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Background: Reactive oxygen species are associated with inflammation implicated in 
cancer, atherosclerosis and autoimmune diseases. The complex nature of inflammation 
and of oxidative stress suggests that dual-target agents may be effective in combating 
diseases involving reactive oxygen species. Results: A novel series of N-substituted 
2,4-diaminopteridines has been synthesized and evaluated as antioxidants in several 
assays. Many exhibited potent lipid antioxidant properties, and some are inhibitors of 
soybean lipoxygenase, IC50 values extending down to 100 nM for both targets. Several 
pteridine derivatives showed efficacy at 0.01 mmol/kg with little tissue damage in 
a rat model of colitis. 2-(4-methylpiperazin-1-yl)-N-(thiophen-2-ylmethyl)pteridin-4-
amine (18f) at 0.01 mmol/kg exhibited potent anti-inflammatory activity (reduction 
by 41%). Conclusion: The 2,4-diaminopteridine core represents a new scaffold for 
lipoxygenase inhibition as well as sustaining anti-inflammatory properties.

Oxidative stress is closely associated with 
chronic inflammation and plays a crucial 
role in cancer  [1], dyslipidemia  [2], athero-
sclerosis  [3] and autoimmune diseases such 
as systemic lupus erythematosus and rheu-
matoid arthritis  [4]. In many diseases, the 
rate of production of reactive oxygen 
species (ROS) is increased compared with 
normal levels of ROS  [5,6]. ROS are pro-
duced during the inflammatory process by 
phagocytic leukocytes that invade the tissue. 
Under conditions of oxidative stress, ROS 
including superoxide anion, hydroxyl radi-
cal and hydrogen peroxide and their reactive 
products can attack various biological mac-
romolecules (e.g.,  proteins, enzymes, DNA 
and lipids) resulting  in DNA mutations, 
lipid peroxidation and protein oxidation,  [7] 
or they may indirectly interfere with mecha-
nisms of DNA repair [8]. Thus, ROS activity 
consists of a mixture of deleterious and ben-
eficial roles, depending on the type, concen-
tration and location of the species involved. 
The breadth of those factors suggests that 
focused targeting of ROS, probably in a dual-
target or multiple-target approach, could be 
of therapeutic value.

Reactive oxygen species are centrally 
involved in the cyclooxygenase (COX)- and 
lipoxygenase (LOX)-mediated conversion 
of arachidonic acid (AA) into proinflam-
matory intermediates  [9,10]. LOX exerts its 
biological role via a carbon-centered radi-
cal mechanism. LOX metabolism results in 
many bioregulatory molecules such as leu-
kotrienes, lipoxins and hepoxylins, media-
tors in the pathophysiology of variety of 
diseases such as rheumatoid arthritis, bron-
chial asthma, psoriasis, cancer and other 
inflammatory diseases [11].

In the search for new antioxidants and 
anti-inflammatory agents, the pteridine ring 
(Figure 1) was selected for study for several 
reasons: many naturally-occurring deriva-
tives possess important biological activity, 
including the coenzymes 5,6,7,8-tetrahydro-
biopterin and the pterins; the ring system has 
low toxicity; synthetic pteridine derivatives 
show a wide range of clinically useful prop-
erties, for example, as antioxidants, immu-
nosuppressants, and anti-inflammatory and 
anticancer agents. Consequently, multitarget 
properties were deemed likely, as were the 
discovery of new agents for a range of dis-
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Figure 1. Pterin and pteridine derivatives of biological or medicinal importance.
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eases, and also the use of pteridine derivatives to probe 
the putative targets of diseases.

Substituted pteridines are known to act upon a 
wide range of targets of therapeutic potential. Thus, a 
6,7-disubstituted-2,4-diaminopteridine is a PI3 kinase 
inhibitor with potential for treatment of myocardial 
infarction involving ischemia reperfusion injury  [12]. 
2-Amino-4-piperazin-1-yl-6-(3,4-dimethoxyphenyl)-
pteridines have been shown to possess immuno-
suppressive and anti-inflammatory properties  [13], 
and analogues of the potent phosphodiesterase-4 
inhibitor 7-benzylamino-6-chloro-2-piperazin-1-yl-
4-pyrrolidin-1-ylpteridine which inhibits growth in 
tumor cell lines required a 2-piperazin-1-yl substitu-
ent for optimal potency  [14]. Some 2-amino-4-(N,N-
diarylmethyl)-6-arylpteridines inhibit neuronal nitric 
oxide synthase  [15] and some 2,4-diamino-4,6-dia-

rylpteridines inhibit inducible or inflammatory nitric 
oxide synthase  [16]. Several 2,4-diamino-6-arylami-
nomethylpteridines are potent inhibitors of parasitic 
pteridine reductases, and have promising antiparasitic 
potential [17,18]. Adequate dietary content of folic acid 
(pteroyl  l -glutamic acid; Figure 1) is a requirement for 
human health and on which DNA synthesis, DNA 
repair and DNA methylation depend [19].

In addition to the treatment of a variety of cancers, 
the antifolate methotrexate reduces inflammation in 
the bowel and is used for treating Crohn’s disease, 
ulcerative colitis, rheumatoid arthritis, psoriasis and 
other autoimmune diseases. Therefore, novel com-
pounds bearing the pteridine ring could exhibit anti-
inflammatory and antioxidant activities and have 
potential as therapy for a wide range of diseases involv-
ing inflammation. The 2,4-diaminopteridine core of 
methotrexate (Figure 1), was used as the scaffold in 
this study. Alkylamino and dialkylamino substituted 
2,4-diaminopteridines were investigated since many 
have a range of drug-like clogP values (1.0–4.0, Table 1) 
and because synthesis should afford the required struc-
tural diversity. We describe here the synthesis and 
preliminary evaluation of some novel N-alkylated 
2,4-diaminopteridine derivatives as dual-target agents 
through their radical scavenging properties, inhibition 
of lipoxygenase and in vivo anti-inflammatory activity.

Results & discussion
Chemistry
Routes to 2,4-diaminopteridine derivatives with no 
substituents at the 6- or 7-postions are sparse. In 
particular, very few such compounds contain a ter-
tiary amine at the 2-position (Figure 2). Two relevant 

Key terms

Oxidative stress: Cellular damage resulting from the 
action of reactive oxygen species on biological molecules 
in which detoxification of the reactive intermediates and/or 
molecular repair is insufficient.

Inflammation: Pattern of biological responses arising 
in attempts to overcome challenges by harmful stimuli, 
including damaged cells, irritants or pathogens.

Reactive oxygen species: Chemically reactive oxygen 
species such as anions, radical anions, radicals and 
peroxides formed as by-products of metabolism. 

Lipoxygenases: Iron-containing redox enzymes that 
catalyze the oxygenation of fatty acids, lipoproteins and 
other molecules.

Pteridines: Bicyclic heteroaromatic compounds comprising 
pyrazino[2,3-d]pyrimidine ring fusion.
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Table 1. Inhibition of soybean lipoxygenase by substituted pteridines. 

Entry Compound Structure cLogP43  Lipoxygenase inhibitory activity  
(IC50 [μM] or % at 100 μM)

1 5a

N N

N
N

N
MeN

NH2 0.14 37.5 ± 0.1%

2 5b

N N

N
N

N

MeN

NH2

Me

Me

1.08 100 ± 0.3

3 5c

N N

N
N

N

MeN

NH2
3.73 22.5 ± 0.1%

4 9

N N

N
N

N

MeN

N

N
Me 0.75 5.0 ± 0.1

5 10a

N N
H

N
N

N

MeN

N

N
Me

Et

3.25 5.0 ± 0.1

6 10b

N N

N
N

N

MeN

N

N
Me

Et

Et

3.99 55 ± 0.2

7 13

N

N N

N

N

N

OH

OH -0.16 60 ± 0.3

NDGA: Nordihydroguaiaretic acid.
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Entry Compound Structure cLogP43  Lipoxygenase inhibitory activity  
(IC50 [μM] or % at 100 μM)

8 18a NH

N

N N

N

N

MeN

2.42 31.5 ± 0.2%

9 18b

NH

N

N N

N

N
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10 18c

NH

N

N N

N

N

MeN

3.07 22.5 ± 0.2%

11 18d N NH
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N N

N
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13 18f NH

N

N N

N
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MeN
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2.06 55 ± 0.8

14 18g NH

N

N N

N

N

MeN

S Me

Me

3.01 88.5 ± 1.2

15 20a NH

N

N N

N

N

EtN

S

2.59 43 ± 0.7

NDGA: Nordihydroguaiaretic acid.

Table 1. Inhibition of soybean lipoxygenase by substituted pteridines (cont.). 
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Table 1. Inhibition of soybean lipoxygenase by substituted pteridines (cont.). 

Entry Compound Structure cLogP43  Lipoxygenase inhibitory activity  
(IC50 [μM] or % at 100 μM)

16 20b NH

N

N N

N

N

S

MeN

2.05 62.5 ± 0.5

17 22 NH

N

NN

MeN

S

N
H

N
N

1.88 80 ± 2.1

18 23 NH

N

NN

MeN

S

N

S
N

3.57 19.5 ± 0.1%

19 24 NH

N

NN

MeN

S

N

O
N

3.77 74 ± 3.5

20 NDGA HO

HO
OH

OH

3.92 1.08 ± 0.3440

NDGA: Nordihydroguaiaretic acid.

6,7-disubstituted pteridines had been prepared by  
reaction of 4-amino-2-methylthio-6,7-diphenylpteri-
dine with morpholine and with piperidine to give the 
corresponding 2-substituted 4-amino-6,7-diphenyl-
pteridines, but a large excess of the amine was used as 
the solvent, and it was not known whether this route 
would permit the introduction of amines other than 
amino at the 4-position, since only 4,5-diamino-2-me-
thylthiopyrimidine has been used as the early precursor 
in this route [20]. Accordingly, it was decided to intro-
duce the desired 2,4-diamino substitution prior to the 
formation of the pteridine ring. Since dimethylamine, 
pyrrolidine and piperidine had been shown to displace 
the 2-methylthio group of 4,6-diamino-2-methylthio-
5-nitrosopyrimidine (3)  [21], the route envisaged here 
involved 5-nitrosation, 2-amination, then reduction and 
cyclization to give the pteridine ring system (Figure 2).

4,6-diamino-2-thiopyrimidine (1), prepared by 
condensing thiourea and malononitrile in the pres-
ence of sodium ethoxide [22], was S-methylated to give 
4,6-diamino-2-methylthiopyrimidine (2) by heating 
with ethanolic methyl iodide at reflux [20]. In a modifi-

cation of the literature procedure [23], treatment of 2 in 
aqueous sodium nitrite containing acetic acid afforded 
the nitrosopyrimidine 3 (95%) which with 1-meth-
ylpiperazine in ethanol at reflux was converted into 
the 2-(4-methylpiperazin-1-yl)-5-nitrosopyrimidine 4 
(57%). Reduction of 4 with aqueous sodium dithionite 
afforded the corresponding tetraamine which without 
isolation was treated with aqueous 40% glyoxal and 
then heated at reflux to give 2-(4-methylpiperazin-1-yl)
pteridin-4-amine (5a). In the same way, butane-2,3-di-
one and benzil afforded the corresponding pteridines 
5b (68%) and 5c (59%).

For 2,4-diaminopteridine derivatives bearing identi-
cal 2- and 4-substitution, 6-amino-2,4-dichloropyrim-
idine was heated at reflux with the appropriate second-
ary amine to give the triamino-substituted pyrimidines 
7 (71%) and 11 (89%) (Figures 3 & 4). Using the pre-
vious procedure, nitrosation afforded 8 (98%) and 
12 (71%) which with aqueous sodium dithionite 
afforded the tetraamines, and again without isolation 
those were treated with aqueous 40% glyoxal to afford 
the corresponding pteridine derivatives 9 (48%) and 



Figure 2. Synthesis of pteridines (5). Reagents and conditions: (A) Na, ethanol, reflux. 2 h; (B) methyl iodide, 
ethanol, reflux 1.5 h; (C) NaNO2 aqueous acetic acid, 0°C, 2 h then 4°C, 16h; (D) 1-methylpiperazine ethanol, reflux 
0.75 h then add water and reflux 0.75 h; (E) sodium dithionite then aqueous 40% glyoxal (5a) or butane-2,3-dione 
(5b, or benzil [5c]), reflux 8 h, 18 h and 24 h, respectively.
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13 (41%). The diol 13 was obtained as a mixture of 
two diastereoisomers that were not separated. Reduc-
tion using sodium triacetoxyborohydride (9 mole 
equivalents) in glacial acetic acid gave the 5-ethyl-
5,6,7,8-tetrahydropteridine 10a (29%), after column 
chromatography. However, when one mole equivalent 
of triacetoxyborohydride was used, the 5,8-diethyl-
5,6,7,8-tetrahydropteridine 10b (46%) was obtained, 
after column chromatography.

For dissimilar substitution at the 2- and 4-positions 
of pteridine-2,4-diamine derivatives, a stepwise intro-
duction of those substituents was required. 2,4-dichlo-
ropteridine  [24] and its derivatives [25] react regioselec-
tively at the 4-position with one equivalent of amine, 
which makes this approach unsuitable for preparing a 
range of pteridines with the same 2-amino substituent. 
Additionally, the use of 2,4,6,7-tetrachloropteridine for 
related successive displacements with different amines, 



Figure 4. Synthesis of pteridine 13. Reagents and conditions: (A) 3-hydroxypiperazine, reflux 5 h; (B) NaNO2 
aqueous acetic acid 0°C, 3 h; (C) sodium dithionite then aqueous 40% glyoxal, reflux 6 h.
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while succinct, afforded extensive mixtures and with 
isolation of desired single regioisomers usually in low 
yields, after chromatography  [14]. Since the formation 
of pteridines from 5-nitrosopyrimidines had proved 
robust and had delivered single regioisomers, this 
approach was adopted, in which the 4-amino group 
would be introduced by displacement of 4-amino-
6-chloro-2-(methylthio)pyrimidine 14 (Figure 5). 
However, displacement of the chloro group had been 
reported only for pyrimidine 14, using dimethylamine 
to install a 4-dimethylamino group [26]. 4,6-Diamino-
2-methylthiopyrimdines such as 15 would be required, 
and would be obtained by displacement of 14 with ben-
zylamine derivatives or with heteroarylmethylamines 
(Figure 5). Displacement of the 2-methylthio group in 
16 by a secondary amine would give the unsymmetri-
cally substituted 2,4,6-triamino-5-nitrosopyrimidines, 
and hence the corresponding pteridines 18.

4-Amino-6-chloro-2-(methylthio)pyrimidine 14 
reacted with a variety of amines (2.1 equivalent) in 
diglyme at reflux to give the corresponding pyrimidines 
15a–f  [27] which underwent 5-nitrosation with acidic 
aqueous sodium nitrite (Figure 5)  [23]. The 2-methyl-
thio group of the resulting 5-nitrosopyrimdines 16a–f 
underwent displacement with 1-methylpiperazine or 
4-methyl-1,4-diazepane in ethanol at reflux to give 
the corresponding 2-amino derivatives 17a–f. Those 
were subjected to the above reduction with sodium 
dithionite followed by condensation with aqueous 
40% glyoxal to give the pteridine derivatives 18a–g. 
Compounds 20a and 20b were prepared analogously, 

the latter by using 4-methyl-1,4-diazepane in ethanol 
at reflux to give 19b. 1H NMR spectra of the nitroso 
compounds 16, 17 and 19 in chloroform are consistent 
with the presence of two rotamers arising from hydro-
gen bonding between the C-5 nitroso oxygen atom 
and the adjacent NH hydrogen atoms at C-4, and also 
with an NH hydrogen atom at C-6, as established for 
related pyrimidines [28–30].

A representative 5-nitrosopyrimidine, 17f, was trans-
formed into three 6,5-fused systems (Figure 6) in a brief 
survey of the relevance of the fused pyrazine ring in the 
pteridine series. The triazolo[4,5-d]pyrimidine 21 was 
obtained by hydrogenation of 17f to the correspond-
ing amine, nitrosation and subsequent ring closure at 
90°C, following standard methods [31]. The 5-nitroso-
pyrimdine 17f was also converted into 22 by sodium 
thiosulfate [32], and into 23 by lead tetraacetate [33]. Syn-
thetic procedures for the new pteridine derivatives are 
described in detail in the Supplementary Information. 
All new compounds showed spectroscopic data consis-
tent with the structures proposed. The purity of tested 
compounds was assessed as at least 95% by HPLC–MS, 
unless otherwise indicated.

In vitro lipoxygenase inhibition
The substituted pteridines prepared were assayed for 
inhibition of soybean lipoxygenase (Table 1)  [34,35] 
(Supplementary Information). Many studies have 
used readily obtainable soybean lipoxygenase, which 
is a homologue of mammalian lipoxygenase and well 
examined [36,37]. The availability of soybean LOX and 



Figure 5. Synthesis of pteridines 18 and 20. Reagents and conditions: (A) R1CH2NH2 diglyme, reflux, 5 h; (B) NaNO2 
aqueous acetic acid, 0°C, 2 h then 4°C, 16 h; (C) 1-methylpiperazine or 4-methyl-1,4-diazepane, ethanol, reflux, 2h 
then add water and reflux 1 h; (D) sodium dithionite then aqueous 40% glyoxal or butane-2.3-dione, reflux.
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its well-characterized crystal structure [38] led to its use 
in this study.

In the soybean LOX inhibition assay (Table 1) the three 
4-amino-2-(4-methylpiperazin-1-yl)pteridines (entries 
1–3) showed only weak inhibition, with increasing bulk 
of 6,7-substituents not enhancing potency; similarly, the 
6,7-dimethyl substitution in compound 18g lowered 
LOX inhibitory activity, the 6,7-unsubstituted pteridine 
18f exhibiting the greater potency. Substitution at the 
4-amino group generally increased potency, and within 
the (hetero)arylmethyl series, polarity in a substituent 
(18b) or in the appended ring (18d) further increased 
potency, in the latter case vary greatly. However, the 
4-(hetero)arylmethyl series and the 4-(phenethylamine)
pteridine 18c showed only moderate potency. Compari-
son of 18f with 20a and 20b shows that both 2-(4-eth-
ylpiperazin-1-yl) and 1-ethyl-1,4-diazepanyl groups 
conferred lower potency compared with a 2-(4-methyl-
piperazin-1-yl) moiety. Of the compounds containing a 

4-(4-methylpiperazin-1-yl) substituent (entries 4–6), 9 
was the most potent pteridine, and 10a the most potent 
5,6,7,8-tetrahydropteridine, both having IC

50
 = 5 μM for 

inhibition of LOX. However, 5,8-diethyl substitution, as 
in 10b, was less well tolerated than the 8-unsubstituted 
10a. A limitation on ring tolerance was also identified; 
the 3-hydroxypiperidin-1-yl 2,4-disubstitution in 13 
conferred some tenfold less potency than the preferred 
2,4-di-(4-methylpiperazin-1-yl) substitution present in 
9. The pyrimido[4,5-d]azoles 21–23, containing the 
standard 2- and 4-substituents, were only moderately 
potent LOX inhibitors. Lastly, the lipophilicities of the 
pteridines were considered since a correlation of lipo-
philicity with LOX inhibition has been reported [39] in 
other studies but was not detected here [34]. Lipophilic-
ity, as assessed using calculated clogP values of the sub-
stituted pteridines (Table 1), does not appear to inhibit 
significantly in vitro LOX, for example, pteridine 9 and 
the 5,6,7,8-tetrahydropteridine 10a showing equipotent 



Figure 6. Synthesis of pteridine analogs 21, 22 and 23. Reagents and conditions: (A) H2, 10% Pd on C, ethanol; 
then NaNO2, glacial acetic acid, 90°C, 2 h; (B) sodium thiosulfate pentahydrate, aq. 20% acetic acid 90°C, 1.5 h; 
(C) lead tetraacetate, acetic acid, 20°C, 4 h.
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inhibition of LOX (IC
50

 = 5 μM) although their clogP 
values differ by 2.5; however, the most potent LOX 
inhibitor identified, 18d (IC

50
 = 0.10 μM), does have a 

relatively low clogP (0.92).
The LOX inhibition data (Table 1) show that the 

4-amino substituent plays a crucial role in determining 
the potency of the substituted pteridine. Thus, although 
a 4-benzylamino group (entry 8) is almost equipotent to 
an unsubstituted amino group (entry 5a), a 4-(4-meth-
ylpiperazin-1-yl) group (entry 4) shows some tenfold 
increase in potency. However, a 3-hydroxypiperidin-
1-yl moiety (entry 7) affords only moderate LOX inhi-
bition. A nitrogen atom in the 4-substituent can confer 
excellent potency (entry 11). Soybean LOX is able to 
accommodate the very rigid 4-methylpiperazin-1-yl 
group present in 9 (IC

50
 = 5.0 μM) although the flexi-

ble (3-pyridylmethyl)amino group present in 18d (IC
50

 
= 0.10 μM) confers much greater potency. That both 
substituents are proton acceptors is consistent, in each 
case, with the distal nitrogen atom engaging in hydro-
gen bonding. Entries 5 and 8 (Table 1) suggest that in 
regard to LOX inhibition some steric bulk is tolerated 
at the 5-position, but is much less well tolerated at the 
8-position of the pteridine ring. Although no definite 
conclusions can currently be drawn, tolerance of some 
substituents at the 6- and/or 7-positions seems likely.

Molecular modeling of LOX
Being the most potent inhibitor of soybean LOX of the 
compounds studied and also possessing efficacy as an 

antioxidant, pteridine derivative 18d was selected for 
in silico docking. The molecular modeling study per-
formed (see Supplementary Information for details) pro-
vided useful interpretation of the experimental results. 
The preferred docking orientation for compound 18d 
is shown in Figure 7. The binding of 18d to soybean 
LOX (PDB code: 3PZW) has a higher AutoDock Vina 
score (-8.5 kcal/mol) than any of the other pteridines 
docked. Pteridine 18d is able to accommodate the 
extensively hydrophobic cavity close to the active site, 
incorporating Ile552, Ile553, Ile538 and Leu546 among 
other residues. Ile553 and especially Leu496 are proxi-
mate to the hydrophobic 6,7-flank of the pteridine ring, 
Ile553 also extending to the hydrophobic C4-C6 region 
of the pyridine ring in 18d. The increased potency 
of 18d over its phenyl analog 18a is considered to be 
due to hydrogen binding, perhaps to Ser747. The sim-
plest explanation is that the extension scaffold of 18d 
into the hydrophobic domain blocks approach of sub-
strates to the active site, and hence prevents oxidation 
by soybean LOX. The docking simulations of NDGA 
and 18d show a common pattern of interaction with 
LOX (Supplementary Figure 1), the terminal rings and 
central core of each compound showing appreciable 
overlap. Additionally, Ser747 is engaged in hydrogen 
bonding with the 3-hydroxyl group of the catechol unit 
of NDGA, and also with the pyridine nitrogen atom 
of 18d. The relatively weak antioxidant properties of 
18d (Table 2) are also consistent with the main mode of 
action of LOX inhibition being other than by diminish-



Figure 7. Docking pose of pteridine 18d (depicted in turquoise) bound to soybean lipoxygenase (LOX-1) derived 
by modification of PDB code: 3PZW. Energy minimizations were carried out using the AMBER99SB-ILDN force 
field [41] with GROMACS as the molecular simulation toolkit [42]. AutoDock Vina (1.1.2) [41] was used for docking. 
Iron is rendered as a brown sphere. Prepared using PyMOL, this figure represents the preferred pose according to 
scoring function.
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ing general ROS concentrations and hence antioxidant 
activity [40]. Preliminary screening tests of the pteridines 
against COX did not present any significant inhibition.

In vitro antioxidant activity
Previous work has shown that pterins, their dihydro- and 
their tetrahydro-derivatives can each be antioxidants 
or pro-oxidants, depending on the particular condi-
tions  [43]. In the present study, several assays were used 
to assess in vitro antioxidant activity in order to obtain 
representative information; each method involves the 
generation of a different radical. The three assays cho-
sen measured in  vitro antioxidant activity in terms of: 
reduction of the stable free radical 1,1-diphenyl-2-pic-
rylhydrazyl (DPPH), whose oxidized form possesses 
an absorption maximum at 517 nm; hydroxyl radical 
scavenging activity; extent of reduction of the water-
soluble 2,2′-azo-bis(2-amidinopropane) dihydrochlo-
ride (AAPH) and inhibition of soybean lipoxygenase 
(Supplementary Information).

The pteridine derivatives were evaluated for their 
antioxidant activity (Table 2) and compared with that 
of nordihydroguaiaretic acid (NDGA), the reference 
compound [39]. Although most compounds at 100 μM 
did not show significant reducing ability, key excep-
tions were the potent 5-ethyl-5,6,7,8-tetrahydropteri-

dine 10a (81%) and very potent 5,8-diethyl-5,6,7,8-
tetrahydropteridine 10b (97%) (Table 2), the latter 
being more effective than the reference compound.

Competition of the novel pteridine derivatives with 
dimethyl sulfoxide for hydroxyl radicals was measured. 
Hydroxyl radicals were generated using the Fe3+/ascor-
bic acid system and expressed as a percentage inhibition 
of formaldehyde production in the presence of each 
pteridine derivative at 100 μM (Table 2) [34]. Pteridine 
derivatives 5a, 10b and 18g strongly inhibited the oxi-
dation of dimethyl sulfoxide (33 mM). The majority of 
the derivatives were excellent scavengers of hydroxyl rad-
icals with activity higher than the reference compound  
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic 
acid (Trolox).

Azo compounds that generate free radicals through 
spontaneous thermal decomposition are useful for 
in vitro studies of free radical production. The water-
soluble AAPH has been extensively used as a clean and 
controllable source of thermally produced alkylperoxyl 
free radicals [44]. In this assay, compound 18g (IC

50
 = 

0.1 μM) was the most potent in protecting against lipid 
peroxidation; next, and almost equipotent, were the 
pteridines 13 and 18e, and the triazolo[4,5-d]pyrimi-
dine 22 and the oxadiazole[3,4-d]pyrimidin-4-amine 
24 (each of approximate IC

50
 = 0.3 μM). The 4-(thio-
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phen-2-yl)methylamino-substituted pteridine deriva-
tives showed a range of three orders of magnitude, 
compound 18g showing by far the greatest protection 
against lipid peroxidation, the 2-(4-ethylpiperazin-
1-yl) derivative 20a being moderate, the 1,4-diazepane 
derivative 20b being poor and the 2-(4-methylpiper-
azin-1-yl) derivative 18f being very weak. Evidently, 
the presence of 6,7-dimethyl groups on the pteridine 
ring greatly enhances protection against lipid peroxi-
dation; the nature of the alkyl group and ring size on 
the 2-substituent has some, but much less, effect. Of 
the 4-aminopteridines, the 6,7-diphenyl derivative 5c 
was by far the most potent inhibitor, whereas of the 
2,4-bis(4-methylpiperazin-1-yl) derivatives, 13 is more 
than twice as potent as the 2,4-(3-hydroxydipiperidin-
1-yl derivative 9. Reduction of the pteridine ring in 
compound 9 to the corresponding 5,6,7,8-tetrahy-
dropteridines 10a and 10b decreased protection of 
lipid peroxidation, with potency decreased by 13-fold 
and 20-fold, respectively. Conversely, reduction of 
the pteridine ring in the 4-(4-methylpiperazin-1-yl) 

derivative 18f to give 18i increased potency by a fac-
tor of about 2.5. In the 6,5-fused heteroaromatic com-
pounds studied, 22 and 24 showed similar and potent 
inhibition of lipid peroxidation whereas compound 23 
was half as potent. The role of lipophilicity (as assessed 
from calculated clogP values; Table 1) is not clear, but 
substituent bulk plays a significant role.

In vivo anti-inflammatory activity
LOX has also been associated with inflammation and 
ulcerative colitis  [45]. In the present study, a model for 
colitis involving intracolonic administration of aque-
ous 4% acetic acid in the rat was used, leading to acute 
inflammatory reaction  [46]. Treated rats presented par-
tial to diffuse petechial bleeding, single erosion and lim-
ited ulceration indicating an overall healing effect of the 
compounds. Substituted pteridines presenting a satisfac-
tory combination of activities 5a, 18a, 18d and 18f were 
tested using this in vivo model characterized by diffuse 
exfoliated mucosa as well as multiple and extended ero-
sion and ulcers of the colon (Table 3). No mortality was 

Table 2. Reducing ability in 2,2-diphenyl-1-picrylhydrazl assay, scavenging activity of hydroxyl 
radicals, and in vitro antilipid peroxidation activity of substituted pteridines.

Compound     RA (%) 100 μM Hydroxyl radicals 
scavenged (%)†    

AAPH IC50 (μM)    

20 min 60 min

5a 15 14 98 41 ± 1.1

5b 0 13 94 40 ± 0.8

5c 10 6 100 0.50 ± 0.03

9 8 14 96 0.73 ± 0.2

10a 79 81 96 15 ± 0.2

10b 98 97 98 10 ± 0.43

13 6 13 95 0.33 ± 0.01

18a 2 7 91 22 ± 0.8

18b 13 20 90 21 ± 0.9

18c 11 18 97 10 ± 0.1

18d 10 11 95 32.5 ± 1.0

18e 10 17 94 0.33 ± 0.03

18f 6 4 96 100 ± 1.5

18g 12 12 100 0.10 ± 0.01

20a 4 11 92 20 ± 0.5

20b 15 19 94 41 ± 0.3

21 4 6 94 0.29 ± 0.02

22 7 10 96 0.60 ± 0.05

23 16 18 94 0.32 ± 0.02

NDGA 81 83 – –

Trolox – – 73 55.5
†Pteridine derivatives were present at 100 µM. 
APH: Antilipid peroxidation; NDGA: Nordihydroguaiaretic acid; RA: Reducing ability.
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encountered. Pteridine 5a (score 1–2) was the most 
potent in this series, followed by its 4-(N-benzyl) ana-
log, 18a. Rats treated with 5a or 18a showed less loss in 
body weight compared with the control group.

6-chloro-2-(4-methylpiperazin-1-yl)-N-(thiophen-
2-ylmethyl)quinazolin-4-amine possesses in vivo anti-
inflammatory properties in the rat [47], so on the basis of 
its close structural analogy with pteridine 18f, that latter 
was tested for anti-inflammatory effects using the carra-
geenin paw edema model (Table 4). The incipient pattern 
of this edema is characterized by the effects of histamine 
and 5-hydroxytryptamine. After 1 h, reduction of edema 
in the rat paw achieved by the pteridine 18f was apprecia-
bly greater than the reduction induced by the reference 
compound indomethacin, a nonselective COX-inhibitor 
and commonly used nonsteroidal anti-inflammatory 
drug. Thus, 18f and some related pteridines offer sig-
nificant protection against reactive oxygen species pro-
duced in a model of colitis, probably on account of their 
properties as antioxidants and radical scavengers.

Conclusion
A general synthetic approach to N, N,N′-trialkylated 
and N,N,N′N′-tetraalkylated 2,4-diaminopteridines has 
been described. 2,4-diaminopteridine derivatives have 
been identified as a new and promising class of radical 
scavengers, anti-inflammatory agents and inhibitors of 

LOX. Potent inhibitors of soybean lipoxygenase include 
9, 10a and especially 18d (IC

50
 = 0.1 μM). To our 

knowledge, 2,4-aminopteridine is a novel scaffold for 
LOX inhibitors, although the extent of any LOX isoform 
selectivity remains to be established. Many of the pteri-
dine derivatives studied displayed potent radical-scav-
enging activity, especially 5c, 9, 13, 18e, 18g, 22 and 24, 
of which 18g is the most potent (IC

50
 = 0.1 μM) in the 

linoleic acid peroxidation assay. Several pteridine deriva-
tives showed efficacy at 0.01 mmol/kg with little tissue 
damage in a rat model of colitis. 2-(4-methylpiperazin-
1-yl)-N-(thiophen-2-ylmethyl)pteridin-4-amine (18f) at 
0.01 mmol/kg showed 60% greater reduction of edema 
in rat paw than that achieved by the anti-inflammatory 
agent indomethacin, a nonselective COX-inhibitor. 
Accordingly, this study demonstrates that some pteridine 
derivatives have at least a dual-target action. These results 
prompt a more detailed structural, mechanistic and 
medicinal investigation of substituted 2,4-diaminop-
teridines, whose therapeutic potential might lead to new 
agents for the treatment of inflammatory bowel disease, 
among other inflammatory diseases.

Future perspective
Inflammation is a multifactorial phenomenon that is 
implicated in a wide range of diseases. Enhanced for-
mation of ROS by phagocytic leukocytes during the 
process of inflammation leads to tissue dysfunction and 
damage in a number of pathological conditions. ROS 
oxidize lipids generating peroxides and aldehydes that 
have pronounced biological effects including damage to 
DNA and protein, selective alterations in cell signaling 
and cytotoxicity  [42]. Oxidative stress evidently plays a 
crucial role in those processes.

Given the importance of radical species in inflam-
mation there is an unmet and timely need for new 

Table 3. In vivo colitis studies†.

Compound Change in body weight (%) Score (levels 0–5)

Vehicle (control) 4.5 No activity

Vehicle + acetic acid -6.6 Diffuse exfoliated mucosa, multiple erosion and 
ulcers (4–5)

Vehicle + 5a -1.1 One rat presented normal appearance (0); the rest 
exhibited hyperemia and petechial bleeding (1–2)

Vehicle + 18a -4.2 One rat exhibited hyperemia (1); the rest presented 
petechial bleeding (patchy to diffuse) (2–3)

Vehicle + 18d -7 One rat exhibited patchy petechial bleeding (2), 
and another diffuse petechial bleeding (3); the rest 
presented partial exfoliated mucosa or single erosion 
or ulcer

Vehicle + 18f -10.7 All rats exhibited partial to diffuse exfoliated mucosa 
or single/multiple erosion or ulceration (4–5)

†In each case there were two groups, each of three rats.

Table 4. Inhibition of carrageenin-induced rat 
paw edema.

Compound Reduction of rat paw edema 
after 1 h (%)

18f 41†

Indomethacin 25†

†Mean of two experiments.
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radical-scavenging agents. In addition, multiple-target 
anti-inflammatory agents have potential for the control 
of a range of diseases including arthritis, cancer and 
atherosclerosis. The wide-ranging biological activities of 
pteridine derivatives, including the reduction in reper-
fusion injury by the 4-amino analog of tetrahydrobiop-
terin  [48], suggest that pteridines may find therapeutic 
applications in unexplored or little-charted areas. New 
pteridine derivatives could also be of value as probes of 
specific biological oxidation.
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Executive summary

•	 Reactive oxygen species are associated with inflammation implicated in cancer, atherosclerosis and autoimmune 
diseases. The pteridine ring, suitably substituted, offers a diverse array of biological activity with potential for 
the treatment of those diseases.

•	 New N-alkylated 2,4-diaminopteridines were prepared in good chemical yields and possess drug-like properties.
•	 N-alkylated 2,4-diaminopteridines were shown to possess a range of antioxidant properties and to be inhibitors 

of lipoxygenase, depending on their N-substitution.
•	 N-alkylated 2,4-diaminopteridines are dual-target agents, and can be radical scavengers and inhibitors of 

lipoxygenase. Some also exhibited potent anti-inflammatory properties, either in an in vivo model of colitis or in 
a model of odema.
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