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Abstract

This PhD thesis considers the problem of locating wireless nodes in indoors GPS-

denied environments using probabilistic graphical models. Time-of-arrival (ToA)

distance observations are assumed with Non-Line-of-Sight (NLoS) communica-

tions and a lack of adequate anchors. As a solution cooperative localization is

developed using Probabilistic Graphical Models (PGMs). The nodes infer their

position in an iterative message-passing algorithm, in a distributed manner, given

a set of noisy distance observations and a few anchors. The focus of this thesis is

to develop algorithms that decrease computational complexity, while maintaining

or improving accuracy. Firstly, we develop the Hybrid Ellipsoid Variational Algo-

rithm (HEVA) , which extends probabilistic inference in 3D localization, combin-

ing NLoS mitigation for ToA. Simulation results illustrate that HEVA significantly

outperforms traditional Non-parametric Belief Propagation (NBP) methods in lo-

calization while requires only 50% of their complexity. In addition, we present a

novel parametric for Belief Propagation (BP) algorithm. The proposed Grid Be-

lief Propagation (Grid-BP) approach allows extremely fast calculations and works

nicely with existing grid-based coordinate systems, e.g. NATO military grid refer-

ence system (MGRS). This allows localization using a Global Coordinate System

(GCS). Simulation results demonstrate that Grid-BP achieves similar accuracy at

much reduced complexity when compared to common techniques. We also present

an algorithm that combines Inertial Navigation System (INS) and Pedestrian Dead

Reckoning (PDR), namely Probabilistic Hybrid INS/PDR Mobility Tracking Al-

gorithm (PHIMTA), which provides high accuracy tracking for mobile nodes. We

combine it with Grid-BP and stop-and-go (SnG) algorithms, showcasing improved
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accuracy, at very low computational cost. Finally, we present Stochastic Residual

Belief Propagation (SR-BP). SR-BP extends the use of Residual Belief Propaga-

tion (R-BP) to distributed networks, improving the accuracy, convergence rate, and

communication cost. We prove SR-BP convergence to a unique fixed point un-

der conditions similar to those ensuring convergence of asynchronous BP. Finally,

numerical results showcase the improvements in convergence speed, message over-

head and detection accuracy of SR-BP.
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Chapter 1

Introduction

The problem of a wireless node estimating its coordinates using either informa-

tion from global reference points or from sensors attached to it as well as nearby

nodes, is referred to as the position location (PL) problem, cf. [1]. As an exam-

ple the nodes in Fig. 1.1, named Agents are trying to localize using information

from nodes with known location, namely Anchors, as well as sharing information

between themselves. The lines connecting the nodes show possible communication

links.

Figure 1.1: Example of agents trying to localize inside a building using cooperative local-
ization.

The introductory chapter will present a quick overview of the PL problem and

its variants, as well as the fundamentals ideas and challenges present. Then it will

conclude with the contributions presented and the outline of the rest of the thesis.
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1.1 Wireless Positioning Systems
To begin with, the definitions self-localisation and cooperative localisation will be

given. Then basic signal parameter estimation techniques required in the PL prob-

lem, such as ToA, Time Difference of Arrival (TDoA), Angle of Arrival (AoA) and

Received Signal Strength (RSS), will be presented. The effect of noise and NLoS

on the distance measurements will be also discussed. Finally typical metrics for

comparing position location algorithms will be given.

1.1.1 Overview

Positioning systems can be divided into two broad categories. Global and local

positioning systems. Global positioning systems will provide accurate position lo-

cation anywhere on the planet, by using a global reference points, the most common

system being GPS satellites [2]. On the other hand local positioning systems will

use local reference points, and provide position location estimates relative to these

local ones [3]. Furthermore local positioning systems can be either self-localised,

or use cooperative localisation. Self-localised nodes will use only information ac-

quired by their own sensors, like acceleration and orientation, e.g. INS. In practice

though these systems suffer from error accumulation over time, and therefore work

better in conjunction with some remote positioning systems in order to provide con-

sistently accurate results. In this thesis we will focus in local positioning systems,

and therefore the discussion will be centred on technologies and techniques which

affect GPS-denied positioning systems.

1.1.2 Self-Localisation

Self-localisation becomes highly important in scenarios, where there is no guarantee

that nodes will be able to communicate to reference points, e.g. GPS satellites.

Typical examples of such GPS denied environments can be dense urban and indoors

areas, as well as forests and underground locations.

Obviously the issue is more profound for mobile nodes, as they move around

and can stay with an out-of-date position estimate for quite some time before they

can communicate with global reference points. In this case INS are used. INS uses
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accelerometers and gyroscopes to track the position, velocity and orientation of the

node relative to a known starting-point.

INS has been primarily used by the military to track submarines, warships, mis-

siles, rescue teams etc. Yet, recent development of microelectromechanical systems

(MEMS), allows for relatively cheap integrated circuits that contain a full suite of

sensors typically including a gyroscope, an accelerometer and even a magnetome-

ter. This has enabled the advent of a huge number of civilian applications, as MEMS

can be readily found in most modern smart-phones.

The sensors can provide all the information required for determining the up-

dated positions of the nodes, by integrating the angular velocity to obtain the orien-

tation and doubly integrating the acceleration to obtain the position displacement.

Unfortunately sensors errors will be propagated to the position and orientation due

to the integration and accumulate over time. This is called integration drift and

greatly increases the position error. Consequently, the INS system needs to be com-

bined with a position system that uses external reference points in order to amelio-

rate the integration drift.

Finally, in an effort to avoid or minimize integration drift, many techniques

have been developed that extract more information from the the sensor data avoiding

the integration altogether. For example, in the case of tracking pedestrians, PDR

algorithms, cf. [4, 5, 6] have been designed that take into account the periodic

patterns and statistics of the human stride. PDR algorithms have been extensively

researched as well as hybrid algorithms [7] that combine INS and PDR. A review

of PDR algorithms can be found in [8].

1.1.3 Cooperative localisation

Another important category in the case of local positioning systems is the use of

cooperation between the agents. In this case the agents achieve localisation by

sharing information and this allows even agents that do not have sufficient reference

points close by to self-localise. More information will be provided in Chapter 3, but

also good overviews are provided in [3] and [9].

After all the information has been propagated through the network it can be
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Figure 1.2: Hierarchical tree of position location algorithms. The algorithms that will be
presented in this thesis are in grey boxes

combined centrally, either in a dedicated control centre, or an arbitrarily selected

node, e.g. [10]. Alternatively the problem can be tackled in a distributed manner,

which is much more preferable, as distributed solutions provide a more flexible and

robust framework.

In the distributed case a number of algorithms have been developed to tackle

the problem. Broadly they can be separated in deterministic and probabilistic algo-

rithms. In deterministic algorithms, the nodes treat the problem as an optimization

trying to find the best point estimate. An example of an optimization method is

Semidefinite Programming (SDP), as in [11] and [12]. A technique which provides

the best accuracy relative to optimization position location algorithm was proposed

in [13] using multidimensional scaling (MDS). In [14] the authors proposed an algo-

rithm, called Iterative Parallel Projection Method (IPPM), that treats each message

from a neighbouring node as a distinct optimization problem, and then tries to find

the solution that minimizes the averages of all the neighbouring optimization prob-

lems. The disadvantage of deterministic techniques is that they can very easily fall

in local optima from which they can not escape, especially in ambiguous scenarios
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with high noise.

On the other hand probabilistic methods assign probability distributions for the

whole space and in an effort to avoid local optima. There is a large number of differ-

ent probabilistic techniques that have been applied to the localisation problem. One

family uses particles to approximate the localisation distribution. A representative

particle based method is the NBP in [15]. The Sum Product Algorithm For Wireless

Networks (SPAWN) algorithm proposed in [9] generalized the aforementioned into

a general framework for cooperating localisation using message passing by intro-

ducing factor graphs. Another proposed method was the use of Monte Carlo chains

in [16], or Variational Message Passing (VMP) in [17]. VMP tries to approximate

the real localisation distributions with a simpler one which is tractable and easier

to handle. Unfortunately this requires the use of an optimization algorithm in order

to find the optimal parameters of the parametric messages, which can lead to bad

approximations and increased complexity. Probabilistic techniques manage better

the issue of local optima as they keep alive the possibility of other solutions, which

tends to help them escape. Unfortunately this comes at much increased computa-

tional cost and many more numerical issues that need to be handled, e.g. numerical

overflows, singularities [18]. A hierarchical tree with the main families of algo-

rithms and how they fit with each other is shown in Fig. 1.2. The figure is by no

means exhaustive and is simply representative of the families of algorithms in the

literature on position location and offers some examples relevant to this thesis as

well as the algorithms presented in the following chapters.

Despite the intrinsic differences of most algorithms, a simple general formu-

lation that can work as a foundation for describing all different methods will be

discussed below.

1.1.4 Basic Distance Measurements used in Position Location

When localizing using cooperative localisation, the nodes will localize relative to

some nearby reference points, namely anchors. Besides the coordinates of the an-

chors, there is a number of different metrics that can be observed and used to achieve

localisation. Each technique has its own merits and disadvantages. In essence, as
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discussed in [1], all methods described here can be formulated mathematically in

the same manner

rrr = fff (θθθ)︸ ︷︷ ︸
ddd

+ηηη , (1.1)

where rrr is the distance measurements vector, θθθ is the agent coordinates that we

are looking for, fff is a non-linear function that associates θθθ with ddd, i.e. the distance

vector between the agent and its neighbouring anchors and ηηη is a noise vector that

distorts the measurements taken. Depending on the measurement technique used

function fff will be different but the aim is always the same, i.e. to use an optimiza-

tion algorithm to minimize the error ε = rrr−−− fff (((θ̂θθ))). Accordingly, first the derivation

of eq. (1.1) for various measurements techniques will be derived in the rest of this

Subsection and followed by a discussion on the algorithms to minimize the error

cost function in Subsection 1.1.5. The most common ways to associate θθθ and ddd

from sensor measurements are ToA, TDoA, AoA and RSS, which will presented in

the following sections, and a common formulation for all of them will be presented.

In all cases the final formulation derived is very similar, cf. eqs. (1.7), (1.12), (1.19)

and (1.24), and as a result even though this thesis will mainly focus on ToA mea-

surements it is straightforward to extend it to different distance measurements.

1.1.4.1 Time of Arrival Measurements

In ToA an agent measures the time a message requires to travel between an anchor

and itself. This provides a distance estimate, and consequently it has a probable

location situated on a circle (2D case) or a sphere (3D) with centre the anchor’s co-

ordinates, and radius the distance measured. By receiving more measurements from

other anchors, the intersection of the shapes can be calculated, namely triangulated

or more generally multilaterated in order to obtain the location estimate.

Mathematically, let θθθ = [x,y,z]T be the unknown agent position and θθθ i =

[xi,yi,zi]
T be the respective known coordinates for the i-th anchor, where i =

1,2, . . .M. Let M ≥ 4 for the 3D case, as at least four reference points are re-

quired to remove multilateration ambiguity in three dimensions. Then the distance
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between the agent and anchor i is given by

di = ||θθθ −θθθ i||2 =
√

(x− xi)2 +(y− yi)2 +(z− zi)2, i = 1,2, . . . ,M. (1.2)

The relationship between distance and time measurement is pretty straightforward,

assuming the anchor i emitted the signal at t = 0, and it arrived to the agent at t = ti,

the relationship is simply

di = ti× c, (1.3)

where c is the speed of light. Let ηi be random noise then distance measured at the

agent affected by noise will be

ri = di +ηi, (1.4)

or combining all anchors this can be expressed in vector form as:

rrr = ddd︸︷︷︸
fff (θθθ)

+ηηη . (1.5)

Assuming zero-mean Gaussian noise ηi, with uncorrelated variance between dif-

ferent anchor measurements σ2
i , the pdf that the random variable Ri is equal to the

measured (observed) distance ri, can be written as

Pr(Ri = ri) =
1√

2πσ2
i

exp
(
− 1

2σ2
i
(ri−di)

2
)

(1.6)

and respectively the pdf for the vector case, including all anchor measurements will

be

Pr(RRR === rrr) =
1

(2π)M/2|CCC|1/2 exp(−1
2
(rrr−ddd)TCCC−1(rrr−ddd)) (1.7)

where CCC = diag(σ2
1 , . . . ,σ

2
i , . . . ,σ

2
M), since as we previously mentioned noise be-

tween different anchor measurements is considered uncorrelated. The aforemen-
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tioned, (1.7), provides a probabilistic cost function and as well shall see in Section

1.1.5.2, our aim is to get the optimal values that maximize (1.7). The main disad-

vantage of ToA is that it requires all nodes, both agents and anchors to be perfectly

synchronised, as even a small synchronisation offset, can lead to a large localisation

error. Also there is an added complexity as signals are required to have a time-

stamp, and finally NLoS will add a positive bias, which can seriously distort the

localisation results, necessitating some form of NLoS mitigation technique. A way

to overcome the synchronisation issue, would be to use round-trip ToA, or two-way

ToA.

1.1.4.2 Time Difference of Arrival Measurements

Another technique based on time measurements is the TDoA. The aim behind

TDoA is to overcome the synchronisation issue of ToA. The agent uses one mea-

surement as reference and subtracts it from all the other measurements it receives.

This removes the need for the agent to be synchronised with the anchors, and creates

hyperbola spaces. Typically it is easier for the anchors to be synchronised, as they

have high quality clocks, e.g. atomic clocks, and can take advantage of a backbone

network for accurate synchronisation. By contrast agents typically have cheaper

clocks and in order for them to synchronise an added layer of complexity needs to

be inserted. As a result TDoA has been deployed in many applications.

Mathematically the problem can be considered again in the form of (1.1). Let

the reference measurement be for i = 1, without any loss of generality we have

ri = di,1 +ηi, for i = 2, . . .M, (1.8)

and

di,1 = di−d1, (1.9)
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respectively. In vector form we have as in the previous sections that

rrr = fff (θθθ)+ηηη (1.10)

where

fff (((θθθ))) = ddd1 =



√
(x− x2)2 +(y− y2)2 +(z− z2)2−

√
(x− x1)2 +(y− y1)2 +(z− z1)2

...√
(x− xi)2 +(y− yi)2 +(z− zi)2−

√
(x− x1)2 +(y− y1)2 +(z− z1)2

...√
(x− xM)2 +(y− yM)2 +(z− zM)2−

√
(x− x1)2 +(y− y1)2 +(z− z1)2


.

(1.11)

Making the same zero-mean Gaussian noise assumption as in the ToA case the

measurement pdf can be written similarly as

Pr(RRR === rrr) =
1

(2π)M/2|CCC|1/2 exp(−1
2
(rrr−ddd1)

TCCC−1(rrr−ddd1)). (1.12)

It is important to note, as all time differences are done with respect to the first

measurement, the noise and correspondingly CCC, will be correlated.

1.1.4.3 Received Signal Strength Measurements

An alternative to time measurements is the use of the RSS, in order to calculate

the distance between the anchor and the node. RSS measurements are quite simple

to obtain, and do not require synchronisation between nodes. Obtaining accurate

distance estimators is quite difficult though and highly reliant on the environment

of each localisation scenario. However NLoS is not as destructive for RSS, as for

e.g., time measurements, as it only leads to a shadowing effect in power, that can be

filtered out. If Pi
t is the power of the signal transmitted from the anchor i, then let

Pi
r , be the power of the signal when it gets received from the agent. The path loss
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attenuation can be modelled as follows [1]

Pi
r = KiPi

t d−a
i , (1.13)

where Ki is a factor containing all possible factors that affect power, e.g., height

and antenna gains, and a is the path loss constant. This can vary between 2 and 5,

where a = 2 is free space. Noise is believed to follow a lognormal distribution so

accordingly we have

ln(Pi
r) = ln(Ki + ln(Pi

t )−a ln(di)+ηi, i = 1,2, . . .M. (1.14)

Assuming zero-mean uncorrelated Gaussian noise, let

ri = ln(Pi
r)− ln(Ki)− ln(Pi

t ), (1.15)

then we have

ri =−a ln(di)+ηi, i = 1,2, . . . ,M (1.16)

or in vector form (1.1)

rrr = fff (((θθθ)))+ηηη , (1.17)

where

fff (((θθθ))) = ppp =−a



ln(
√

(x− x1)2 +(y− y1)2 +(z− z1)2)
...

ln(
√
(x− xi)2 +(y− yi)2 +(z− zi)2)

...

ln(
√
(x− xM)2 +(y− yM)2 +(z− zM)2)


. (1.18)
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Finally as in the previous cases the measurement pdf assuming zero-mean Gaussian

noise is

Pr(RRR === rrr) =
1

(2π)M/2 |CCC |1/2 exp(−1
2
(rrr−−− ppp)TCCC−1(rrr−−− ppp)). (1.19)

1.1.4.4 Angle of Arrival Measurements

Previously we considered measurements in order to obtain distance estimators be-

tween the anchors and the nodes. In the case of AoA, a measurement of the angle

between the anchor and the node is made. This essentially limits the possible lo-

cation of an agent to a line, and consequently multilateration can be done with

measurements from only two reference points. Also no synchronisation is required.

Unfortunately AoA requires an antenna array in order to obtain the angle and conse-

quently there is a cost in the size of the agent, the power requirements of the agent,

and possibly a computational cost for the array processing algorithms.

If φi is the angle between the anchor and the agent, then for the 2D case we

have

tanφi =
y− yi

x− xi
, i = 1,2, . . . ,M (1.20)

with M ≥ 2. Assuming measurement errors we have

ri = φi +ni = tan−1(
y− yi

x− xi
)+ηi, i = 1,2, . . . ,M (1.21)

and respectively in vector form

rrr === f (θ)︸︷︷︸
φ

+++ηηη , (1.22)
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where

fff (((θθθ))) = φφφ =



tan−1( y−y1
x−x1

)
...

tan−1( y−yi
x−xi

)
...

tan−1( y−yM
x−xM

)


. (1.23)

The noise between different anchor measurements can be assumed to be un-

correlated so that the pdf can be written as

Pr(RRR === rrr) =
1

(2π)M/2 |CCC |1/2 exp(−1
2
(rrr−−−φφφ)TCCC−1(rrr−−−φφφ)), (1.24)

where CCC is a diagonal matrix with the variances for each measurement.

1.1.5 Position Location Algorithms

After a node has received the coordinates and the corresponding measurements

from its neighbours it needs to find an optimal coordinates estimate θθθ
∗ for (1.1).

There are many reasons that make finding an optimal solution problematic. Firstly

the equations are non linear, resulting in non-convex multi-modal solution spaces,

where it is easy to converge to a local optimum. Also the solution spaces can be

quite big, making an exhaustive search computationally intractable. Other issues

are: high noise levels, NLoS, or even not enough neighbours, which might cre-

ate ambiguities, divergent or oscillating behaviours in the optimisation. All the

above make position location such an interesting and difficult problem, which has

stimulated a huge and varied number of proposed techniques and algorithms in the

literature. Two surveys with indoors position location algorithms can be found in

[19, 20].

Broadly speaking some methods use linear approximations of (1.1), while oth-

ers face straight on the non-linear optimisation problem. In the latter category, the

problem can be formulated either as an optimisation problem, or as a probabilistic

problem. Each path has its own advantages and disadvantages. Linear approx-
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imation optimisations always converge to a global solution, are computationally

cheap, and algorithmically simple, yet depending on the scenario can provide very

low accuracy. By contrast non linear optimisation methods, as well as probabilistic

modelling, are much more expensive computationally and require more complex

algorithms, without necessary guaranteeing a global optimum solution, yet tend to

provide higher accuracy results.

Basically, as is often the case, there is a compromise between complexity and

accuracy, making the discovery of a solution that both is fast, and provides high

accuracy results, as much an art, as it is science. As the focus of this thesis is on

PGMs, the linear approximations case will not be presented. The interested reader is

referred to [1] for an in-depth discussion and variety of references. In the following

subsections, ToA will be used as an example case, and a non-linear solution deriva-

tion will be presented leading to a probabilistic analysis of the Position Location

problem.

1.1.5.1 NonLinear Least Squares

Let ε = rrr−−− fff (((θ̂θθ))) be the measurement error, between the real and position mea-

surements. Then θθθ
∗ are the coordinates that will minimise the error ε . With that in

mind, a suitable cost function is

J(θ̂θθ) =
M

∑
i
(ri−

√
(x̂− x2

i )+(ŷ− y2
i )+(ẑ− z2

i ))
2 (1.25)

= (((rrr−−− fff (((θ̂θθ))))))T (((rrr−−− fff (((θ̂θθ)))))) (1.26)

and θθθ
∗ can be found as

θθθ
∗ = argmin

θ̂θθ

J(θ̂θθ). (1.27)

As was mentioned earlier, J(θ̂θθ), is a multi-modal non-convex function. Con-

sequently convergence to a global optimum is not guaranteed and either a global

search is required using techniques like genetic algorithms [21]. A computational

cheaper alternative is to use an iterative algorithm to do a local search near an initial
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estimate θ̂θθ
0
. This is highly dependent on the initial guess, but given a good starting

choice, any classic iterative procedure like Newton-Raphson, Gauss-Newton, etc.

can lead to the global optimum.

1.1.5.2 Maximum-Likelihood

In a probabilistic context the problem is reversed. Instead of trying to find the op-

timal coordinates that minimise the error, the coordinates that maximise the proba-

bility are sought after. By taking the log of (1.7), we get

ln(Pr(RRR === rrr)) = ln(
1

(2π)M/2|CCC|1/2 )−
1
2
(rrr−−−ddd)TCCC−1(rrr−−−ddd). (1.28)

The first term is independent of θ̂θθ and as a result plays no role in the optimisation,

so it can be ignored.

Instead of maximising a negative term, we can minimise it is positive dual. Let

the cost function J be

J(θ̂) = (((rrr−−− fff (((θ̂θθ))))))TCCC−1(((rrr−−− fff (((θ̂θθ)))))) (1.29)

and the optimal θ ∗ is found same as before

θθθ
∗ = argmin

θ̂θθ

J(θ̂θθ). (1.30)

The cost function of the ML case can be thought as a generalisation of the NLS

case. Basically CCC plays the role of weighting the measurements, where due to the

inverse, large noise measurements weigh less in the optimisation, while low noise

measurements have a higher weight and influence more the result.

1.1.6 Noise and NLoS in Position Location

A major issue in urban and indoors position-location is the high number of NLoS

signals. In both time-based and power-based measurements, NLoS paths will add

a bias to the noise, as the signal takes longer and attenuates more over the larger

distance it traverses, compared to the equivalent Line-of-Sight (LoS) path. As a
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result localisation accuracy can be seriously affected.

Using (1.1) we have

rrr === f (θ)︸︷︷︸
d

+++ηηη .

Let a specific agent be g and a specific anchor be λ . Then we have

rg,λ = dg,λ +ηg,λ , (1.31)

where the noise can be modelled as a zero mean Gaussian

ηg,λ ∼N (0,σ2
g,λ ) (1.32)

with noise variance

σ
2
g,λ = Kedβλ

g,λ , (1.33)

where βλ is the path loss exponent and Ke is a proportionality factor, capturing the

combined physical layer and receiver effect [22], as well as other effects. More

information on the model can be found in [14, 23, 24]. In the case of βλ = 2 the

model applies for both ToA and RSS measurements.

It is assumed that NLoS estimates add a positive bias, cf. [25], to the error of

the distance measurements. Hence, (1.31) becomes

rg,λ = dg,λ +ηg,λ +bg. (1.34)

The bias error will be bg > 0, and is assumed to be independent of ng,λ . Without

making any assumptions on the underlying bias generating distribution, bg can be

derived from a uniform distribution

bg ∼U (0,Bmax), (1.35)
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where Bmax is the largest propagation distance the signal can travel given the phys-

ical layer parameters like the transmission power and the propagation environ-

ment. Additionally it is assumed that Bmax is much larger than the variance, i.e.,

Bmax >> σg,λ .

Directly using NLoS measurements in multilateration can greatly increase the

localisation error. Despite that, there are times, where using NLoS measurements

will actually improve the position location. This creates two main problems on

NLoS that are highly active research topics. NLoS Identification and NLoS Mitiga-

tion

• NLoS Identification

The problem here is about distinguishing between LoS and NLoS signals.

Statistical NLoS identification schemes for cellular systems have been pro-

posed in [26, 27, 28]. Of special note is the use of Ultra WideBand (UWB).

UWB signals posses a higher temporal resolution and robustness than nar-

rowband and sideband signals, making them ideal for position location mea-

surements. Consequently UWB signal localisation has seen a large interest

from the research community. Firstly properties of ultra-wide-band signals

had been investigated and their suitability for localisation has been verified

both theoretically [29, 30, 31] and empirically [32, 33]. In [31] Donlan et

al. use data from the DARPA NETEX project to model the UWB indoor

channel. More recent measurement campaign is undertaken in [34]. NLoS

message identification for UWB systems has been considered in [35, 36, 37].

Additionally, the statistics of ToA, RSS and the temporal dispersion of RSS

have been analysed extensively in various scenarios and it has been shown

in [36] that by using the RMS delay spread, LoS and NLoS signals can be

identified with high accuracy.

• NLoS Mitigation

Given the ability to distinguish between LoS and NLoS signals the question

of how to handle the NLoS signals remains. A simple solution would be
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to discard them completely. However it has been shown [38] that by simply

discarding NLoS measurements it does not necessarily improve performance.

A high number of NLoS mitigation methods have been proposed, e.g., using

an SDP approach, cf. [39] or a quadratic programming approach, cf. [40],

at the cost of high complexity, cf. [41]. Another technique of using NLoS

measurements is to selectively use them as long as they help the convergence

of a solution,cf. [23]. NLoS mitigation for the deterministic case has been

tackled in [35, 42, 37, 43, 44]. A survey covering NLoS mitigation methods

can be found in [45]. Finally, [46] presents a variety of algorithms for both

centralized and distributed localisation, involving real-time estimation of the

NLoS noise pdf in order to better mitigate it in the localisation calculations.

1.1.7 Performance Analysis of Position Location Algorithms

The evaluation of a Position Location algorithms performance is not as straight-

forward as it initially seems. There are many aspects that need to be taken into

account besides localisation accuracy. For the localisation of a single node the most

important metric is the Mean Square Error (MSE) which is defined as

MSE(θ̂θθ) =

M
∑
i
(θ̂θθ i−θθθ i)

2

M
, (1.36)

where M is the size of θθθ . The MSE, provides a measurement of the variance of the

error. And respectively we can define the RMS error, which measures the standard

deviation of the error, i.e. the RMS error is defined as:

RMS(θ̂θθ) =
√

MSE(θ̂θθ). (1.37)

An important limit to compare the MSE is the Cramer-Rao lower bound

(CRLB). It provides a lower bound on the variance of an unbiased estimate and

can be readily computed for θ̂θθ , and in this case we can use it for a lower boundon
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MSE. It should be noted that it is possible for MSE(θ̂θθ) to be lower than CRLB,

given a biased estimator and specific scenarios. Mathematically, CRLB is defined

as

CRLB(θ̂θθ) = [III]−1 =

[
E

∂ 2 lnPr(RRR === rrr)
∂θθθ∂θθθ

T

]−1

, (1.38)

where III is the fisher information matrix. Assuming zero-mean Gaussian distributed

noise, III can be computed as

III(θθθ) =
[

∂ fff (θθθ)
∂θθθ

]T

CCC−1
[

∂ fff (θθθ)
∂θθθ

]
. (1.39)

Various proposed lower bounds for position location can be found in the lit-

erature. For the case of cooperative localisation CRLBs were proposed in [3, 41].

In [47], Winn et al. derived the Squared Position Error Bound (SPEB), a lower

bound specifically for localisation in multipath Rayleigh channels. In [48], Spirito

defined the accuracy measure, a metric which takes into account both the measure-

ment noise variance with the geometry of the neighbouring noise in order to derive

a lower bound for a node’s localisation.

It is important to note the importance that the geometry between the agent and

the anchors play in localisation. Even if there was no noise in the measurements,

a bad geometry can be detrimental to the accuracy. This effect is captured in the

Geometric Dilution of Precision (GDoP)[49], which is readily used in the analysis

of GPS systems. GDoP can be defined as III(θθθ) without the covariance matrix. That

is,

GDOP =

[
∂ fff (θθθ)

∂θθθ

]T [
∂ fff (θθθ)

∂θθθ

]
. (1.40)

Generally, we are not interested in the localisation of simply a single node, in-

stead in both cooperative and non-cooperative localisation, we have a large number

of nodes that are trying to self-localise. In this context we are more interested in the
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RMS localisation error that can be defined as

Ω̄ =

√
1
N

n

∑
i=1

E
[
‖θ̂θθ i−θθθ i‖2

2

]
, (1.41)

where N is the number of nodes trying to self-localise. Another metric in the multi-

ple agents scenario is the outage probability. The outage probability can be defined

as the probability that an agent has localised below a certain error threshold eth, and

mathematically is defined as

Pr
out
(eth) = E{111{‖ΘΘΘ− Θ̂ΘΘ‖> eth}}, (1.42)

where ΘΘΘ = [θ1, . . .θN ] and 111(·), is the indicator function defined as

111(X = x) =

1, if X = x

0, otherwise
. (1.43)

1.2 Problems Addressed and Contributions

Another important issue to consider is the tractability of the cooperative localisation

in real-life devices which have limited battery and processor capabilities. Conse-

quently, the main focus and the common theme presented in all Chapters of this

thesis is the objective to design algorithms that have realistically low computational

and communication costs. It was also important to accomplish the above with as

little compromise to the accuracy as possible, even in high noise scenarios. Monte

Carlo simulations were run for all algorithms to prove the above. The use of Monte

Carlo simulations was chosen as it provided the flexibility to easily, affordably and

reliably compare the algorithms presented in a large variety of different noise mod-

els with all the relevant existing algorithms in the literature in both complexity and

accuracy. This allowed us to obtain results from cooperative networks of large num-

bers of nodes in various 3D scenarios with different noise models and different IMU

sensor characteristics. A real life measurement campaign, albeit interesting, would

have been by necessity very limited due to manpower and budget constraints and
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not able to get adequate results for a large scale network.

In more detail, the following major issues were tackled:

• 3D probabilistic cooperative localisation. Probabilistic cooperative locali-

sation algorithms have been developed with great success in the 2D case,

cf. [9], resulting to a huge number of message passing variants. Unfortu-

nately as mentioned above, the aforementioned are computationally expen-

sive algorithms and become even more so in the 3D case due to the added

dimension in the solution space. We propose a novel cooperative localisation

algorithm, namely HEVA, that drastically decreases the computational cost

in localisation, while at the same time improving localisation accuracy, even

in high noise, 3D environments with NLoS affected communications. Monte

Carlo simulations were run to showcase the improvements in both accuracy

and computational costs relative to published algorithms in the literature, cf.

chapter 3.

• Reference-free 2D localisation. A hidden issue in cooperative localisation

is the definition of the reference point. All literature either assumes that all

nodes have a common reference point with precise knowledge of their rela-

tive location of it, or in the best of cases simply acknowledge the issue and

the notes localized relative to each other and some arbitrary chosen reference

point. We propose a novel cooperative localisation algorithm, namely Grid-

BP, that implements a unique ID grid reference system, overcoming the ref-

erence point issue. At the same time the algorithm offers parametric message

passing allowing for very fast and efficient computational time.

• Combining local sensor based pedestrian tracking with cooperative localisa-

tion. There has been great development in the use of sensor based pedestrian

tracking, or pedestrian tracking/GPS hybrid algorithms, but the research on

pedestrian tracking/cooperative localisation algorithms has been quite lim-

ited. As a result, we have proposed a novel probabilistic hybrid INS/PDR

tracking algorithm, named PHIMTA. PHIMTA can be used in a probabilistic
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temporal model with Grid-BP to offer high accuracy pedestrian tracking in

GPS-denied environments.

• Message Scheduling in Distributed Message Passing algorithms. A lot of re-

search has been done in message scheduling of centralized message passing

algorithms, as the algorithm can be both optimized in communication over-

head, and solution accuracy. Unfortunately there has been almost no research

done in the distributed case due to the inherent lack of message scheduler

with global knowledge of the network. We propose a truly distributed mes-

sage scheduling algorithm, namely SR-BP, which extends the advantages of

R-BP in distributed scenarios, such as cooperative localisation or distributed

spectrum sensing.

1.3 Publications
The current PhD thesis resulted in the following publications:

• P.-A Oikonomou-Filandras and Kai-Kit Wong. Hybrid non-parametric belief

propagation for localization in wireless networks. In Sensor Signal Process-

ing for Defence (SSPD 2011), pages 1–5, Sept 2011

• P.-A. Oikonomou-Filandras, Kai-Kit Wong, and Yangyang Zhang. Heva: Co-

operative localization using a combined non-parametric belief propagation

and variational message passing approach. Journal Commun. Netw., to be

published

• P.-A. Oikonomou-Filandras, Kai-Kit Wong, and Yangyang Zhang. Informed

scheduling by stochastic residual belief propagation in distributed wireless

networks. ”IEEE Wireless Commun. Lett., 4(1):90–93, Feb 2015

1.4 Thesis Organization
The rest of the thesis is organized as follows:

• Chapter 2 provides the mathematical background necessary for the develop-

ment and analysis of the algorithms to follow. A brief review is given on
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probabilistic graphical models, message passing, approximate inference, and

contraction mappings, as the main tools that will be used.

• Chapter 3 presents HEVA for 3D cooperative localisation in NLoS ToA met-

ric scenarios.

• Chapter 4 presents Grid-BP for 2D localisation using a grid based reference

system.

• Chapter 5 presents the Pedestrian Hybrid Inertial Measuring Tracking Algo-

rithm (PHIMTA), as a probabilistic pedestrian tracking algorithm and sug-

gests the use of PHIMTA/Grid-BP as a combined approach to pedestrian

tracking in GPS-denied environments.

• Chapter 6 presents SR-BP, as a distributed scheduler for message passing

algorithms.

• Chapter 7 concludes the thesis offering final remarks and conclusions as well

as possible future research directions.



Chapter 2

Mathematical Background

2.1 Graphs and Probabilistic Graphical Models
In this section, background information on PGMs, relevant to the later parts of the

thesis is provided, as well as the corresponding references for further reading on

the subject. The Section will start with the basics of PGMs and provide a quick

overview. Then some more in-depth analysis on selected topics that are of interest

will follow. As the nomenclature on PGMs is still not completely standardised, the

terms used in [53] will be preferred. Initially some basics on probabilistic reasoning

and some basic graph concepts will be presented. Followed by a quick overview of

Markov networks.

2.1.1 Basic Graph Concepts

Graphical models are a way to describe the dependence and independence relations

between variables in problems modelled as distributions. Their importance is due

to their ability to provide a general framework that is easy to understand visually

of all the interactions in a model. In this manner the act of designing the model,

with the act of getting information from the model are explicitly separated. This

allows for the same inference algorithms to be usable, when the model is changed,

or vice versa different inference algorithms can be run on the same model. This has

allowed for the design of a large variety of algorithms that can be used on PGMs

that can be applied to highly diverse problems. Therefore for a given problem there

are two steps to consider:
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• Modelling. Identify all possible variables that are relevant for a given model.

Then find the interaction between these variables and model them as edges

(directed or undirected) between them. This can be done both by taking ex-

pert advise on the problem and by the use of automated algorithms. These

algorithms will generally not be able to give the direction of dependence but

are usually able to provide valuable insight on how certain variables interact

with each other.

• Inference. After the probabilistic model is constructed, various information

can be derived by using probabilistic inference on the model. Typical ques-

tions can be about the most likely value of certain variables conditioned on a

fixed state of others, or the most likely state of all variables in general. An-

other typical need is to find sufficient statistics that will describe the model

with accuracy.

2.1.2 Graphs

A typical aim in a graph model is to infer the interaction between the states of an

event we want to investigate and data that we have obtained. This can be modelled

in the following way. Define a number of parameters ΘΘΘ that are of interest, and then

obtain a set of observed data ddd of the random variable DDD that affect ΘΘΘ. Given some

prior knowledge on how ΘΘΘ is generated then we can use the Bayes rule to formulate

the problem as

Pr(ΘΘΘ ||| DDD === ddd)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
Pr(DDD === ddd |||ΘΘΘ)

prior︷ ︸︸ ︷
Pr(ΘΘΘ)

Pr(DDD === ddd)︸ ︷︷ ︸
evidence

, (2.1)

where Pr(DDD === ddd) =
∫

Pr(DDD === ddd |||ΘΘΘ)Pr(ΘΘΘ)dΘΘΘ.

The main idea here is that if we have some prior knowledge Pr(ΘΘΘ) and data

that we acquired, then given our model of ΘΘΘ, i.e., Pr(DDD === ddd ||| ΘΘΘ), we aim to infer

the posterior Pr(ΘΘΘ ||| DDD === ddd), or more simply we want to refine our belief of how ΘΘΘ

behaves, based on the data we have observed. The term likelihood is used for the
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probability of obtaining the data we observed given the model parameters, or more

simply, on how likely it is to have observed this data, given the parameters we have

envisioned.

A graph is essentially a graphical representations of a set of independence as-

sertions. These by the use of the chain rule, define the joint distribution of a given

model and can be used to form the posterior, eq. (2.1), that are of interest.

Θ4Θ2

Θ9

Θ6 Θ8

Θ11Θ10

Θ1 Θ3 Θ5 Θ7

Figure 2.1: An example of a directed graph. Greyed out variables Θ9,Θ10 are observed.

Definition 1. A graph is a data structure consisting of vertices (nodes) and edges

(links) between the vertices, e.g. Fig. 2.1. Let {Θ1, . . . ,Θn} be the set of nodes.

Two nodes can be connected with a directed edge Θi→ Θ j or an undirected edge

Θi−Θ j. A graph with all edges directed is called a directed graph, while one with

all edges undirected is called undirected graph.

Directed edges denote dependence, as in the parent node Θi conditions the

child node Θ j in Θi→ Θ j. Undirected edges show the existence of a relationship

between two nodes, but the direction of dependence is unknown.

As the aim of PGMs is to provide a graphical representations of a probabilistic

model, it is important to note the relationships between a graph and a distribution.

The first thing required is a definition of the independence ΘΘΘ assertions in a distri-

bution.

Definition 2. Let P be a distribution over X. We define I (P) to be the set of inde-

pendence assertions of the form (Θx ⊥⊥Θy |Θz) that hold in P.
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Let G be a graph and I (G ) are its independence assertions. If all the assertions

that are in I (G ) exist in I (P) or equivalently I (G )⊆I (P), then I (G ) is an

I-map of I (P). This implies that I (P) could have more independence assertions

that are not described in G . More formally a graph is defined as follows

Definition 3. Let K be any graph object associated with a set of independencies

I (K ). We say that K is an I-map of a set of independencies I if I (K)⊆I .

If a distribution P factorizes as described by a graph G, then G is an I-map of

P. It is important to understand that a distribution could have many different valid

I-maps. So a graph that is an I-map of P is not a sufficient condition for a good

graph model.

In more complicated graphs it is important to understand the “flow” of depen-

dence between different nodes. Besides the obvious direct connection between two

nodes Θi → Θ j there are four basic indirect two-edge trails that are used as ba-

sic blocks for dependence. The four trails are the following as found in nodes in

Fig. 2.1:

• Causal Trail A trail between three nodes, where the first node is not observed.

Θ1→Θ2→Θ9: active if and only if Θ4 is not observed.

• Evidential Trail A trail between three nodes, where the first node is ob-

served. Θ7→Θ8→Θ11: Θ7 is observed and is active if and only if Θ8 is not

observed.

• Common Cause A trail between three nodes, where the middle node is the

parent and other two nodes are the children. Θ10← Θ6→ Θ11: active if and

only if Θ6 is not observed.

• Common Effect A trail between three nodes, where the middle node is the

child, and the two other nodes are the parents. Θ2→ Θ9← Θ4: active if and

only if either Θ9 or one of its descendants is observed.

In the more general case a trail between two nodes Θi,Θ j is active if there is

a path of interconnects nodes that connects them and the two following conditions
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hold. Let Θo be a subset of observed variables, then:

• Whenever in the path between Θi and Θ j there is a v-structure, like Θl−1→
Θl ←Θl+1, then either Θl or one to its descendants are in Θo.

• No other node along the trail is in Θo.

With the above we can define two nodes as d-separated if there is not active

trail between them or more formally:

Definition 4. Let ΘΘΘx,ΘΘΘy,ΘΘΘz be three sets of nodes in G . We say that ΘΘΘx and ΘΘΘy

are d-separated given ΘΘΘz, denoted as d-sepG (ΘΘΘx,ΘΘΘy |ΘΘΘz), if there is no active trail

between any node Θx ∈ ΘΘΘx and Θy ∈ ΘΘΘy given ΘΘΘz. The set of independences that

correspond to d-separation is equivalent to I (G ).

In the current analysis of Position Location, undirected graphs will be used.

Hence, a more in depth overview will be provided. For a much more complete

discussion on PGMs and their properties [53, 54] are recommended reads.

2.1.2.1 Markov Networks

An undirected graph can be called a Markov network. Nodes represent variables

and edges represent the existence of some form of direct probabilistic interaction

between the variables. Remodelling our example as a Markov network, can be seen

in Fig. 2.2, where all active trails as defined above need to be represented with

edges, and all directional information has been lost.

It is not necessary for each node to have only one variable. The quite opposite

in fact can be quite useful. So we define a factor φ to be a function of the values

of a set of random variables DDD to R. The set of variables DDD is called the scope of a

factor.

As there is no real knowledge of the direction of dependence of two connected

variables, it is easier to think of the connected nodes as trying to agree, or disagree

depending on the relative values of the joint factor matrix. The values assigned to

each factor should not be thought as CPDs but instead as a potential φ . As a result,

in order to get information from a Markov network, all connected nodes have to be
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Θ4Θ2

Θ9

Θ6

Θ8

Θ11Θ10

Θ1 Θ3 Θ5 Θ7

Figure 2.2: An undirected graph, based on Fig. 2.1

taken into account, instead of just the relevant CPDs. Continuing the example from

Fig. 2.2 we have:

Pr(Θ1, . . . ,θ11) =
1
Z

φ1(Θ1,Θ2,Θ9)φ2(Θ3,Θ4,Θ10,Θ8))φ3(Θ5,Θ6)φ4(Θ7,Θ8,Θ11),

where Z is called the partition function. It is a normalising constant and is defined

as

Z = ∑
Θi∈{Θ1,...Θ11}

φ1(Θ1,Θ2,Θ9)φ2(Θ3,Θ4,Θ10,Θ8)φ3(Θ5,Θ6)φ4(Θ7,Θ8,Θ11).

(2.2)

A factor contains variables that are fully interconnected between them. The

subset of vertices that is maximally connected, for a given undirected graph, is

defined as a clique.

Definition 5. A Markov Random field can be defined as a set of distribution Pr(Θi |
ne(Θi), where i ∈ 1, · · ·n, is the distribution index and ne(Θi) are the neighbouring

nodes of variable Θi.

2.1.3 Temporal Graphs

Another fundamental issue is the modelling of dynamic systems that change in time.

In this case we assume a temporal model where the Probability Distribution Func-
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tions (pdfs) of the state variables ΘΘΘi for node i, change as time passes. Hence, we

denote ΘΘΘ
(t)
i , which is now called a template variable and it is instantiated at different

points in time t. Hence our goal is to represent the joint distribution of the random

variables over their possible values for each relevant time (t).

Firstly, we discretize the timeline into a set of timeslots. Thus we are now only

interested at the value of the random variables at a given timeslot t. Obviously the

variables will be also dependent on their state at the previous timeslots. A further

simplification can be made. We assume, that each state is dependent only on the

previous respective timeslot, i.e. Pr(ΘΘΘ(t)
i | ΘΘΘ

(0:t−1)
i ) = Pr(ΘΘΘ(t)

i | ΘΘΘ
(t−1)
i ). Such a

system is called Markovian, and this is called the Markov assumption. Assuming

our example changes in time then we will get a temporal model such as the one

in Fig. 2.3. As would be expected temporal models are a great tool for localizing

mobility nodes and will be further discussed in Chapter 5.

Timeslice t

Θ1

Θ3

Θ5

Θ2,Θ4,Θ9

Θ2

Θ4

Θ6

Θ4,Θ6,Θ10

Θ6,Θ8,Θ11

Θ8

Θ1

Θ3

Θ5

Θ2,Θ4,Θ9

Θ2

Θ4

Θ6

Θ4,Θ6,Θ10

Θ6,Θ8,Θ11

Θ8

Timeslice t+1

Θ1

Θ3

Θ5

Θ8

Timeslice t+2
Θ7 Θ7

Figure 2.3: Temporal model example of Fig. 2.2

2.2 Inference
Inference is the act of obtaining relevant information about distributions out of a

probabilistic model, such as the most likely state of a variable conditioned on the

states of other variables, or the computation of a marginal distribution. In PGMs it

is important that inference is detached from the design of the model, so even if the

model changes, the same inference algorithm will still work. The section will focus
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on the most typical type of query done in inference, the conditional query, i.e., find

Pr(ΘΘΘ | DDD === ddd), where ddd represents an observed vector known for random variable

vector DDD.

2.2.1 Variable Elimination

During inference one of the most important steps is the marginalisation of variables.

As marginalisation involves summing out all possible values of the variables in

question, it can get easily computationally expensive, especially in highly complex

models with a large number of variables. A typical way to marginalise in a graph is

via Variable Elimination (VE).

Θ2Θ1 Θ4Θ3

Figure 2.4: A simple directed chain.

Before discussing a more complicated example like Fig. 2.1, we will present

VE in a easier example for clarity. Let there be a chain graphical model, i.e. the one

in Fig. 2.4, and we want to obtain the marginal Pr(Θ4). By using VE the following
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calculations are done

Pr(Θ4) = ∑
Θ1,Θ2,Θ3

Pr(Θ1,Θ2,Θ3,Θ4) (2.3)

= ∑
Θ1,Θ2,Θ3

Pr(Θ4 |Θ3)p(Θ3 |Θ2)Pr(Θ2 |Θ1)Pr(Θ1) (2.4)

= ∑
Θ3

Pr(Θ4 |Θ3)∑
Θ2

Pr(Θ3 |Θ2)

(
∑
Θ1

Pr(Θ2 |Θ1)Pr(Θ1)

)
︸ ︷︷ ︸

τ(Θ2)

 (2.5)

= ∑
Θ3

Pr(Θ4 |Θ3)∑
Θ2

Pr(Θ3 |Θ2)τ(Θ2)︸ ︷︷ ︸
τ(Θ3)

(2.6)

= ∑
Θ3

Pr(Θ4 |Θ3)τ(Θ3). (2.7)

Generalizing in an arbitrary large chain we would have

Pr(Θn+1) = ∑
Θn

Pr(Θn+1 |Θn)Pr(Θn). (2.8)

So VE sums in steps following the nodes, instead of trying to sum everything at

the same time. In each step a message τ() is calculated which will be used in the

following node for the next calculations. In order to calculate τ(), k2 multiplications

and k× (k−1) additions are required in order to sum up the corresponding entries,

consequently the cost of each step is O(k2), where k is the number of values variable

Θn has. If there are N variables to be summed out then the total cost is O(Nk2). The

above process is called variable elimination. Alternatively if we calculated the joint

distribution and then summed out the corresponding values we would require O(kn)

time, hence VE having a linear time cost is much more efficient.

More formally VE is defined as

Definition 6. Let ΘΘΘ be some set of variables and let φ be a set of factors such that

for each φ ∈ Φ, the scope of φ ⊆ ΘΘΘ. Let III ⊂ ΘΘΘ be a set of query variables and let

KKK === ΘΘΘ−−− III then for any ordering over K the variable elimination VE(ΘΘΘ,,,KKK) returns
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a factor φ∗(III) such that: φ∗(III) = ∑
K

∏
φ∈Φ

φ .

Finally, the same technique can be used in undirected graphs, with factors in-

stead of probabilities, an idea which leads to message passing.

2.2.2 Message Passing

The whole idea of message passing is derived from the computations that need to be

done “locally” at each step of VE. The graph can be considered as a railway system

with nodes as stations and edges being the tracks. At each iteration the “messages”

get transported to the next station, after they have been updated with any incoming

information in the current station. Before a more in depth analysis, some important

properties relevant to message passing in undirected graphs, need to be discussed.

2.2.2.1 Clique and Cluster Graph

We define a cluster graph as a set of factors Φ over ΘΘΘ in an undirected graph,

each of whose nodes is associated with a subset CCCi ⊆ ΘΘΘ. A cluster graph must be

family preserving i.e. each factor φ ∈Φ must be associated with a cluster, denoted

a(φ) such that scope[φ ] ⊆ CCCi. Each edge between a pair of clusters CCCi and CCC j is

associated with a sepset SSSi, j ⊆CCCi∩CCC j, i.e. a subset of variables that is common to

both clusters connected by the edge.

If there are no loops, the graph is called a clique tree. In clique trees, exact

inference can be calculated. On the contrary, if there are loops, the graph model is

called a cluster graph. In cluster graphs it is not possible to run exact inference, but

often running message passing algorithms gives quite good approximate results.

An important property of cluster graphs is the running intersection property.

This states that for a pair of clusters CCCi,CCC j, and variables ΘΘΘ ∈ CCCi ∩CCC j there must

exist a unique path between CCCi and CCC j for which all clusters and sepsets contain ΘΘΘ.

Or simply put the set of clusters and sepsets in a graph that contain ΘΘΘ must form a

tree.

Message passing will firstly be described in the context of clique trees and then

generalised for the case of cluster graphs. In a clique tree the process is precisely

the same as the variable elimination algorithm described above. Let T be a clique
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tree with cliques CCC1, · · · ,CCCk. First all factors belonging to a clique are multiplied

together in order to calculate the initial potentials, i.e., for clique CCCi,

ψi(CCCi) = ∏
φ :a(φ)= j

φ . (2.9)

Due to the family preservation property we have

∏
φ

φ = ∏
j

ψ j. (2.10)

A clique is selected as the root and VE is performed as described previously starting

from the leaves and moving inward, towards the root. The message from clique ci

to clique c j is calculated as follows

δi→ j(SSSi j) = ∑
CCCi−SSSi j

ψi(CCCi) ∏
k∈ne(i)−{ j}

δk→i(SSSki). (2.11)

Each clique CCCi is ready to transmit to a neighbouring clique CCC j, when it has received

messages from all other neighbouring nodes, besides CCC j. Then it multiplies all

incoming messages with its own initial potential, and sums out all variables that are

not in the sepset SSSi j between itself CCCi and the clique CCC j, that is is going to transmit.

Once the final message arrives to the root, the root clique will multiply it with its

own potential. The result will be its belief denoted βr(CCCr) and

P̃φ (CCCr) = ∑
ΘΘΘ−CCCr

∏
φ

φ . (2.12)

In order to calculate the belief for all cliques, each clique will need to multiply its

own initial potential with all incoming messages from its adjacent cliques. As the

root clique is the final clique to receive incoming messages, after one pass of the

algorithm it is ready to calculated its belief. For the rest of the cliques, a “down-

wards” pass has to be done, starting from the root and ending at the leaves, for

them to obtain the incoming messages that they were not calculated in the previous
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“upwards” pass. Mathematically belief is

βi(CCCi) = ψi(CCCi) ∏
k∈ne(i)

δk→i(SSSki). (2.13)

Based on the above an alternative way to calculate an outgoing message given the

belief would be to simply divide the message received from said clique, so that

δi→ j(SSSi j) = ∑
CCCi−SSSi j

βi(CCCi)/δ j→i(SSS ji). (2.14)

This idea is extremely helpful in a distributed scenario. Consider a wireless

sensors network, with a number of nodes. Then each clique is calculated at a dif-

ferent node, and it is much more convenient for nodes to broadcast their own belief,

instead of having to compute a different message to transmit at each neighbour they

have. Then the incoming message δi→ j at node j, will be calculated at the receiving

node, by simply dividing by any outgoing message δ j→i the node j has from before.

2.2.3 Propagation-Based approximation

If instead of a clique-tree, a cluster graph is considered, the constraints that guaran-

tee exact inference no longer hold and message passing algorithms no longer pro-

vide exact results. This is due to belief loops that overpower certain beliefs through

constant feedback over others. Despite that, BP algorithms are perfectly applicable

to cluster graphs, and can provide quite good approximations to the real beliefs.

Due to the feedback loops, message passing is called loopy BP. In loopy BP, two

passes are not adequate and the algorithm will need to iterate a number of times

before it reaches convergence. Even so, there is the possibility that the algorithm

will converge at all. The belief and message update equations become respectively
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β
(t)
i (CCCi) = ψi(CCCi) ∏

k∈ne(i)
δ
(t)
k→i(SSSki), (2.15)

δ
(t+1)
i→ j (SSSi j) = ∑

CCCi−SSSi j

ψi(CCCi) ∏
k∈ne(i)−{ j}

δ
(t)
k→i(SSSki) = (2.16)

= ∑
CCCi−SSSi j

ψi(CCCi)
β
(t)
i (CCCi)

δ
(t)
j→i(SSS ji)

, (2.17)

where t denotes the iteration, and the parenthesis is used to distinguish the iteration

from an exponent.

A cluster graph is said to be calibrated if for all clusters, for each edge con-

necting the clusters CCCi and CCC j the following equation holds

∑
CCCi−SSSi j

β
(t)
i (CCCi) = ∑

CCC j−SSSi j

β
(t)
j (CCC j) (2.18)

or in words the marginal beliefs of the sepsets between all adjacent cliques are equal.

Because there is no guarantee of the quality of the result, or even if there will

be a result, the way the cluster graph is constructed becomes extremely important.

In the case of clique trees, all valid graphs will lead to the correct results, with the

possible increase in computational cost. In loopy BP though, the resulting beliefs

could change drastically. There is a constant compromise between the computa-

tional cost and the accuracy of the results, the faster the propagation, the poorer the

approximation.

2.2.4 Pairwise Markov Network

A pairwise Markov network is the simplest possible way to construct a valid cluster

graph that follows both the family preservation and the running intersection prop-

erties. In a pairwise Markov network, each variable has its own univariate cluster.

Then a pairwise cluster exists for all edges in the Markov network. By transforming

the variables any distribution can be described as a pairwise Markov network.
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2.2.5 Bethe cluster graph

A more general graph that can be used to model more complex interactions is the

Bethe cluster graph, e.g. Fig. 2.5. This is a bipartite graph with one large and one

small layer. The large layer consists of k clusters, where each cluster corresponds

to a clique φ ∈ Φ, with a scope[φ ]. The second layer consists of small univariate

clusters one for each variable. Each variable cluster is connected to all clusters in

the large layer that have a common variable with it. This advantage of this cluster

graph is that it is easy to construct and by design both the two properties will hold.

In Fig. 2.5 we can see our example network formulated as a Bethe cluster graph.

Θ1,Θ2 Θ3,Θ4 Θ7,Θ8Θ5,Θ6

Θ2 ,Θ4 ,Θ9 Θ4 ,Θ6 ,Θ10 Θ6 ,Θ8 ,Θ11

Figure 2.5: Example of a Bethe cluster graph.

2.3 Non-Parametric Density Estimation
Another important issue is how to model each factor distribution/potential in our

graphs. If the distribution is discrete a matrix with the probabilities will suffice to

describe the distribution, or in the case of a known distribution the parameters that

define it can be used. In the more common case, where we have a number of ob-

served events without any knowledge of the parameters of the underlying distribu-

tion, the use of non-parametric estimates becomes a valid alternative. Even though

a non-parametric form will never be as accurate or as efficient as a valid closed form

equation of the distribution it is often the only choice possible, as non-parametric

forms require very few underlying assumptions. For an interesting discussion on

kernel methods and their applications see [54].
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2.3.1 KDE

A way to create a continuous density estimate from a set of observed variables is

KDE. The basic idea is to use a function K(·), called the kernel on each data point

in order to smooth its density over a region around it.

For L i.i.d. samples {θθθ 1, · · · ,θθθ L} we could create the KDE

P̂r(ΘΘΘ) =
1
L

L

∑
i=1

Kh(ΘΘΘ−θθθ i). (2.19)

Typically the Kh(·) function is positive, symmetric and integrates to unity in

order to create a density estimate. In practice a zero-mean spherically symmetric

Gaussian kernel is a preferred choice, such as

Kh(θ) = N (θ ;0;hI) ∝ exp(−‖θ‖2/2h), (2.20)

where h controls the spread of influence that each observation has. There are a

number of different methods that can be used to calculate h [55]. A simple heuristic

is the rule of thumb. In this case the data is assumed to be derived from a Gaussian

distribution and we have

µµµ =
1
N ∑(θθθ i) (2.21)

Σ =
1
N ∑(θθθ i−µµµ)(θθθ i−µµµ)T (2.22)

hRoT =CdDiag(Σ)N−2/(4+d), (2.23)

where a good approximation for Cd is Cd ' 1 ∀d.

2.4 Non-Parametric Belief Propagation
NBP is a technique proposed by Ihler et al. in [55], and used in position location

problems in [56, 15, 57]. The main idea is to use KDE to approximate belief and

message distributions in a message passing algorithm. Messages are represented as

a sample based density estimate, e.g., each sample can be a spherical kernel, as in

eq. (2.20), with a weight, forming a Gaussian mixture approximation of the message
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distribution. So given N weighted samples {w(k)
n ,θθθ (k)

n ,h(k)}, where n = 1, . . .N and

k represents the node index, that the message came from, there are two important

operations that need to be considered for NBP.

1. The computations of the updated beliefs as in eq. (2.15).

The computation of the belief message involves calculating the product of all

incoming messages with the nodes own potential. Assuming everything is

approximated as a Gaussian mixtures, then we have K mixtures of N com-

ponents each, allowing each mixture have the same number of components

for simplicity, and we aim to calculate the product of the mixtures. However,

calculating the Nk-component mixture is for most cases computationally in-

feasible so it is easier to use a sampling technique instead. Mathematically

let the Gaussian mixture pdf for each message i ∈ K be

pi(ΘΘΘ) = ∑
n∈N

wn,iN (ΘΘΘ;mmmn,i,Σi), (2.24)

where n ∈ N, denotes the component. Our aim is to sample from the NK

component mixture density

p(ΘΘΘ) ∝

K

∏
i=1

Pri(ΘΘΘ). (2.25)

There are many different techniques that can be used to sample from (2.25).

As an example, the Mixture Importance Sampling (MIS) algorithm is shown,

as it is commonly used in Position Location, cf. [15, 55, 58]. The main idea

of importance sampling is instead of trying to sample from an intractable dis-

tribution p(ΘΘΘ), we sample from a proposal distribution q(ΘΘΘ), that is easy to

handle. We assume that both p(ΘΘΘ) and q(ΘΘΘ) can be evaluated up to a normal-

isation constant. Then kN ≥ N ΘΘΘ j samples are drawn from q(ΘΘΘ) and they are

assigned a weight given by w j ∝
p(ΘΘΘ j)
q(ΘΘΘ j)

. The weights are then normalised by

their sum Z = ∑w j and N samples are drawn with replacement with proba-

bility equal to p(ΘΘΘ j) =
w j
Z . In the case of MIS a mixture is randomly selected
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from the K mixtures, and then a sample is taken from its N components. This

is equivalent to having as a proposal distribution the average of the mixtures,

i.e.,

q(ΘΘΘ) =
1
K ∑

i
pi(ΘΘΘ). (2.26)

2. The computation of the updated messages as in eq. (2.16).

Given the incoming messages δk→i(ΘΘΘk) = {w(k)
n ,θθθ (k)

n ,h(k)},∀k ∈ ne(i) 6 j, we

aim to calculate δi→ j(ΘΘΘi) The trick here is instead of calculating the marginal,

doing the summation in (2.16), or integral in the continuous case, to assume

that all variables not in the sepset are fixed and draw samples ΘΘΘ j from the

conditional distribution, e.g. in this case p(ΘΘΘ j | ΘΘΘi,ΘΘΘx), where ΘΘΘx includes

all other possible variables that need to be marginalised, which in this case

would be the parameters of the Gaussian mixtures, which are already known

from the samples. The samples are then weighted by the remainder wk
n

δ j→i(ΘΘΘ j)
,

and sampled again with replacement based on the weights.

2.5 Clustering Algorithms
Clustering Algorithms in machine learning are used to group together, i.e., form

clusters of data points with similar properties. This allows us to create categories

for the data points, even without any prior information about which groups they

belong to and consequently each datapoint is assigned to the most probable cate-

gory. Examples range from the automatic grouping of published articles, based on

their keywords, an online date matching algorithm, or generally every algorithm

that matches information into groups, e.g., google news.

In our current discussion though, we take advantage of another use of cluster-

ing algorithms, which is the ability to derive an approximate parametric distribution,

from a number of non-parametric samples. A simple example would be if there was

a number of datapoints all packed close together. Then we could approximate them

with a Gaussian distribution, and we would need to find the sufficient statistics, i.e.,
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the mean and the variance, in order to get a parametric approximation of all the data

points. This allows us to use non-parametric techniques to model some distributions

and then use clustering to compact the resulting information in a parametric form

which is more compact and easier to transmit. Two of the most common clustering

techniques are K-Means and the Expectation-Maximization Algorithm (EM). K-

means is a non-probabilistic, “hard-decision” clustering algorithm, while EM is a

probabilistic “soft-decision” algorithm. “Hard decision” means that each datapoint

is assigned to only one cluster, while in “soft-decision”, each datapoint is assigned

weights for all clusters.

2.5.1 K-Means

Consider the following problem. There is a dataset of N observed d-dimensional

data points, i.e. {θθθ 1, . . .θθθ N} and our goal is to group them into K categories, or

clusters. Each cluster k will get assigned to it all data points that are close to some

metric property µµµk, that intuitively can be the centre of the cluster. For each data-

point we define a binary variable rnk ∈ {0,1}, which is equal to 1, when datapoint

n belongs to cluster k, and 0 otherwise. As this is a hard-decision algorithm each

datapoint can only belong to one cluster at any given moment, the one that has a µk

closest to it. With that in mind we define a cost function that out aim is to minimise

J =
N

∑
n=1

K

∑
k=1

rnk||θθθ n−µµµk||2. (2.27)

The cost function J represents the sum of the squared distances of all data points to

their assigned clusters. In order to minimise it, we need to find the optimal rnk and

µµµk. This can be done in a two-step iterative process, where we keep rnk fixed and

optimise µµµk, and vice versa until the variables converge or a predefined number of

iterations passes. Assuming that we have some initial µµµk, we start by trying to find

the optimal rnk, given our initial µµµk. Mathematically this is formulated as

rnk =

1 if k = argmin j ||θθθ n−µµµ j||2

0 otherwise
(2.28)
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or more simply we assign each datapoint θθθ n to the µµµk closest to it.

Now having optimized rnk, we consider it fixed and optimise µµµnk. By taking

the derivative of the cost function and assigning to zero, we can solve for µµµk and

we have

2
N

∑
n=1

rnk(θθθ n−µµµk) = 0⇒ (2.29)

µk =

N
∑

n=1
rnkθn

N
∑

n=1
rnk

, (2.30)

which is simply the mean of all data points assigned to group k.

As J decreases in each iteration, convergence is guaranteed although it might

be a local minimum instead of a global one. The end result is highly dependent on

the initial values of µµµk, so an option would be to run the algorithm multiple times

with different initial values, and keep the result with the minimum cost J.

2.5.2 Expectation-Maximization Algorithm

The EM algorithm generalises means in a probabilistic context. A distribution is

proposed with different components, characterised by parameters and the algorithm

tries to find the optimal parameter values for each component and respective weights

for each datapoint for each component, in order to maximise the log likelihood func-

tion of the data points. In the general case we assume a joint probability distribution

Pr(DDD = ddd,SSS | ΘΘΘ), where ddd is the observation vector of DDD. SSS represents hidden vari-

ables and ΘΘΘ are the sufficient statistics parameters, that characterise the distribution.

The algorithm aims to maximise Pr(DDD |ΘΘΘ) with respect to ΘΘΘ.

This is accomplished in a similar two-step iterative process as the one described

previously in K-means. Firstly initial values for ΘΘΘ are chosen, and then the algo-

rithm iterates between optimising either the SSS hidden variables, or the ΘΘΘ parameters,

by maximising the complete-data loglikelihood, until either the parameters or the

loglikelihood have converged.

Assuming initial ΘΘΘ
0, the first step is the E step where the posterior of the latent
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variables is Pr(SSS |DDD,ΘΘΘ) is calculated. Then in the M step new parameters ΘΘΘ
new are

calculated by

ΘΘΘ
new = argmax

ΘΘΘ

Q(ΘΘΘ,ΘΘΘold), (2.31)

where Q(ΘΘΘ,ΘΘΘold) is the expectation of the complete-data loglikelihood and is de-

fined as

Q(ΘΘΘ,ΘΘΘold) = ∑
SSS

Pr(SSS | DDD = ddd,Θold) lnPr(DDD = ddd,SSS |ΘΘΘ). (2.32)

EM can also be used to find Maximum A Posteriori (MAP) solutions for

models, where the parameters ΘΘΘ are probabilistic and are defined by a prior dis-

tribution Pr(ΘΘΘ). In this case in the M step the quantity to be maximised is

Q(ΘΘΘ,ΘΘΘold)+ ln(ΘΘΘ).

As a more concrete example, we consider a dataset that we are trying to fit in

a Gaussian mixture distribution. Again let the observed data set of the random vari-

able DDD be ddd. We assume that the dataset is separated into K clusters and therefore

we assume K components in the distribution. A Gaussian mixture can be defined as

Pr(DDD) =
K

∑
k=1

πkN (DDD | µµµk,Σk). (2.33)

Let us define a latent k-dimensional binary variable Sk, where one element will

be 1 and everything else will be equal to 0. Therefore, Sk ∈ {0,1} and ∑k Sk = 1. We

define the joint distribution Pr(DDD,SSS) in terms of a marginal distribution Pr(SSS) and a

conditional distribution Pr(DDD | SSS). The marginal distribution over SSS is specified by

the mixing coefficients of the Gaussian mixture distribution, such that

Pr(Sk = 1) = πk, (2.34)
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where 0≤ πk ≤ 1 and ∑k πk = 1 or Pr(SSS) can be also written as

Pr(SSS) =
K

∏
k=1

π
Sk
k . (2.35)

Similarly, the conditional distribution can be written as

Pr(DDD | SSS) =
K

∏
k=1

(N (DDD; µk,Σk))
sk . (2.36)

Therefore, by the chain rule, we have

Pr(SSS,DDD) = Pr(DDD | SSS)Pr(SSS)⇒ (2.37)

Pr(DDD) = ∑
S

Pr(SSS,DDD) (2.38)

= ∑
S

Pr(DDD | SSS)Pr(SSS) (2.39)

=
K

∑
k=1

πkN (DDD; µµµk,Σk). (2.40)

Finally, the posterior probability Pr(Sk = 1 | DDD) can be defined as

r(Sk) = Pr(Sk = 1 | DDD) =
Pr(Sk = 1)Pr(DDD | Sk = 1)

K
∑
j=1

Pr(S j)Pr(DDD | S j)

(2.41)

=
πkN (DDD; µk,Σk)

K
∑
j=1

π jN (DDD; µ j,Σ j)

. (2.42)

The posterior plays the same role of weight as rnk played in the means, but

in a “soft manner”. Basically it shows the probability of a specific datapoint dddn

belonging to each mixture in the distribution, and is called responsibility. The log-

likelihood of the mixture can be defined as

lnPr(DDD = ddd;πππ,µµµ,ΣΣΣ) =
N

∑
n=1

ln

{
K

∑
k=1

πkN (dddn; µk,Σk)

}
. (2.43)

In order to optimise the loglikelihood, we set the derivative with respect to the
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parameters to zero and get

µµµk =
1

Nk

N

∑
n=1

r(snk)dddn, (2.44)

Σk =
1

Nk

N

∑
n=1

r(snk)(dddn−µµµk)(dddn−µµµk)
T , (2.45)

where

Nk =
N

∑
n=1

r(snk). (2.46)

In order to find the optimal πk, the added constraint of ∑k πk = 1 needs to be

taken into account, so a Lagrange multiplier is added to the loglikelihood before

the derivative is taken. Equating with zero and solving for πk gives us

πk =
Nk

N
. (2.47)

The EM algorithm will iterate over the two steps, First in the expectation step

keeping the parameters fixed, and calculating the responsibilities (2.42). Then the

new parameters will be computed by using equations (2.44), (2.45), (2.46) and

(2.47). Then the log likelihood (2.43) is calculated. This continues until either

the parameters or the loglikelihood converge or a number of predefined iterations

passes.

EM generally converges quite quickly as far as optimising the loglikelihood

goes. On the other hand the parameters depending on the optimisation might vary

wildly as more iterations pass. Again the end result is not guaranteed to be a global

optimum, and hence multiple instance of the algorithm need to be run with different

starting parameters, and the best one kept. As K-means is much cheaper compu-

tationally, one way to get good initial parameters would be to derive them from

running K-means first. Also EM suffers from singularity issues, i.e. clusters can ,

which need to be accounted for explicitly in the code. Finally, another issue is the

implicit assumption that the number of clusters K is known beforehand. Therefore
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variations have been developed like the variational Bayes (VB) that will be used in

HEVA presented in Chapter 3, that overcome these limitations. Despite the above,

EM due to its simplicity and generality has been widely used in the last few years

in a large variety of different issues, with high success.

2.6 Contraction Mappings
Message passing can be seen as an iterative method trying to solve a non-convex

problem. Obviously analysing the convergence properties of such methods is quite

important, as they answer if a fixed point, hopefully one that is an optimal solution,

can be found, and how long will it take to find it. One of the principal techniques

used for convergence analysis is contraction mappings.

In order to define contraction mappings we will assume that the iterative algo-

rithm is one of several that can be written in the form

xxx(t+1) = T(xxx(t)) for t = 0,1,2, . . . (2.48)

where T(·), is a mapping from a subset XXX in RN into itself and has the property

‖T(xxx)−T(yyy)‖ ≤ a‖xxx− yyy‖, ∀xxx,,,yyy ∈ XXX , (2.49)

where ‖·‖ is a norm, and a is a constant called modulus of T and we have a∈ [0,1).
Let there be a mapping T : XXX 7−→ XXX . Then any vector xxx∗ ∈ XXX satisfying T(XXX∗) = xxx∗

is called a fixed point of T and the iteration x := T(xxx) can viewed as an algorithm

trying to find a fixed point.

Theorem 2.6.1. (Convergence of Contracting Iterations) Suppose that T : XXX 7−→ XXX

is a contraction with modulus a ∈ [0,1) and that X is a closed subset of Rn. Then:

• (Existence and Uniqueness of Fixed Points) The mapping T has a unique fixed

point xxx∗ ∈ XXX.

• (Geometric Convergence) For every initial vector xxx(0) ∈ XXX, the sequence
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{xxx(t)} generated by xxx(t+1) = T(xxx(t)) converges to xxx∗ geometrically. In par-

ticular,

‖xxx(t)− xxx∗‖ ≤ at‖xxx(0)− xxx∗‖, ∀t ≥ 0. (2.50)

Convergence analysis on tree PGMs is trivial as the problem is convex and an

optimal solution is guaranteed to be found. Unfortunately in loopy graphs, this is

not the case and there is no guarantee that a message passing algorithm will find

an optimal solution or even converge. Sufficient conditions for message passing

algorithms to converge has been investigated in [59, 60, 61]. Convergence will be

discussed in more detail in Chapter 6.

2.7 Conclusions
In this chapter, the main mathematical tools that will be used in the following chap-

ter were presented. Firstly the way to design a PGM from probabilistic variables

was presented in Section 2.1. Directed and Markov graphs were discussed and their

differences as well as temporal graphs that model dynamic networks with variable

distributions that change over time. In Section 2.2, the main techniques on con-

ducting inference on PGMs was presented using VE and message passing. Also the

Bethe cluster graph was presented as the simplest model that satisfies the necessary

properties to use message passing. The next issue discussed, in Section 2.3 was

how to model distributions that are continuous and do not fit any of the standard

pdf parametric forms. Followed by a general message passing algorithm, namely

NBP in Section 2.4 that can handle non-parametric forms of distributions. The way

to approximate non-parametric forms with parametric ones using clustering algo-

rithms was presented in Section 2.5. Finally, the theory of Contraction Mapping

was briefly discussed in Section 2.6 and how it is used to analyze the convergence

properties of message passing algorithms in graphs. In the following chapters the

above tools will be used and extended in order to tackle cooperative localization.



Chapter 3

Hybrid Variational Ellipsoid

Algorithm

3.1 Introduction
In this chapter we present a novel message passing algorithm for cooperative locali-

sation, named HEVA. HEVA is designed so that it decreases the computational cost

of NBP as well as the communication overhead, catering for 3D localisation, where

complexity cost drastically increases due to the extra dimension. HEVA overcomes

the pitfalls of the aforementioned algorithms and is computationally tractable in the

3D case. Our proposed algorithm can achieve higher localisation accuracy, getting

more nodes self-localized within given accuracy and at much less complexity than

NBP [15]. Although IPPM in [14] and LS in [9] are less complex, their accuracies

are much inferior, especially under high noise environments. HEVA combines the

strengths of both VMP and NBP to reach a fine balance between the information

used in the probabilistic inference, the message size and convergence speed. HEVA

manages to minimize the amount of information lost in the approximations in the

inference calculations and as such localizes with high resolution. HEVA also has a

simple NLoS mitigation filter that removes unhelpful NLoS messages when using

ToA distance measurements.

3.1.1 Our Contributions

Our contributions can be summarized as follows:
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• We devise an ellipsoid particle filter that greatly reduces the number of parti-

cles required for accurate product calculations in BP,

• We devise a low complexity NLoS mitigation message filter for ToA that

removes NLoS messages with no requirement for prior environment informa-

tion.

• We propose a simple kernel alternative suitable for non parametric forms of

localization pdfs used in message passing algorithms.

• We present HEVA a novel algorithm that combines the above with VB. HEVA

allows high accuracy in 3D indoors positioning with low complexity and low

communications overhead.

3.1.2 Organization

The remainder of this chapter is organized as follows. Section 3.2 formulates the

Bayesian localisation problem. Section 3.3 describes the HEVA algorithm. Simula-

tion results are provided in Section 3.4 and finally conclusions are drawn in Section

3.5.

3.2 Problem Formulation
We consider a set of nodes in a 3D environment of size X ×Y ×Z m3. The nodes

consist of N agents and M anchors, where |V | = N +M, M ≥ 4 and N�M.1 Let

θθθ = [θθθ 1, . . . ,θθθ i, . . . ,θθθ N+M] denote the locations of all nodes, with θθθ i = [xi,yi,zi]

being the coordinates of node i, and ΘΘΘi be the respective random variable. The

nodes communicate wirelessly and it is assumed that the maximum communication

range for each node is rmax. Time is slotted and time slots are denoted by the time

index superscript (t) for t = 1, . . . ,∞.

A network of such can be viewed as a graph. The wireless nodes are repre-

sented by the set V of vertices of the graphical model. If two nodes, say node i and

node j, are within range, there will be an edge e ji ∈ E , connecting the two nodes.

1Typically the number of agents is assumed much larger than the number of anchors [9].
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Figure 3.1: Example of a wireless sensors network. Agents are represented by lowercase
“a” (red circles), anchors are represented by capital “A” (green circles) and
branches (or edges) correspond to communication between them.

The set of all nodes j with edges e ji to node i is denoted as the neighbourhood ne(i).

A simple network graph example with agents, represented as “a” labelled red circles

and anchors, represented as “A” labelled green circle, is depicted in Fig. 3.1.

Let Pr(t)(ΘΘΘi) be the pdf, i.e., the belief that node i has about its location at time

t. Initially, the belief for the agents can be an information-less uniform pdf over the

grid, while the anchors’ pdfs would be spherical multivariate Gaussians with mean

being their exact locations and a covariance matrix of σ2
a III for some noise power σ2

a .

Nodes can measure a corresponding distance estimate via ranging. For exam-

ple, node i receiving a message from node j at time slot t can derive a noisy estimate

r(t)j→i of the distance between them. It is assumed that the measurement taken from

node i receiving a message from node j and the one from node j receiving a mes-

sage from node i are the same and as a result, the direction of the message plays no

role, i.e., r(t)j→i = r(t)i→ j = r(t)ji . In practice, distance measurements will differ and the
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nodes can share their measurements and use the average. We assume that the nodes

use ToA distance measurements, as in [24] and we define the random variable r ji as

r ji = d ji +η ji ≡ ‖θθθ i−θθθ j‖+η ji, (3.1)

where η ji is a noise factor following a Gaussian distribution with variance Ke‖θθθ i−
θθθ j‖β ji , in which Ke is a proportionality constant capturing the combined physical

layer and receiver effect [22], and β ji denotes the path loss exponent. In the case

of line-of-sight (LoS) η ji is assumed to have zero mean, and β ji = 2, i.e., η ji ∼
N (0,Ke‖θθθ i− θθθ j‖2). Alternatively, in the case of NLoS, the Gaussian random

variable has a positive mean b ji � s2
ji, where b ji ∼ U (

d ji
3 ,

2d ji
3 ) (i.e., a uniform

distribution) and β ji = 3, i.e., η ji ∼N (b ji,Ke‖θθθ i−θθθ j‖3).

Let Pr(t)(R ji = r(t)ji |ΘΘΘi,ΘΘΘ j) be the Conditional Probability Distribution Func-

tion (cpdf) of observing distance r(t)ji at time slot t, given the location beliefs

Pr(t)(ΘΘΘi) and Pr(t)(ΘΘΘ j) for node i and node j, respectively. Assuming statistically

independent noise and statistically independent priors between nodes, the joint pdf

of the whole probabilistic model with ϑϑϑ , ({∀ΘΘΘi ∈ V }) and RRR , ({R ji}∀i, j∈E ), for

a given time slot t, is found as

(t)
Pr(ϑϑϑ ,RRR) =

(t)
Pr(RRR|ϑϑϑ)

(t)
Pr(ϑϑϑ) = ∏

i, j∈E

(t)
Pr(R ji = r ji|ΘΘΘi,ΘΘΘ j) ∏

ΘΘΘi∈V

(t)
Pr(ΘΘΘi). (3.2)

Our aim is to find the most probable position for every node given the observed

positions and prior information, i.e., find the maximum a posteriori (MAP)

ϑ̂ϑϑ = argmax
ϑϑϑ

(t)
Pr(ϑϑϑ |RRR = rrr), (3.3)

where rrr is a vector representing all the observed distances. To accomplish this,

we employ a message passing algorithm [53], in which information from the graph

can be summarized in local edge information, allowing for an efficient distributed

algorithm, despite its lack of guaranteed optimal solution or even convergence for

the given random graph geometry.
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3.2.1 Belief Message Passing

We model the network as a Bethe cluster graph, cf. Section 2.2.5, and we apply

a loopy belief message passing algorithm. Let the lower factors, which represent

the node beliefs, be composed of univariate potentials ψ(ΘΘΘi), whereas the upper

region, which represents the interactions between the node variables is composed

of “large” factors equal to ψ(ΘΘΘi,ΘΘΘ j,r ji). An example of the network in Fig. 3.1 is

shown in Fig. 3.2. The lower factors are set to the initial node beliefs for the given

time slot (t), and the upper factors to the corresponding cpdfs, i.e.,

ψ(ϑϑϑ i) =
(t)
Pr(ΘΘΘi), (3.4)

ψ(ΘΘΘi,ΘΘΘ j,r ji = r(t)ji ) =
(t)
Pr(r ji = r(t)ji |ΘΘΘi,ΘΘΘ j). (3.5)

Messages are then passed between nodes for multiple iterations until the node

beliefs have converged, or a predetermined number of iterations has passed. We

define the message passing equation (2.17), from node j to node i at BP iteration

(s+1) by

δ
(s+1)
j→i (ΘΘΘi) =

∫
ψ(ΘΘΘi,ΘΘΘ j,R ji = r(t)ji )

b(s)j→i(ΘΘΘ j)

δ
(s)
i→ j(ΘΘΘ j)

dΘΘΘ j, (3.6)

where r(t)ji is the observed value of the distance between the nodes, at time slot t.

Intuitively, a message δ
(s+1)
j→i (ΘΘΘi) is the belief that node j has about the location of

node i and is a function of ΘΘΘi. After it calculates all the incoming messages, each

node updates its belief by (2.15), i.e.

b(s+1)
i (ΘΘΘi) = λψ(ΘΘΘi) ∏

k∈ne(i)
δ
(s+1)
k→i (ΘΘΘi)+(1−λ )b(s)i (ΘΘΘi), (3.7)

in which, λ ∈ [0,1] is a dampening factor used to facilitate convergence, c.f. [53].2

The algorithm continues until convergence or a set number of iterations smax has

elapsed. At that point, the belief that represents an approximation to the true

2Dampening is not required for 2D localisation, but simulations show that it helps in 3D locali-
sation where the increased ambiguity results in oscillating behaviours more often.
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marginal, for each node is

p(t+1)(ΘΘΘi) = bs
i (ΘΘΘi). (3.8)

This can be thought of as a process of merging every node’s belief about a specific

node’s location to get the best estimate. This message passing analysis naturally

leads to a distributed cooperative system because each node is only required to do

calculation concerning its local factors and messages.

θ0, θ4, r0,4 θ0, θ5, r0,5 θ0, θ6, r0,6

θ2, θ9, r2,9

θ0, θ1, r0,1 θ0, θ2, r0,2

θ6, θ9, r6,9

θ4, θ9, r4,9

θ0, θ9, r0,9

θ7, θ8, r7,8

θ4, θ5, r4,5 θ4, θ6, r4,6

θ5θ4 θ7θ6θ1θ0 θ3θ2 θ9θ8

θ2, θ6, r2,6θ2, θ4, r2,4 θ2, θ5, r2,5

θ1, θ2, r1,2 θ1, θ5, r1,5θ1, θ4, r1,4

θ1, θ7, r1,7

θ1, θ6, r1,6

θ5, θ7, r5,7θ5, θ6, r5,6

θ5, θ8, r5,8

Figure 3.2: A Bethe cluster graph of the network in Fig. 3.1.

A major issue in calculating the messages (3.6) and (3.7) is the computational

cost. If ΘΘΘi can take one of D discrete values, then the messages and marginals in the

3D case will be represented by dimensional vectors of cardinality D. The integral in

(3.6) becomes a matrix-vector product and this in general requires O(D2) operations

[62], making the problem intractable because the dimensions of the grid and the

resolution of the required localisation will increase quadratically. This makes the

use of approximation methods necessary.

In the literature, various methods have been proposed, such as particle filter-

ing methods [63, 64], Monte Carlo methods [16], and the more general NBP, e.g.,

[57, 15, 65]. They try to approximate the cpdf by a Gaussian mixture of particles,

achieving a complexity of O(L2), where L denotes the number of particles, and

L� D. If the density of the number of particles is to remain approximately the

same in the 3D case as in 2D, then the number of particles will increase by a factor
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of 2d ji (d ji being the exact distance). This phenomenon is known as the curse of

dimensionality [66]. This would require finding the product of large Gaussian mix-

tures, which is already an expensive operation and can quickly become prohibitively

expensive. Also it requires a considerable amount of overhead, since the parameters

for all the components of each particle message need to be communicated. Another

important issue is the convergence of the algorithm, although this thesis does not

directly tackle this issue. Due to the loopy characteristics of the graph, beliefs of

factors will move around closed loops, creating opportunities for some factors to

overpower their beliefs and oscillations to occur in the graph, essentially affecting

the convergence. In practice, most nodes would actually converge to a local opti-

mum with only a few nodes oscillating unable to converge [53]. In the next section,

we will present HEVA to overcome those critical issues.

3.3 HEVA

3.3.1 Overview

HEVA is a hybrid method that combines elements of both parametric and non-

parametric approximations for optimizing the local computational cost at each node,

the communication overhead, and the convergence speed. In HEVA, the factors of

ψ(ΘΘΘi) are first approximated by a Gaussian mixture, while the factors of the cpdfs

ψ(ΘΘΘi,ΘΘΘ j,R ji = r ji) are approximated by weighted particles with a spherical Gaus-

sian kernel density. Two novel filters are proposed here. The first filter provides

NLoS mitigation by removing the messages with positive bias characteristics in

their respective ranging measurements. The second one is designed to intelligently

decrease the number of particles in each mixture in order to minimize calculations

and is defined as an ellipsoid particle filter which utilizes the intuition that the loca-

tion of a node will be close to the intersections between two belief cpdfs. Finally,

we use MIS to calculate the product in eq. (3.7) and we use VB to obtain the pa-

rameters of the Gaussian mixture ψ(ΘΘΘi). In so doing, only the parameters of the

Gaussian mixture distribution require transmission.

The algorithm is summarized in Algorithm 1. It begins by all nodes broadcast-
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Algorithm 1 HEVA

1: Initialize beliefs p(0)(ΘΘΘi)∀i ∈ Nodes
2: for t = 0 to T do
3: for all i ∈ Nodes do
4: Broadcast current belief Pr(t)(ΘΘΘi)
5: for all j ∈ ne(i) do
6: Collect distance estimates r(t)ji
7: end for
8: end for
9: Initialize ψ(ΘΘΘi) = Pr(t)(ΘΘΘi)

10: Initialize ψ(ΘΘΘi,ΘΘΘ j,R ji = r ji) = Pr(t)(R ji = r(t)ji |ΘΘΘi,ΘΘΘ j)
11: repeat
12: for all i ∈ Nodes do
13: for all j ∈ ne(i) do
14: Receive b(s)j (ΘΘΘ j)

15: if b(s)j (ΘΘΘ j) passes NLoS message filter (Algorithm 2) then

16: Calculate δ
(s+1)
j→i (ΘΘΘi) using Spherical Gibbs sampling (Algorithm

3)
17: end if
18: end for
19: Calculate b(s+1)

i (ΘΘΘi) using the proposed ellipsoid particle filter (Algo-
rithm 4) and VB clustering

20: Check for convergence
21: Broadcast b(s+1)

i (ΘΘΘi)
22: end for
23: s = s+1
24: until all messages have converged or the maximum number of iterations is

reached
25: Update belief p(t+1)(ΘΘΘi), using (3.8)
26: end for
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ing their initial beliefs. In the first iteration, the agents have a uniform distribution

and hence skip transmitting their beliefs, as it would not add any useful informa-

tion. As more iterations pass, agents begin to have non-uniform beliefs about their

locations and start to transmit. After each agent receives the messages (3.7) from

their neighbours, the next step is to pass them from the NLoS mitigation filter.

3.3.2 NLoS Mitigation Filter

In order to understand the effect of the NLoS mitigation filter, it is important to

understand the impact of NLoS propagation in ToA measurements. ToA measure-

ments are affected by positive bias and removing biased messages does not affect

the CRLB of the localisation error, c.f. [26]. Assuming a simple 2D example with

three anchors communication with one agent, it is easy to visualize that in the case

of no noise, the incoming message “ring”-shaped pdfs will combine to a single

Gaussian centred on the intersection of the messages. Alternatively, if one anchor is

NLoS, then due to the positive bias, the measured distance estimate will account to

a larger radius in the “ring”-shaped pdf message skewing the centre of the Gaussian

further away from the intersection, and possibly creating new components in the

Gaussian mixture.

To mitigate that, the proposed NLoS message filter checks all incoming mes-

sages in the following manner. Each node compares the distance between itself

and the corresponding neighbour computed using the current beliefs of both nodes

with the range estimate. If it is larger than the estimate, the corresponding marginal

(3.6) will be calculated and used in estimating the product (3.7); otherwise it will be

dropped. The intuition behind is simple. As stated in Section 3.2, NLoS measure-

ments are affected by a positive bias, which means that they will be greater than the

real estimates. Let the estimated position of node i be θ̂θθ
(t)
i , that of node j be θ̂θθ

(t)
j ,

and the respective distance measurement be r(t)ji . As a result, if ‖θ̂θθ (t)
i − θ̂θθ

(t)
j ‖ ≥ r(t)ji ,

then the corresponding messages will be calculated as normal; otherwise, the mes-

sage from node j will be dropped.

To take full advantage of the information in the distribution, the follow-

ing idea is proposed. Firstly, we draw L weighted samples {w(l)
j ,θθθ

(l)
j }L

l=1 from
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b(s)j (ΘΘΘ j) ∀ j ∈ ne(i) and another L weighted samples {w(l)
i ,θθθ

(l)
i }L

l=1 from ψ(ΘΘΘi).

Given the samples from the belief pdfs in {w(l)
j ,θθθ

(l)
j }
|Ni|,L
j=1,l=1 and {w(l)

i ,θθθ
(l)
i }L

l=1, the

convex hull of each node set is calculated and the maximum distance between the

two convex hulls of node i and any of its neighbours, node j, is compared with the

distance measurement r(t)ji . This is done by using the maxdist algorithm in [67]. For

j ∈ ne(i), if

maxdist
(

convex hull({w(l)
i ,θθθ

(l)
i }L

l=1),

convex hull({w(l)
j ,θθθ

(l)
j }L

l=1)
)
≥ r(t)ji , (3.9)

then the message is kept and added to the set Qi; otherwise, it is dropped. Note

that Qi will hold only the messages that will be used in subsequent calculations

to reduce the complexity. By using this condition, NLoS messages will be used

in the first iterations of the algorithm where there is not enough information about

the belief of the nodes, but in the later iterations, NLoS messages will tend to be

dropped. It should be noted that no effort is made to identify if the message is

NLoS or not by using any NLoS identification technique. This means that there is a

probability that both LoS message could be ignored and NLoS message might pass

the filter. The NLoS message filter algorithm is summarized in Algorithm 2.

Algorithm 2 NLoS message filter

Require: non-uniform b(s)i→∀ j∈ne(i)(ΘΘΘi)

1: Sample {w(l)
i ,θθθ

(l)
i }L

l=1 ∼ bi→∀ j∈ne(i)(ΘΘΘi)
2: Initialize Qi to empty
3: for all j ∈ ne(i) do
4: Sample {w(l)

j ,θθθ
(l)
j }L

l=1 ∼ b(s)j→i(ΘΘΘ j)

5: CH i=convex hull({w(l)
i ,θθθ

(l)
i }L

l=1)

6: CH j=convex hull({w(l)
j ,θθθ

(l)
j }L

l=1)

7: if maxdist(CH i,CH j)> r(t)ji then

8: Add {w(l)
j ,θθθ

(l)
j }L

l=1 to Qi
9: end if

10: end for
11: return Qi
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3.3.3 Filtering Operation

The next step of Algorithm 1 HEVA is for each node, say node i, to compute the re-

ceived messages δ
(s+1)
j→i (ΘΘΘi) from its neighbours, where δ

(s+1)
j→i (ΘΘΘi)) is the product

of the distance cpdf with the neighbour location belief integrated over the neigh-

bourhood variable ΘΘΘ j, for BP iteration (s+1), i.e.,

δ
(s+1)
j→i (ΘΘΘi) =

∫
ψ(ΘΘΘi,ΘΘΘ j,R ji = r(t)ji )b

(s)
j→i(ΘΘΘ j)

δ
(s)
i→ j(ΘΘΘ j)

dΘΘΘ j (3.10)

with ψ(ΘΘΘi,ΘΘΘ j,r ji = r(t)ji ) = Pr(t)(r ji = r(t)ji |ΘΘΘi,ΘΘΘ j). Although node i has received

the beliefs b(s)j (ΘΘΘ j) and obtained the measurements r(t)ji for deriving the cpdf, for

complexity reasons, this will be done by using particle filtering. Specifically, given

the set of particles Qi, for each subset j of particles {w(l)
j ,θθθ

(l)
j }L

l=1, we calculate a

set of parameters

G j→i ,
{

w(l)
j→i,µµµ

(l)
j→i,ΣΣΣ j→i

}L

l=1
(3.11)

that approximate

δ
(s+1)
j→i (ΘΘΘi)'∑

l
w(l)

j→iN (ΘΘΘi; µµµ
(l)
j→i,ΣΣΣ j→i), (3.12)

where w(l)
j→i is a weighting factor and N (ΘΘΘi; µµµ

(l)
j→i,ΣΣΣ j→i) refers to a Gaussian dis-

tribution in ΘΘΘi with mean vector µµµ
(l)
j→i and covariance matrix ΣΣΣ j→i. As such, the

estimated lth sample θθθ
(l)
i will be close to the surface of a sphere with radius r(t)ji

around the sample θθθ
(l)
j and the mean vector for the mixture δ

(s+1)
j→i (ΘΘΘi) is given by

µµµ
(l)
j→i = θθθ

(l)
j + r(t)ji +ν

l


sin(ρ(l))cos(φ (l))

sin(ρ(l))sin(φ (l))

cos(ρ(l))

 , (3.13)

where φ (l) ∼ U [0,2π),ρ(l) ∼ U [−π

2 ,
π

2 ] and ν(l) ∼ pν , in which U (· · ·) denotes

a uniform distribution and pν is the noise pdf, with a standard deviation of σν . In

addition, a covariance matrix ΣΣΣ j→i is assigned to all Gaussians (independent of l)
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and is calculated as

ΣΣΣ j→i =
1

5.991

4σν

(
3(r(t)ji )

2 +4σ2
ν

)
L


2
3

I. (3.14)

The analysis leading to the above expression is given in the appendix. On the other

hand, the weight of the lth sample is given by

w(l)
j→i ∝

w(l)
j

δ
(s)
i→ j(θθθ

(l)
j )

. (3.15)

This can be considered as the belief pdf of node j with the influence of node i from

the previous iteration being removed (i.e., δ
(s)
i→ j(ΘΘΘ j)), in order to avoid overpow-

ering of a node’s belief due to loops [57]. Alternatively, we can concentrate the

samples taking advantage of the angle in the same manner as Parsimonious NBP,

c.f. [57]. We call this this variation of HEVA as Parsimonious HEVA, or PHEVA.

After calculating the approximations of all cpdfs for all the incoming mes-

sages, we add all sets G j→i to the superset Gi. This set can be viewed as |ne(i)|
Gaussian mixtures with L components each, and will be used to calculate the prod-

uct of all incoming beliefs with the belief of node i (3.7). The steps are summarized

in Algorithm 3. Note that the terms “component” and “particle” will be used inter-

changeably thereafter.

Algorithm 3 Spherical Gibbs Sampling
1: Initialize Gi as an empty set
2: for all j ∈Qi do
3: Sample {φ (l)}L

l=1 ∼U [0,2π]

4: Sample {ρ(l)}L
l=1 ∼U

[
−π

2 ,
π

2

]
5: Sample {ν(l)}L

l=1 ∼N (0,σ2
ν )

6: Calculate the mean vector, using (3.13)
7: Calculate the covariance matrix ΣΣΣ j→i, using (3.14)
8: Calculate the weights w(l)

j→i, using (3.15)

9: Add {w(l)
j→i,µµµ

(l)
j→i,ΣΣΣ j→i}L

l=1 to Gi
10: end for
11: return Gi
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3.3.4 Product Operation: Gaussian Mixture Product Calcula-

tion

A commonly used approach to prevent the huge computational cost for evaluating

the product of Gaussian mixtures is the use of the MIS technique [55]. As each

Gaussian mixture in the product (3.7) has L components, the computational cost

will be proportional to L2 [55]. Unfortunately, even in the case of MIS, the cost can

become prohibitive in the 3D case, because of the increased number of components

per mixture, as discussed in Section 3.1. To avoid this, we propose the use of a

novel filter on the particles of the incoming messages, minimizing the total number

of particles in MIS and hence the number of calculations, thereby making MIS

feasible.

The filter takes advantage of the intuition that the relevant particles should be

close to the intersection of the “sphere”-shaped particle sets. This inter-sectional

area can be enclosed inside an ellipsoid, and therefore the filter is referred to as an

ellipsoid particle filter. Fig. 3.3 shows a 2D example of the filter. As the majority

of the particles are not near the ellipsoid, and in no way near the intersections, they

can be safely removed to avoid a huge amount of unnecessary computations.

The proposed ellipsoidal filter is a “soft” decision probabilistic filter. Instead of

simply removing all particles that are outside the filter area, it weights them based on

their Euclidean distance from the ellipsoid and then resamples the V = αL particles

from each message, where 0 < α < 1. This gives the filter a greater flexibility

allowing to consider for situations, where the real location is further away from the

intersection due to high noise. We define a box-shaped volume as shown in Fig. 3.3,

with the edges defined by the coordinates as



xmin = max
j
(min

l
(x(l)j )),

ymin = max
j
(min

l
(y(l)j )),

zmin = max
j
(min

l
(z(l)j )),

and



xmax = min
j
(max

l
(x(l)j )),

ymax = min
j
(max

l
(y(l)j )),

zmax = min
j
(max

l
(z(l)j )).

(3.16)

From the superset Gi, we select all the particles that reside inside the box. From
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Box shaped Volume

Figure 3.3: A 2D example showing the ellipsoidal filter in operation. The mean and co-
variance for the ellipsoid are calculated based on the particles inside the box,
and then resampling with replacement is done for each message proportional
to their distance from the ellipsoidal area.

these particles, we calculate the mean vector µµµbox and the covariance matrix ΣΣΣbox.

Then we calculate the ellipsoid weight for every particle {w(l)
j→i,µµµ

(l)
j→i,ΣΣΣ j→i}L

l=1 in

every message set G j→i, by using the mean of the particle in the following function

and normalize the weights for each message set. Mathematically, that is,

w(l)
e,µµµ j→i

= wellipsoid(µµµ
(l)
j→i) ∝ exp

(
−γ

2

(√
(µµµ

(l)
j→i−µµµbox)

T ΣΣΣ
−1
box(µµµ

(l)
j→i−µµµbox)−1

)2
)
,

(3.17)

where the variable γ is defined as the filter precision, and it controls the steepness

of the filter. We add the relevant weight to every element in the superset Gi:{{
w(l)

e,µµµ j→i
,w(l)

j→i,µµµ
(l)
j→i,ΣΣΣ j→i

}L

l=1

}
j∈Ni

. (3.18)

Afterwards, V particles are randomly sampled with replacement, from each
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message set G j→i, according to their weights (3.17), giving a new particle set

{w(v)
j→i,µµµ

(v)
j→i,ΣΣΣ

(v)
j→i}Vv=1 that is added to the set Ji. The ellipsoid particle filter is

summarized and formally described in Algorithm 4. Additionally, we draw V

Algorithm 4 ellipsoid particle filter

1: Given all particles {w(l)
j→i,µµµ

(l)
j→i,ΣΣΣ j→i}L

l=1 ∈ Gi, find (3.16)

2: Calculate box borders based on

xmin xmax
ymin ymax
zmin zmax


3: Calculate µµµbox = mean(µµµ l

j→i) ∀ µµµ l
j→i inside box

4: Calculate ΣΣΣbox = covariance(µµµ l
j→i) ∀ µµµ l

j→i inside box
5: Weight all samples using (3.17)
6: Initialize Ji to be an empty set
7: for all j ∈Qi do
8: Re-sample from {w(l)

j→i,µµµ
(l)
j→i,ΣΣΣ j→i}L

l=1 proportionally to their weights

{w(l)
e,µµµ j→i

}L
l=1, aL times with replacement.

9: Add {w(l)
j→i,µµµ

(l)
j→i,ΣΣΣ j→i}aL

l=1 to Ji
10: end for
11: return Ji

samples from ψ(ΘΘΘi) to complete the calculation (3.7). Essentially, we have a new

product of Gaussian mixtures, but with V components, instead of L. In order to

compute the product, we employ MIS [55]. From each message j ∈ ne(i), we draw

V samples θθθ
(v)
j and weight them by

w(v)
j =

ψ(θθθ
(v)
j )∏ j∈ne(i) δ

(s+1)
j→i (θθθ

(v)
j )

ψ(θθθ
(v)
j )+∑ j∈ne(i) δ

(s+1)
j→i (θθθ

(v)
j )

1

wellipsoid(θθθ
(v)
j )

. (3.19)

It should be noted that we divide by the weight wellipsoid(θθθ) to cancel out the

asymptotic effect of drawing samples from the ellipsoid particle filter. After

that, L particles are sampled with replacement from the (|ne(i)|+ 1)V samples

{w(v)
j ,θθθ

(v)
j }
|ne(i)|+1,V
j=1,v=1 proportional to the weights w(v)

j , to give {θθθ (l)}L
l=1. As we

keep only V particles for each incoming message, the computational cost can be

drastically reduced, while the computational cost of weighting all the particles is

linear with the total number of particles, having complexity of O(V 2(|ne(i)|+ 1))

compared to the O(L2(|ne(i)|+1)) if using all components. The MIS algorithm is
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summarized in Algorithm 5.

Algorithm 5 MIS
1: for all j ∈Ji do

2: Initialize pi→ j(θθθ i) =
aL
∑

k=1
w(k)

j→iN
(

θθθ i,µµµ
(k)
j→i,ΣΣΣ j→i

)
3: end for
4: Initialize qi(θi) =

1
|Ji| ∑

j′∈Ji

pi→ j′(θθθ i)

5: Draw KaL samples {θθθ (n)
i }KaL

n=1 ∼ qi(θθθ i), where K > 1

6: Weight them by w(n)
i =

∏

j′∈Ji

pi→ j′(θθθ
(n)
i )

qi(θθθ
(n)
i )

7: Re-sample from {w(n)
i ,θθθ

(n)
i }KaL

n=1 proportionally to their weights, aL times with
replacement.

As such, we have a particle approximation of b(s+1)
i (θθθ i). From this current

belief, we randomly choose λL samples and (1−λ )L samples from the calculated

belief in the previous iteration, in order to estimate the dampened belief as in (3.7).

Given the set of the L particles that approximate b(s+1)
i (θθθ i), the final step is to

convert the non-parametric kernel representation of the belief in a parametric form

using a Gaussian mixture with parameters πππ = (π1, . . . ,πK), mean vectors {µµµk}K
k=1

and covariance matrices {ΣΣΣk}K
k=1 so that

δ
lower→upper
i→∀ j (θθθ i) =

K

∑
k=1

πkN (θθθ i; µµµk,ΣΣΣk), (3.20)

where K is regarded as the number of clusters. The optimization of the parameters

is addressed in the next subsection.

3.3.5 Variational Bayes

VB is a Bayesian learning algorithm that finds the parameters that best fit an ap-

proximate distribution to a dataset [18]. The idea is similar to the well-known EM

algorithm discussed in Chapter 2, but with the major difference that the parameters

of the mixtures are considered themselves stochastic variables derived from prior

distributions.

The advantage of this is threefold. First, singularity issues encountered in EM
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can be completely avoided. Also, there is no issue of fitting too many clusters, as

even if a large number of initial clusters are initially considered, the superfluous

ones will degenerate to zero through self-optimization. This allows the algorithm to

start with a large K that will decrease as the algorithm progresses and more informa-

tion received resolves ambiguities. Essentially, this gives a compromise among the

message size, computational cost and information loss. Finally, the optimal number

of clusters can be obtained without using techniques such as cross-validation. For

more information, interested readers are referred to [18, Chapter 10]. These prior

pdfs are chosen to be conjugate priors of the corresponding distributions in order to

facilitate the derivations.

In VB, the parameters in (3.20) are considered stochastic and their priors are

a Dirichlet distribution for πππ and a Gaussian-Wishart distribution for µµµk,ΛΛΛk, where

ΛΛΛk = ΣΣΣ
−1
k . That is,

Pr(πππ) = Dir(πππ|aaa) =C(aaa)
K

∏
k=1

π
ak−1
k (3.21)

Pr(µµµ,ΛΛΛ) = Pr(µµµ|ΛΛΛ)Pr(ΛΛΛ) (3.22)

=
K

∏
k=1

N (µµµk|mmmk,(βkΛΛΛk)
−1)W (ΛΛΛk|WWW k,νk), (3.23)

where aaa = {a1, . . . ,aK} can be interpreted as the effective prior number of obser-

vations associated with each component, WWW k is a positive definite matrix, and νk

denotes the number of degrees of freedom of the distribution for the kth cluster.

The parameters of the priors are called hyper-parameters. In the rest of the sec-

tion the steps of the algorithm are presented, but for a complete derivation of the

algorithm, see [18].

The method to optimize the parameters in (3.20) is iterative and cycles between



3.3. HEVA 81

two steps, similar to the EM steps, with some initialization of the hyper-parameters

ak = a0 ∀k, (3.24)

βk = β0 ∀k, (3.25)

mmmk = mmm0 ∀k, (3.26)

WWW k =WWW 0 ∀k, (3.27)

νk = ν0 ∀k. (3.28)

In the first step, referred to as the E-step, the parameters of the distributions are

considered constant and the responsibilities of each component (cluster k) for each

sample (particle θθθ l obtained in Section III-D), denoted as rlk, are calculated. Very

briefly, rlk indicates how probable it is for particle l to belong to cluster k. In more

detail, the E-step calculates

ln Λ̃ΛΛk =
F

∑
i=1

ψ

(
νk +1− i

2

)
+F ln2+ lndet(WWW k), (3.29)

ln π̃k = ψ(ak)−ψ

(
K

∑
k=1

ak

)
, (3.30)

rlk ∝ π̃kΛ̃ΛΛ
1
2
k exp

{
−F

2
− νk

2
(θθθ l−mmmk)

TWWW k(θθθ l−mmmk)

}
, (3.31)

where ψ(·) is the digamma function, and F is the number of features. In 3D cases,

F = 3 but in 2D, F = 2.

In the M-step, given the responsibilities rlk, we recalculate the parameters for
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maximizing the log-likelihood by

Lk =
L

∑
l=1

rlk, (3.32)

θ̄θθ k =
1
Lk

L

∑
l=1

rlkθθθ l, (3.33)

SSSk =
1
Lk

L

∑
l=1

rlk(θθθ l− θ̄θθ k)(θθθ l− θ̄θθ k)
T , (3.34)

ak = a0 +Lk, (3.35)

βk = β0 +Lk, (3.36)

mmmk =
1
βk

(β0mmm0 +Lkθ̄θθ k), (3.37)

WWW−1
k =WWW−1

0 +LkSSSk +
β0Lk

β0 +Lk
(θθθ l−mmm0)(θθθ l−mmm0)

T , (3.38)

νk = 1+ν0 +Lk. (3.39)

The algorithm continues to iterate between the E- and M-steps until either the

parameters or the log-likelihood converge to meet a certain precision. Finally, the

values of the optimized parameters in (3.20) are then chosen as the expectations of

the corresponding distributions, i.e.,

πk =
ak

K
∑

k=1
ak

, (3.40)

µµµk = mmmk, (3.41)

ΣΣΣk = (νkWWW k)
−1. (3.42)

It is well understood that VB has the advantage of achieving a high log-

likelihood quickly, and gives a good parametric approximation of Pr(θθθ i). In HEVA,

the distribution consists of a relatively large number of components evenly spread

out in the area already calculated in for the ellipsoid particle filter. There are two

advantages. In case there is a large space of possible locations, the large number of

components will provide flexibility for the approximation to fit well with the data.
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In addition, if there is little or no ambiguity, most of the components degenerate to

zero allowing for a small Gaussian mixture (i.e., small K).

3.3.6 Computational Convergence

A cluster graph is not guaranteed to achieve the optimal solution, but if the running

intersection property and the family preservation property are held [53], typically

most clusters will converge to a local optimum with just a few clusters oscillating

unable to achieve convergence. HEVA uses a dampened BP message passing, which

empirically helps even the oscillating nodes converge to a local optimum. An added

complexity is inserted in the algorithm because of the use of VB. For this reason,

it is important to explicitly define a convergence criterion. As location beliefs are

approximated by Gaussian mixtures, Kullback-Leibler Divergence (KLD) between

the belief of the previous and present iterations is calculated. If the difference is

below a prescribed threshold, the node is said to have converged to a solution. As

there is no easy way to calculate the KLD between two Gaussian mixtures, the

approximation method proposed in [68] is used.

3.3.7 Complexity

The complexity of HEVA is dominated by three processes: (1) the filtering opera-

tion, (2) the product operation and (3) the VB algorithm, i.e., the clustering opera-

tion. In order to analyse the complexity, we let:

• |ne(i)| the number of incoming messages to a specific node,

• L the number of drawn particles,

• α the ratio of particles kept in the product calculation,

• S the number of components in the Gaussian mixture,

• F the number of features,

• IVB the maximum number of iterations VB will run,

• IHEVA the number of iterations HEVA will run.
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At every iteration of the algorithm, each node first draws particles from each

incoming message, namely, the filtering operation, an operation that scales with the

number of neighbours, and the number of drawn particles (therefore scales with

complexity L|ne(i)|F). Then the samples are passed through the ellipse function

and every particle is weighted. Thus, this operation scales with L|ne(i)|F . The next

step is to draw αL samples for each message with replacement, with a complexity

of αL|ne(i)|. Finally, the MIS algorithm is used to calculate the product. This

operation’s complexity scales with (αL)2|ne(i)|F [55]. Finally, a parametric form

is found with VB, an operation that scales with αLSIVBF3 [18]. The computational

complexity of the above operations is summarized in Table 3.1.

Next we compare HEVA with various alternative algorithms used for dis-

tributed cooperative localisation. In NBP and its non-parametric variants, the

squared L factor in calculating MIS makes the product operation (3.7) compu-

tationally dominate the algorithm. As such, the complexity cost is bounded by

O(L2|ne(i)|F). NBP variations like Parsinomius Nonparametric BP (P-NB) [57]

and Box Nonparametric BP (Box-NBP) [65] aim to decrease the number of parti-

cles L required, by focusing the energy mass of the pdfs, but the computational cost

remains dominated by (3.7). Similarly they are also computationally bounded by

O(L2|ne(i)|F).

In HEVA, we make α small to decrease the computational cost of the product

operation. By choosing a suitably low α , the decrease in computational cost will

be (αL)2

L2 ⇒ α2. For example, if α = 0.2, there will be more than 96% decrease

in complexity for the message product operation. Essentially this ameliorates the

bottleneck of the product operation. This lowers the complexity bound of HEVA

by almost an order of L approaching approximately O(L|ne(i)|F), if one chooses

α2 ≈ 1
L . Finally, for Parsinomius HEVA (PHEVA), as will be shown in the sequel,

the focused sampling provides betters results for a given number of particles L,

albeit at a computational cost.

In Fig. 3.4, we present the average simulation time for a 3D network with 25

nodes, and average connectivity 4.9 for different numbers of L. Computation was
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HEVA

PHEVA

Box-NBP

Figure 3.4: The average time versus the number of particles when the average node con-
nectivity is 4.9.

done on an Intel core 2 duo at 2.33GHz. All algorithms were implemented in python

using the numpy and scipy libraries [69]. For each scenario, 100 iterations were run

and the average time was calculated. As can be seen, for NBP, P-NB and Box-

NBP, the processing time all increases quadratically with L, while HEVA is much

smoother, and almost approaches a linear increase. In contrast, P-NB has a much

steeper increase in processing time than HEVA, providing a compromise between

the speed of HEVA, for slightly better accuracy. Finally, it can be seen that IPPM is

much faster than the aforementioned family of belief message passing algorithms,

but at a higher error rate. IPPM does not use particles, thus the mean time does not

vary with the number of particles. Unfortunately, this provides lower accuracy and

requires a larger communication overhead, in order to decide on the initial values

before the optimization starts, as will be discussed in Section 3.3.8. The complexity
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Table 3.1: Computational complexity of HEVA steps for a each agent (say the i-th)on one
iteration

Computation Cost
The following operations are repeated IHEVA times

Draw samples from messages L|ne(i)|F
Weight using Ellipse function L|ne(i)|F

Draw weighted samples with replacement αL|ne(i)|
Compute particle product (αL)2|ne(i)|F

Run VB αLSIVBF3

costs of the various algorithms are given in Table 3.2.

Table 3.2: Computational complexity for each agent (say the i-th) on one iteration of dif-
ferent algorithms

Algorithm Complexity Typical Values
NBP O(L2(|ne(i)|) L = 104−106

PNBP O(L2(|ne(i)|) L = 102−103

Box-NBP O(L2(|ne(i)|) L = 102−103

HEVA O((aL)2|ne(i)|) L = 102−103

PHEVA O((aL)2|ne(i)|) L = 102−103

IPPM O(|ne(i)|) –

The average computational time for HEVA, and other algorithms is provided

in Fig. 3.5 for different sizes of neighbouring nodes. The same experiment was

conducted but with varying communication range R, while keeping the number of

particles constant L = 300, hence increasing the average number of neighbours. All

techniques increase linearly with time, but the gradient of HEVA is much smaller

0.27s/neighbour, compared to 0.77s/neighbour for NBP, scaling much better when

the average number of neighbours increases. The steepness that can be seen in the

graph for less than three neighbours on average can be explained by the lack of

computations as there are not enough neighbours to localize. The variations of

NBP take similar time to NBP but require slightly more computations as they also

need to calculate the angles of the samples.

In Fig. 3.6, results for the average computational time of NBP and HEVA are

compared with the respective algorithms of adding to NBP one component of HEVA

at a time, for the same 3D scenario as before. First, the new kernel is added, namely



3.3. HEVA 87

PHEVA

HEVA

Box-NBP

Figure 3.5: The average simulation time versus mean node connectivity. Number of parti-
cles is L = 300.

“NBP Sphere Kernel”, decreasing the computational cost slightly. Then the el-

lipsoid particle filter is added, namely “ENBP” or “NBP+EF”, which manages to

decrease the cost considerably. Then if VB is applied, this will actually increase the

computation cost, and finally the NLoS message filter, which relatively keeps the

cost equal to “EVNBP” or “NBP+EF+VB”. It should be noted that as the number

of average neighbours increases the computational time of HEVA decreases relative

to “EVNBP”, as messages will be dropped, from the NLoS message filter.

3.3.8 Communication Overhead

In a distributed algorithm, most of the energy is spent on the local computations

and broadcasting messages to one-hop neighbouring nodes. In the literature focus

is mostly given in the broadcasting part as the energy required for transmission is
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HEVA-Sphere Kernel

EVNBP-Sphere Kernel

ENBP-Sphere Kernel

NBP-Sphere Kernel

NBP-RoT Kernel

Figure 3.6: The average simulation time versus mean node connectivity. Number of parti-
cles is L = 300.

much higher than the energy required for a single floating point operation, c.f. [70].

Following the analysis in [71], we assume that all nodes are uniformly distributed

over a 3-D unit square grid, and all real values are represented in double preci-

sion floating point format (64-bit precision). Hence, the total energy consumed for

communication by any cooperative localisation algorithm can be written as

E(|V |) = b(|V |)h(|V |)e(|V |), (3.43)

where E(·) returns the expectation, b(|V |) denotes the total number of transmit-

ted bits for |V | nodes, h(|V |) is the average number of hops required for trans-

mitting one bit to the destination and e(|V |) is the average amount of energy re-

quired for transmitting one bit over one hop. As all communication is assumed to
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be done only by broadcasting to one-hop neighbours we set h(|V |) = 1. The total

number of real values transmitted in one iteration for one agent is approximately

L(1+ F) for non-parametric algorithms and LVB(1+ F + F2) for HEVA, where

LVB is the average number of non zero components in VB. Therefore, we have that

bNBP(|V |) = O(L(|V |)(1+F)) and bHEVA(|V |) = O(LVB(|V |)(1+F +F2)).

IPPM nodes on the contrary only transmit their point estimate, broadcasting F

real values, which gives bIPPM(|V |) = O((|V |)F). Given a fixed total number of

nodes and ignoring e(|V |), which is assumed the same for all algorithms, we get

the energy cost bounds presented in Table 3.3.

Table 3.3: Energy consumed by all nodes on one iteration of different algorithms

Algorithm Energy Cost Typical Values
NBP O(L((|V |)) L = 104−106

PNBP O(L((|V |)) L = 102−103

BNBP O(L((|V |)) L = 102−103

HEVA O(LVB(|V |)) LVB = 100−101

IPPM O(|V |) –

Note that as was shown in Section 3.3.7, even though simply using ENBP

is computationally cheaper than EVNBP and HEVA, by transmitting the belief in

parametric form using VB. Based on the above analysis, there is a significant de-

crease in communication overhead. Simulations illustrate that for 3D positioning on

average, VB uses LV B' 4 and assuming L= 800, as in Section 3.4, we have approx-

imately a 98% decrease in communication overhead throughout the network. Even

if NBP, used only L = 100 particles, the communication cost of HEVA would still

be approximately 87% less, showcasing the importance of transmitting a parametric

form when minimizing communication throughput is the priority.

The ability to actually achieve consistently better accuracy than NBP and its

variants, with a large decrease in computational cost, ameliorating the bottleneck of

MIS, as well as a large decrease in communication overhead is the main contribu-

tion of HEVA, and important, as it paves the path of practically using probabilistic

techniques in 3D localisation.
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3.4 Simulation Results

In this section, we present simulation results for HEVA for cooperative localisation.

The RMS error is compared with those of NBP and Parsimonious NBP [15] as well

as boxed NBP [65]. In experiments with NLoS edges we compare HEVA with

IPPM [25] and Expectation-Conditional Maximization (ECM) [71].

P-NB is a variant of NBP that uses the angle of particles between iterations to

focus the sampling instead of using a uniform sampling. The equations from [15]

have been extended for the 3D case in order for the simulation to work. BNBP is

another variant that uses information of anchors in order to box the sampling in a

specific area, in the same spirit as HEVA, even though in this case the limit is “hard”,

as all samples inside the box are taken, and all samples outside are dropped. ECM

uses a distributed expectation conditional maximization algorithm while IPPM is a

deterministic optimization method, based on the parallel projection method.

The RMS error can be defined as

εRMS =

√
1
N

N

∑
i=1

E(‖θ̂θθ i−θθθ i‖2), (3.44)

where E(·) denotes the expectation over noise realizations. As a summary, we will

show that HEVA provides consistently better results than NBP and its variants with

a large decrease in computational cost. In the 3D case, the advantages become much

more pronounced, while NBP and its variants become computationally prohibitive.

The biggest advantage of HEVA can be seen in the case of NLoS. We will define

the edge NLoS probability as the probability that any network communication edge

e ji ∈ E is in NLoS for a given experiment, and present results for varying the edge

NLoS probabilities. Finally, the variants of HEVA using EM and K-means will be

shown, compared to our proposal of VB. Note that the higher errors here are due to

the spherical Gaussian distributions for the anchor beliefs that increase the inherent

noise. The important thing to note is the comparison between algorithms.

We consider a three dimensional scenario of a 95× 95× 20m2 grid with N =

125 agents uniformly distributed over the grid and M = 8 anchors placed near the 8
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corners of the grid. The maximum communication range is 15m for every node and

the average node connectivity is | ¯Ni| ≈ 6.1. For each noise level, 300 independent

simulations were run and the RMS error was calculated for all algorithms. Also,

L = 800 and HEVA/PHEVA used a factor α = 0.2.

Initially, a comparison will be made between NBP and the various components

of HEVA. Thus, NBP is compared to NBP with the novel kernel, NBP with the

ellipsoid particle filter, i.e., ENBP, ENBP with VB and finally the complete HEVA.

NBP-Sphere Kernel

NBP-RoT Kernel

ENBP-Sphere Kernel

EVNBP-Sphere Kernel

HEVA-Sphere Kernel

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 3.7: The rms error versus the amount of range estimation noise Ke when the average
node connectivity is 6.1 and no NLoS.

In Fig. 3.7, results are provided to show that an improvement is achieved as

we add the various components of HEVA on NBP. Firstly we see an improvement

by adding the kernel to NBP. It should be noted here, that in the 2D case, there

is no noticeable improvement in the accuracy by using the kernel compared to the

rule of thumb, but a reduction in the computational cost as the kernel covariance



3.4. Simulation Results 92

matrix is simpler to compute than the rule of thumb kernel covariance matrix. Also,

we see that VB does not improve or deteriorate the results so is used purely in

order to convert the pdf to a parametric form. Finally, it is also interesting to note

an improvement by using the NLoS message filter even when there are no NLoS

edges in the network. This is explained as the filter does not only remove messages

from NLoS edges but omits all messages that do not facilitate converge in the later

iterations, hence helping convergence.

0.0 0.05 0.10 0.15 0.20 0.25 0.30

NBP

PNBP

BNBP

PHEVA

HEVA

IPPM

Figure 3.8: The rms error versus the amount of range estimation noise Ke when the average
node connectivity is 6.1 and no NLoS.

Next we compare HEVA with the aforementioned competing algorithms in

Fig. 3.8. As expected, all algorithms that focus their particles outperform NBP. Fur-

ther, HEVA and PHEVA outperform all other methods especially in higher noise

levels, with HEVA achieving almost equal accuracy to PHEVA for much less com-

putational cost as was shown in Fig. 3.5.
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Edge NLoS Probability

PHEVA

HEVA

Figure 3.9: The average error versus the edge NLoS Probability, when the average node
connectivity is 6.1 .

In Fig. 3.9, we compare the algorithms for various edge NLoS probabilities.

HEVA and PHEVA are compared to IPPM and ECM [71], both of which have NLoS

mitigation capabilities. As can be seen, both HEVA and PHEVA outperform the

other algorithms even in very high NLoS scenarios. As ECM tries to approximate

the noise pdf fitting a non-parametric pdf to the measured distances, it manages to

keep the RMS error constant at all edge NLoS probabilities. Finally, it is interesting

to note that in the case of high edge NLoS probability, HEVA outperforms PHEVA.

We believe that as the high noise creates more ambiguity, it is easier for PHEVA to

initially focus the particles in the wrong regions, increasing the RMS error.

Finally, we analyse the issue of messages dropped from the NLoS message

filter. Depending on the NLoS edge probability, the number of messages dropped

varies. The NLoS message filter is quite conservative, so for the NLoS scenario
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presented in Section IV, the average number of messages dropped goes from ap-

proximately 8% to approximately 13%, as the NLoS edge probability increases. It

should be noticed that there is a sweet spot for the NLoS edge probability. Around

0.5 and afterwards, the percentage actually decreases as the NLoS edge probability

gets higher. This is because it gets harder to distinguish biased messages and drop

them, and the majority will be biased in the first place. Still even in these cases

the improvement can be seen in Section V, Fig. 9. Also, as the average number of

neighbours, i.e., the average node connectivity, drops so does the average number

of messages. Nevertheless, only messages after the first iteration are dropped and

the message percentage dropped is at less than 8%, even in really low connectivity,

hence not affecting negatively the accuracy.

Figure 3.10: The average message drop ratio versus the average neighbours and NLoS edge
probability.
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3.4.1 Comparison with Other Clustering Techniques

As there is a number of possible clustering techniques that could be used instead

of VB, in this subsection, we provide simulation results for two other clustering

methods, namely, K-means and EM [18] for comparison. Fig. 3.11 provides the

average RMS error results against the number of iterations. As is expected, VB

and EM have almost the same results, for both the error cpdfs and the average RMS

errors and they both outperform K-means. A close observation for the results further

shows that VB performs slightly better than EM. As explained earlier in Section 3.3,

the advantage of VB over EM is not only performance but VB can avoid singularity

issues,cf. [18] , and can automatically optimize its clustering even if it starts with

an arbitrary large number of clusters.

Figure 3.11: The average RMS error versus the number of iterations with Ke = 0.1
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3.5 Conclusions
In this Chapter, we have presented a novel algorithm for cooperative localisation,

named HEVA, that extendsnbp. HEVA combines many novel contributions into a

robust, accurate and low complexity algorithm. Firstly we designed a novel low

computational cost filter, that intelligently removes NLoS messages. We have cre-

ated a novel kernel, which is simpler to compute than the ”rull-of-thumb” kernel and

that outperforms it in accuracy. We have also designed a novel ellipsoid particle fil-

ter, that drastically reduces the number of particles required for product calculations

in the Sum-Product algorithm. This allows for a decrease in computational cost and

also helps improve the solution accuracy. Also we have used a novel conversion

of the messages to parametric form, by using VB as a clustering technique. This

minimizes the communication overhead, without sacrificing convergence speed, or

representational flexibility of the pdf distribution. HEVA has been shown to out-

perform all other methods, while offering considerable computational advantages

and staying robust and computationally cheap in high noise NLoS scenarios and

3D localisation. In Fig. 1.2, HEVA is connected to both the Parametric and Non-

Parametric branches as it combines elements of both and manages to overcome the

weakness of each technique by taking advantage of the strengths of the other. Still

many issues remain. One of which, is the implicit assumption that a known global

reference point, i.e. the origin of the axis. In Chapter 4 we resolve this issue.



Chapter 4

Grid Belief Propagation

4.1 Introduction

An often unexplored issue in localisation is how the coordinate system itself works.

localisation occurs relative to some commonly accepted reference points. These are

called geodetic datums. Two of the more commonly known ones are the WGS84

and the NAD83, cf. [72]. In Global Positioning System (GPS), a polar system is

used and the origin of the coordinate system is the center of the planet. In coop-

erative localisation systems though, typically a Cartesian system is assumed and

the nodes localize relative to themselves. Hence, all nodes localise with respect to

a Local Coordinate System (LCS). As a result an implicit assumption is hidden in

every model: All nodes know the precise location of the origin point and their rel-

ative position to it. This means that even though the nodes use their own LCS to

localize a GCS is assumed to be known by everyone so that every node can convert

their LCS to the GCS coordinates. Otherwise the whole coordinate system could

be arbitrarily rotated and/or the origin moved arbitrarily around the solutions of the

nodes locations would still be valid.

The motivation behind this work is to work around this hidden assumption,

of using LCS to localize and then converting the LCS to GCS, thereby allowing a

more realistic and flexible system. To the authors’ knowledge, the only work that

considers the issue is [15], without actually solving it, where Ihler et al. proposed a

self-calibration algorithm, where a few nodes are arbitrarily chosen as the common
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reference point and all other nodes localize relative to them. More typically, the

issue just gets completely neglected. Our solution to the problem is to only use a

GCS system. This avoids all issues that were created from the LCS. Unfortunately

the obvious solution, i.e., using directly the GPS coordinate system, can lead to

underflow issues during calculations due to the small distances inherent in indoors

localisation. Therefore, the use of constant normalization and scaling is required.

Alternatively, we propose the use of a grid-based GCS. This has the advantages

of not requiring any normalization of scaling to work and also allow for the easy

construction of parametric form pdf leading to efficient and computationally cheap

belief message passing.

4.1.1 Our Contributions

We propose a novel technique, called grid-BP that use a grid-based GCS. As a real

life example, we use the military grid reference system (MGRS) [73] to showcase

our method. This approach does not require a common globally known axis centre,

but also has inspired the use of parametric representations using multinomial pdfs.

This allows for a fast robust and accurate cooperative localisation algorithm. Even

though we use the NATO MGRS coordinate system, any grid-based coordinate sys-

tem can be used with trivial changes. As a summary, in the algorithm we have made

the following contributions:

• We propose a solution to the common reference issue inherent to all dis-

tributed cooperative localisation techniques, using the grid-based GCS.

• In addition, we devise parametric approximations to the pdfs, overcoming

the computation bottleneck of NBP methods, i.e., the product calculation.

Also, the approximations requires no use of an optimization algorithm when

calculating the parametric form, thus avoid all the issues of bad local optima

that currently plague parametric algorithms.

• Based on the above, we design a novel BP algorithm, namely Grid-BP.

• Simulation results illustrate that the proposed grid-based BP method, or Grid-

BP, provides similar accuracy to common techniques.
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4.1.2 Organization

The rest of the chapter is organized as follows. In Section 4.2, we first describe

how the MGRS by NATO can be employed to provide unique identifiers for mul-

tiple resolutions for every point on the planet. We reformulate the equations of the

cooperative localisation problem in Section 4.3 in a manner more suitable for the

development of the parametric algorithm that will use the MGRS reference system.

This is done in Section 4.4, where the parametric BP algorithm which we refer to it

as the Grid-BP, is presented. In Section 4.5, simulation results are provided and we

have the concluding remarks in Section 4.6.

4.2 Review of MGRS
MGRS is the geo-coordinate standard used by NATO military for locating points

on the planet [73]. MGRS is a combination of the the universal transverse Mercator

(UTM) grid system and the universal polar stereographic (UPS) grid system, with

a different labelling convention. MGRS is a global mesh grid that assigns a unique

ID to each grid square. An example id is

10QCG12345678, (4.1)

where the first part “10Q” is called the Grid Zone Designator (GZD), the second

part “CG” is the 100,000-meter-square identifier, and finally the last numerical part

gives the easting (first half digits) and northing (second half digits) inside the square

identifier. Every two digits used (for a minimum of 2 and a maximum of 10) in-

crease the resolution by a factor of 10m, down to a resolution of 1m2 grid squares.

Map coordinates are read from west to east first (easting), then from south to north

(northing), i.e., left-right, down-up. In cases where the part of the ID is common

to all neighbouring nodes, the common part can be dropped and only the rest need

to be transmitted or used. For details on the specifics of MGRS the reader is re-

ferred to [73]. For the purpose of this chapter and for convenience, we assume that

localisation does not occur in these areas and all squares involved are “normal”,

as the extra controls required are beyond the focus of this thesis and are also quite
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straightforward to implement.

4.3 Problem Formulation
We consider a network of nodes in a 2D environment which consists of N agents and

M anchors, where M ≥ 4 and N � M. Let XXX = [X1, . . . ,Xi, . . . ,XN+M] be the ran-

dom variable vector for the locations of all nodes, with Xi representing the random

variable of the MGRS identifier of node i and Xi ∈ {x1,x2, . . .xk}, where k iterates

over all possible MGRS IDs. Also let θθθ denote the coordinates of all nodes, with

θθθ i representing the coordinates of node i, and the domain of θθθ i is ℜ2. As before

the use of upper case ΘΘΘi and ΘΘΘ represent the respective random variable and vector

random variable of the coordinates of every and all nodes. The nodes communicate

wirelessly and it is assumed that the maximum communication range for each node

is Rmax. Time is slotted and time slots are denoted by the time index superscript (t)

for t = 1,2, . . . ,∞.

We represent the problem as a joint probability distribution. Let Pr(t)(Xi) be

the pdf, i.e., the belief that node i has about its location at time t. We model Pr(t)(Xi)

as a multinomial distribution with parameters z1, . . . ,zk where Pr(Xi = xk) = zk is

the probability of node i being in MGRS ID xk and ∑k zk = 1. Also let the set of all

nodes j within range of node i be denoted as the neighbourhood ne(i).

Initially, the belief for the agents can be a non-informative uniform pdf over

the grid, while the anchors’ pdfs are focused in the IDs close to the real position,

i.e., within 10m.

Nodes obtain distance estimate via ranging. As in Chapter 3, we assume that

the nodes use the average of their corresponding measurements. Consequently, for

two nodes i and j we define the random variable R ji with values r ji as

r ji = ‖θθθ i−θθθ j‖+η ji, (4.2)

where η ji is a noise factor following a Gaussian distribution with variance s2
ji =

Ke‖θθθ i− θθθ j‖β ji in which Ke is a proportionality constant capturing the combined

physical layer and receiver effect, and β ji denotes the path loss exponent, as dis-
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cussed in the previous chapters.

We define the likelihood of node i and node j measuring distance R ji = r ji

between them at time t, given Xi,X j as

(t)
Pr(R ji = r ji | Xi,X j) ∝ exp

(
−
(

r ji−||Ci−C j||2
h

)2
)
, (4.3)

where h controls steepness, Ci and C j are the coordinates of the centers of the grids’

squares Xi and X j, respectively. Therefore, our objective is to find the maximum a

posteriori (MAP), i.e., the values that maximize Pr(XXX |RRR) given distance measure-

ments RRR = [R ji]. For a specific node i, we have

X̂i = argmax
Xi

(t)
Pr(Xi|RRRi). (4.4)

Thus, Pr(t)(Xi|RRRi) can be evaluated using the Bayes’ rule as

(t)
Pr(Xi|RRRi) ∝

(t)
Pr(Xi) ∏

j∈ne(i)

(t)
Pr(R ji|Xi)

∝

(t)
Pr(Xi) ∏

j∈ne(i)

∫ (t)
Pr(R ji|Xi,X j)

(t)
Pr(X j)dX j, (4.5)

in which the sign “∝” means “is proportional to”, and normalization should be done

to obtain the pdf.

4.4 The Proposed Grid-BP Algorithm

In this section, we present the proposed grid-based localisation algorithm. Firstly

we will formulate a valid cluster graph and the respective message passing equa-

tions, as in Chapter 2 for the model discussed in the previous Section 4.3. Then

efficient approximation for the marginalization and the product operation will be

given.
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4.4.1 Belief Message Passing

We model the network as a Bethe cluster graph. The lower factors are composed of

univariate potentials ψ(Xi), while the upper region is composed of “large” clusters

with one cluster for each factor ψ(Xi,X j,R ji). An example can be seen in Fig. 4.1.

X3, X5, R3,5X1, X2, R1,2 X6, X2, R2,6X5, X1, R5,1X2, X4, R2,4 X4, X4, R4,6

X2 X3X1 X6X4 X5

Figure 4.1: The cluster graph for the Grid-BP PGM.

The lower factors are set to the initial beliefs for the given time slot (t), and the

upper factors to the corresponding cpdfs

ψ(Xi) =
(t)
Pr(Xi), (4.6)

ψ(Xi,X j,R ji = r(t)ji ) =
(t)
Pr(R ji = r(t)ji |Xi,X j). (4.7)

Messages are then passed between nodes for multiple iterations until the node be-

liefs have converged. The message from node j to node i, at BP iteration (s+1) is

calculated by

µ
(s+1)
j→i (Xi) =

∫
ψ(Xi,X j,R ji = r(t)ji )

b(s)j→i(X j)

µ
(s)
i→ j(X j)

dX j, (4.8)

where intuitively, a message (4.8) is the belief that node j has about the location of

node i and r(t)ji is the observed value of the distance between the nodes, at time slot

t.

Then the belief of node i is updated as

b(s+1)
i (Xi) = λψ(Xi) ∏

k∈ne(i)
µ
(s+1)
k→i (Xi)+(1−λ )b(s)i (Xi), (4.9)

where λ is a dampening factor used to facilitate convergence.
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BP continues until convergence, or if convergence is not guaranteed, s reaches

a maximum number of iterations Imax. Then the beliefs, representing approxima-

tions to the true marginals, are found by (4.9), i.e. Pr(t+1)(Xi) = b(s+1)
i (Xi), for each

node. The proposed Grid-BP is given as Algorithm 6. Each node needs to perform

a marginalization operation (4.8) and a product operation (4.9). Approximations

are required for both complex operations. In Grid-BP, we take advantage of the

multinomial parametric form which we discuss next.

Algorithm 6 Grid-BP

1: Initialize beliefs p(0)(Xi) ∀i ∈ Nodes
2: for t = 0 to T do
3: for all i ∈ Nodes do
4: Broadcast current belief p(0)(Xi)
5: for all j ∈ ne(i) do
6: Collect distance estimates r(t)ji
7: end for
8: end for
9: Initialize ψ(Xi) = Pr(t)(Xi)

10: Initialize ψ(Xi,X j,Ri j) = Pr(t)(Ri j = r(t)ji | Xi,X j)
11: repeat
12: for all i ∈ Nodes do
13: for all j ∈ ne(i) do
14: Receive b(s)j (X j)

15: Calculate µ
(s+1)
j→i (Xi), using (4.8) using HSM Gibbs sampling (i.e.,

Algorithm 7)
16: end for
17: Calculate b(s+1)

i (Xi), using (4.9).
18: Check for convergence
19: Send b(s+1)

i (Xi)
20: end for
21: until convergence or s reaches Imax
22: Update belief Pr(t+1)(Xi), using (4.9).
23: end for

4.4.2 Marginalization Operation

The calculation of (4.8) essentially gives the belief node j has about node i. Since

the marginalization is too costly, we will use a Gibbs sampler, similar to Chapter

3, to approximate the message. To understand the effect of R ji, we consider the
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case that in a specific time slot t ′, b(s)j (X j) has only one ID, i.e., x j. Then the high

probability grid squares of (4.8) will be approximated by IDs of grid buckets that

approximately form a circle of radius r(t
′)

ji and centre the x j. With that in mind, firstly

we sample L particles x(l)j ∼ µ j→i(X j). Then we sample L samples φ (l) ∼U (0,2π)

and finally L samples from r̂(l)ji ∼ N (r(t)ji ,h). The Gibbs sampling algorithm is

provided as Algorithm 7.

Algorithm 7 Gibbs Sampling
1: Set DXi to empty
2: for all j ∈ ne(i) do
3: Sample x(l)j ∼ µ j→i(X j) which is a multinomial pdf
4: Sample φ (l) ∼U [0,2π]

5: Sample r̂(l)ji ∼N (r(t)ji ,h)

6: x(l)i = MAP-DMtoID(x(l)j ,r(t)ji ,φ
(l)) which maps the distance metric to IDs

7: Add {x(l)i }L
l=1 to DXi

8: end for
9: return DXi

Sampling is repeated, for all incoming messages, and then for all {x(l)j , r̂(t)ji ,φ
(l)}L,|ne(i)|

l=1, j=1,

we use

x(l)i = MAP−DMtoID(x(l)j , r̂(t)ji ,φ
(l)) (4.10)

to get the set Di = {x(l)i }. Intuitively we do this by counting for each sampled ID

x(l)j the number of IDs to the east and to the north, node i will be, given the measured

distance r(t)ji normalized by D as follows

 dH

dV

= int

 r̂(t)ji

D

 cos(φ (l))

sin(φ (l))

 . (4.11)

Then, the displacement dH ,dV is translated to a new ID and return it as x(l)i . For

MGRS IDs the translation is done by adding dH ,dV to the easting and northing

components of the ID of x(l)j , as discussed in Section 4.2. The distance to ID map-

ping function is given as Algorithm 8. It should be noted that no reverse mapping

is required in the case of MGRS.
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Algorithm 8 MAP-DMtoID
1: Calculate horizontal and vertical steps using (4.11)
2: Map horizontal ID x(l)j → b(l)j

3: b(l)h = b(l)j +dH

4: Inverse horizontal mapping b(l)h → x(l)h

5: Map vertical ID x(l)h → b(l)v

6: b(l)i = b(l)v +dV

7: Inverse vertical mapping b(l)i → x(l)i

8: return x(l)i

Finally, as will be shown in the sequel, the set DXi of all samples obtained from

all incoming messages is used to find (4.9).

4.4.3 Product Operation

To obtain (4.9), firstly we create parametric forms of the incoming messages (4.8),

by using the particles in DXi . We assume that the parameters of the multinomial

are random variables ZZZi with a uniform Dirichlet prior with parameters αk, where

k ∈ {1, . . . ,K} and K is the number of unique IDs in the multinomial. We use the

samples from each incoming message as observations and get the MAP estimate ẑzzi

of the parameters ZZZi of each (4.8). We also consider that all incoming messages

have the same prior distribution. Based on the above we calculate the parameters

for each multinomial as follows

ẑzzi = E [Pr(ZZZi|DXi)] = E [Pr(DXi|ZZZi)Pr(ZZZi)] , (4.12)

which gives

ẑi,k =
Mk+ | ne(i) | αk

| ne(i) | ∑
k
(Mk +αk)

, (4.13)

where Mk is number of particles xk in DXi . The algorithm is presented in Algorithm

9.

For clarity, the quantities of each ID in the samples are shown as being found

by a count function but in practice it can be done during the Gibbs sampling step

allowing for a more efficient algorithm.
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Algorithm 9 MAP Parameter Estimation

1: Let |Xi| be the number of unique IDs in Pr(Xi|ZZZi)
2: Calculate Mk = count(xk,DXi) ∀k ∈ |Xi|
3: for all k ∈ |Xi| do
4: Calculate ẑi,k, with (4.13)
5: end for
6: return ẑzzi

After obtaining the pdfs involved in the calculation of (4.9), the resulting pdf

will simply be the dot product of the zzzi parameters of each incoming message. The

parameters of (4.9) can be directly calculated by adding the logs of the correspond-

ing ẑzzi’s.

4.4.4 Message Filtering

As it makes no sense to keep all the MGRS ids on the planet, we can assume that

each node constructs pdfs with the IDS within 100m of the IDs it received in the

first iteration. To reduce the ids further we propose a simple filter that only keeps the

most probable IDs summing up to an energy threshold of the respective cdf. The rest

are assumed to share uniformly the remainder of the pdf energy. After Monte Carlo

simulations, it was evident that by keeping∼ 80% of the total energy of the pdf, the

size of the messages transmitted is decreased by ∼ 90% with barely any increase in

localisation error. Thus, assuming that each message covers a 100×100m2 grid, the

total number of IDs used without the filter would be 104. After the filter, however,

only ∼ 102 IDs will be transmitted.

4.4.5 Convergence

A cluster graph is not guaranteed to determine the optimal solution. However, if the

running intersection property and the family preservation property are held, typi-

cally most clusters will converge to a local optimum with only a few clusters oscil-

lating unable to converge [53]. To facilitate convergence, as in HEVA, see Chapter

3, a dampened BP message passing is used, which empirically helps and even the
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oscillating nodes converge to a local optimum. This is accomplished by setting

δ
lower→upper
i→all j∈ne(i)(Xi) = λψ(Xi) ∏

k∈ne(i)
δ

upper→lower
k→i (Xi)+(1−λ )δ

(old)lower→upper
i→all j∈ne(i) (Xi),

(4.14)

where λ is the dampening factor. The Kullback-Leibler (KL) divergence between

the current and previous iterations message is calculated and if it falls within a

certain threshold the node will consider that it has converged to a solution.

4.4.6 Complexity

The complexity for the marginalization filtering is O(L|ne(i)|) and the computa-

tional cost for the product operation is also O(L|ne(i)|), which corresponds to the

complexities suggested in [62] for parametric techniques. For completeness, the

different complexities for discretized, non-parametric and parametric techniques

are shown in Table 4.1 as shown in [62].

Table 4.1: Comparison of complexity costs for Discretised, non-parametric and parametric
techniques where L is the number of particles and M is the number of messages
involved in the operations.

Approach Operation complexity Value of L
Descretised Marginalization O(L2) Large
Descretised Product O(LM) Large

Non-Parametric Marginalization O(L) Small
Non-Parametric Product O(L2M) Small

Parametric Marginalization O(L) Small
Parametric Product O(LM) Small

4.5 Simulations
To evaluate the performance, 100 Monte Carlo simulations were conducted and the

localisation error cdf was calculated. In each simulation 100 nodes with 20 anchors

are placed randomly in a 100m× 100m area and the communication range is lim-

ited to 12m and |ne(i)|avrg = 4.03. Anchor locations are modelled as multivariate

Gaussian pdfs with an identity variance matrix. The grid resolution for Grid-BP is
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D = 1m. We compare Grid-BP with the NBP [57], and Hybrid-BP [74].1 We also

compare Grid-BP with HEVA-BP, a computationally cheaper variation of NBP in

[50]. In addition, Imax = 15 and 800 particles were sampled. Finally, the noise fac-

tor used was Ke = 0.3. Furthermore, a variant of HEVA that uses GPS coordinates

as a reference system was also provided. In HEVA-GPS messages contain GPS

coordinates that every nodes converts an LCS before calculating (4.8) and (4.9).

Figure 4.2: Comparison of localisation error cdf with Grid-BP.

Fig. 4.2 shows the localisation error cdf of all the algorithms. Results illus-

trate that HEVA-BP, NBP and Grid-BP achieve similar results with Grid-BP having

slightly better results than Hybrid-BP, which is the only other parametric algorithm.

Note that all three algorithms, HEVA, NBP and Hybrid-BP have the strong assump-

tion of sharing knowledge of the GCS origin, while Grid-BP and HEVA-GPS do

1For Hybrid-BP, we did not use information given from satellites as in [74].



4.6. Conclusions 109

not (the realistic scenario). Even though HEVA-BP-GPS achieves as good results

as HEVA-BP, the 25% increase in computational cost with HEVA-BP due to the

mapping of the GPS coordinates to a local Cartesian reference frame, is evident in

the mean simulation time. Also, the relative computational efficiency of Grid-BP

can also be seen. This is due to the very efficient calculations of both message pass-

ing operations compared to the other algorithms. Note that all simulations were run

on an Intel i7 2.6GHz, using Python for scientific computing [75].

4.6 Conclusions
Concluding, in this chapter we have presented a novel parametric algorithm for BP

that uses a grid based system, Grid-BP. We have solved the issue of coordinate sys-

tem ambiguity in distributed cooperative localization and have also designed a novel

parametric algorithm with extremely low complexity cost. The resulting algorithm

combines a global reference system that alleviates the hidden issue of reference, and

a parametric representation that allows quick BP. In the tree in Fig. 1.2, Grid-BP

fits smoothly in the parametric family of algorithms where it manages to be the only

one currently that avoids the requirement of an optimization algorithm to calculate

the parameters. Grid-BP’s performance is very good even in high noise simula-

tions. This allows for a very low complexity algorithm which can achieve high

accuracy in the Position Location problem. It should be noted that the algorithm

can be implemented for any arbitrary GCS, depending on application and required

accuracy avoiding potential overflowing issues or coordination between nodes. In

the next chapter we will extend Grid-BP in a temporal model, adding information

from internal sensors to allow for mobility.



Chapter 5

Probabilistic Hybrid INS/PDR

Mobility Tracking Algorithm

5.1 Introduction

Coping with mobility has been key in localisation research. The typical scenario

is to complement GPS with information from IMUs and odometers to provide un-

interrupted navigation solutions during GPS outages. The integration is typically

achieved by a Kalman Filter [76], or some variants, e.g., the extended Kalman

filter[77]. Unfortunately, the significant errors of MEMS inertial sensors as well

as the time-varying models cannot be modelled accurately by the Kalman Filter lin-

earised models. As an alternative to better capture the non-linearities, the use of a

particle filter has been proposed [78].

The information from the sensors provides all the necessary information re-

quired for tracking of human movement. There has been much research on PDR

and its applications. In PDR, the frequency of the pedestrians steps is extracted

from the sensor information and assuming some statistical model for the length and

course of the steps, the pedestrians direction and distance travelled are calculated

by summing up all the steps, cf. [79]. There has also been extensive research

in the classification and modelling of sensor outputs with different human move-

ment, cf. [80, 4], but the reality is that erratic movement, e.g., walking in slopes,

or abrupt movements, that can typically occur in a battlefield, will make the error
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grow quickly out of hand.

Alternatively, pedestrian tracking can be treated as an application of a strap-

down INS. In this case, the orientation of a sensor module is tracked by integrating

the angular velocities, which are subsequently used to determine the acceleration

components in the GCS. Then the gravity acceleration is subtracted and the remain-

ing acceleration is integrated over time to find the sensors displacement. Unfortu-

nately, low cost MEMS-IMUs are susceptible to errors, such as misalignment errors,

scale factor, bias turn-on error, bias drift error, etc. Though deterministic errors can

typically be removed via calibration, stochastic errors cannot be removed and can

increase quickly. Analysis and modelling of the MEMS-IMU errors can be found

in [81, 78, 82].

A solution proposed in [83] has been to provide a synergism between PDR and

INS. Essentially the movement of the pedestrian will be calculated by finding the

orientation and number of steps as in PDR, but the characteristics will be derived

from the IMU measurements instead of using a statistical model.

The combination of PDR localisation and cooperative localisation for GPS de-

nied environments however has not been well investigated. The SPAWN frame-

work, cf. [9] considered mobility, but it was demonstrated in [84] that it is too

computationally expensive for real-world hand-helds and a heuristic cooperative

localisation algorithm, called SnG, was proposed as an alternative. SnG keeps the

computational cost low for mobile devices while synergising with PDR. Still due to

the heuristics in SnG, the network is highly susceptible to node placement and if the

placement is not uniform enough, then the whole network localisation will collapse.

5.1.1 Our Contributions

In this chapter, we present PHIMTA a novel algorithm that was designed as a robust

low-cost algorithm for pedestrian mobility tracking in GPS-denied environments.

Firstly, we devise dynamic Bayesian network in which we generalize the INS/PDR

pedestrian tracking algorithm in [83] by using probabilistic particle representations.

Then we combine it with Grid-BP, cf. Chapter 4, to have a fully distributed and ro-

bust probabilistic model for mobile pedestrian tracking which combines low com-
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putational cost, as well as robustness in different node geometries, and high locali-

sation accuracy. In the context of cooperative localisation mobility, typically a local

distribution is assumed that will be used as initial potential for each node, INStead

of the non-informative uniform distribution of agents. In this work we designed a

stochastic implementation, based on the algorithm above, combined with a particle

filter that will be used to integrate the local information derived form the MEMS-

IMU and the incoming messages received from the nodes neighbours.

Our contributions can be summarized as follows:

• We design a probabilistic pedestrian tracking technique which is referred to

as the particle hybrid inertial measurement tracking algorithm (PHIMTA).

• Also, we combine PHIMTA with Grid-BP, creating a novel dynamic

Bayesian network model most suitable for mobile localisation in GPS-denied

environments. Grid-BP was chosen due to the low computational cost, but

any message passing variant can be used.

• We conduct Monte Carlo simulations using real data from [85, 86] that show

that PHIMTA/Grid-BP provides consistently equivalent accuracy with drasti-

cally decreased computational cost, compared to the literature.

5.1.2 Organization

The rest of the chapter is organized as follows. In Section 5.2 the problem is formu-

lated and an extended temporal PGM is presented. In Section 5.3 the BP timeslots

are briefly analyzed. Then, a more in depth discussion of the IMU Timeslots is

presented in Section 5.4. In Section 5.5 the complexity of the algorithm is dis-

cussed. Afterwards, in Section 5.6 simulation results are shown from Monte Carlo

simulations using data from real life measurement campaigns. Finally the chapter

is concluded in Section 5.7.

5.2 Problem Formulation
We consider a similar model as in the previous chapters and extend it by allowing

mobility for the nodes. We assume as before a network of nodes in a 2D environ-
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ment which consists of N agents and M anchors, where M ≥ 4 and N � M. Let

XXX = [X1, . . . ,Xi, . . . ,XN+M] be the locations of all nodes, with Xi representing the

unique identifier of node i and Xi ∈ {x1,x2, . . .xk}, where k iterates over all possi-

ble IDs. Also, let ZZZ denote the coordinates of all nodes, with ZZZi representing the

coordinates of node i, and the domain of ZZZi is ℜ2. The nodes communicate wire-

lessly and it is assumed that the maximum communication range for each node is

Rmax. Time is slotted and time slots are denoted by the time index superscript (t)

for t = 1,2, . . . ,∞.

Based on the behaviour of the nodes, there are two types of time slots. Firstly,

the nodes might move and use IMU information to update their information, namely

IMU time slots, or they might stay idle and cooperate with their neighbours to

update their location estimate, namely BP time slots. The nodes use cooperative

localisation every n time slots, while in between they have a probability Pr(W (t)) at

each time slot to wait or to move. If a node is moving during a BP time slot, then

it will not participate in the message passing algorithm. It uses the SHOE filter,

cf. Section 5.4, to discriminate between being idle or not.

Let Pr(X (t)
i ) be the pdf, i.e., the belief that node i has about its location at time

t. We model Pr(X (t)
i ) as a multinomial distribution with parameters θk, where θk

is the probability of node i being in ID xk and ∑k θk = 1. Let Pr(XXX (t)) denote the

state of the system at time slot (t). We assume that the system is Markovian and

represent it as a pdf. Then we have

Pr(XXX (0),XXX (1), . . . ,XXX (t)) = Pr(XXX (0))
t−1

∏
τ=0

Pr(XXX (τ+1)|XXX (τ)), (5.1)

where Pr(XXX (0)) is the initial system state and Pr(XXX (τ+1)|XXX (τ)) is the transition prob-

ability. Depending on the type of time slot the transition probability will change.

Thus, we have

Pr(XXX (τ+1)|XXX (τ)) =

Pr(XXX (τ+1)|XXX (τ),RRR = rrr), for BP time slots,

Pr(XXX (τ+1)|XXX (τ),OOO = ooo), for IMU time slots,
(5.2)
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in which rrr denotes a vector with all the distance measurements between nodes, and

ooo is a vector with the IMU observations. The above can be described graphically in

Fig. 5.1.
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Figure 5.1: A dynamic Bayesian network model.

During the BP time slots, let the set of all nodes within the range of node i be

the neighbourhood Ni. Initially, the belief for the agents can be a non-informative

uniform pdf over the grid, while the anchors’ pdfs are focused in the IDs close to

the real position, e.g., within 10m. Node i receiving a message from node j at time

slot t can derive, using ToA measurements,1 a noisy estimate r(t)j→i of the distance

between them. For convenience, we assume r(t)j→i = r(t)i→ j = r(t)ji .

Thus, as before, for ToA distance measurements, we define the random vari-

able R(t)
ji with its value r(t)ji modelled as

r(t)ji = ‖zzz(t)i − zzz(t)j ‖+η ji, (5.3)

where η ji is a Gaussian noise with variance σ2
ji = Ke‖zzz(t)i − zzz(t)j ‖β ji in which Ke is a

proportionality constant capturing the combined physical layer and receiver effect,
1The assumption of using ToA is not restrictive on the proposed algorithm because it can easily

be used with other measurement models.
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and β ji denotes the path loss exponent. In the case of line-of-sight (LoS), η ji is

assumed zero mean, and β ji = 2, i.e., η ji ∼N (0,σ2
ji).

We define the likelihood of node i and node j measuring distance R(t)
ji = r(t)ji

between them at time t, given Xi,X j exactly as in chapter 4, eq. (4.3):

Pr(R(t)
ji = r(t)ji |X

(t)
i ,X (t)

j ) ∝ exp

−
r(t)ji −‖C

(t)
i −C(t)

j ‖2

h

2
 , (5.4)

where h controls steepness, C(t)
i and C(t)

j are the coordinates of the centres of the

grids’ squares X (t)
i and X (t)

j , respectively. Thus, we aim to find the maximum a pos-

teriori (MAP), i.e., the values that maximize Pr(XXX (t+1)|RRR(t+1),XXX (t)) given distance

measurements RRR(t+1) = [R(t+1)
ji ]. For node i, we have

X̂i = argmax
Xi

Pr(X (t+1)
i |RRR(t+1)

i ,X (t)). (5.5)

Consequently, Pr(X (t+1)
i |RRR(t+1)

i ,X (t)
i ) can be evaluated using the Bayes’ rule as

Pr(X (t+1)
i |RRR(t+1)

i ,X (t)
i )

∝ Pr(X (t)
i ) ∏

j∈Ni

Pr(R(t+1)
ji |X (t+1)

i )

∝ Pr(X (t)
i ) ∏

j∈Ni

∫
Pr(R(t+1)

ji |X (t+1)
i ,X (t+1)

j )Pr(X (t+1)
j )dX j, (5.6)

in which the sign “∝” means “is proportional to”, and normalization should be done

to obtain the pdf.

Similarly, during the IMU time slots, we have

Pr(X (t+1)
i |OOO(t+1)

i ,X (t)
i ) ∝ Pr(X (t)

i )Pr(OOO(t+1)
i |X (t+1)

i ). (5.7)

The model is summarized in Algorithm 10.

In the next sections, we will describe how Grid-BP is used to solve (5.6) and

then how PHIMTA solves (5.7).
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Algorithm 10 Dynamic Bayesian Network
1: for all i ∈ N do
2: Initialize Pr(X (0)

i ),vvv(0)i ,ωωω
(0)
i ,aaa(0)i ,µµµ

(0)
i

3: for all t ∈ Time slots do
4: if time slot is BP then
5: calculate (5.2) using Grid-BP, Algorithm 6
6: else
7: calculate (5.2) using PHIMTA, Algorithm 11
8: end if
9: end for

10: end for

5.3 BP Time Slots

During the BP time slots, the network can be modelled as a cluster graph and

we adopt a Bethe cluster graph, cf. Section 2.2.5. The lower factors are com-

posed of univariate potentials ψ(Xi), while the upper region is composed of factors

ψ(Xi,X j,R ji), see Fig. 5.2.

X3, X5, R3,5X1, X2, R1,2 X6, X2, R2,6X5, X1, R5,1X2, X4, R2,4 X4, X4, R4,6

X2 X3X1 X6X4 X5

Figure 5.2: The cluster graph. Lower row factors denote the node position beliefs. Upper
row factors denote the ranging interactions between the nodes.

The lower factors are set to the initial beliefs for the given time slot (t), and the

upper factors are set to the corresponding conditional pdfs (cpdfs):

ψ(Xi) = Pr(X (t)
i ), (5.8)

ψ(Xi,X j,R ji = r(t)ji ) =
(t)
Pr(R ji = r(t)ji |Xi,X j). (5.9)

Messages are then passed between nodes for multiple iterations until the node be-

liefs have converged. The message from node j to node i, at BP iteration (s+1) is
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calculated by

µ
(s+1)
j→i (Xi) =

∫
ψ(Xi,X j,R ji = r(t)ji )

b(s)j→i(X j)

µ
(s)
i→ j(X j)

dX j, (5.10)

where intuitively, a message (5.10) is the belief that node j has about the location

of node i and r(t)ji is the observed value of the distance between the nodes, at time

slot t.

Then the belief of node i is updated as

b(s+1)
i (Xi) = λψ(Xi) ∏

k∈Ni

µ
(s+1)
k→i (Xi)+(1−λ )b(s)i (Xi), (5.11)

where λ is a dampening factor used to facilitate convergence.

BP continues until convergence, or if s reaches a maximum number of itera-

tions Imax. Then the beliefs, representing approximations to the true marginals, for

each node are found by (5.11), i.e., Pr(X (t+1)
i ) = b(s+1)

i (Xi). Each node will need

to perform a marginalization operation (5.10), and a product operation (5.11). The

algorithm follows precisely the procedure and approximations described in chapter

4.

5.4 IMU Time Slots

During the IMU time slots, our is aim is to approximate the transition probability in

(5.2). This is accomplished by using a non-parametric particle representation [53].

Assuming at time slot (t) the location pdf for node i is Pr(X (t)
i ), we represent it by

a set of L random samples, or particles S
(t)

i = {s(t,l)i }L
l=1, sampled from Pr(X (t)

i ).

The i-th sample is denoted as s(t,l)i = (x(t,l)i ,π
(t,l)
i ), where x(t,l)i is the value of the

node state and π
(t,l)
i = 1

L is the respective weight. Then the motion model is applied

to each sample s(t,l)i and we obtain a new sample

s(t+1,l)
i =

(
x(t+1,l)

i ,
1
L

)
, (5.12)
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where

x(t+1,l)
i ∼ Pr(XXX (t+1)|X (t)

i = x(t,l)i ,OOO(t)
i = ooo(t)i ), (5.13)

and ooo(t)i are the IMU measurements at time (t). Finally, the parameter estimation

presented in Algorithm 9, is used to obtain a multinomial parametric form of (5.2)

from the samples.

5.4.1 PHIMTA

Our aim now is to derive an updated location particle given a location particle

x(t+1,l)
i and the IMU observations o(t)i . We will derive the displacement, speed

and attitude vectors, from the IMU sensors. We assume a typical MEMS sensor,

consisting of an accelerometer, a magnetometer and a gyroscope. The measure-

ments provided by the IMU and the magnetometer comprise the control input ooo(t) =

[aaa(t),ωωω(t),µµµ
(t)
x ], and we denote their respective noise vector as www(t) = [nnn(t)a ,nnn(t)ω ,nnn(t)µ ].

We assume that the input signal vectors from each sensor have length Y . Also, the

noise is assumed to be white Gaussian noise and independent of previous states. A

rotation matrix that maps the LCS of the sensors to the GCS of the node is required,

as the sensor axes may not match the nodes. Then the accelerometer observations

will be mapped to the nodes coordinate system and used to calculate the displace-

ment and speed of the node.

To alleviate the noise a number of schemes will be used. First is the fact that

pedestrian walking is cyclical and significantly consistent. Each stride can be split

into two phases. The stance phase, i.e., when the foot or part of the foot is placed

on the ground, and the swing phase, i.e., when the foot is mid-air. Both the velocity

and the angular velocity can be reset to zero at each stance phase, thus reducing

the drift error accumulation. As the gyroscopes cannot be used in the static phase,

signals from the accelerometer and magnetometer have to be used to calculate the

orientations of the sensor module. To overcome tilt errors, the algorithm presented

in [83] is used. The stance phase can be easily detected using peak detection, taking

into consideration of the existence of zero crossings, e.g., [80]. In this work, we use

the SHOE algorithm [87].
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Hence, the system iterates through the following steps:

• Stance phase

– Reset angular velocity to zero

– Reset velocity to zero

– Use magnetometer and accelerometer data to calculate rotation matrix

• Swing phase

– Use gyroscope data to calculate the rotation matrix

– Calculate the velocity and displacement using accelerometer data

Our derivation follows closely the work in [83]. In subsequent sections, as

everything involves internal calculations at each agent, the node subscript is dropped

for simplicity.

5.4.2 Coordinate Systems and Transformation Matrix

The global cartesian coordinate system used is the north-east-down (NED) frame

(xn,ye,zd). Consequently, the rotation matrix derived by using direction cosine

representations is given by (5.14)

RRR(t) =


cos(p)cos(a) −cos(r)sin(a)+ sin(r)sin(p)cos(a) sin(r)sin(a)+ cos(r)sin(p)cos(a)

cos(r)sin(a) cos(r)cos(a)+ sin(r)sin(p)sin(a) −sin(r)cos(a)+ cos(r)sin(p)sin(a)

−sin(p) sin(r)cos(p) cos(r)cos(p)

 ,

(5.14)

where p,r,a, correspond to the pitch, roll, and attitude, respectively, and the time

slot superscript has been dropped for simplicity.

5.4.3 Swing Phase

During the swing phase, the orientation of a moving object is tracked by integrating

the angular velocity vector ωωω(t) = [ω
(t)
x −n(t)ωx,ω

(t)
y −n(t)ωy,ω

(t)
z −n(t)ωz], obtained from

the gyroscope after we correct for noise. Let the sampling period δ t be short and



5.4. IMU Time Slots 120

δΨΨΨ = [δa,δ p,δ r] be the rotated angle vector of the sensors. Then δΨΨΨ = ωωωδ t.

Assuming a small δ t the rotation matrix for a period can be approximated by

CCC(t) =


1 −δa δ p

δa 1 −δ r

−δ p δ r 1

= III +ΩΩΩ
(t)

δ t, (5.15)

where

ΩΩΩ
(t) =


0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 . (5.16)

This allows us to relate the rotation matrix RRR(t) with the rotation matrix of the

next sampling period RRR(t+δ t). Then

RRR(t+δ t) = RRR(t)×CCC(t), (5.17)

where we have overloaded the superscript to mean the current sampling period be-

sides the time slot. This gives

dRRR(t)

dt
= RRR(t)×ΩΩΩ, (5.18)

RRR(t+δ t) = RRR(t)× exp

 t+δ t∫
t

ΩΩΩdt

 . (5.19)

The rotation matrix update equation is obtained as each new angular velocity sam-

ples comes by

RRR(t+δ t) = RRR(t)
(

III +
sin(‖ωωω‖δ t)
‖ωωω‖ ΩΩΩ+

1− cos(‖ωωω‖δ t)
‖ωωω‖2 ΩΩΩ

2
)
. (5.20)

With the rotation matrix updated, at each sample, the accelerometer data can easily



5.4. IMU Time Slots 121

be mapped from LCS to GCS by

aaa(G,t) = RRR(t) ·aaa(t), (5.21)

where G specifies that the vector is the GCS. Finally, the updated velocity vector is

given by 
v(t+1)

n

v(t+1)
e

v(t+1)
d

=


v(t)n

v(t)e

v(t)d

+


a(G,t)
x −n(t)ax

a(G,t)
y −n(t)ay

a(G,t)
z −n(t)az −g

δ t (5.22)

and the corresponding displacement vector
d(t+1)

x

d(t+1)
y

d(t+1)
z

=


v(t)n δ t

v(t)e δ t

−v(t)d δ t

 (5.23)

is used in Algorithm 7, to obtain the particle x(t+1,l)
i .

5.4.4 Static Phase

During the static phase data from the accelerometer and the magnetometer are used

to derive the pitch, roll, and attitude required for the rotation matrix, using (5.14).

To compensate the tilt errors the following algorithm is used as presented in [83].

First, a linear-phase Finite Impulse Response (FIR) Low Pass Filter (LPF) is

used to filter the accelerometer signal. The LPF is designed with a cut-off frequency

of less than 1Hz, as a typical human stride takes ≈ 1s. The filtered acceleration

g(L)is then normalized and redefined as a gravity vector in LCS. The normalized

GCS gravity vector is then given by

ggg(G) = RRR ·ggg(L), (5.24)

where g(G) = [0,0,1]T .
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Solving the above equation for roll and pitch gives

p(t) = atan2
(

g(t)x ,

√
(g(t)y )2 +(g(t)z )2

)
, (5.25a)

r(t) = atan2
(

g(t)y sign(cos(p(t))),g(t)z sign(cos(p(t)))
)
. (5.25b)

After both pitch and roll have been found from the acceleration data, the at-

titude can be calculated from the magnetic field data. Let µµµ(L,t) = [µ
(t)
x ,µ

(t)
y ,µ

(t)
z ]

be the LCS magnetometer readings. Then the compensated magnetic field can be

calculated as

h(t)x = µ
(t)
x cos(p(t))+µ

(t)
y sin(p(t))sin(r(t))

+µ
(t)
z sin(p(t))cos(r(t)) (5.25c)

h(t)y = µ
(t)
y cos(r(t))−µ

(t)
z sin(r(t)) (5.25d)

a(t) = atan2(−h(t)y ,h(t)x )−D, (5.25e)

where D is the magnetic declination, or the difference between the magnetic north

and the true north, caused by the tilt of the earth magnetic field generator relative to

the earth spin axis.

The algorithm is summarized as Algorithm 11.

5.5 Complexity

For the BP time slots, the complexity is due to the message passing algorithm used.

In our case, as Grid-BP is a parametric form message passing algorithm, the com-

putational cost is O(NiL), cf. chapter 4. This makes the algorithm an order of

magnitude faster than non-parametric BP algorithms, e.g., SPAWN [9]. We also

compare Grid-BP with the SnG algorithm [84], which has a complexity of O( ¯NiL),

where ¯Ni symbolizes the average pseudo-anchors of node i. The number of parti-

cles used in both algorithms is approximately L = 100, while the number of average

pseudo-anchors will be less or equal to the average number of neighbours. As such,

the algorithms tend to have similar complexity with SnG being slightly faster. Even



5.5. Complexity 123

Algorithm 11 PHIMTA

1: Sample {π(t,l)
i ,x(t,l)i }L

l=1 ∼ Pr(X (t)
i )

2: Detect Stride Phase using SHOE Algorithm
3: if Stride Phase is Stance then
4: Set ωωω(t) = 0
5: Set vvv(t) = 0
6: Extract g from a using LPF
7: Calculate p,r,a using equations (5.25)
8: Calculate Rotation Matrix RRR(t) using (5.14)
9: else

10: sample {nnn(l,t)ω }L
l=1 ∼N (nnnω)

11: For each sample calculate RRR(t) using (5.20)
12: end if
13: Sample {nnn(l,t)a }L

l=1 ∼N (nnna)

14: Sample {nnn(l,t)µ }L
l=1 ∼N (nnnµ)

15: for each sample calculate {a(l,G,t)}L
l=1 using (5.21)

16: Calculate {xxx(l,t+1)}L
l=1 using (5.23) and Algorithm 7

17: Convert to parametric form using Algorithm 9
18: Update belief Pr(X (t+1)

i )

though the two algorithms seem to have the same computational cost, a step by step

comparison in Table 5.1 clearly shows that Grid-BP is faster, as it has fewer steps

and there is no need to optimize the objective function at every iteration. For the

comparison, we assume that both algorithms approximately use the same number of

particles, and |ID| is the cardinality of relevant IDs in Grid-BP, while U and Umax is

the number of candidate points and number of highest likelihood candidate points

respectively. Finally IIWLS is the number of iterations IWLS can run.
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Table 5.1: Complexity of Grid-BP vs SnG

Grid-BP SnG [84]
Step Complexity Step Complexity
sample
incoming
message

L sample
incoming
message

L

count sam-
ple IDS

|ID| count-sort
likelihoods

¯NiL

multiply
multi-
nomial
pdfs

Ni|ID| sort candi-
date points

U log(U)

filter IDs |ID| log(|ID|) get centroid Umax log(Umax)
— —- IWLS ¯NiIIWLS

For the IMU time slots, the complexity is due to PHIMTA. All the steps are

proportional to either the number of signals Y obtained from MEMS, or the number

of particles used in the calculations L. Each step is given with the corresponding

cost in Table 5.2. Hence the complexity is O(Y L). We compare PHIMTA with

the PDR algorithm in [88]. Even if the complexity scales in the same way, PDR

has fewer computations per iteration than the hybrid algorithm. Essentially it is a

compromise between computational cost, and accuracy as will be seen in the sequel.

By using Grid-BP though, the computational increase from PHIMTA can be easily

compensated.

Table 5.2: Complexity of PHIMTA

Step Complexity
sample Pr(X (t)

i ) L
SHOE Algorithm Y

Stride phase Y L
Quasi-static phase Y L

update position L
convert to parametric form L
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Table 5.3: Complexity costs of Grid-BP/PHIMTA vs SnG/PDR

Algorithm Complexity
Grid-BP O(NiLGrid-BP)
PHIMTA O(Y LPHIMTA)

SnG O( ¯NiLSNG)
PDR O(Y LPDR)

Note that LGrid-BP = LPHIMTA = LSNG = LPDR ' 100.

5.6 Simulation Results
Our proposed algorithm was evaluated using Monte Carlo simulations. We consid-

ered a 2D grid 20m×20m with 4 anchors at the corners of the grid. Ten nodes are

randomly placed INSide the grid and are trying to localize. We first consider a static

scenario in which the RMS error localisation error is compared between Grid-BP

and SnG and NBP [57], as an implementation of the SPAWN framework.

In Fig. 5.3, we illustrate the average RMS error error for various communica-

tion ranges. We assume that the number of particles used is 300 and Ke = 0.001. As

expected NBP outperforms both SnG and Grid-BP but at a greater computational

cost. While Grid-BP provides similar RMS error to SnG for lower communica-

tion range, it is interesting to note that both NBP and Grid-BP take advantage of

the availability of more neighbours while SnG seems to keep a constant RMS error

error. We should also mention that SnG would collapse if the average number of

neighbours is too low. Finally, for the SnG simulations, we initially ran cooperative

least-square (LS), cf. [9], as it requires initial estimates to run, which is not required

for NBP and Grid-BP.

Now, we consider a mobility scenario where the 10 nodes move randomly for a

period of 180s. Simulation parameters are the same as before with a communication

range of 12m. We used the test data in [85, 86], as a pool of possible movements that

a node can follow with the respective MEMS measurements. Each node decides by

a stationary probability Pri(s) if it will wait or not and for how many seconds. If

it will wait, then it will be used in the cooperative localisation algorithm. Alterna-

tively, it will pick randomly a movement from the ones provided in the test data and
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SNG

Figure 5.3: The average RMS error error versus the communication range.

move accordingly until the movement time elapses and the procedure repeats until

the simulations finish.

The cooperative localisation steps occur, to obtain starting locations and after-

wards every 10s. In Fig. 5.4, we present the average RMS error tracking error re-

sults, which is the average RMS error localisation error per second for the network.

Obviously, as the stationary probability increases, the nodes move less and conse-

quently are more readily available in the cooperative localisation steps, improving

their RMS error tracking error. At the boundary scenario, we have Pri(s) = 0 which

means that all nodes are constantly moving and hence besides the initial coopera-

tive localisation step, nodes will only use MEMS information algorithms. As we

can see, the superiority of PHIMTA over PDR is evident in all mobility scenarios.

Secondly, SnG slightly outperforms Grid-BP. This is due to the ability of SnG to
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GBP - PHIMTA

SNG - PHIMTA

GBP - PDR

SNG - PDR

Figure 5.4: The average RMS error tracking error with Ke = 0.01.

filter out nodes that mistakenly believe they are stationary while in reality their are

moving. Despite that, the difference is small, given the drastic decrease in compu-

tational cost. Finally it is clear that using cooperative localisation is a great addition

to MEMS localisation.

5.7 Conclusions

In this chapter, we have extended our cooperative localisation algorithm, Grid-BP,

with a hybrid MEMS tracking system. We have designed a novel hybrid INS/PDR

mobility tracking algorithm and also designed a novel particle filter that combines

probabilistically the former with our cooperative localization algorithm. The end

result is a powerful and promising mobility tracking algorithm with very low om-

putational requirements compared to the literature. PHIMTA allows for a node to
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be mobile for long periods of time and use cooperative localization to verify its po-

sition whenever possible. This can extend a cooperative localization network over

a larger area and make it much more robust as the two systems compliment each

other. As such, PHIMTA, combines both the self-localized branch and the cooper-

ative localization branch in the position location tree, cf. Fig. 1.2. As INS sensors

become increasingly cheaper and more accurate, we believe that hybrid systems

that use cooperative localization with INS sensors like PHIMTA will become the

norm in GPS-denied environments mobile tracking.



Chapter 6

Stochastic Residual Belief

Propagation

6.1 Introduction

In the previous chapters, the focus had been on improving the forms of the messages

in distributed BP in order to achieve better accuracy and lower cost. In this chapter

we take a step back and investigate a quite overlooked part of the use of message

passing by wireless distributed sensors. Specifically we investigate the message

scheduling.

In order to talk about message scheduling, as discussed in Section 2.6 a differ-

ent perspective to message passing needs to be approached. In particular, Yedidia

et al., cf. [89], demonstrated that BP can be interpreted as performing a constrained

minimization of the so-called Bethe free energy. Convergence conditions were pro-

posed in [61, 59, 90]. Moreover, algorithms that ameliorate the effects of cycles by

weighting messages have been proposed in [91, 60]. Remarkably, the importance

of message scheduling in BP has also been recognized, and R-BP has hence been

proposed as an algorithm implementing a greedy informed schedule for message

passing, cf. [92]. This gave rise to a number of variants of BP in Low-Density

Parity Check (LDPC) decoding that provide more elaborate informed schedules for

R-BP, e.g., [93].

Distributed wireless networks, such as in the application of cooperative spec-
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trum sensing, however, pose new challenges for BP as there is practically no central

entity to manage global information, hence making algorithms like Tree Reweigh-

ing BP (TR-BP) [91] and R-BP unusable in the distributed case. In [94, 95],

Wymeersch et al. devised a distributed variant of TR-BP, called Uniformly Re-

Weighted BP (URW-BP), but did not study the use of informed scheduling for dis-

tributed networks.

6.1.1 Our Contributions

In this chapter, we propose a novel R-BP algorithm for distributed wireless networks

that employs a stochastic message scheduler based on the residuals at each node.

This will result in faster convergence, less overhead, and improved results, but also

can be integrated with enhancing algorithms such as URW-BP [94, 95] for further

performance increase.

Our contributions can be summarized as follows:

• We devise a SR-BP as a practical alternative to perform R-BP for distributed

inference.

• We prove that when BP converges, given similar conditions to R-BP, SR-BP

will also converge.

• We propose a probability density function parametrized by the residuals to

use as local “soft” decision for message propagation.

• Simulation results for the cooperative spectrum sensing application show

that SR-BP greatly outperforms BP in distributed inference and compliments

UTR-BP.

6.1.2 Organization

The rest of the chapter is organized as follows. In Section 6.2 the inference using

BP is quickly revisited and a convergence analysis of BP is presented. In Section

6.3 SR-BP is presented, and it’s convergence properties are discussed and proven.

In Section 6.4 we present results from Monte Carlo simulations for both the Ising
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model and a more realistic cooperative spectrum sharing scenario. Finally, in Sec-

tion 6.5 the chapter is concluded and some ideas for future work are discussed.

6.2 Inference using BP

Let XXX = [X1 · · ·Xn] be a finite set of N random variables and let xxx denote an assign-

ment to XXX . Also let xxxc denote an assignment to a subset of variables XXXc ⊆ XXX . We

can represent a joint distribution over XXX as a set of factors Φc for c ∈ C , where each

c is associated with the corresponding variables XXXc and Φc is a function from the

set of possible assignments XXXc to R+. The joint distribution over XXX is then defined

as

p(XXX) =
1
Z ∏

c∈C
Φc(XXXc), (6.1)

where Z , ∑XXX ∏c∈C Φc(XXXc) is a normalization constant and is commonly referred

to as the partition function.

Let G = (V ,E ) represent a cluster graph with vertices V and edges E . We

can place at each node a cluster Φs associated with a subset of variables XXX s of the

undirected graph. Nodes are connected with edges E . A message between two

clusters s and t is a factor over their common variables XXX s,t = XXX s
⋂

XXX t . In sum-

product BP, the message from one cluster to another is defined as eq. 2.16

µs→t(XXX s,t), ∑
XXX t−XXX s,t

Φs(XXX s) ∏
r∈Ns\t

µr→s(XXX r,s), (6.2)

where Ns\t denotes the set of neighbouring clusters for cluster s, excluding cluster

t. In principle, messages will be initiated and passed through the cluster graph until

convergence. This occurs when both sides of the update equations for each cluster

in the graph are equal, or in other words a fixed point of the Bethe energy function

has been found.

A different viewpoint was presented in [92]. Each message can be viewed

as residing in some message space (R ⊂ R+)d , where d is the dimension of the
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messages.1 Hence, the set of messages M , in a cluster graph, is a subset of R|M |,

where |M | = 2|E |. Let m denote the index of individual messages, vvvm denote the

mth message and v ∈ R|M| denote a joint assignment of messages. The update

equation (6.2) can therefore be seen as a mapping function fm : R|M | → R that

defines the mth message as a function of a subset of the messages in R|M |. Then

we can define the iterative method

vvv(t+1)
m = fm(vvv(t)). (6.3)

Assuming convergence, we have the fixed point

fm(vvv∗) = vvv∗m. (6.4)

Finally, the global update functions can be defined for both the synchronous and

asynchronous cases, respectively, as

Fs(vvv1, . . . ,vvv|M |) =
(

f1(vvv), . . . , f|M |(vvv)
)
, (6.5)

Fa
m(vvv1, . . . ,vvv|M |) =

(
vvv1, . . . , fm(vvv), . . . ,vvv|M |

)
. (6.6)

In the asynchronous case, we assume that there is a set of times T = {0,1,2, . . .} at

which one or more components vvvm are updated. Also let T m be the set of times vvvm

is updated. Then for the asynchronous case we adopt Assumption 3.1 of [92].

Assumption 6.2.1. For every message m, there is a finite time Tm so that for any

time t ≥ 0, the update vvv := f a
m(v) is executed at least once in the time interval

[t, t +Tm].

Essentially this means that all messages will be updated infinitely until conver-

gence.

1For convenience all messages are assumed to have the same dimension d.
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6.2.1 Convergence Analysis

One of the main tools in convergence analysis is the contraction. Assuming a finite

dimensional vector space VVV that has a vector norm ‖ · ‖, we define a mapping F :

VVV →VVV to be a ‖ · ‖-contraction if

‖F(vvv−F(www)‖ ≤ a‖vvv−www‖, (6.7)

for some 0≤ a < 1, for all vvv,w ∈V . Respectively if F(·) is a ‖ · ‖-contraction then

a unique fixed point vvv∗ is guaranteed to exist, and applying F(·) iteratively we have

that

vvv(t+1) = F(vvv(t)) (6.8)

is guaranteed to converge to vvv∗, for all possible initial vectors vvv(0) ∈ VVV . In the

message space R we define a message norm ‖vvvm−wwwm‖m that measures distances

between individual messages and a global norm that measures distances between

points in R|M|. Following the analysis in [92], we also use the max norm ‖ · ‖∞ for

the global norm defined as

‖vvv−www‖∞ = max
m∈|M |

‖vvvm−wwwm‖m. (6.9)

Assuming convergence is guaranteed for the synchronous BP, i.e. Fs is a ‖ · ‖∞-

contraction, Elidan et al. showed that the asynchronous BP, will also converge if

there is a propagation schedule that guarantees that every message will be updated

until convergence, i.e. Assumption 6.2.1. Also they suggested the intuition that

in an asynchronous message passing scheme messages that “carry” more informa-

tion should be propagated first as they will help the algorithm converge faster, and

defined the residual of a message as

rm(vvv) = ‖ fm(vvv)− vvvm‖m. (6.10)

This led to the proposal of the the R-BP message passing scheme, where at
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each iteration (t) of BP, all residuals are calculated and the message with the largest

residual is chosen to be propagated, namely

m(t+1) = argmax
m

rm(vvv(t)). (6.11)

Empirically, Elidan et al. also showed that even in complicated real life ap-

plication PGMs, R-BP will converge more often and with less messages than both

synchronous and asynchronous BP propagation schemes, which led to a variety of

R-BP variants especially in the LDPC decoding. Unfortunately R-BP and its vari-

ants, require a centralized entity to compare all the residuals, find the largest, and

propagate the corresponding message, making it unsuitable for BP in distributed

networks. In the sequel we present stochastic R-BP (SR-BP), which overcomes

the requirement of a centralized entity by using a stochastic propagation scheme,

suitable for distributed networks.

6.3 SR-BP

Firstly we reformulate BP so that each node propagates its belief at each iteration in-

stead of a distinct message for each neighbour. The belief, that is an approximation

to the true marginal [91], at each timeslot is calculated as

b(t)s (XXX s) = Φs(XXX s) ∏
r∈Ns

µ
(t)
r→s(XXX s) (6.12)

and the messages calculated from the incoming beliefs µ
(t)
r→s(XXX r,s) are calculated as

µ
(t)
r→s(XXX s) ∝ ∑

XXX r

Φr,s(XXX r,XXX s) ∏
t∈Nr¬s

µ
(t−1)
t→r (XXX r)

∝ ∑
XXX r

Φr,s(XXX r,XXX s)
b(t−1)

r (XXX r)

µ
(t−1)
s→r (XXX r)

. (6.13)

Consequently, |M | is equal to the number of nodes. In the distributed case there

is no centralized entity to compare all residuals and decide on a message schedule.

As a result, each node will have to decide on itself if its message is “important”
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enough to transmit. Following the intuition behind residuals, we propose a stochas-

tic message passing schedule, where each node transmits its belief at timeslot (t)

with probability Pr(r(t)m ). The probability is calculated as

Pr(r(t)m ) = S(r(t)m ) =
1

1+ exp(−r(t)m )
, (6.14)

where S(·) is the sigmoid function. We now analyze the convergence of SR-BP. To

do so, we use Theorem 3.2 of [92] propagation that states

Theorem 6.3.1. If Fs is a max-norm contraction, then any asynchronous propaga-

tion schedule that satisfies Assumption 6.2.1 will converge to a unique fixed point.

Assuming that a PGM already satisfies the max-norm contraction condition for

the synchronous BP case, we only need to prove that SR-BP, satisfies Assumption

6.2.1.

Proof. By definition the residual r(t)m ≥ 0, ∀m ∈M . Then by construction we have

r(t)m ≥ 0⇒ 1

1+ exp(−r(t)m )
≥ 0.5. (6.15)

Consequently, there will always be a positive probability that message m will be

transmitted, hence there will be a Tm, so that for any time t ≥ 0, message m will

be updated and Assumption 6.2.1 is satisfied. Therefore, SR-BP will converge to a

fixed point.

It is hard to analyze the convergence rate of SR-BP but intuitively it should be

somewhere between the synchronous case, and the centralized residual case. In the

sequel we will provide experimental results that showcase this intuition.

6.4 Experimental Results
Monte carlo simulations were carried out to analyze the convergence rate, message

overhead and quality of the marginals of SR-BP. Comparisons were made with syn-

chronous BP, i.e. BP, asynchronous BP (ABP). Also we compare it with centralized

R-BP that of course couldn’t be used in practice in a distributed scenario. Finally
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we also use the aforementioned message scheduling schemes with URW-BP [94].

It should be noted that all algorithms use respectively the same codebase and only

the message scheduling differs.

6.4.1 Ising model

Firstly, random grids parameterized by the Ising model [54], are considered. These

allow for a systematic way to analyze an algorithm, as both the difficulty and the

scale of the inference task can be readily controlled. Random grids with 11 nodes

were created, with univariate potentials Φi(Xi) sampled from U [0,1] for each vari-

able, and pairwise potential given by

Φi, j(Xi,X j) = exp
(
λC ∗ (2111(Xi = X j)−1)

)
, (6.16)

where λ is sampled uniformly from [−0.5,0.5] allowing randomly some nodes to

agree and some to disagree with each other. In addition, 111(Xi = X j) is the indicator

function. Finally C is an agreement factor, where higher values impose stronger

constraints on the “negotiations” between nodes, making convergence harder. 200

simulations were run for a network with 11 nodes, where C = 10 and the algorithms

were allowed to run until convergence or 300 iterations had passed. The results are

summarised in Table 6.1.

There are a few interesting points to be made here. Firstly, as expected R-BP

achieves convergence every time in the given scenario, requiring 73% less itera-

tions on average and almost 96% less messages. In addition, SR-BP is pretty close

to R-BP achieving only slightly worse convergence rate, and requiring 64% less

iterations than BP and around 95% less messages, with the corresponding decrease

in computational cost and overhead of course. The other thing of interest is the

large increase in convergence rate when UTR-BP is used to compute the messages,

as well as the decrease in required iterations and messages to reach it, for BP and

ABP. UTR-R-BP seems to work slightly better than normal R-BP, and UTR-SR-

BP seems to converge a bit slower and worse than before. Nevertheless, it actually

achieves a better approximation to the real marginals, and the number of messages
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Table 6.1: Results for the Ising model.

Conv. % Avrg. Conv. Iterations Avrg. Messages KLD
BP 83% 78.5 8634 0.255
ABP 88% 63.2 6905 0.257
R-BP 100% 21.5 315 0.369
SR-BP 94.5% 28.4 393 0.365

required continues to be quite small.

Figures 6.1 and 6.2 show the cumulative percentage of convergence of the dif-

ferent algorithms as a function of iterations passed (essentially computational time

given to the algorithm). Again it is worthy to note that in both cases, even though

SR-BP converges less than centralized R-BP, when it will converge it converges

much faster.

Figure 6.1: Cumulative Convergence percentage vs iterations for 11x11 node ising grid
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Figure 6.2: Cumulative Convergence percentage vs iterations for 11x11 node ising grid
using UTR message passing

6.4.2 Cooperative Spectrum Sensing model

Next we study cooperative spectrum sensing, using the same model presented in

[95], as a real life wireless distributed application. We assume that a primary user

(PU) is transmitting and secondary users (SU) are collaboratively sensing the spec-

trum trying to decide if the channel is busy or not. SU that are close by, are more

likely to sense the same channel state. Let Xi ∈ {0,1} be binary variable represent-

ing the state of the channel close to SU i, and let Yi = yi represent the observation

made by SU i. Then we have univariate variables Φi(Xi) = Pr(yi | xi) and pairwise

potentials Φi, j(Xi,X j) = exp
(
λi, j111(Xi = X j)

)
, where λi, j is the correlation factor

between nodes i and j and in this model is sampled uniformly between [0.2,4]. The

observations Yi are sampled from complex Gaussian distributions with noise vari-

ance σ2
n Is and signal variance σ2

s Is for Xi = 0 and Xi = 1 respectively. Is is the
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Table 6.2: Results for the cooperative spectrum sensing model.

Conv. % Avrg. Conv. Iterations Avrg. Messages
BP 9.8% 256.1 2817.26
ABP 13.4% 259.1 2849.6
R-BP 19.5% 269.0 279.0
SR-BP 18.5% 267.9 804.7

s× s identity matrix, and s is the number of i.i.d signal received samples, used in

the channel detection. Nodes are deployed randomly in a circular area with unit

diameter, and R = 0.7 is set as the maximum communication range. 100 Monte

Carlo simulations were run, for a 100 transmission timeslots each, with a maximum

iteration number of 300. The results are summarized in Table 6.2. As it quite evi-

dent, convergence is much more difficult to achieve. This is due to the large number

of interconnections cause by the high communication range, and the relatively big

correlation factors λi, j Still SR-BP manages to double the convergence percentage,

using approximately 29% of the message propagations required by BP. In summary

in a real life application SR-BP achieves better convergence, with a 71% decrease in

required transmitted messages, while at the same time improving slightly the RoC

curve of the spectrum sensing nodes.

It is hard to compute exact marginals for the spectrum sensing case. Instead

we compute the roc curves for the various algorithms, as can be seen in Figures 6.3

and 6.4. As can be seen in both cases SR-BP achieves a better ROC curve than BP

and ABP, achieving a curve that almost matches the one by centralized R-BP.

6.5 Conclusions
We have presented a novel distributed message scheduling algorithm for running

inference algorithms in wireless networks, based on R-BP. We have proven that SR-

BP message schedule will converge to a fixed point if a synchronous schedule would

converge, and have showcased the superiority of the algorithm even in more general

non-convergent cases, where it consistently manages to achieve higher convergence

rates, better accuracy, and lower overhead and computational cost. It should be

noted that this work is far more general and can be used in a huge number of ap-



6.5. Conclusions 140

Figure 6.3: ROC Curve

plication where distributed iterative algorithms are used. Future work will involve

experimentation with more complicated discrete and continuous pdf. Analysis of

the contraction rate of SR-BP and possible alternative distributions that could be

used to instigate message propagation. Concluding, the analysis of message sched-

ules for distributed algorithms has been quite overlooked by the research community

despite all the advantages a good message schedule clearly provides. We hope that

this work will trigger an increase in interest for this interesting field, with so many

applications.
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Figure 6.4: UTR ROC Curve.



Chapter 7

Conclusions & Future Work

7.1 Conclusions

Indoors localisation has been a very hot research topic in the years during which

this Ph.D. was conducted. This can be explained as it presents a very interesting

and challenging problem as in order to achieve good localisation it requires a com-

bination of mathematics, machine learning, signal processing, engineering and code

writing. In addition, it has immediate and diverse applications ranging from military

to marketing.

The aim of this thesis was to solve a number of specific challenging issues in

indoors localisation and specifically when using cooperative localisation and PGMs.

Our aim was to develop novel algorithms for cooperative localisation that would

take into account issues of capacity and complexity in cooperative localisation. We

tackled the above limitations in a number of different ways.

In Chapter 3, we presented a novel algorithm called HEVA. HEVA is based on

the SPAWN framework, and uses message passing of probabilistic beliefs. HEVA

provided NLoS mitigation for ToA measurements. It also achieved a large decrease

in complexity, as well as capacity and communication overhead by using an ellip-

soid filter, and clustering to parametrize the messages. This allowed it to provide

excellent results with low capacity and computational costs even in 3D scenarios

with high noise and NLoS measurements.

In Chapter 4, we suggested the issue of coordinate system inherent in most
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cooperative localisation algorithms. We showed that most algorithms localize using

an LCS. Then a GCS is assumed to be known by all the nodes in order to get the

real coordinates. We explained why this is not trivial and presented an elegant

alternative. We developed a novel algorithm, namely Grid-BP, which uses a grid

based reference system. Grid-BP, can be readily applied to existing grid-based

GCS, like NATO’s MGRS. This eliminates the use of any LCS and all the need to

map the LCS to a GCS afterwards. In addition, Grid-BP allows for a parametric

message passing which is extremely fast and efficient computationally.

In Chapter 5, we extended the use of Grid-BP to mobile users. We created

a novel probabilistic algorithm, namely PHIMTA, which combines INS and PDR

localisation based on MEMS sensors. We showed that the combination of Grid-BP

and PHIMTA, allows for accurate and efficient localisation. We conducted exper-

iments using measurement campaign data provided by [85, 86], and demonstrated

the aforementioned.

Finally, in Chapter 6, we presented a distributed stochastic message scheduler

for message passing algorithms, namely SR-BP. We showed that we can achieve

faster convergence with less transmitted messages, by allowing the benefits pro-

vided by R-BP, to be used in a purely distributed environment. We proved that

SR-BP will converge whenever the centralized R-BP would converge and used a

cooperative spectrum sensing scenario, to showcase the improvement in overhead

and convergence rate of SR-BP.

The above algorithms besides solving the described challenges in localisation,

also compliment each other and can be used together to provide a low complex-

ity and overhead cooperative localisation with high accuracy, in many “difficult”

scenarios.

7.2 Future Work

Indoors localisation has been extensively researched in the last few years. It would

be safe to say that in the very near future it will be used by end users in everyday

life products and services. Nevertheless not all issues have been resolved yet as it
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provides a very interesting problem that encompasses digital signal processing, ma-

chine learning and wireless communications. We believe that further investigation

in the following areas is of great importance, as further work on the subject needs to

take into account stricter limitations on CPU and power consumption of the mobile

devices.

1. Further investigation in NLoS mitigation for distributed cooperative localisa-

tion while under power constraints in mobile devices is necessary, in different

schemes, e.g. TDoA, AoA, etc.

2. Further investigation in the integration of localisation systems, i.e. cooper-

ative localisation, with fingerprinting and INS systems, again while under

power constraints.

3. Further reduction of unnecessary communications between devices, and de-

velopment of pdfs for SR-BP with more information, e.g. taking into account

mobility INS information, etc.
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