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Abstract

This paper develops a new technique for the estimation of consumer demand models with unob-

served heterogeneity subject to revealed preference inequality restrictions. Particular attention

is given to nonseparable heterogeneity. The inequality restrictions are used to identify bounds

on quantile demand functions. A nonparametric estimator for these bounds is developed and

asymptotic properties are derived. An empirical application using data from the U.K. Family

Expenditure Survey illustrates the usefulness of the methods by deriving bounds and con�dence

sets for estimated quantile demand functions.
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1 Introduction

This paper develops a new nonparametric approach to the estimation and prediction of consumer

demand responses for heterogeneous consumers. The objectives are two-fold: First, to utilize in-

equality restrictions arriving from revealed preference theory to improve demand estimation and

prediction. Second, to relax restrictions on unobserved heterogeneity in consumer demand func-

tions. We propose both unconstrained and revealed-preference constrained nonparametric esti-

mators for demand functions with non-additive unobserved tastes, and derive their asymptotic

properties.

Estimation of consumer demand models, and of the utility functions generating consumer de-

mand, have attracted attention since a long time ago (see, for example, Deaton and Muelbauer

(1980) and the references therein.) However, within these models, allowing for unobserved taste

variation has succeeded only in very speci�c cases (e.g., McElroy (1987)). As Brown and Walker

(1989) and Lewbel (2001) have shown, demand functions generated from random utility functions

do not typically generate demand function where the unobserved tastes are additive. The iden-

ti�cation and estimation of consumer demand models that are consistent with unobserved taste

variation require analyzing demand models with nonadditive random terms.

An early treatment of identi�cation of non-additive models is Brown (1983) whose results were

extended to nonparametric models in Roehrig (1988). Building on their work, Matzkin (2003, 2008,

2010) derives general identi�cation results for non-additive models. A number of other authors

have addressed speci�c issues in identi�cation and estimation: For example, Chesher (2003, 2007)

considers quantile-driven identi�cation with Ma and Koenker (2003) making use of his results to

construct parametric estimators. Imbens and Newey (2009) and Chernozhukov, Imbens and Newey

(2007) also develop quantile-based estimators which allow for endogeneity. Our approach draws on

this literature. Our unconstrained estimator is similar to the one developed in Imbens and Newey

(2009).

Our proposed procedure incorporates into nonadditive methods shape restrictions derived from

economic theory. The shape restrictions allow us to deal with the common empirical situation

where only a relatively small number of market prices are observed. If each consumer is choos-

ing demand by maximizing his or her preferences, demand of such consumer will satisfy the well

known axioms of revealed preference of Samuelson (1948), Houthakker (1950), Richter (1966),
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Afriat (1967) and Varian (1982). Our analysis follows Varian (1982), where the inequalitites de-

veloped in Afriat (1973) are used to characterize bounds on individual demand responses to new

prices. As in Blundell, Browning and Crawford (2003, 2008), we extend the revealed preference

approach of Afriat and Varian to the case where demand observations are from cross sectional data.

This requires addditional restrictions to connect identical preferences across budgets. Blundell,

Browning and Crawford (2003, 2008)�s method connected the average consumer across incomes

and prices, and developed bounds on the demand of this consumer under new prices. In this

paper, we connect consumers across budgets by mapping each of them into a quantile, and develop

bounds on the demand of each quantile. When preferences of each consumer are separable into

a monotone increasing function of some goods and an unobserved taste, each quantile corresponds

to a unique value of the unobserved taste. Under such assumption, our method connects across

budgets consumers with identical unobserved tastes. Other methods of connecting consumers with

the same unobserved taste across budgets are, of course, possible.

A key ingredient in our analysis is the Engel curve for heterogeneous consumers. This describes,

for each consumer, the expansion path for demand as total expenditure changes. The modelling

and estimation of the Engel curve relationship has a long history. For example, Working (1943)

and Leser (1963) suggested parametric regression models where budget shares are linear functions

of log total budget; the so-called Piglog-speci�cation. This simple speci�cation has subsequently

been generalised in various ways since empirical studies suggested that higher order logarithmic

expenditure terms are required for certain expenditure share equations, see e.g. Hausman, Newey

and Powell (1995), Lewbel (1991), Banks, Blundell and Lewbel (1997). A natural way to allow for

more �exible speci�cations is through non- and semiparametric methods which have been widely

used in the econometric analysis of Engel curves; see for example Blundell, Chen and Kristensen

(2007) and Blundell, Duncan and Pendakur (1998).

These studies largely concern average demands, that is they e¤ectively assume an additive error

structure and consequently impose strong assumptions on the class of underlying utility functions,

see e.g. Lewbel (2001). As mentioned above, we allow for non-additive heterogeneity1. Under a

monotonicity (or invertibility) restriction we show that the expansion path for each consumer is

identi�ed by the conditional quantile. We �rst develop a nonparametric unconstrained conditional

quantile estimator. We then use revealed preference inequalities to derive sharp bounds on quantile

1See Lewbel and Pendakur (2009) for one of the few parametric speci�cation that allows non-additive interaction.
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demand functions. The results in this paper refer to the case of two goods. The extension to multiple

goods and multiple tastes is non-trivial and is left to future work.

Revealed preference restrictions only allow us to establish bounds on quantile predicted de-

mands. The estimation problem therefore falls within the framework of partially identi�ed models

(see e.g. Manski, 1993). We employ the techniques developed in, amongst others, Chernozhukov,

Hong and Tamer (2003) to establish the properties of the nonparametric quantile demand bounds

estimators.

Our empirical analysis is based on data from the British Family Expenditure Survey (FES)

where the relative price variation occurs over time, and samples of consumers, each of a particular

household type, are observed at speci�c points in time in particular regional locations. We estimate

bounds on demand functions under the revealed preference inequality restrictions and show the

practical usefulness of our approach.2

The remainder of the paper is organized as follows: In Section 2, we set up our framework for

modelling heterogeneous consumer choice. In Section 3 we develop unrestricted sieve estimator for

the quantile Engel curves. Section 4 extends this to the revealed preference constrained case. The

estimation of demand function bounds is then developed in Section 5. In Section 6 we discuss the

implementation of the estimator and examine how to compute con�dence sets. Section 7 contains a

simulation study. In section 8 we apply our approach to household expenditure data and estimate

bounds on the quantile functions of predicted demands for food for a sample of British households.

Section 9 concludes and also points to some relevant extensions. In particular, we discuss how our

estimator can be extended to handle endogeneity of explanatory variables by using the recent results

on nonparametric estimation of quantile models under endogeneity. We also examine possible routes

to testing for rationality. All proofs have been relegated to the Appendix.

2 Heterogeneous Consumers and Market Prices

2.1 Quantile Expansion Paths

Consumer demand depends on market prices, individual income and individual heterogeneity. Sup-

pose we observe consumers in T � 1 separate markets, where T is �nite. In what follows we will

assume these refer to time periods but they could equally well refer to geographically separated

2We note that other papers have combined nonparametric techniques and economic theory to estimate and test

demand systems; see, for example, Haag, Hoderlein and Pendakur (2009), Hoderlein and Stoye (2009), Lewbel (1995).
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markets. Let p (t) be the set of prices for the goods that all consumers face at time t = 1; :::; T .

At each time point t, we draw a new random sample of n � 1 consumers. For each consumer, we

observe his or her demands and income level (and potentially some other individual characteristics

such as age, education etc., which we suppress in this discussion).

Let qi (t) and xi (t) be consumer i�s (i = 1; :::; n) vector of demand and income level at time

t (t = 1; :::; T ). We stress that the data fp (t) ;qi (t) ; xi (t)g, for i = 1; :::; n and t = 1; :::; T ,

is not a panel data set since we do not observe the same consumer over time. Rather, it is a

repeated cross-section where, for each new price, a new cross section of consumers is drawn from

the population. Individual heterogeneity in observed and unobserved characteristics implies that,

for any given market prices p (t) and for consumers with income x, there will be a distribution of

demands. Changes in x map out a distribution of expansion paths.

We focus on the two good case such that q (t) = (q1 (t) ; q2 (t))
0 2 R2+ and p (t) = (p1 (t) ; p2 (t))

0 2

R2+. The demand for good 1 is given by:

q1 (t) = d1 (x (t) ;p (t) ; ") ;

where " is a time-invariant individual speci�c heterogeneity term that re�ects unobserved hetero-

geneity in preferences and characteristics.3 To ensure that the budget constraint is met, the demand

for good two must satisfy:

q2 (t) = d2 (x (t) ;p (t) ; ") :=
x (t)� p1 (t) d1 (x (t) ;p (t) ; ")

p2 (t)
: (1)

We collect the two demand functions in d = (d1; d2). The demand function d should be thought

of as the solution to an underlying utility maximization problem over the subset of goods 1 and 2.

We here consider the often occurring situation where the time span T over which we have

observed consumers and prices is small (in the empirical application T � 8). In this setting, we are

not able to identify the mapping p 7! d (x;p; "). We will show that it is possible to identify the

function (x; ") 7! d (x;p (t) ; ") at each of the observed prices. To emphasize this, we will in the

following write

d (x (t) ; t; ") := d (x (t) ;p (t) ; ") :

So we have a sequence of T demand functions, fd (x; t; ")gTt=1. One consequence of this partial

identi�cation is that we cannot point identify demand responses to a new price, say p0 6= p (t),
3The demand function could potentially depend on other observable characteristics besides income, but to keep

the notation at a reasonable level we suppress such dependence in the following. If additionally explanatory variables

are present, all the following assumptions, arguments and statements are implicitly made conditionally on those.
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t = 1; :::; T . Instead we propose to use RP constraints involving fd (x; t; ")gTt=1 to construct so-called

e-bounds for such counterfactual demands.

2.2 e-Bounds on Quantile Demands Functions

Consider a particular consumer characterized by some " 2 [0; 1] and income x, with associated

sequence of demand functions d (x; t; "), t = 1; :::; T . Suppose that the consumer faces a given new

price p0 at an income level x0. The consumer�s new budget set is

Bp0;x0 =
�
q 2 R2+jp00q = x0

	
; (2)

which is compact and convex.

Suppose we observe a set of demands fq1;q2; :::qT g which record the choices made by a given

consumer characterized by a particular value of " when faced by the set of prices fp1;p2; :::pT g. All

demands are generated by d (x;p; �) conditioned on the speci�ed unobserved heterogeneity ". How

do we �nd the support set of the demand for this consumer when he faces a new price vector p0

with total outlay x0? Varian (1983) established that under the weak axiom of revealed preferences

the demand d (x0;p0; ") will be situated in the support set SVp0;x0;� given by:

SVp0;x0;� =
(
q0 :

p00q0 = x0, q0 � 0 and
fp(t);q(t)gt=0:::T satis�es RP.

)

This set can be tightened by introducing so-called expansion paths fp(t);q (x(t); �)gt=1;::T as done

in Blundell, Browning and Crawford (2008) (BBC08 in the following): De�ne intersection demands

q (x� (t); t; �) = d (�x� (t) ;p (t) ; �) where f�x" (t) : t = 1; :::; Tg is a sequence of intersection incomes

de�ned as the solution to

p00d(�x" (t) ; t; ") = x0; t = 1; :::; T:

The set of points that are consistent with observed expansion paths and utility maximization

is given by the support set :

Sp0;x0;" =
�
q 2 Bp0;x0 jp (t)

0 q � p (t)0 d(�x" (t) ; t; "); t = 1; :::; T
	
:

It is the identi�ed set of demand responses for any prices p0, incomes x0 and heterogeneity ".

In particular, the support set de�nes bounds on possible quantile demand responses. We follow

BBC08 and refer to these as e-bounds.
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Using BBC08, we can establish that if the set of T demands satisfy the Revealed Preference

inequalities then the support set is non-empty and convex. In the case of two goods, the support

set can also be shown to de�ne bounds on demands q0 that are sharp given the observed data and

the RP inequalities. These e-bounds in this case make maximal use of the heterogeneous expansion

paths and the basic nonparametric choice theory in predicting in a new situation. In other words,

there do not exist alternative bounds (derived from the same data) which are tighter than the

e-bounds. In particular, it will in general give tighter bounds compared to Varian�s version. It

is important to note that the support sets for demand responses are local to each point in the

distribution of income x and unobserved heterogeneity ". This allows for the distribution of

demand responses to vary across the income distribution in a unrestricted way.

For convenience, utilizing that by de�nition p (t)0 d(�x" (t) ; t; ") = �x" (t), we rewrite the support

set Sp0;x0;" in terms of a set of linear "moment" inequalities:

Sp0;x0;" = fq 2 Bp0;x0 j�x"�Pq � 0g ;

where P is the matrix containing the observed prices and �x� is the vector of intersection income

levels,

P = [p (1) ; � � � ;p (T )]0 2 RT�2+ ; �x" = (�x" (1) ; :::; �x" (T ))
0 2 RT+:

Some comments regarding the underlying assumptions used to establish the above bounds are

in order:

First, a key assumption for the above analysis to be valid for a given consumer is that his

unobserved component, ", is time-invariant. This allows us to use the repeated cross-sectional data

to track this consumer across di¤erent price regimes. In particular, under regularity conditions

stated below, we can identify d (x;p (t) ; "), t = 1; :::; T , from data. If a given consumer�s " is not

time-varying, this set of demand functions will provide a full characterisation of his behaviour across

the T price regimes. This in turn allows us to construct bounds for counterfactual demands for the

consumer. On the other hand, if a consumer�s " is time varying, say, "1; :::; "T , the knowledge about

d (x;p (t) ; "), t = 1; :::; T , does not provide information of this particular consumer�s behaviour over

time unless we are given information about the particular sequence of "�s. In particular, the above

bounds are not valid for this consumer.

Second, the above bounds analysis for counterfactual demand is motivated by the empirically

relevant situation where only little price variation is available (small T ). A di¤erent approach
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to statistical inference about counterfactual demand in our setting would be to develop estimators

that, as n; T !1, allows identi�cation of demand responses to prices as well, (x;p; ") 7! d (x;p; ").

This would allow one to compute point estimates of d (x;p0; ") which would be consistent for any

value of p0 as n; T !1. Moreover, the asymptotic distribution of the estimator as n; T !1 could

be used to construct con�dence bands for the counterfactual demand; in particular, these bands

would take into account the �nite-sample variation of p (t). The outlined approach is an alternative

to ours where we only establish estimators of (x; ") 7! d (x; t; "), t = 1; ::; T , and conduct statistical

inference for �xed T and n ! 1. However, for small T , the con�dence bands obtained from the

alternative approach will in general be quite imprecise - in particular in a nonparametric setting

- since they rely on asymptotic approximations, and so we expect that our procedure provides a

more robust set of con�dence bands for counterfactual demands. Moreover, prices are well-known

to exhibit strong time series dependence (see Lewbel and Ng, 2005) which will lead to lead to

further deterioration of nonparametric estimators in �nite samples.

Finally, we would like to point out that our analysis focuses on economic agents whose demand

decisions - given " - are fully described by their income and the prices they face. In case of

households with cohabiting couples, this assumption may be violated. While it is outside the scope

of this paper to provide an analysis of collective demand decisions, we conjecture that recent results

on revealed preference of collective consumption as in Cherchye, De Rock and Vermeulen (2011)

could be combined with the methods developed here to construct bounds for this more general

case.

3 An Unrestricted Sieve Estimator

A central objective of this paper is to provide an estimator for the support set and to investigate

its properties. As an initial ingredient for this estimator we �rst develop nonparametric estimators

of the sequence of demand functions d (x; t; "), t = 1; :::; T .

In order for d (x; t; ") to be nonparametrically identi�ed, additional constraints have to be

imposed on the function and the random variables (x; "). First, the distribution of unobserved

heterogeneity " is in general not identi�ed from data, and so will be to assumed (or normalized) to

be univariate and to follow a uniform distribution, " � U [0; 1]. We will furthermore assume " to

be independent of x (t).4

4The independence assumption can be relaxed as discussed in Section 9.

7



Next, we assume that d1 is invertible in ". Su¢ cient conditions for this to hold in demand

models can be found in Matzkin (2003) and Beckert and Blundell (2008). This combined with

the above restrictions on " implies that d1 (x; t; �), � 2 [0; 1], is identi�ed as the �th quantile of

q1 (t) jx (t) = x (Matzkin, 2003; Imbens and Newey, 2009):

d1 (x; t; �) = F
�1
q1(t)jx(t)=x (�) ; � 2 [0; 1] : (3)

These are the quantile expansion paths that describe the way demand changes with income x for

any given market t and for any given consumer ", that is, quantile representations of Engel curves.

Based on the above characterization of d1, we will in the following develop nonparametric quantile

estimators of the function.

The assumptions of a univariate and uniformly distributed " and invertibility of d1 are restrictive,

but it is not possible to weaken those in our general setting without loosing identi�cation of d1 and

thereby consistency of our quantile demand function estimator. Consistent estimators of marginal

e¤ects and average derivatives of non-additive models that are robust to deviations from the above

assumptions are provided in Hoderlein and Mammen (2007, 2008). However, this would not permit

the application of the methods developed in this paper as demands relating to individual consumers

are not directly identi�ed.

Given the above identi�cation result, we proceed to develop a sieve quantile estimator of d1. As

a starting point, we assume that for all t = 1; :::; T and all � 2 [0; 1], the function x 7! d1 (x; t; �) is

situated in some known function space D1 which is equipped with some (pseudo-)norm k�k.5 We

specify the precise form of D1 and k�k below. Given the function space D1, we choose sieve spaces

Dn;1 that are �nite-dimensional subsets of D. In particular, we will assume that for any function

d1 2 D1, there exists a sequence �nd1 2 Dn;1 such that k�nd1 � d1k ! 0 as n!1. Most standard

choices of the function space D1 can be written on the form

D1 =
(
d1 : d1 (x; t; �) =

X
k2K

�k (t; �)Bk (x) ; � (t; �) 2 RjKj
)
;

for known (basis) functions fBkgk2K, and some (in�nite-dimensional) index set K; see Chen (2007,

Section 2.3) for some standard speci�cations. A natural choice for sieve is then

Dn;1 =

8<:dn;1 : dn;1 (x; t; �) = X
k2Kn

�k (t; �)Bk (x) ; � (t; �) 2 RjKnj
9=; ; (4)

5The function space could without problems be allowed to change over time, t = 1; :::; T . For notational simplicity,

we maintain that the function space is the same across time.
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for some sequence of (�nite-dimensional) sets Kn � K. Finally, we de�ne the space of vector

functions,

D =
�
d = (d1; d2) : d1 (x; t; �) 2 D1; d2 (t; x; �) :=

x� p1 (t) d1 (x; t; �)
p2 (t)

�
;

with associated sieve space Dn obtained by replacing D1 by Dn;1 in the de�nition of D.

Given the function space D and its associated sieve, we can construct a sieve estimator of the

function d (�; t; �). Given that d1 (x; t; �) is identi�ed as a conditional quantile for any given value

of x, c.f. eq. (3), we may employ standard quantile regression techniques to obtain the estimator:

Let

�� (z) = (� � I fz < 0g) z; � 2 [0; 1] ;

be the standard check function used in quantile estimation (see Koenker and Bassett, 1978). We

then propose to estimate d (x; t; �) by

d̂ (�; t; �) = arg min
dn2Dn

1

n

nX
i=1

�� (q1;i (t)� dn;1 (xi (t) ; t; �)) ; (5)

for any t = 1; :::; T and � 2 [0; 1].

The above estimator can be computed using standard numerical methods for linear quantile

regressions when the sieve space is on the form in eq. (4): De�neBkn (x) = fBk (x) : k 2 Kng 2 Rkn ,

where kn = jKnj, as the collection of basis functions spanning the sieve Dn;1. Then the sieve

estimator is given by d̂1 (x; t; �) = �̂ (t; �)
0Bkn (x) =

P
k2Kn �̂k (t; �)Bk (x), where

�̂ (t; �) = arg min
�2RjKnj

1

n

nX
i=1

��
�
q1;i (t)� �0Bkn (xi (t))

�
; � 2 [0; 1] : (6)

That is, the estimator �̂ (t; �) is simply the solution to a standard linear quantile regression problem.

Finally, the estimator of the demand function for the "residual" good is given by

d̂2 (x; t; �) =
x� p1 (t) d̂1 (x; t; �)

p2 (t)
: (7)

To develop an asymptotic theory of the proposed sieve estimator, the following assumptions are

imposed on the model:

A.1 Income x (t) has bounded support, x (t) 2 X = [a; b] for �1 < a < b < +1, and is

independent of " � U [0; 1], 1 � t � T .

A.2 The demand function d1 (x; t; ") is strictly increasing in ", 1 � t � T .
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The assumption of bounded support is fairly standard in the literature on sieve estimation.

It should be possible to weaken the restriction of bounded support, but the cost would be more

complicated conditions and proof so we maintain (A.1) (see e.g. Chen, Blundell and Kristensen,

2007 for results with unbounded support). The independence assumption rules out endogenous

income; in Section 9, we argue how this can be allowed for by adopting nonparametric IV or control

function approaches. We refer to Matzkin (2003), Beckert (2007), and Beckert and Blundell (2008)

for more primitive conditions in terms of the underlying utility-maximization problem for (A.2) to

hold.

We restrict our attention to the case where B-splines are used to construct the sieve space Dn;1.

For an introduction to these, we refer to Chen (2007, Section 2.3). All of the following results goes

through for other linear sieve spaces after suitable modi�cations of the conditions. We introduce

the following L2- and sup-norms which will be used to state our convergence rate results:

jjd (�; t; �) jj2 =
r
E
h
kd (x; t; �)k2

i
; jjd (�; t; �) jj1 = sup

x2X
kd (x; t; �)k :

The function space D1 is then restricted to satisfy:

A.3 The function d1 (�; t; �) 2 D1, where D1 = Wm
2 ([a; b]) and Wm

2 ([a; b]) is the Sobolev space of

all functions on [a; b] with L2-integrable derivatives up to order m � 0, 1 � t � T .

We now have the following result:

Theorem 1 Assume that (A.1)-(A.3) hold. Then for any 1 � t � T and � 2 [0; 1]:

jjd̂ (�; t; �)� d (�; t; �) jj2 = OP (
p
kn=n) +OP

�
k�mn

�
;

while

jjd̂ (�; t; �)� d (�; t; �) jj1 = OP (kn=
p
n) +OP

�
k�mn

�
:

In particular, with kn = O
�
n1=(2m+1)

�
,

jjd̂ (�; t; �)� d (�; t; �) jj2 = OP
�
n�m=(2m+1)

�
;

while, with kn = O
�
n1=(2m+2)

�
,

jjd̂ (�; t; �)� d (�; t; �) jj1 = OP (n
�m=(2m+2)):
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We here state results both in the L2- and sup-norm, and note that while we obtain optimal

rates in the L2-norm this is not the case in the sup-norm. This is a general problem for sieve

estimators; see e.g. Newey (1997, Theorem 1) and Chen, Chernozhukov and Liao (2010, Lemma

2.1. and Remark 2.1). However, the rate result in the sup-norm proves helpful when developing

the asymptotic properties of the constrained demand function estimator and the demand bound

estimator.

To establish the asymptotic distribution of our sieve estimator, we employ the results of Chen

et al (2010) who give general conditions for limiting distributions of sieve estimators. To state

the asymptotic distribution, we need some additional notation: De�ne the sequence of covariance

matrices

Vn (�) = � (1� �)H�1
n (t; �) 
n (t; �)H

�1
n (t; �) ; (8)

with


n (t; �) = E
�
Bkn (x (t))Bkn (x (t))

0� ; Hn (t; �) = E
�
f (0jt; x (t) ; �)Bkn (x (t))Bkn (x (t))

0� :
Here, f (0jt; x; �) denotes the conditional distribution of e (t; �) := q1 (t) � d1 (x (t) ; t; �) given

x (t) = x; this is given by

f (ejt; x; �) = fq1(t)jx(t) (e+ d1 (x; t; �) jx) ; (9)

where fq1(t)jx(t) (�jx) is the conditional density of q1 (t) given x (t). Note that Vn (t; �) takes the

same form as the asymptotic variance of the estimated coe¢ cients �̂kn (�) in the quantile regression

model q1;i (t) = �kn (�)
0Bkn (x (t))+ e (t; �) where we treat Bkn (x (t)) as a set of regressors of �xed

dimension, c.f. Powell (1986). We are then able to state the following asymptotic normality result:

Theorem 2 Assume that (A.1)-(A.3) hold; the eigenvalues of E
�
Bkn (x)Bkn (x)

0� are bounded
and bounded away from zero; k4n=n = O (1), nk�3m+1=2n = O (1) and nk�2m�1n = o (1). Then for

any x (t) 2 X , t = 1; :::; T , and � 2 [0; 1],

p
n��1=2n (x; �)

0BB@
d̂1 (x (1) ; 1; �)� d1 (x (1) ; 1; �)

...

d̂1 (x (T ) ; T; �)� d1 (x (T ) ; T; �)

1CCA!d N (0; IT ) ;

where IT 2 RT�T denotes the identity matrix, and �n (x; �) = diag f�n (x (1) ; 1; �) ; ::::;�n (x (T ) ; T; �)g 2

RT�T with

�n (x (t) ; t; �) = Bkn (x (t))
0 Vn (t; �)Bkn (x (t)) 2 R:
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The independence of the estimators across time is due to the fact that a new sample of consumers

are drawn at each time period.

An attractive feature of the above result is that for a given sample, we can simply treat the

sieve estimator as a parametric estimator: As already noted, Vn (t; �) in eq. (8) is identical to the

asymptotic covariance matrix of the estimated coe¢ cients in a quantile regression setting. We then

simply have to pre- and postmultiply this by Bkn (x (t)) to obtain the covariance matrix of the

demand function itself.

A consistent estimator of the covariance matrix �n (x; �) can be obtained by replacing Vn (t; �)

in the above expression by

V̂n (t; �) = � (1� �) Ĥ�1
n (t; �) 
̂n (t; �) Ĥ

�1
n (t; �) ; (10)

where


̂n (t; �) =
1

n

nX
i=1

Bkn (xi (t))Bkn (xi (t))
0 ; Ĥn (t; �) =

1

n

nX
i=1

f̂ (0jt; xi (t) ; �)Bkn (xi (t))Bkn (xi (t))
0 :

Here, f̂ (0jt; x; �) = f̂q1(t)jx(t)(d̂1 (x; t; �) jx) with f̂q1(t)jx(t)(qjx) being, for example, a kernel estimator

of the conditional density. This asymptotic variance estimator is on the same form as the one

proposed in Powell (1986) for linear quantile regressions.

A similar distributional result holds for the demand function of the second good, except that

the covariance matrix �n (x (t) ; t; �) has to be multiplied by [p2 (t) =p1 (t)]
2; this follows by the

delta method and eq. (7). We also note that the joint distribution of (d̂1 (x (t) ; t; �) ; d̂2 (x (t) ; t; �))

is degenerate due to the budget constraint, c.f. eq. (1).

The above weak convergence result is only stated in a pointwise version. As discussed in the

following sections, uniform weak convergence results would be useful if the goal is to analyze demand

bounds across a continuum of consumers (that is, for � in some interval of [0; 1]). These can be

obtained from the general results in Belloni, Chernozhukov and Fernandez-Val (2011), and so could

potentially be used to examine uniform convergence of the resulting bounds. For simplicity, we

here focus on pointwise results.

4 A Revealed Preference (RP) Restricted Sieve Estimator

If the consumer is indeed rational, then the unconstrained estimator will asymptotically satisfy

the revealed preferences (RP) restrictions. However, in �nite samples, there is no reason why the
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estimator should satisfy these restrictions. This motivates us to directly impose RP restrictions in

the estimation of demand functions.

Consider a given consumer characterised by � 2 [0; 1], and construct the following particular

income expansion path f~x� (t)g recursively by

~x� (t) = p (t)
0 d (~x� (t+ 1) ; t+ 1; �) ;

where we initialize the sequence at a given "termination" income level x� (T ) 2 R+. The weak

axiom of RP imply the following set of inequality constraints:

~x� (t) � p (t)0 d (~x (s) ; s; �) ; s < t, t = 1; :::; T: (11)

If the demand functions d (x; t; �), t = 1; :::; T , satisfy these inequalities for any given income

level x� (T ), we say that "d (�; �; �) satis�es RP". Note that these constraints are invariant to the

particular ordering of prices; any arbitrary ordering of prices will impose the same constraints on

the overall set of demand functions.

A RP-restricted sieve estimator is easily obtained in principle: First observe that the unre-

stricted estimator of fd (�; t; �)gTt=1 developed in the previous section can be expressed as the solu-

tion to the following joint estimation problem across the T time periods:

fd̂ (�; t; �)gTt=1 = arg min
fdn(�;t;�)gTt=12DTn

1

n

TX
t=1

nX
i=1

�� (q1;i (t)� dn;1 (t; xi (t))) ;

for � 2 [0; 1], where DTn = 
Tt=1Dn and Dn is de�ned in the previous section. Since there are no

restrictions across the T time periods, the above de�nition of fd̂ (�; t; �)gTt=1 is equivalent to the

unrestricted estimators in eqs. (5) and (7).

In order to impose the RP restrictions, we de�ne the constrained function set as

DTC := DT \ fd (�; �; �) satis�es RPg ; (12)

and similarly the constrained sieve as

DTC;n := DTn \ fdn (�; �; �) satis�es RPg :

The constrained estimator is then obtained as:

fd̂C (�; t; �)gTt=1 = arg min
fdn(�;t;�)gTt=12DTC;n

1

n

TX
t=1

nX
i=1

�� (q1;i (t)� dn;1 (t; xi (t))) : (13)
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Note that since the RP inequalities impose restrictions across time (t = 1; :::; T ), the above es-

timation problem can no longer be split up into individual subproblems as in the unconstrained

case.

The proposed estimator shares some similarities with the ones considered in, for example, Gal-

lant and Golub (1984), Mammen and Thomas-Agnan (1999) and Yatchew and Bos (1997) who also

consider constrained sieve estimators. However, they focus on least-squares regression while ours

is a quantile estimator, and they furthermore restrict themselves to linear constraints. There are

some results for estimation of monotone quantiles and other linear constraints, see Chernozhukov,

Fernandez-Val and Galichon (2006), Koenker and Ng (2005) and Wright (1984), but again their

constraints are simpler to analyze and implement. These two issues, a non-smooth criterion func-

tion and non-linear constraints, complicate the analysis and implementation of our estimator, and

we cannot readily import results from the existing literature.

In order to derive the convergence rate of the constrained sieve estimator, we employ the same

proof strategy as found elsewhere in the literature on nonparametric estimation under shape con-

straints, see e.g. Birke and Dette (2007), Mammen (1991), Mukerjee (1988): We �rst demonstrate

that as n ! 1, the unrestricted estimator, d̂, satis�es RP almost surely. This implies that

fd̂ (�; t; �)gTt=1 2 DTC;n with probability approaching one (w.p.a.1) which in turn means that d̂ = d̂C
w.p.a.1, since d̂C solves a constrained version of the minimization problem that d̂ is a solution

to. We are now able to conclude that d̂C is asymptotically equivalent d̂, and all the asymptotic

properties of d̂ are inherited by d̂C .

For the above argument to go through, we need to slightly change the de�nition of the con-

strained estimator though. We introduce the following generalized version of RP: We say that "d

satis�es RP(�)" for some constant 0 � � � 1 if for any income expansion path,

�~x� (t) � p (t)0 d (~x� (s) ; s; �) ; s < t, t = 2; :::; T:

The de�nition of RP(�) is akin to Afriat (1973) who suggests a similar modi�cation of (GA)RP to

allow for waste ("partial e¢ ciency"). We can interpret � as Afriat�s so-called "e¢ ciency parameter":

With � = 1, no waste is allowed for; as � decreases, the more waste we allow for; with � = 0, any

sequence of demand functions is rationalizable. With this generalized version of GARP, we then

de�ne the corresponding constrained function space and its associated sieve as:

DTC (�) = DT \ fd (�; �; �) satis�es RP (�)g ;
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DTC;n (�) = DTn \ fdn (�; �; �) satis�es RP (�)g :

We note that the constrained function space DTC as de�ned in eq. (12) satis�es DTC = DTC (1).

Moreover, it should be clear that DTC (��) � DTC (�) for 0 � � � �� � 1 since RP(�) imposes weaker

restrictions on the demand functions compared to RP(��)

We now re-de�ne our RP constrained estimators to solve the same optimization problem as

before, but now the optimization takes place over DC;n (�) for some given choice of �. We let d̂�C
denote this estimator, and note that d̂1C = d̂C , where d̂C is given in eq. (13). Suppose now

that fd (�; t; �)gTt=1 2 DTC (��) for some �� > �; this implies that the unconstrained estimator satis�es

fd̂ (�; t; �)gTt=1 2 DTC;n (�) w.p.a.1. Since d̂�C is a constrained version of d̂, this implies that d̂�C = d̂

w.p.a.1. Similar assumptions and proof strategies have been employed in Birke and Dette (2007)

[Mammen (1991)]: They assume that the function being estimated is strictly convex [monotone],

such that the unconstrained estimator is convex [monotone] w.p.a.1. Since DTC (��) � DTC (�), our

new estimator will in general be less precise than the one de�ned as the optimizer over DTC (��), but

if the di¤erence ��� � > 0 is not too big, the additional estimation error should be negligible.

Theorem 3 Assume that (A.1)-(A.3) hold, and that d 2 DTC (��) for some �� � 1. Then for any

0 � � < ��:

jjd̂�C (�; t; �)� d (�; t; �) jj1 = OP (kn=
p
n) +OP

�
k�mn

�
;

for t = 1; :::; T . Moreover, under the conditions in Theorem 2, the restricted estimator has the same

asymptotic distribution as the unrestricted estimator given in the same theorem.

The convergence rate in the sup-norm is identical to the one for the unconstrained estimator and

as such is not minimax optimal. On the other hand, the constrained estimator does exhibit optimal

convergence rate in the L2-norm; we have left this result out to save space. In terms of convergence

rate in the sup-norm, we are not able to show that the additional constraints arising from the RP

restrictions lead to any improvements. This is similar to other results in the literature on constrained

nonparametric estimation. Kiefer (1982) establishes optimal nonparametric rates in the case of

constrained densities and regression functions respectively when the constraints are not binding. In

both cases, the optimal rate is the same as for the unconstrained one. However, as demonstrated

both analytically and through simulations in Mammen (1991) for monotone restrictions, there may

be signi�cant �nite-sample gains.
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We conjecture that the above distributional result will not in general hold for the estimator

d̂C de�ned as the minimizer over DTC;n (1) (where no waste is allowed). In this case the GARP

constraints would be binding, and we can no longer ensure that the unconstrained estimator is

situated in the interior of the constrained function space. This in turn means that the unconstrained

and constrained estimator most likely are not asymptotically �rst-order equivalent and very di¤erent

techniques have to be used to analyze the constrained estimator. In particular, the asymptotic

distribution of the constrained estimator would most likely be non-standard. This is, for example,

demonstrated in Andrews (1999), Anevski and Hössjer (2006) and Wright (1981) who give results

for inequality-constrained parametric and nonparametric problems respectively.

Finally, we note that the proof technique used to obtain the above theorem is not speci�c to our

particular quantile sieve estimator. One can by inspection easily see that the arguments employed

in our proof can be adapted to show that for any unconstrained demand function estimator, the

corresponding RP-constrained estimator will be asymptotically equivalent when allowing for waste.

5 Estimation of Bounds on Quantile Demands

Once an estimator of the demand function has been obtained, either unrestricted or restricted,

we can proceed to estimate the associated demand bounds. We will here utilize the machinery

developed in Chernozhukov, Hong and Tamer (2007), henceforth CHT, and use their results to

develop the asymptotic theory of the proposed demand bound estimators.

We have earlier considered a particular consumer characterized by some � 2 [0; 1] with associated

sequence of demand functions d (x; t; �), t = 1; :::; T . The consumer�s budget set associated with

new prices p0 is given by the compact and convex set Bp0;x0 as given in eq. (2). Recall from Section

2 that the demand support set can then be represented as Sp0;x0;� = fq 2 Bp0;x0 j�x��Pq � 0g,

where �x� := f�x� (t) : t = 1; :::; Tg is a sequence of intersection incomes de�ned as the solution to

p00d(�x� (t) ; t; �) = x0; t = 1; :::; T:

A natural estimator of the support set would be to simply substitute the estimated intersection

incomes for the unknown ones. De�ning the estimated income levels x̂� =(x̂� (1) ; :::; x̂� (T )) as the

solutions to

p00d̂C(x̂� (t) ; t; �) = x0; t = 1; :::; T;

a natural support set estimator would appear to be Ŝp0;x0;� = fq 2 Bp0;x0 jx̂� �Pq � 0g. However,
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in order to do inference, in particular obtaining a valid con�dence set for Sp0;x0;� , we need to modify

this estimator.

First, as stated in Theorems 2-3, the sieve estimators of the demand functions may exhibit

di¤erent convergence rates over time and income levels. As demonstrated in Appendix B, the

estimated intersection income levels, x̂ (t), t = 1; :::; T , inherit this property,

p
nW 1=2

n (x̂� � �x� )!d N (0; IT ) ;

where IT denotes the T -dimensional identity matrix, and Wn is a diagonal matrix,

Wn = diag fwn (1) ; :::; wn (T )g ;

with positive entries given by

wn (t) =

�
p00dx(�x� (t) ; t; �)

p0;1 � p0;2p1 (t) =p2 (t)

�2
��1n (�x (t) ; t) ;

where dx(x; t; �) = @d(x; t; �)= (@x) and �n (x; t; �) is the variance of d̂1 (x; t; �) as given in Theorem

2. Due to the heterogenous normalizations across t = 1; :::; T , as described by the weighting matrix

Wn, the T inequality constraints that make up the support set are potentially estimated with

di¤erent rates. This has to be taken into account in order to construct valid con�dence sets. We

therefore introduce a sample objective function Qn (q) that contain normalized versions of the

estimated demand bounds:

Qn;� (q) =



Ŵ 1=2

n [x̂� �Pq]



2
+
;

where kxk+ = kmax fx; 0gk for any vector x, and Ŵn = diag fŵn (1) ; :::; ŵn (T )g is a consistent

estimator ofWn. In comparison to the naive estimator suggested earlier, we now normalize x̂��Pq

with W 1=2
n . If we could have shown that the intersection incomes converged with same rate (for

example, if we could show that �n (x; t) = rn� (x; t) for some sequence rn) this normalization would

not be required.

Given that x̂� in addition is a consistent estimator of �x, it is straightforward to verify that

supq2Bp0;x0 jQn (qj�) �
�Qn (qj�) j !P 0 (see the Appendix), where �Qn (qj�) is the non-stochastic

version of Qn (qj�) given by
�Qn (qj�) =




W 1=2
n [�x� �Pq]




2
+
:

An important point here is that even though �Qn (qj�) is a sequence of functions (due to the presence

of Wn), it still gives a precise characterization of the support set Sp0;x0 for any given n � 1:

�Qn (qj�) = 0,W 1=2
n [�x� �Pq] � 0, �x� �Pq � 0, q 2Sp0;x0;� ;
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where the second equivalence follows from the fact that Wn is a diagonal matrix with positive

elements.

In addition to the normalizing weights, we also introduce a slackness variable to control for

boundary issues. Let cn � 0 be some positive sequence, which will be further restricted in the

following. We then de�ne our support set estimator as

Ŝp0;x0;� (cn) = fq 2 Bp0;x0 jnQn (qj�) � cn g : (14)

The resulting support set estimator is given as the demand levels that lie within a given contour

level cn of the sample objective function Qn (qj�).

It is worth noting that the above formulation of the support set and its estimator in terms of

�Qn (qj�) and Qn (qj�) is very close to the general formulation of set estimators de�ned through

moment inequalities used in CHT. However, in their setting the limiting objective function, in our

case �Qn (qj�), is not allowed to depend on n, so we cannot directly apply their results. However,

their proof strategy fortunately carries over to our case without much additional work. This is

similar to the extension of standard proofs of consistency and rate results in the point identi�ed

case to allow for a sequence of limiting objective functions; see e.g. White (1994).

In order to analyze the set estimator we impose the following conditions on the demand functions

and observed prices which together de�nes the support set:

A.4 d (x; t; �) is strictly increasing in x, t = 1; :::; T .

A.5 The matrix P = [p (1) ; � � � ;p (T )]0 2 RT�2+ has rank 2.

The monotonicity requirement in Condition (A.4) ensures that the intersection income path

f�x (t)g is uniquely de�ned, and is a standard requirement in consumer demand theory. Condition

(A.5) states that the observed prices have exhibited su¢ cient variation so we can distinguish be-

tween di¤erent demands. In particular, we need to have observed at least two prices and furthermore

that at least two of these prices cannot be expressed as linear combinations of others.

To state rate results for our support set estimator, we introduce the so-called Hausdor¤ norm

which is given by:

dH(A1;A2) = max
(
sup
y2A1

�(y;A2); sup
y2A2

�(y;A1)
)
, � (y;A) = inf

x2A
kx� yk ,
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for any two sets A1;A2. In Appendix B, we derive the asymptotic properties of the estimated

support set for general demand function estimators allowing for multiple goods and other types of

estimators than sieves. The following theorem follows as a straightforward implication of this more

general result:

Theorem 4 Suppose that (A.1)-(A.5) hold and jjŴn �Wnjj !P 0. Then for any sequence cn /

log (n),

dH(Ŝp0;x0;� (cn) ;Sp0;x0;� ) = OP (kn
p
log (n) =n) +OP

�
log (n) k�mn

�
):

If furthermore, the eigenvalues of E
�
Bkn (x (t))Bkn (x (t))

0�, t = 1; :::T , are bounded and

bounded away from zero; ; k4n=n = O (1), nk
�3m+1=2
n = O (1) and nk�2m�1n = o (1), then:

P (Sp0;x0;� � Ŝp0;x0;� (ĉn))! 1� �;

where ĉn = q̂1�� +OP (log (n)) and q̂1�� is an estimator of the (1� �)th quantile of Cp0;x0;� given

by

Cp0;x0;� := sup
q2Sp0;x0;�

kZ + �� (q)k2+ :

Here, Z � N (0; IT ) while �� (q) = (�� (1;q) ; :::; �� (T;q))0 is given by

�� (t;q) =

(
�1; p (t)0 q > �x� (t)

0; p (t)0 q = �x� (t)
; t = 1; :::; T:

The �rst part of the theorem shows that the support set estimator inherits the sup-norm con-

vergence rate of the underlying demand function estimator. The second part shows how a valid

con�dence set can be constructed for the demand bounds, and is akin to the result found in, for

example, CHT�s Theorem 5.2. The critical values are based on quantiles of Cp0;x0;� which is the

limiting distribution of supq2Sp0;x0 n
�
Qn (qj�)� �Qn (qj�)

	
. Thus, the con�dence set is constructed

by inversion of the statistic de�ning the set estimator. As can be seen from the theorem, the distri-

bution of Cp0;x0;� depends on T -dimensional vectors Z and � (q). The former is simply the limiting

joint distribution of the (appropriately normalized) estimates of the intersection incomes �x (t),

t = 1; :::; T , while the latter keeps track of which of the constraints are binding (in the population)

with only the binding ones in�uencing the distribution.

In order to employ the above result in practice, we need to be able to obtain estimators of the

quantiles of the random variable Cp0;x0;� de�ned in the theorem. The distribution of Cp0;x0;� is

non-standard and cannot be written on closed form, so evaluation of its quantiles has to be done
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either through simulations (CHT) or resampling methods such as modi�ed bootstrap (Bugni, 2010;

Andrews and Soares, 2010) or subsampling (CHT).

The above theorem does not utilize that potentially our estimator has the degeneracy property

discussed in, for example, CHT, Section 3.2 and 4.2. If the degeneracy property should hold, we

can choose cn = 0 in the �rst part, and ĉn = q̂1�� in the second part.

Finally, we note that we have here constructed con�dence bounds for the identi�ed support

set. One may instead be interested in constructing con�dence bounds for the unidenti�ed demand

point. This can be done by using the results in CHT, Section 5.

6 Practical Implementation

In this section, we discuss in further detail how the demand function estimators and support set

estimators can be implemented.

6.1 Computation of Constrained Estimator

In the following, we suppress the dependence on � for notational convenience since this is kept �xed

throughout.

For numerical ease, we propose a slightly di¤erent implementation of the RP constrained estima-

tor compared to the one analyzed in Section 4. The reason for this is that the original constrained

estimator requires solving a quantile regression problem with nonlinear constraints which is not

easily implemented in standard software packages (in particular, the objective function is non-

di¤erentiable which makes standard search algorithms unreliable). Instead, we reformulate the

constrained estimator as the solution to a constrained least-squares problem that standard numeri-

cal algorithms can handle: Given the unconstrained estimator d̂1 (t; x), we propose to estimate the

constrained version as

fd̂C (�; t)gTt=1 = arg min
dn(�;�)2DTC;n

1

n

TX
t=1

nX
i=1

�
d̂1 (t; xi (t))� dn;1 (t; xi (t))

�2
: (15)

It is not numerically feasible to check that a given candidate estimator satis�es the RP con-

straints across all potential income expansion paths of which there exists a continuum. Instead, we

only check the RP constraints on a discrete grid as follows: First, choose (a large number of) M

income "termination" values, ~xm (T ), m = 1; :::;M . The latter will be used to generated income

paths. For su¢ ciently large M , we hope to cover most of the possible income paths. For a given
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member of the constrained sieve, say fdn(x; t)gTt=1, where dn;1(x; t) = � (t)
0Bkn (x), we then check

whether it satis�es RP across this grid: Compute M SMP paths f~xm (t)g, m = 1; :::;M :

~xm (t) = p (t)
0 dn(~xm (t+ 1) ; t+ 1); (16)

For any of these paths, say, f~xm (t)g, we check whether eq. (11) holds. By de�ning

am (s; t; �) =

�
p2 (t)

p2 (s)
p1 (s)� p1 (t)

�
Bkn (~xm (s))

0 2 Rkn ; (17)

bm (s; t; �) =
p2 (t)

p2 (s)
~xm (s)� ~xm (t) 2 R;

for s < t, the RP constraints can be written more conveniently on matrix form as A (�)� �

b (�) ;where

A (�) =
�
O1�(s�1)kn ; am (s; t; �) ; O1�(T�s)kn ;

�
m=1;:::;M;s<t

; b = [bm (s; t; �)]m=1;:::;M;s<t ;

and Op�q denotes the (p� q)-dimensional matrix of zeros. This highlights that the constraints are

nonlinear in �; if the constraints instead were linear, the constrained estimator could simply be

implemented as discussed in Koenker and Ng (2005). Our original least-squares problem should

then be well-approximated by

�̂C = argmin
�

1

n

TX
t=1

nX
i=1

�
d̂1 (t; xi (t))� � (t)0Bkn (xi (t))

�2
s.t. A (�)� � b (�) : (18)

For moderate/large values of T , solving the above optimization problem is still quite a formidable

task. For example, with a sieve of dimension kn = 8 and T = 8 (as is the case in our empirical

application), we have a total of 64 parameters to solve for. Fortunately, this numerical issue can to

some extent be bypassed by running the following iterative procedure: To initialize the procedure,

note that for T = 1 the constrained estimator is equal to the unconstrained one, since in this

case no RP constraints exist. Now, given an estimator for T periods worth of constraints, we

can solve the constrained estimator for T + 1 periods by starting the numerical algorithm at the

estimates obtained for T periods together with the unconstrained estimator for period t = T + 1.

In our experience, this procedure is quite robust and allows numerical solutions to the constrained

estimation problem with relatively large number of sieve terms and time periods.

6.2 Demand Bounds

To compute the demand bounds and their con�dence sets we proceed in two steps: First, approxi-

mate estimators are found as solution to a linear programming problems: Given some cut-o¤ level
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ĉn, we de�ne Â = ŴnP 2RT�2, b̂ =ĉn + Ŵnx̂ 2RT , and then compute:

~qup;1 = argq2R2 max q1 s.t. Âq � b̂ and p0q = x0;

~qlow;1 = argq2R2 min q1 s.t. Âq � b̂ and p0q = x0:

This yields approximate estimates of the upper and lower bounds for demand for good 1. The �nal

estimates are then obtained by solving the following two optimization problems numerically:

~qup;1 = argq2Bp0;x0 max q1 s.t. nQn (q) � ĉn;

~qlow;1 = argq2Bp0;x0 min q1 s.t. nQn (q) � ĉn;

where the optimization algorithm is started at ~qup;1 and ~qlow;1 respectively.

Con�dence regions for these demand bounds can be obtained by choosing the cut-o¤ level

ĉn as ĉn = q̂1�� + OP (log (n)), where q̂1�� is an estimator of the (1� �)th quantile of Cp0;x0;�

de�ned in Theorem 4. This can be computed by simulations. We �rst rewrite Cp0;x0;� : Letting

�Tb = maxq2Sp0;x0;�
PT
t=1 �� (t;q), �t (t;q) := I

�
�x� (t) = p (t)

0 q
	
, denote the maximum number of

binding constraints across all points in Sp0;x0;� , we can write Cp0;x0;� =
P �Tb
t=1max fZ (t) ; 0g

2, where

fZ (t)gTt=1 � N (0; IT ). Given a consistent estimator T̂b = maxq2Ŝp0;x0;�
PT
t=1 �̂� (t;q), �̂� (t;q) =

I
�
x̂� (t) � p (t)0 q� an

	
with an /

p
log (n) =n, we propose to compute approximate quantiles by

simulating from Ĉp0;x0;� =
PT̂b
t=1max fZ (t) ; 0g

2.

7 Simulation Study

To investigate the �nite-sample performance of our estimators, we conduct a small simulation study

where we take as data generating process a simple random coe¢ cient Cobb-Douglas model:

q1i (t) = �i
xi (t)

p1 (t)
; q2i (t) = (1� �i)

xi (t)

p2 (t)
;

where �i � N
�
��; 0:0052

�
is the random coe¢ cient. This is a quite simple speci�cation where the

weak axiom of revealed preferences are satis�ed when �i 2 [0; 1]. However, we will not utilize any

of the structure in the Cobb-Douglas model in the implementation of our nonparametric estimators

of demand functions and corresponding bounds. As such, we expect that the only change in our

simulation results when moving to more complicated, non-linear DGP�s of demand would be that

additional biases due to these nonlinearities would appear in the estimates.
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In line with our empirical application in the next section, we refer to good 1 as �food�. The

prices are chosen as those in the data set used in our empirical application; similarly, xi (t) is drawn

from the empirical distribution of total expenditures of this data set. The data-generating value

of �� is chosen as the mean share of food in the sample. We included T = 6 di¤erent prices in

the simulation study and used the same number of observations as in the empirical application,

n = 1448.

In the estimation of d1 (x; t; �) = ��1��;0:005 (�)x=p1 (t), where �
�1
��;0:005 (�) is the quantile function

of �i, we employ (log-transformed) polynomial splines,

dn;1(x; t; �) = � (t; �)
0BKn(log x)

0 =

qnX
j=0

�j (t; �) log (x)
j +

rnX
k=1

�qn+k (t; �) (log x� �k (t))
qn
+ ; (19)

where qn � 1 is the order of the polynomial and �k, k = 1; :::; rn, are the knots. Thus, the number

of sieve terms is kn = qn + rn + 1. For a given choice of rn, we place the knots according to

the sample quantiles of log xi (t), i = 1; :::; n, i.e., �k (t) was chosen as the estimated k= (rn + 1)-

th empirical quantile of log x (t). In the implementation of the quantile sieve estimator, a small

penalization term was added to the objective function to robustify the estimators (see Blundell,

Chen and Kristensen, 2007 for a similar approach). That is,

�̂ (t; �) = arg min
�2RjKnj

1

n

nX
i=1

��
�
q1;i (t)� �0Bkn (log xi (t))

�
+ �Q (�) ; � 2 [0; 1] ; (20)

where

Bkn (x) =
�
1; x; :::; xqn ; (x� �1 (t))qn+ ; :::; (x� �rn (t))

qn
+

�0
;

and �Q (�) is an L1-penalty term. Here, Q (�) is the total variation of @2dn;1 (x) =
�
@x2

�
,

Q (�) =

Z b

a

�����0@2Bkn (x)@x2

���� dx 2 R+;
while � > 0 is the penalization weight that controls the smoothness of the resulting estimator.

With � = �n ! 0 su¢ ciently fast as n!1, this will not interfere with the asymptotic properties

derived in the previous sections. Throughout, we use a third order (q = 3) spline with 4 knots

(rn = 4) so the total number of basis functions is kn = 8.

While the unconstrained demand estimator can be implemented straightforwardly in standard

quantile regression software,6 the constrained optimization problem was implemented using the

recursive algorithm outlined in Section 6. Our results are based on 1000 simulated data sets. We

6The computation of the unrestricted estimators was done using Matlab code kindly provided by Roger Koenker.
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only report results for t = 4 and � = 0:5. The results for other time periods were very similar, while

the performance of the constrained estimator relative to the unconstrained one improved further

as we moved away from the median.

In Figure 1 and 2, we report the mean and 95% con�dence intervals for the unconstrained

and constrained estimators of the expenditure share, d1 (x; t; �) p1 (t) =x (t) = � (�) where � (�)

is the �th quantile of �i � N
�
��; 0:0052

�
. As can be seen from the �gures, at the median, both

estimators are very precise with hardly any biases and small variances. There are only minor

di¤erences between the two estimators; this is in contrast to the empirical application where the

di¤erences are more pronounced. The strong performance of and the small di¤erences between the

two estimators are probably due to the very simple model; in particular, the true demand model is

contained in the sieve that we use.
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Figure 1: Simulation study, performance of unconstrained estimator at � = 0:5.

To get a better idea of the ranking of the two estimators, we therefore report pointwise and

integrated bias, standard deviation and RMSE in Table 1. From this table, we see that the uncon-

strained estimator is slightly less biased, but on the other hand exhibits more variance compared to

the constrained one; this is particularly evident at values of x in the tail of the distribution of total
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Figure 2: Simulation study, performance of constrained estimator at � = 0:5.

expenditure. Overall, the constrained estimator has an RMSE that is 17.3% smaller compared to

the unrestricted one, and so clearly dominates.

Bias Standard dev. RMSE

log (x) unconstr. constr. unconstr. constr. unconstr. constr.

3.3450 0.2028 0.3191 9.8093 7.6865 9.8114 7.6931

4.0518 0.0920 0.1341 3.4781 2.7315 3.4793 2.7348

4.4758 0.1116 -0.0681 3.5716 3.1427 3.5734 3.1434

4.7725 0.1569 0.1717 3.7040 2.9187 3.7073 2.9238

5.0011 0.2256 0.3373 4.0127 2.9841 4.0191 3.0031

5.1870 0.2338 0.2220 5.5910 4.1268 5.5959 4.1328

5.3437 0.0874 -0.2499 7.1645 6.1877 7.1650 6.1927

5.4792 -0.2265 -1.0578 7.6852 7.5625 7.6885 7.6361

5.5984 -0.6958 -2.1580 10.7271 9.7234 10.7496 9.9600

Average 0.0468 -0.1792 5.4468 4.6190 5.4508 4.6473

Table 1: Performance of unconstrained and constrained estimator.

Notes: All numbers have been scaled up by a factor 103.

Once the simulated constrained estimators have been computed, we proceed to obtain corre-
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sponding demand bounds for new prices, p0.7 This allows us to investigate the quality of the

estimated demand bounds in �nite samples. In Figure 3, we show the mean and 95% con�dence

intervals for the estimated demand bounds for good 1 (�food�) across a range of p0;1, the price of

good 1 while we keep p0;2 �xed at the price level for good two at time T = 6. This is done for a

consumer with mean income (x0 chosen as the population) mean and � = 0:5. For comparison, we

have also plotted the unknown, true bounds for our choices of p0, x0 and � . The estimator su¤ers

from some biases but the 95% con�dence interval includes the true bounds and are reasonably tight.

Parts of the biases may be due to computational issues since the bounds are here computed by (i)

numerically solving for the income expansion path, and (ii) solving a linear programming problem.
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Figure 3: Simulation study, demand bounds at median income and � = 0:5.

In summary, at observed prices, our demand estimators do very well for the random coe¢ cient

Cobb-Douglas models with small biases and variances. Moreover, as expected, the constrained esti-

mator dominates the unconstrained one in terms of MSE. Finally, estimated bounds on (predicted)

demands at new prices are somewhat more biased, but still perform satisfactorily.

7The computation of the bounds was done using Matlab code kindly provided by Ian Crawford.
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8 Empirical Application

8.1 Data

In our application we apply the methodology for constructing quantile demand bounds under

revealed preference inequality restrictions to data from the British Family Expenditure Survey

(FES). The data set contains expenditure data and prices from British households. We use the

same sample selection as in BBC08 and we refer to that paper for a more detailed description. We

choose food as our primary good, and then group the other goods together in this application. In

our application, we focus on FES data for the eight year period 1983-1990. We follow BBC08 and

use a group of demographically homogeneous households made up of couples with two children.

The distribution of relative food prices over the central period of the data is give in Figure 4. As

a guide to the variation in the expenditure data, the basic distribution of the Engel curve data for

the year 1985 are described in Figures 5 and 6. Total expenditure x is de�ned as total expenditure

on non-durables and services. Similar distributions are found for the other years in the data set.

1983 1984 1985 1986 1987 1988 1989 1990
0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

year

pr
ice

 o
f f

oo
d 

re
la

tiv
e 

to
 o

th
er

 g
oo

ds

Figure 4: Relative food prices in the FES, 1983 to 1990.
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Figure 5: The Engel Curve Distribution, 1985.
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Figure 6: Distribution of total expenditure, 1985.
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Figure 7: Unconstrained quantile Engel curve estimates, t = 1983.
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Figure 8: RP Constrained quantile Engel curve estimates, t = 1983.
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8.2 The Sieve Estimates of Quantile Expansion Paths

In the estimation, we implement the sieve estimator along the lines described in the simulation

study. We use a 3rd order polynomial spline (qn = 3) with rn = 5 knots. Each household is de�ned

by a point in the distribution of log income and unobserved heterogeneity ": As an example, for

the year t = 1983, the unconstrained expansion paths estimates as a function of x for each of three

quantiles (� = 0:1, 0:5 and 0:90) of the distribution of unobserved heterogeneity are given in Figure

7.

The value of � in these �gures can be interpreted as the taste for food relative to other goods

with a higher value of � re�ects stronger preferences for food. We see that the demand functions

for the three di¤erent types of consumers are similar, but the shape does change as we move across

the distribution of unobserved heterogeneity � . This supports the use of the non-additive demand

models that allow for richer interactions between log x and � .

Next, we re-estimate the quantile expansion paths (Engel curves) under the revealed preference

and monotonicity restrictions (RP). The constrained quantile Engel curve estimates for t = 1983

can be found in Figure 8. Comparing the constrained with the unconstrained estimates, imposing

monotonicity and revealed preference restrictions tend to remove some of the wiggles found in

the unrestricted estimates. The impact of the constraints vary across the di¤erent quantiles; for

� = 0:90, the constrained and unconstrained estimators are very close, while substantial shifts in

the demand functions happen at � = 0:50 and � = 0:10. In particular, the decreases in demand

observed at the lower quantiles in Figure 7 are removed. However, the overall shapes remain quite

similar.

8.3 Estimated Demand Bounds and Con�dence Sets

A key parameter of interest in this study is the distribution of predicted consumer responses for

some new relative price p0 and income x0. For any x0, this will allow us to describe the demand

curve for a sequence of relative prices. For any price p0, we estimate bounds (support set) for each

quantile demand curve at income x0 using the revealed preference inequalities. In our FES data we

consider bounds on the demand curve at new prices of food while keeping the price of remaining

goods �xed at p0;2 = 1.

We �rst investigate how precisely the bounds are estimated. In Figure 9, we report the estimated

bounds together with the 95% con�dence interval across a range of prices for food for a median
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income consumer. While the estimated bounds are quite narrow, the corresponding con�dence

intervals are somewhat larger thus taking into account the sampling uncertainty. We also note that

the bounds relatively narrow within the range of observed prices (compare with Figure 4), but for

prices far away from observed prices the bounds widen and become less informative.

0.92 0.94 0.96 0.98 1 1.02
0

10

20

30

40

50

60

70

80

90

100

price, food

de
m

an
d,

 fo
od

estimate
95% confidence interval

Figure 9: Estimated demand bounds and 95% con�dence sets at median income, � = 0:5, T = 8.

Next, we examine how demand responds to changes across the two dimensions of individual

heterogeneity - income and unobserved heterogeneity. For a given income we can look at demand

bounds for consumers with stronger or weaker preferences for food. Each �gure contains three sets

of bound estimates corresponding to using price information for T = 4, 6 and 8 time periods. To

avoid too cluttered �gures, we only report con�dence sets for the bounds for T = 8; the con�dence

sets for T = 4 and 6 are qualitatively the same. Figure 10 shows the estimated con�dence sets for

the bounds on the quantile demand function at the median income for the 10th percentile (� = :1)

of the unobserved taste distribution. Notice that where the relative prices are quite dense the

bounds are correspondingly narrow. Figure 11 contrasts this for a consumer at the 50% (� = :5)

percentile of the heterogeneity distribution - a consumer with stronger taste for food. At all points

demands are higher and the price response is somewhat steeper. Figure 12 considers a consumer
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with an even stronger taste for food - at the 90th percentile (� = :9) of the taste distribution.

Demand shifts further up at all points. The bounds remain quite narrow where the relative prices

are dense.
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Figure 10: Estimated bounds at median income, � = 0:1

Finally, we can examine how changes in the total outlay level, x0, a¤ects the demand bounds.

We focus on the median consumer with � = 0:5. Consider Figure 11, which presents the con�dence

sets on the demand bounds at median total outlay, as the baseline case. We now decrease the

consumers total outlay to the 25th percentile level in the sample; the resulting con�dence sets are

shown in Figure 13. As expected predicted demand drops uniformly across prices compared to the

ones reported for the higher income level (note here that the scale of the y-axis is slightly di¤erent

from the earlier �gures). The sets for the median consumer with outlay x0 at the 75th percentile

of the sample are found in Figure 14. Comparing the two �gures, we see that the overall shape

remains the same, but that demands bounds are compressed as income levels are decreased.
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Figure 11: Estimated bounds at median income, � = 0:5.
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Figure 12: Estimated bounds at median income, � = 0:9.
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Figure 13: Estimated bounds at 25th percentile income, � = 0:5.
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Figure 14: Estimated bounds at 75th percentile income, � = 0:5.
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9 Conclusions and Extensions

This paper has developed a new approach to the estimation of consumer demand models with

non-separable unobserved heterogeneity. For general non-additive stochastic demand functions,

we have demonstrated how revealed preference inequality restrictions can be utilized to improve

on the nonparametric estimation of demand responses. We have shown how bounds on demand

responses to price changes can be estimated, and derive their asymptotic properties using results

on the estimation of parameters characterized by moment inequalities.

An empirical application using individual consumer data from the British Family Expenditure

Survey has illustrated the usefulness of the methods. New insights have been provided about the

price responsiveness of demand across the distribution of unobserved tastes and di¤erent percentiles

of the income distribution.

It would be natural to extend our results to allow for endogeneity of the total expenditure

variable such that the independence assumption made in (A.2) can be weakened. The proposed

sieve quantile estimator will in this case be inconsistent. In a parametric framework this can

be dealt with using standard instrumental variables (IV) techniques. In recent years, a range of

di¤erent methods have been proposed to deal with this problem in a nonparametric setting. The

two main approaches proposed in the literature in additive regression models is nonparametric IV

(Ai and Chen, 2003; Hall and Horowitz, 2005; Newey and Powell, 2003) and control functions

(Newey, Powell and Vella, 1998). Both these methods have been applied in the empirical analysis

of Engel curves with additive errors (Blundell, Chen and Kristensen, 2003, and Blundell, Duncan

and Pendakur, 1998 respectively). These two approaches have recently been employed in the

estimation of quantile models: Chernozhukov, Imbens and Newey (2007) and Chen and Pouzo

(2008a,b) develop nonparametric IV methods for quantile models, while Imbens and Newey (2007)

consider control function methods. With the assumptions and results of either of these three

papers replacing our assumptions (A.1)-(A.3) and our Theorem 1, the remaining results of ours as

stated in Theorems 2-5 remain valid since these follow from the properties of the unconstrained

estimator. Thus, all the results stated in Theorems 2-5 go through except that the convergence

rates and asymptotic distributions have to be modi�ed to adjust for the use of another unrestricted

estimator.

Finally, it would also of interest to test whether the consumers in the data set indeed do satisfy
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these restrictions: First, from an economic point of view it is highly relevant to test the axioms

underlying standard choice theory. Second, from an econometric point of view, we wish to test

whether the imposed constraints are actually satis�ed in data. A natural way of testing the ratio-

nality hypothesis would be to compare the unrestricted and restricted demand function estimates,

and rejecting if they are "too di¤erent" from each other. Unfortunately, since we have only been

able to develop the asymptotic properties of the constrained estimator under the hypothesis that

none of the inequalities are binding, the unrestricted and restricted estimators are asymptotically

equivalent under the null. Thus, any reasonable test comparing the two estimates would have a

degenerate distribution under the null. Instead, we could take the same approach as in Blundell et

al (2008) and develop a minimum-distance statistic based on the unrestricted estimator alone. The

hypothesis involves inequality constraints, and so the testing of it falls within the non-standard

setting analyzed in Gourieroux et al (1982), Self and Liang (1987) and Wolak (1989,1991). We

leave the extension of these results to nonparametric quantile estimation for future research.
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A Proofs of Theorems 1-3

Proof of Theorem 1. We write the �rst demand equation as a quantile regression,

q1 (t) = d1 (x; t; �) + e (t; �) ; (21)

where e (t; �) is de�ned as the generalized residual, e (t; �) := d1 (x; t; ") � d1 (x; t; �). This formu-
lation of the model for corresponds to the quantile regression considered in Chen (2007, Section

3.2.2). We then verify the conditions stated there. First, we note that the distribution of e (�) jx is
described by the density f (ejx; t; �) given in eq. (9). We claim that

0 < inf
x2X

f (0jx; t; �) � sup
x2X

f (0jx; t; �) <1; (22)

sup
x2X

jf (ejx; t; �)� f (0jx; t; �)j ! 0; jej ! 0: (23)

From the de�nition of expression it is easily seen that eq. (22) holds since d1 (x; t; ") and its

derivative w.r.t. " are continuous in x and X is compact. eq. (23) clearly holds pointwise

due to the continuity of " 7! d1 (x; t; "). This can be extended to uniform convergence since

supx2X ;e2[0;1] f (ejx; t; �) <1.
Combining the above results with the arguments given in the Proof of Chen (2007, Proposition

3.4), we now conclude that Chen (2007, Theorem 3.2) applies such that

jjd̂ (�; t; �)� d (�; t; �) jj2 = OP (max f�n; k�nd1 (�; t; �)� d1 (�; t; �)k2g)

where

�n = arg inf
�2(0;1)

�
1

p
n�2

Z �

b�2

q
H[] (w;Fn; k�k)dw � const.

�
;

and �nd1 is an element in Dn;1. Here, H[] (w;Fn (�) ; k�k2) = log
�
N[] (w;Fn (�) ; k�k2)

�
denotes the

log of the so-called L2-covering numbers with bracketing of the function class Fn (�), see Van der
Vaart and Wellner (1996) and van de Geer (2000) for the precise de�nitions. To complete the proof,

we appeal to Chen and Shen (1998, p. 311) to obtain that in the case of splines �n = O(
p
kn=n)

and k�nd1;0 (�; t; �)� d1 (�; t; �)k2 = O (k�mn ).
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The convergence rate result in the sup-norm is a direct consequence of Lemma 2.1 and Remark

2.1 in Belloni et al (2010).

Proof of Theorem 2. First note that since data is independent over the time, it is su¢ cient

to derive the marginal distributions of d̂1 (x (t) ; t; �), t = 1; :::; T . This will follow from Chen et al

(2010, Corollary 6.1) if their Conditions 6.1-6.2 hold under our assumptions. Their Condition 6.1

is shown to hold in the Proof of Theorem 1. Their Condition 6.2(i) holds since

jf (e1jx; t; �)� f (e2jx; t; �)j � C
����@d�11 (x; t; e1 + d1 (x; �))

@e
� @d

�1
1 (x; t; e2 + d1 (x; �))

@e

���� � C je1 � e2j ;
where we have used that d1 is continuously di¤erentiable, while Condition 6.2(iii) holds by as-

sumption. To verify their Conditions 6.2(ii) and (iv), �rst note that, since we are using splines,

�0 (kn) := supx2X


Bkn (x)

 � cpkn. Thus, their Condition 6.2(iv) becomes �20 (kn) k3n=n ' k4n=n =

O (1) and �0 (kn) k
�3m
n n = k

�3m+1=2
n n = O (1). Finally, the condition (ii) of their Corollary 6.1

becomes nk�2m�1n = O (1)

Proof of Theorem 3. Let rn = kn=
p
n + k�mn denote the uniform rate of the unrestricted

estimator, let ~x� (t) be a given income expansion path generated from d, and b~x� (t) be the one
generated from the unconstrained estimator. We �rst note that the expansion path based on the

unconstrained demand function satis�es

b~x� (T � 1)� ~x� (T � 1) = p (T � 1)0 hd̂ (x� (T ) ; T; �)� d (x� (T ) ; T; �)i = OP (rn) :
By recursion, we easily extend this to maxt=1;:::;T

���b~x� (t)� ~x� (t)��� = OP (rn). It therefore follows

that nb~x� (t)� p (t)0 d̂�b~x� (s) ; s; ��o� �~x� (t)� p (t)0 d (~x� (s) ; s; �)	
=

nb~x� (t)� ~x� (t)o+ p (t)0 nd̂�b~x� (s) ; s; ��� d�b~x� (s) ; s; ��o
+p (t)0

n
d
�b~x� (s) ; s; ��� d (~x� (s) ; s; �)o

= OP (rn) ;

Thus, since ~x� (t) � p (t)0 d (~x� (s) ; s; �), we have �b~x� (t) � p (t)0 d̂
�b~x� (s) ; s; �� with probability

approaching one (w.p.a.1) as rn ! 0. This proves that d̂ 2 DTC;n (�) w.p.a.1 such that d̂�C = d̂

w.p.a.1 as rn ! 0. Since the restricted and unrestricted estimators are asymptotically equivalent,

they must share convergence rates and asymptotic distributions.

B Proof of Theorem 4

We here prove a more general version of Theorem 4 since we believe this has independent interest.

In particular, the general result takes as input any set of demand function estimators and derive the

asymptotic properties of the corresponding bounds. The result is stated in such a fashion that it
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allows for both fully parametric, semi- and nonparametric �rst-step estimators and for any number

of goods. It should be emphasised though that the e-bounds in a general economy with more than

two goods are not necessarily sharp since they do not utilize all constraints implied by rationality.

We consider a consumer with income x0 who faces prices p0 = (p0;1; :::; p0;L+1)
0 for the L + 1

goods in the economy. The consumer�s budget set is then given as:

Bp0;x0 =
n
q 2 RL+1+ jp00q = x0

o
;

which is compact and convex. Suppose that we have observed T prices, p (1) ; :::;p (T ), p (t) =

(p1 (t) ; :::; pL+1 (t))
0, and let d(x (t) ; t) = (d1(x (t) ; t); :::;dL+1(x (t) ; t))

0, t = 1; :::; T , denote the

consumer�s corresponding demand functions where we suppress dependence on " since this is kept

�xed. Since the demand function has to satisfy p (t)0 d(x; t) = x, the demand for the (L+ 1)th

good is simply given as

dL+1(x; t) =
x� p1:L (t)0 d1:L(x; t)

pL (t)
: (24)

The closure of the consumer�s so-called demand support set can be represented as follows:

Sp0;x0 =
�
q 2 Bp0;x0 jp (t)

0 q � �x (t) ; t = 1; :::; T
	
;

where f�x (t) : t = 1; :::; Tg is the intersection income path solving

p00d(�x (t) ; t; �) = x0; t = 1; :::; T:

For later use, note that, using the identity in eq. (24), the left hand side of the above equation can

be rewritten as

p00d(�x (t) ; t; �) = p00;1:Ld1:L(�x (t) ; t) + p0;L+1
�x (t)� p1:L (t)0 d1:L(�x (t) ; t)

pL (t)

=

�
p0;1:L �

p0;L+1
pL (t)

p1:L (t)

�0
d1:L(�x (t) ; t) +

p0;L+1
pL (t)

�x (t)

Also note that we can rewrite the support set as

Sp0;x0 = fq 2 Bp0;x0 j�x�Pq � 0g ;

where P is the matrix containing the observed prices and �x is the vector of intersection income

levels,

P = [p (1) ; � � � ;p (T )]0 2 RT�(L+1)+ ; �x = (�x (1) ; :::; �x (T ))0 2 RT+:

Suppose that we have available estimators of these, d̂(x (t) ; t). Again, the (L+ 1)th component

of the estimator is restricted to satisfy eq. (24). We then in the following develop a support set

estimator and analyze its theoretical properties. In order to provide a formal analysis, we impose

the following regularity conditions:

C.1 x (t) 7! d (x (t) ; t) is monotonically increasing and continuously di¤erentiable.
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C.2 The estimators d̂1:L(x; 1); :::; d̂1:L(x; T ) are mutually independent over time, and there exists
sequences of nonsingular matrices 
n (x; t) 2 RL�L such that

sup
x2X





1=2n (x; t) (d̂1:L(x; t)� d1:L(x; t))



 = OP (1=prn)

for some sequence rn.

C.3 At the intersection income levels,
p
rn


1=2
n (�x (t) ; t) (d̂1:L(�x (t) ; t)� d1:L(�x (t) ; t))!d N (0; V (�x (t) ; t)) ;

for some positive de�nite matrix V (x (t) ; t) 2 RL�L.

C.4 The estimator is di¤erentiable and satis�es supx2X



@d̂1:L(x; t)= (@x)� @d1:L(x; t)= (@x)


 =

oP (1).

The monotonicity requirement in Condition (C.1) ensures that the intersection income path

f�x (t)g is uniquely de�ned and is a standard requirement in consumer demand theory. The di¤er-
entiability condition in conjunction with (C.4) allow us to use standard delta method arguments

to derive the asymptotic distribution of the intersection income levels.

Condition (C.2) introduces two sequences, a matrix 
n (x; t) and a scalar rn. The condition

states that once the demand estimator has been normalized by 
1=2n (x; t) it converges with rate
p
rn.

(C.3) is a further strengthening and states that the estimator when normalized by
p
rn


1=2
n (x; t)

converges towards a normal distribution. We have formulated (C.2)-(C.3) to cover as many potential

estimators as possible. For parametric estimators, (C.2)-(C.3) will in general hold with rn = n and


n (x; t) = IL. With nonparametric estimators, one may potentially choose 
n (x; t) and rn in

(C.2) and (C.3) di¤erently: Most nonparametric estimators depend on a smoothing parameter

(such as a bandwidth or number of basis functions) that can be chosen di¤erently depending on

whether a rate result is sought (as in (C.2)) or asymptotic distributional results (as in (C.3)). In

particular, for the sieve quantile estimator, to obtain rate results we will choose 
n (x; t) = I and

rn = O(kn=
p
n)+O (k�mn ) with no restrictions on the sequence kn; to obtain distributional results,

we will choose 
n (x; t) = ��1n (x; t) as the inverse of the sequence of variance matrices given in

Theorem 2 and rn = n in which case (C.3) holds under the restrictions on kn imposed in Theorem

2

The following lemma states the properties of the estimated income paths under (C.1)-(C.4):

Lemma 5 Assume that (C.1)-(C.2) hold. Then

jx̂ (t)� �x (t)j = OP
�
1=
p
krn
n (�x (t) ; t)k

�
:

If in addition (C.3)-(C.4) hold then,p
rnwn (t) (x̂ (t)� �x (t))!d N (0; 1) ;

where

wn (t) :=







�
p00
@d(�x (t) ; t)

@x

��1 �
p0;1:L �

p0;L+1
pL (t)

p1:L (t)

�0

�1=2n (�x (t) ; t)V 1=2 (�x (t) ; t)







�2

> 0:
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Proof. We treat the estimation of �x (t) as a GMM estimation problem: De�ne

Ĝ (x; t) = p00d̂(x; t)� x0 =
�
p0;1:L �

p0;L+1
pL (t)

p1:L (t)

�0
d̂1:L(x; t) +

p0;L+1
pL (t)

x� x0

and

G (x; t) = p00d(x; t)� x0 =
�
p0;1:L �

p0;L+1
pL (t)

p1:L (t)

�0
d1:L(x; t) +

p0;L+1
pL (t)

x� x0:

We then have that the estimated and true intersection incomes satisfy x̂ (t) = argminx2X Ĝ2 (x; t)

and �x (t) = argminx2X G
2 (x; t) respectively. Given the requirement in (C.1) that the demand

function is monotonically increasing, �x (t) is unique. Furthermore, since the demand function is

continuous, so is G (x; t). Finally, we note that

sup
x2X

���Ĝ (x; t)�G (x; t)���
= sup

x2X

�����p0;1:L � p0;L+1pL (t)
p1:L (t)

�0 h
d̂1:L(x; t)� d1:L(x; t)

i����
�





p0;1:L � p0;L+1pL (t)
p1:L (t)





 sup
x2X




d̂1:L(x; t)� d1:L(x; t)



= oP (1) ;

where the last equality follows from (C.2). It now follows from standard consistency results for

extremum estimators (see e.g. Newey and McFadden, 1994, Theorem 2.1) that x̂ (t) !P �x (t).

To obtain the rate result, we utilize that d1:L(x; t) is continuously di¤erentiable, c.f. (C.1), which

implies that for any x in a su¢ ently small neighbourhood of �x (t),

G (x; t)�G (�x (t) ; t) = @G (~x (t) ; t)

@x
[x� �x (t)]

where ~x (t) 2 [x; �x (t)] satis�es p00@d(~x (t) ; t)= (@x) 6= 0. Thus, there exists � > 0 such that

jG (x; t)j = jG (x; t)�G (�x (t) ; t)j � � jx� �x (t)j :

Given consistency, we therefore have

jx̂ (t)� �x (t)j � � jG (x̂ (t) ; t)j (w.p.a. 1)
� �

����G (x̂ (t) ; t)� Ĝ (x̂ (t) ; t)���+ ���Ĝ (x̂ (t) ; t)����
� �

����G (x̂ (t) ; t)� Ĝ (x̂ (t) ; t)���+ ���Ĝ (x (t) ; t)����
= �

����G (x̂ (t) ; t)� Ĝ (x̂ (t) ; t)���+ ���Ĝ (x (t) ; t)�G (x (t) ; t)����
= OP

�
1=
p
krn
n (�x (t) ; t)k

�
:

Next, by a �rst-order Taylor expansion,

0 = Ĝ (x̂ (t) ; t) = Ĝ (�x (t) ; t) +
@Ĝ (~x (t) ; t)

@x
(x̂ (t)� �x (t)) ;
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where ~x (t) 2 [x̂ (t) ; �x (t)]; in particular, ~x (t)!P �x (t). This together with (C.4) implies

@Ĝ (~x (t) ; t)

@x
!P @G (�x (t) ; t)

@x
= p00

@d(�x (t) ; t)

@x
> 0: (25)

Moreover, with �n (t) := d̂1:L(�x (t) ; t)� d1:L(�x (t) ; t),�
p00
@d(�x (t) ; t)

@x

��1
Ĝ (�x (t) ; t)

=

�
p00
@d(�x (t) ; t)

@x

��1 �
p0;1:L �

p0;L+1
pL (t)

p1:L (t)

�0
�n (t)

=

�
p00
@d(�x (t) ; t)

@x

��1 �
p0;1:L �

p0;L+1
pL (t)

p1:L (t)

�0

�1=2n (�x (t) ; t)V 1=2

n
V �1=2
1=2n (�x (t) ; t)�n (t)

o
= : an (t)

0
n
V �1=2
1=2n (�x (t) ; t)�n (t)

o
;

where V �1=2
p
rn


1=2
n (�x (t) ; t)�n (t) !d N (0; IL) by (C.3). Next, observe that wn (t) de�ned in

the lemma satis�es wn (t) = kan (t)k�2. Thus,p
rnwn (t) (x̂ (t)� �x (t)) = �

an (t)
0 (1 + oP (1))

kan (t)k

n
V �1=2

p
rn


1=2
n (�x (t) ; t)�n (t)

o
!d N (0; 1) :

In the case where the demand function estimators have a common rate of convergence
p
rn,



1=2
n (x; t) can be chosen as the identity, and the lemma simpli�es to

p
rn (x̂ (t)� �x (t))!d N

�
0; w2 (t)

�
,

where

w2 (t) :=

�
p00
@d(�x (t) ; t)

@x

��2 �
p0;1:L �

p0;L+1
pL (t)

p1:L (t)

�0
V

�
p0;1:L �

p0;L+1
pL (t)

p1:L (t)

�
:

To de�ne the support estimator, we introduce a diagonal weighting matrix given by

Wn = diag fwn (1) ; :::; wn (T )g ;

and assume that we have a consistent estimator of this,

Ŵn = diag fŵn (1) ; :::; ŵn (T )g :

Given Ŵn, we introduce the following criterion function which is simply an (L+ 1)-dimensional

generalization of the one introduced in the main text, Qn (q) =



Ŵ 1=2

n [x̂�Pq]



2
+
, with its limit

given by �Qn (q) =



W 1=2

n [�x�Pq]



2
+
. Note that in the case where the intersection incomes converge

with same rate (such that 
n (x; t) can be chosen as the identity matrix) the normalizations Ŵ
1=2
n

and W 1=2
n are not required. We note that the true support set can be expressed as

Sp0;x0 =
�
q 2 Bp0;x0

�� �Qn (q) = 0	 :
This motivates us to de�ne our support set estimator as

Ŝp0;x0 (cn) = fq 2 Bp0;x0 jrnQn (q) � cn g ;
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for some contour level cn that we will choose in the following.

In order to analyze the set estimator we impose the following condition on the observed prices

which is a multi-good version of (A.5) in the main text:

C.5 The matrix P = [p (1) ; � � � ;p (T )]0 2 RT�(L+1)+ has rank L+ 1.

The following theorem gives rate of convergence of the support set estimator and con�dence

sets for the unknown support set. Theorem 4 follows as a special case of this general result.

Theorem 6 Assume that (C.1)-(C.2) and (C.5) hold, and that ŵn (t) = wn (t) + oP (1). Then for
any sequence cn / log (n),

dH(Ŝp0;x0 (cn) ;Sp0;x0) = OP (
p
log (n) = (rnw�n));

where w�n = mint=1;:::;T wn (t).

If furthermore (C.3)-(C.4) hold, then

P (Sp0;x0 � Ŝp0;x0 (ĉn))! 1� �;

where ĉn = q̂1�� + OP (log (n)) with q̂1�� being an estimator of (1� �)th quantile of Cp0;x0 given
by

Cp0;x0 := sup
q2Sp0;x0

kZ + � (q)k2+ :

Here, Z � N (0; IT ) while � (q) = (�1 (q) ; :::; �T (q))0 is given by

�t (q) =

(
�1; p (t)0 q > �x (t)

0; p (t)0 q = �x (t)
; t = 1; :::; T:

Proof. We follow the same proof strategy as in CHT and �rst verify that slightly modi�ed

versions of their Conditions C.1-C.2 are satis�ed with our de�nitions of �Qn (q) and Qn (q). For

convenience, de�ne

mn (q) := x̂�Pq; �m (q) := �x�Pq:

We then have uniformly in q 2Bp0;x0 ,

Qn (q) =



Ŵ 1=2

n fmn (q)� �mn (q)g+ Ŵ 1=2
n �m (q)




2
+

=



Ŵ 1=2

n fx̂� �xg+ Ŵ 1=2
n �m (q)




2
+
;

=



Ŵ 1=2

n �m (q)



2
+
+OP (1=rn)

= �Qn (q) +OP (1=rn) ;
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since Ŵ 1=2
n fx̂� �xg = OP

�
1=
p
rn
�
by Lemma 5. Moreover,

rnQn (q) =



prnŴ 1=2

n fmn (q)� �mn (q)g+
p
rnŴ

1=2
n �m (q)




2
+

=



prnŴ 1=2

n fx̂� �xg+prnŴ 1=2
n �m (q)




2
+

=




prnŴ 1=2
n fx̂� �xg+prnŴ 1=2

n �m (q)



2
+


prnŴ 1=2

n �m (q)



2
+




prnŴ 1=2
n �m (q)




2
+
;

where



prnŴ 1=2

n �m (q)



2
+
� rnw�nC2�2 (q;Sp0;x0) by Lemma 7 below. By the same arguments as in

CHT, Proof of Theorem 4.2(Step 1), it now follows that rnQn (q) � rnw�nC2�2 (q;Sp0;x0) =2 w.p.a
1. This shows that Condition C.1-C.2 of CHT hold in our case as well, except that the limiting

objective function �Qn (q) and the constant � = �n = w�nC
2 in their Condition C.2 both depend on

n. We now proceed as in CHT, Proof of Theorem 3.1 to obtain the claimed rate result.

To show the validity of the proposed con�dence set, we verify CHT�s Condition C.4: We �rst

note that for any given q,

Ŵ 1=2
n mn (q) =

p
rnŴ

1=2
n fx̂� �xg+ Ŵ 1=2

n �m (q) = Zn +W
1=2
n �m (q) + oP (1) ;

where where Zn !d Z and Z is de�ned in the theorem. Next, for any q1;q2,


Ŵ 1=2
n mn (q1)� Ŵ 1=2

n m (q2)



 = 


Ŵ 1=2

n P fq1 � q2g



 � cn kq1 � q2k ;

where cn !P c < 1. This proves that the stochastic process q 7!
n
Ŵ
1=2
n mn (q)�W 1=2

n �m (q)
o

weakly converges on the compact set Bp0;x0 towards Z, c.f. Van der Vaart and Wellner (2000,
Example 1.5.10). In particular, Ŵ 1=2

n mn (q) = Zn +W
1=2
n �m (q) + oP (1) uniformly in q, which in

turn implies that, by Slutsky�s theorem,

rnQn (q) =



prnŴ 1=2

n fx̂� �xg+prnŴ 1=2
n �m (q)




2
+
=



Zn +prnW 1=2

n �m (q)



2
+
+ oP (1) ;

uniformly in q. The random variable Cn := supq2Sp0;x0 rnQn (q) therefore satis�es

Cn = sup
q2Sp0;x0




Zn +prnW 1=2
n �m (q)




2
+
+ oP (1) ;

where
p
rnwn (t) �mt (q) = 0 for all n if �mt (q) = 0 and

p
rnwn (t) �mt (q) ! �1 if �mt (q) < 0,

t = 1; :::; T . Thus,

lim
n!1

sup
q2Sp0;x0




Zn +prnŴ 1=2
n �m (q)




2
+

d
= sup
q2Sp0;x0

kZ + � (q)k2+ ;

with � (q) de�ned in the theorem. This proves the second claim.

Lemma 7 Under (C.5),



W 1=2

n �m (q)



2
+
� w�nC2� (q;Sp0;x0) for some constant C <1 and w�n =

mint=1;:::;T wn (t).
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Proof. The inequality is trivial for q 2 Sp0;x0 . Consider any q 2 Bp0;x0nSp0;x0 : Let q� =
argminq02Sp0;x0 jjq � q

0jj be the unique point in Sp0;x0 which has minimum distance to q. Let

�� = q� � q be the di¤erence such that k��k = � (q;Sp0;x0). We can decompose the rows of (P; �x)
into binding and non-binding constraints respectively of q�. Let

�
P(1); �x(1)

�
and

�
P(2); �x(2)

�
, with

P(1) =
�
p(1) (1) ; :::;p(1) (T1)

�0 2 RT1�(L+1) and �x(1) = (x(1) (1) ; :::; x(1) (T1))0 2 RT1 for some T1 �
L + 1, denote the set of rows which contain the binding and non-binding constraints respectively.

That is, �m(1) (q�) := �x(1) �P(1)q� = 0 while �m(2) (q�) := �x(2) �P(2)q� < 0. The (T1 � T1)-matrix
P(1)P(1)0 must necessarily have rank T1 with its eigenvalues bounded above away from zero. Thus,

for some c1 > 0,

c1 k��k �



P(1)��


 � T1 max

t=1;:::;T1
jp(1) (t)0 ��j:

Moreover, p(1) (t)0 �� � 0 for all t 2 f1; :::; T1g. As a consequence, with C = c1=T , there exists at
least one t0 2 f1; :::; T1g such that C k��k � p(1) (t0)0 ��. We then obtain




W 1=2
n �m (q)




2
+

=
TX
t=1

wn (t)
���x (t)� p (t)0 q��2

+
� wn (t0)

����x(1) (t0)� p(1) (t0)0 q���2
+

= wn (t0)
���p(1) (t0)0 �����2

+
� w�nC2 k��k

2 = w�nC
2�2 (q;Sp0;x0) .
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