”. Secondly, this approach also seems likely
to be quite expensive even in average cases, since the model checking problem
itself, according to [12], is EXPTIME-complete: Many models would be generated
and most of them would inevitably fail to be countermodels (e.g., for the trivial
reason that they do not satisfy A). Finally, any complete enumeration-based
approach will, in general, fail to terminate.

However, the technical lemmas in Section 3 relating the base of a symbolic
heap to its models suggest an alternative way in which we can nevertheless pro-
ceed. Lemma 3.2 tells us that we can construct a model (s, h) of A by choosing
a base pair (X,Π) of A, an s that satisfies Π and a footprint W , disjoint from
s(X), to be “avoided” by the footprint of h. Lemma 3.3 then tells us that if
s, h |=Φ B then we can find a base pair (Y,Θ) of B with which (s, h) is “con-
sistent”, in that s satisfies Θ and the footprint of h covers s(Y ). Thus if we
can construct a model of A with which no base pair of B is consistent, then
this model is a counter-model. We first formulate this idea directly as a simple
two-player game, and then refine this game into an implementable form.

4.1 Disproof via base pair games

In the following, we assume a fixed inductive rule set Φ. We extend the function
FV (−) to base pairs by FV ((X,Π)) =def

⋃

x:n∈X{x} ∪ FV (Π), and then by
pointwise union to sets of base pairs.

Game 1. Given an entailment A ⊢ B, we define a simple two-player game as
follows. A move by Player 1 is a tuple ((X,Π), s,W ) obtained by choosing:

– a base pair (X,Π) ∈ baseΦ(A);
– a partial stack s : (FV ((X,Π)) ∪ FV (baseΦ(B))) → Val such that s |= Π ;
– and a finite footprint W ⊂ Loc× N such that W # s(X).

A response by Player 2 to such a move is a base pair (Y,Θ) ∈ baseΦ(B) such
that s |= Θ and W # s(Y ).

A move is said to be a winning move if there is no possible response to it.

As a game, Game 1 is not especially interesting, as any game can be won by
Player 1 either in one move or not at all. Our formulation is for convenience.
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Proposition 4.2. If Player 1 has a winning move for A ⊢ B in Game 1 then
A ⊢ B is invalid.

Proof. Let ((X,Π), s,W ) be a winning move for A ⊢ B. That is, for some base
pair (X,Π) of A we have a partial stack s such that s |= Π and a finite footprint
W with W # s(X). By Lemma 3.2, there exists a heap h such that s, h |=Φ A

and W # fp(h).
Now suppose for contradiction that A ⊢ B is valid. Thus, as s, h |=Φ A, we

have s, h |=Φ B. By Lemma 3.3, there exists a base pair (Y,Θ) of B such that
s(Y ) ⊆ fp(h) and s |= Θ. As W # fp(h) and s(Y ) ⊆ fp(h), we have W # s(Y ).
Thus (Y,Θ) is a response to a winning move, contradiction. ⊓⊔

Our formulation of Game 1 exploits Lemmas 3.2 and 3.3 in a way that is
intended to be maximally general, but it cannot be directly implemented as a
terminating algorithm: Player 1 has to choose a partial stack with finite domain
but infinite codomain, and an arbitrary finite footprint W ⊂ Loc×N. However,
we can reformulate Game 1 so as to entirely obviate the latter difficulty.

Game 2. Given an entailment A ⊢ B, a move by Player 1 is a tuple ((X,Π), s)
obtained by choosing:

– a base pair (X,Π) ∈ baseΦ(A), and
– a partial stack s : (FV ((X,Π)) ∪ FV (baseΦ(B))) → Val such that s |= Π .

Given such a move, a response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B) such
that s |= Θ and s(Y ) ⊆ s(X). A winning move is defined as for Game 1.

Lemma 4.3. Player 1 has a winning move for A ⊢ B in Game 2 if and only if
she has a winning move for A ⊢ B in Game 1.

Proof. (⇐) Let ((X,Π), s,W ) be a winning move for A ⊢ B in Game 1. That
is, we have a base pair (X,Π) of A, a partial stack s and a finite footprint W

such that s |= Π and W # s(X); moreover, there is no response to this move.
The required winning move for A ⊢ B in Game 2 is then given by ((X,Π), s).

Suppose for contradiction that (Y,Θ) ∈ baseΦ(B) is a response to this move, i.e.,
s |= Θ and s(Y ) ⊆ s(X). As W # s(X) and s(Y ) ⊆ s(X), we have W # s(Y ).
As s |= Θ and W # s(Y ), the base pair (Y,Θ) is a response to the winning move
((X,Π), s,W ) for A ⊢ B in Game 1, contradiction.

(⇒) Let ((X,Π), s) be a winning move for A ⊢ B in Game 2. That is, we have
a base pair (X,Π) of A and a partial stack s such that s |= Π ; moreover, there
is no response to this move. We claim that ((X,Π), s,W ) is a winning move for
A ⊢ B in Game 1, where we choose the finite footprint W ⊂ Loc×N as follows:

W =def

(

⋃

(Y,Θ)∈baseΦ(B) s(Y )
)

\ s(X)

Now W # s(X) by construction, so ((X,Π), s,W ) is certainly a valid move in
Game 1. To see that it is a winning move, suppose for contradiction that Player
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2 has a response to this move, that is, a base pair (Y,Θ) of B with s |= Θ and
W # s(Y ). By construction, s(Y ) \ s(X) ⊆ W , so s(Y ) \ s(X) # s(Y ). This
implies s(Y ) \ s(X) = ∅ and thus s(Y ) ⊆ s(X). Thus (Y,Θ) is a response to the
winning move ((X,Π), s) for A ⊢ B in Game 2, contradiction. ⊓⊔

We now give an example of how Game 2 works in practice.

Example 4.4. Let Φ define the linked list predicate ls given in Example 3.1, and
consider the invalid entailment lsx y ⊢ ls y x. We have the following bases:

baseΦ(lsx y) = {(∅, {x = y}), ({x : 1}, {x 6= nil})}

baseΦ(ls y x) = {(∅, {y = x}), ({y : 1}, {y 6= nil})}

Then Player 1 has a winning move in Game 2 by choosing her second base pair
({x : 1}, {x 6= nil}) together with any stack s in which s(x) 6= nil and s(x) 6= s(y).
The first constraint is required to validate Player 1’s move, and the second rules
out both of Player 2’s base pairs as responses: for the first pair s 6|= y = x, and
for the second we have s({y : 1}) 6⊆ s({x : 1}).

As Example 3.1 suggests, we can refine Game 2 further: instead of a (partial)
stack, Player 1 can simply choose a partition of the stack domain.

Definition 4.5. Let σ be a partition of a set of terms T . Then, for t, t′ ∈ T ,
we write σ |= t = t′ to mean that t and t′ are in the same σ-equivalence class,
and σ |= t 6= t′ otherwise. This relation extends conjunctively to sets of pure
formulas over T .

Lemma 4.6. For any partial stack s, we can construct a partition σs of dom(s)∪
{nil} such that, for any set Π of pure formulas with FV (Π) ⊆ dom(s),

s |= Π ⇔ σs |= Π .

Conversely, for any partition σ of a finite set T of terms we can construct a
partial stack sσ such that, for any set Π of pure formulas with FV (Π) ⊆ T ,

sσ |= Π ⇔ σ |= Π .

Proof. For the first part of the lemma, we simply put t and t′ in the same
σ-equivalence class if s(t) = s(t′) and in different classes otherwise. By construc-
tion, for a pure formula of the form t = t′,

s |= t = t′ ⇔ s(t) = s(t′) ⇔ σs |= t = t′ ,

and similarly for formulas of the form t 6= t′.
For the second part, we construct sσ simply by mapping terms in the same

σ-equivalence class to the same value in Val, and terms in different classes to
distinct values. This is always possible since the range Val of our stacks is infinite.
Then we just observe that for a pure formula of the form t = t′, we have,

sσ |= t = t′ ⇔ sσ(t) = sσ(t
′) ⇔ σ |= t = t′ ,

and similarly for formulas of the form t 6= t′. ⊓⊔
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Game 3. Given an entailment A ⊢ B, a move by Player 1 is a choice of:

– a base pair (X,Π) ∈ baseΦ(A), and
– a partition σ of FV ((X,Π)) ∪ FV (baseΦ(B)) ∪ {nil} such that σ |= Π .

Given such a move, a response by Player 2 is a base pair (Y,Θ) ∈ baseΦ(B) such
that σ |= Θ and for any y : n ∈ Y there is x : n ∈ X such that σ |= x = y.

A winning move is defined as for the previous games.

Lemma 4.7. Player 1 has a winning move for A ⊢ B in Game 3 if and only if
she has a winning move for A ⊢ B in Game 2.

Proof. (⇐) Let ((X,Π), s) be a winning move for A ⊢ B in Game 2. That is,
for some base pair (X,Π) of A we have a partial stack s such that s |= Π , and
moreover there is no response to this move.

We claim that ((X,Π), σs) is then a winning move in Game 3, where σs is
the the partition σs of dom(s)∪{nil} given by the first part of Lemma 4.6. Since
s |= Π , the lemma guarantees that σs |= Π , so ((X,Π), σs) is indeed a move. To
see that it is a winning move, suppose for contradiction that (Y,Θ) ∈ baseΦ(B)
is a response to this move, i.e., σs |= Θ and ∃x : n ∈ X. σs |= x = y when-
ever y : n ∈ Y . We claim that (Y,Θ) is then a response to the winning move
((X,Π), s) in Game 2. Since σs |= Θ, we have s |= Θ by the first part of
Lemma 4.6. It just remains to show that s(Y ) ⊆ s(X). Let y : n ∈ Y . By as-
sumption, there exists x : n ∈ X such that σs |= x = y. By Lemma 4.6, we have
s |= x = y, i.e. s(x : n) = s(y : n), and so s(y : n) ∈ s(X). Thus s(Y ) ⊆ s(X),
which completes the case.

(⇒) Let ((X,Π), σ) be a winning move for A ⊢ B in Game 3. That is, for some
base pair (X,Π) of A we have a partition σ such that σ |= Π , and moreover
there is no response to this move.

We define a winning move in Game 2 by ((X,Π), sσ), where sσ is the partial
stack constructed from σ by the second part of Lemma 4.6. Since σ |= Π , the
lemma guarantees that sσ |= Π as required. Suppose for contradiction (Y,Θ) ∈
baseΦ(B) is a response to this move, i.e., sσ |= Θ and sσ(Y ) ⊆ sσ(X). We claim
that (Y,Θ) is then a response to the winning move ((X,Π), σ) in Game 3. First,
since sσ |= Θ, we have σ |= Θ by the second part of Lemma 4.6. Now, letting
y : n ∈ Y , we have to show there exists an x : n ∈ X such that σ |= x = y. Since
sσ(Y ) ⊆ sσ(X) and y : n ∈ Y , there exists x : n ∈ X such that sσ(y) = sσ(x),
i.e. sσ |= x = y. By Lemma 4.6, we then have σ |= x = y, as required. ⊓⊔

Example 4.8. Let Φ define ls and bt from Example 3.1. We have:

baseΦ(lsx nil) = {(∅, {x = nil}), ({x : 1}, {x 6= nil})}

baseΦ(btx) = {(∅, {x = nil}), ({x : 2}, {x 6= nil})}

Now, both btx ⊢ lsx nil and lsx nil ⊢ btx are invalid, and Player 1 has a winning
move for both entailments in Game 3 by choosing her second base pair ({x :
i}, {x 6= nil}), where i ∈ {1, 2}, together with a partition σ such that σ |= x 6= nil.
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Player 2 cannot respond with his first base pair because σ 6|= x = nil, nor with
his second because the type of x does not match that in Player 1’s pair.

Theorem 4.9. Games 1, 2 and 3 are all equivalent to each other, and decidable.
That is, for any entailment A ⊢ B we can decide which player wins, and this
answer is consistent across all three games.

Proof. Equivalence is an immediate consequence of Lemmas 4.3 and 4.7. For
decidability, it suffices to observe just that Game 3 is decidable for any A ⊢ B.
As there are only finitely many base pairs (X,Π) of A and for each of these only
finitely many partitions of the finite set FV ((X,Π)) ∪ FV (baseΦ(B)) ∪ {nil},
there are only finitely many possible moves for Player 1. Moreover, for each such
move there are only finitely many possible responses by Player 2, since baseΦ(B)
is finite. Hence checking whether or not Player 1 has a winning move is simply
a case of checking the finitely many possibilities. ⊓⊔

It is informative to examine the kinds of entailments our method cannot, in
principle, recognise as invalid. We can only disprove entailments A ⊢ B in which
B imposes allocation or (dis)equality requirements on its free variables which
can be violated by models of A. For example, the entailment x 7→ nil ⊢ emp is
invalid, while x 7→ nil ⊢ ∃y. y 7→ nil is valid, but our base pair approximation
cannot distinguish between the two because neither RHS has any free variables:
we have baseΦ(emp) = baseΦ(∃y. y 7→ nil) = {(∅, ∅)}. The base pair construction
also discards information on bounds, such as the number of allocated cells in a
heap; therefore, for example, we cannot distinguish between an even-length list
and an odd-length one.

4.2 Efficiency considerations

Having established that Game 3 is a sound and terminating algorithm for dis-
proving entailments (Theorem 4.9), we now consider possible ways of improving
its efficiency. First, we give an upper bound for the worst-case runtime.

Proposition 4.10. Checking whether Player 1 has a winning strategy for A ⊢ B

in Game 3 can be done in time exponential in the size of A, B and the definitions
of the predicates in the underlying inductive rule set Φ.

Proof. First, the number of base pairs for any symbolic heap is, in the worst
case, exponential in the size of the symbolic heap and its predicate definitions
[10]. Second, the number of partitions σ over FV ((X,Π))∪FV (baseΦ(B))∪{nil}
where (X,Π) ∈ baseΦ(A), is bounded by an exponential in the size of A and B.
Finally, checking whether a base pair (Y,Θ) ∈ baseΦ(B) is a response to a move
((X,Π), σ) can be performed in polynomial time. Thus, searching for a winning
move for Player 1 can take up to exponential time in the size of A, B and the
predicate definitions in Φ. ⊓⊔

Next, we give some simple results identifying redundant base pairs in our
game instances. If Π and Π ′ are sets of pure formulas we write Π |= Π ′ to mean
that Π ⊢ Π ′ is valid, i.e. σ |= Π implies σ |= Π ′ for all partitions σ.
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Definition 4.11. If (X,Π) and (X ′, Π ′) are both base pairs (of some symbolic
heap) then we write (X,Π) ⊑ (X ′, Π ′) to mean that Π ′ |= Π and for any x : n ∈
X there is an x′ : n ∈ X ′ such that Π ′ |= x = x′. We write (X,Π) ∼ (X ′, Π ′)
to mean that (X,Π) ⊑ (X ′, Π ′) and (X ′, Π ′) ⊑ (X,Π).

Clearly ∼ is an equivalence on base pairs, and ⊑ is a partial order up to ∼.

Proposition 4.12. The following hold for any entailment A ⊢ B in Game 3:

1. Let (X,Π), (X ′, Π ′) ∈ baseΦ(A) with (X,Π) ⊑ (X ′, Π ′). If ((X ′, Π ′), σ) is
a winning move then so is ((X,Π), σ).

2. Let (Y,Θ), (Y ′, Θ′) ∈ baseΦ(B) with (Y,Θ) ⊑ (Y ′, Θ′). If (Y ′, Θ′) is a re-
sponse to the move ((X,Π), σ) then so is (Y,Θ).

3. Let (X,Π) ∈ baseΦ(A), (Y,Θ) ∈ baseΦ(B) with (Y,Θ) ⊑ (X,Π). Then
(Y,Θ) is a response to any move of the form ((X,Π), σ).

Therefore, without loss of generality, we may remove all base pairs from baseΦ(A)
and baseΦ(B) that are not ⊑-minimal, and any ∼-duplicates; and we may also
remove all (X,Π) ∈ baseΦ(A) that are not ⊑-minimal with respect to baseΦ(B).

Proof. 1. First note that σ |= Π ′ and Π ′ |= Π by assumption, so σ |= Π , and
thus ((X,Π), σ) is a valid move. To see that it is a winning move, suppose for
contradiction that (Y,Θ) is a response to it. We show for contradiction that
(Y,Θ) is also a response to ((X ′, Π ′), σ). First, σ |= Θ by assumption. Now
let y : n ∈ Y . By assumption, there is an x : n ∈ X such that σ |= x = y.
As (X,Π) ⊑ (X ′, Π ′), there is an x′ : n ∈ X ′ such that Π ′ |= x = x′. As
σ |= Π ′ it follows that σ |= x′ = y, as required.

2. We show that (Y,Θ) is a response to ((X,Π), σ). First, by assumption we
have σ |= Θ′ and Θ′ |= Θ, so σ |= Θ as required. Now let y : n ∈ Y . As
(Y,Θ) ⊑ (Y ′, Θ′), there is y′ : n ∈ Y ′ such that Θ′ |= y′ = y, and thus
σ |= y′ = y. By assumption, for any y′ : n ∈ Y ′ there is x : n ∈ X such that
σ |= y′ = x. Thus we have x : n ∈ X such that σ |= x = y, as required.

3. First we have to check that σ |= Θ, which follows from σ |= Π and Π |= Θ.
Now let y : n ∈ Y . Since (Y,Θ) ⊑ (X,Π), there is x : n ∈ X such that
Π |= x = y. As σ |= Π by assumption, σ |= x = y, as required. ⊓⊔

A major source of complexity in Game 3 is the need to consider all possible
partitions of a set of variables (plus nil) for any given base pair of A in order
to obtain all possible moves for Player 1. The number of partitions of a set of
size n is given by the nth Bell number [4], which grows extremely quickly in n.
Fortunately, as our final theorem shows, we may regard certain pairs of terms
as nonequal by default, which can potentially reduce the search space.

Theorem 4.13. Suppose Player 1 has a winning move ((X,Π), σ) for A ⊢ B

(in Game 3). Then there is also a winning move of the form ((X,Π), σ′) where
the partition σ′ satisfies the following constraint:

If t, u are distinct terms in FV ((X,Π)) ∪ FV (baseΦ(B)) ∪ {nil}, then σ′ |=
t 6= u whenever both of the following hold:
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1. Π 6|= t = u; and

2. for all base pairs (Y,Θ) ∈ baseΦ(B) and disequalities v 6= w ∈ Θ, we have
Π |= t = v if and only if Π |= t = w.

Proof. First, for any partition σ over FV ((X,Π)) ∪ FV (baseΦ(B)) ∪ {nil} we
define the set BadEqs(σ) to be the set of all pairs of terms (t, u) such that σ |=
t = u and t, u satisfy the constraints 1 and 2 above. By induction, it then suffices
to show that we can construct a partition σ′ such that ((X,Π), σ′) is a winning
move for Player 1 and BadEqs(σ′) ⊂ BadEqs(σ), provided BadEqs(σ) 6= ∅.

Now, letting (t, u) ∈ BadEqs(σ), we write [t]σ for the σ-equivalence class of
t, i.e., {t′ | σ |= t′ = t}. We then define a new partition σ′ obtained from σ by
further dividing [t]σ into the following two subpartitions:

P1 =def {t′ | Π |= t′ = t} and P2 =def [t]σ \ P1

We observe that this is indeed a non-trivial partitioning of [t]σ. On the one
hand, we trivially have t ∈ P1 and, since σ |= Π by assumption, we have t′ ∈ [t]σ
whenever Π |= t′ = t. On the other hand, we have u ∈ P2 because Π 6|= u =
t according to constraint 1. Furthermore, we have BadEqs(σ′) ⊂ BadEqs(σ)
because, by construction, (t, u) 6∈ BadEqs(σ′) and σ′ differs from σ only in the
subdivision of the equivalence class [t]σ.

Now we require to show that ((X,Π), σ′) is a winning move for Player 1.
First, we have to check that it is a valid move at all, i.e., that σ′ |= Π . We check
that σ′ satisfies each equality and disequality in Π . If v 6= w ∈ Π then, since
σ |= Π , we have σ |= v 6= w. By construction of σ′, we clearly then also have
σ′ |= v 6= w as required. For v = w ∈ Π , then we have σ |= v = w by assumption
and, by construction of σ′, we also have σ′ |= v = w unless it happens that
v ∈ P1 while w ∈ P2 (or w ∈ P1 and v ∈ P2, which is symmetric). In that
case, since v = w ∈ Π we trivially have Π |= v = w, and since v ∈ P1 we have
Π |= v = t, and so Π |= w = t. This means that w ∈ P1, which contradicts
w ∈ P2. Thus indeed we have σ′ |= v = w as required.

It remains to show that ((X,Π), σ′) is indeed a winning move. Suppose for
contradiction that (Y,Θ) is a response to this move. It suffices to show that
(Y,Θ) is then also a response to the original ((X,Π), σ). First we have to show
that σ |= Θ. We check that σ satisfies each equality and disequality in Θ. For
v = w ∈ Θ we have σ′ |= v = w since σ′ |= Θ by assumption. By construction
of σ′, we then clearly have σ |= v = w as required. For v 6= w ∈ Θ, we have
σ′ |= v 6= w by assumption and, again by construction, we have σ |= v 6= w

unless it happens that v ∈ P1 while w ∈ P2 (or vice versa, which is symmetric).
In that case, we have Π |= t = v while Π 6|= t = w. This situation is precisely
excluded by constraint 2. Finally, we have to check that for all y : n ∈ Y , there
is an x : n ∈ X with σ |= x = y. Let y : n ∈ Y . By assumption, there is
x : n ∈ X such that σ′ |= x = y. Hence, by construction of σ′, we immediately
have σ |= x = y too. This completes the proof. ⊓⊔
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5 Experimental evaluation

Implementation and experimental framework. Our method for checking invalid-
ity, using Game 3 and the optimisations given by Proposition 4.12 and Theo-
rem 4.13, has been implemented in OCaml (openly available at [1]). We used the
theorem prover Cyclist as the basis for our implementation, as it provides fa-
cilities for separation logic entailments with inductive predicates [13], including
a procedure for computing the base pairs of formulas [10].

Finding benchmark entailments that have known validity status (so as to
assess precision), and which are ostensibly relevant to the needs of program
analysis frontends, is challenging. Currently, the main such source of test cases
is the Separation Logic Competition (SL-COMP)[2]. In addition to these bench-
marks, we provide a large new synthetic test suite (LEM) designed to exercise
our disprover over cases that are in some sense “typical”. The three classes of
test cases we consider are as follows:

UDP: This is the class of entailments from SL-COMP that is most relevant to
our logical fragment. It comprises 172 mostly hand-crafted sequents employing
various user-defined inductive predicates representing singly- and doubly-linked
lists, skip lists, trees and other structures. Unfortunately, however, only 20 se-
quents in the UDP set are invalid.

LEM: As invalid sequents are badly under-represented in the UDP benchmarks,
we generated a large synthetic test suite in the following way. First, we took the
inductive predicate definitions from the UDP suite, amounting to 63 distinct
predicates. Then, for every pair of distinct predicates P,Q in this set we form
the sequent Px ⊢ Qy where x is a tuple of distinct variables and y is any possible
tuple of variables from xmatching the arity of Q. This yields 818988 entailments,
of which we would expect most to be invalid. Entailments of this kind are typical
of automated theory exploration (see e.g. [16]), where potential lemmas are gen-
erated bottom-up from the definitions of the theory and, if proven valid, added
to a lemma library. Such approaches rely heavily on relatively cheap methods of
filtering out the many invalid “lemmas”.

SLL: Finally, this class, also from SL-COMP, consists of 292 entailments (pro-
duced by program analysis tools, by hand and by random generation) involving
only a single inductive predicate denoting possibly empty, acyclic, singly-linked
list segments. Validity for entailments in this fragment are already known to be
polynomially decidable [17], whereas our procedure is much more general but
incomplete, so we included these benchmarks mainly as a way of checking the
soundness of our procedure.

All tests were performed on an Intel i5-3570 CPU running at 3.4GHz with
8Gb of RAM running Linux and a 60-second time-out.

Soundness. Of all test cases in the UDP and SLL test suites, where the validity
status of test cases has been independently checked, we encountered one apparent
false positive, where an entailment in UDP was disproved by our implementation
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but marked as valid. This entailment is over possibly-empty, acyclic, doubly-
linked list segments, given by the predicate dll defined as follows:

x = z, y = w : emp ⇒ dll(x, y, w, z)
∃u′. x 6= z, y 6= w : x 7→ (u′, w) ∗ dll(u′, y, x, z) ⇒ dll(x, y, w, z)

The entailment which was disproved but marked in UDP as valid is:

x 6= w,w 6= t, w 6= z : w 7→ (t, u) ∗ dll(x, u, nil, w) ∗ dll(t, y, w, z) ⊢ dll(x, y, nil, z)

In fact, the above entailment is not valid. There is a model of the LHS where
the subformula dll(t, y, w, z) represents a segment of length two (or more), thus
setting y 6= nil. At the same time, x can alias z; thus there is a Player 1 move
where y 6= nil and x = z. Player 2 cannot respond to this move because the RHS
allows either x = z, y = nil or x 6= z, y 6= nil. Concrete countermodels are those
that satisfy the following formula.

x = z : x 7→ (u, nil) ∗ u 7→ (w, x) ∗ w 7→ (t, u) ∗ t 7→ (y, w) ∗ y 7→ (z, t)

This benchmark bug was confirmed and fixed by the SL-COMP maintainers.

Benchmark Count # Invalid Precision Timeouts

UDP 172 20 50% 3%
LEM 818988 ? >97% 0%
SLL 292 120 24% 7%

Fig. 1. Precision and timeouts (>60s) for the UDP, SLL and LEM benchmark classes.

Precision and performance. Figure 1 summarises the experimental results on the
precision and efficiency of our method.

In the UDP suite our method disproves 10 of 20 invalid sequents. The heuris-
tic timed-out on only 3% of all sequents, analysed nearly 80% of sequents in time
less than 1 millisecond and nearly 95% in fewer than 100 milliseconds.

For the LEM test suite, our method disproved 800667 of 818988 test entail-
ments, or 97.7%. Strictly speaking, this is only a measure of precision if one
assumes our implementation is correct, as these entailments have not been man-
ually checked. However, under such an assumption, the above figure can be taken
as a lower bound to precision on LEM. Indeed, since we expect most entailments
in LEM to be invalid, this figure is likely near the actual precision. No test case
in the LEM suite required more than 30 milliseconds for analysis.

Only 24% of invalid sequents in the SLL set were disproved. A manual in-
spection of the invalid entailments in both SLL and UDP not disproved by our
implementation revealed that, as expected, they fall into the category described
at the end of section 4.1, where the RHS imposes very weak constraints on its
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free variables. Time-outs were observed only on large invalid sequents, compris-
ing 7% of all test cases having 33–109 atomic formulas and 12–20 list predicate
occurrences each. More than 50% of test cases require time less than 1 ms.

Overall, given the very low cost overhead of our disprover, we believe its
precision represents a good value proposition; the LEM performance shows that
this should especially be the case when exploring large spaces of entailments, e.g.
in automated proof search or automated theory exploration. We note that one
would never run a general prover or disprover on SLL entailments in practice,
since the PTIME decision procedure for this fragment is, essentially, optimal.

6 Conclusion and future work

Our main contribution in this paper is an algorithm for detecting invalid en-
tailments in the symbolic heap fragment of separation logic with user-defined
inductive predicates. Our method is sound and terminating, but necessarily in-
complete. However, our experiments show that we can identify a non-trivial
proportion of invalid entailments that typically occur in practice. Moreover, our
method is very inexpensive compared to the typically high cost of proof search;
therefore, we believe there is very little reason not to use it.

Our analysis essentially works by comparing the bases of symbolic heaps, as
introduced to check satisfiability in [10]. These bases abstract away a great deal
of information about the precise shape of models, and so there is a fundamental
limitation on the amount of information that can be obtained by comparing
them; unavoidably, there are many invalid entailments that our method fails to
recognise. To improve the precision of our analysis, one might refine the base pair
construction further to retain more information about the shape of underlying
models (while remaining within the bounds of computability), or seek to develop
entirely separate heuristics designed to complement our method.

Another possible line of future work, building on the very recent development
of a model checking procedure for our logic [12], is to explore the possibility of
disproving entailments by directly generating and checking potential counter-
models. However, such an analysis might be significantly more expensive than
the one we present here.

To the best of our knowledge, invalidity questions have been rather less well
studied than validity questions in the separation logic literature to date. We hope
that the present paper will serve to stimulate wider interest in such questions,
and techniques for addressing them.
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