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Sudden unexpected death in epilepsy (SUDEP) represents the most severe degree of the spectrum of epilepsy
severity and is the commonest cause of epilepsy-related premature mortality. The precise pathophysiology
and the genetic architecture of SUDEP remain elusive. Aiming to elucidate the genetic basis of SUDEP, we
analysed rare, protein-changing variants from whole-exome sequences of 18 people who died of SUDEP, 87
living people with epilepsy and 1479 non-epilepsy disease controls. Association analysis revealed a significantly
increased genome-wide polygenic burden per individual in the SUDEP cohort when compared to epilepsy (P =
5.7 × 10−3) and non-epilepsy disease controls (P = 1.2 × 10−3). The polygenic burden was driven both by the
number of variants per individual, and over-representation of variants likely to be deleterious in the SUDEP co-
hort. As determined by this study, more than a thousand genes contribute to the observed polygenic burden
within the framework of this study. Subsequent gene-based association analysis revealed five possible candidate
llele frequency; n, number; QC, quality control; SUDEP, sudden unexpected death in epilepsy; WES, whole-exome sequencing.
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Severity

Association
Burden
genes significantly associatedwith SUDEP or epilepsy, but no one single gene emerges as common to the SUDEP
cases. Our findings provide further evidence for a genetic susceptibility to SUDEP, and suggest an extensive poly-
genic contribution to SUDEP causation. Thus, an overall increased burden of deleterious variants in a highly poly-
genic background might be important in rendering a given individual more susceptible to SUDEP. Our findings
suggest that exome sequencing in peoplewith epilepsymight eventually contribute to generating SUDEP risk es-
timates, promoting stratifiedmedicine in epilepsy, with the eventual aim of reducing an individual patient's risk
of SUDEP.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Sudden unexpected death in epilepsy (SUDEP) is the commonest
cause of epilepsy-related premature mortality (Walczak et al., 2001).
The incidence of SUDEP varies from about 1/1000 patient-years in
population-based studies (Thurman et al., 2014) up to 6.5/1000 patient-
years in cohorts of people with drug-resistant epilepsy unsuitable for
surgery (Bell et al., 2010). The precise pathophysiology of SUDEP is un-
known:mechanismsmay be specific to an individual or shared across in-
dividuals, or both. General principles aimed at reducing SUDEP risk, such
as seizure control (Ryvlin et al., 2013), should be considered for everyone
with epilepsy. The reasons for the effectiveness of such measures, and
other preventative strategies (Ryvlin et al., 2013), are not known. Better
understanding of the underlying causes of SUDEP is required to establish
and target improved preventative strategies.

The cause of SUDEP is likely to bemultifactorial, involving underlying
genetic susceptibility related to individual epilepsy syndrome (Sakauchi
et al., 2011) (of which Dravet Syndrome is the most recognised), brain
functional and pathological characteristics (Lhatoo et al., 2010; Bozorgi
et al., 2013), uncontrolled generalised tonic–clonic seizures, and the
circumstances in which death occurs (e.g. prone position) (Liebenthal
et al., 2015). Whilst evidence for genetically-driven mechanisms in
SUDEP is provided by familial cases (Hindocha et al., 2008; Kawamata
et al., 2010), and animal models (Goldman et al., 2009; Qi et al., 2014;
Wagnon et al., 2015), the genetic architecture remains elusive. Substan-
tial genetic heterogeneity is implicated by diverse putative pathophysio-
logic mechanisms underlying SUDEP (Glasscock et al., 2007; Klassen
et al., 2014; Massey et al., 2014).

To elucidate the genetic basis and architecture of SUDEP, we used an
unbiased sequencing approach based on whole-exome sequencing data.
We examined overall burden and over-representation of deleterious
variants in people who died of SUDEP compared to living people with
epilepsy and non-epilepsy disease controls.

2. Methods

The study was approved by the relevant institutional review boards,
accredited regional/national biobanks or international cohorts with
ethical frameworks. Details of the difficult issue of sample collection
for SUDEP research are given in Supplementary Method 1.

2.1. Study Design

Weusedwhole-exome sequencing (WES) data from 18 people with
epilepsy who died of SUDEP and two control cohorts: a group of 87
living people with epilepsy, which we termed ‘epilepsy controls’, and
1479 non-epilepsy ‘disease control’ samples. To ensure data homogene-
ity, a joint calling strategy, and stringent variant and individual-level
quality control (QC) were applied for all WES datasets (Fig. 1 and
Supplementary Methods 5–8). Only individuals of white European an-
cestry were included in subsequent analyses (Supplementary Method
6.2 and Supplementary Fig. 1). We tested the genome-wide burden of
rare (or novel) deleterious variants in the SUDEP cohort against both con-
trol cohorts separately. Supported by the findings of the genome-wide
burden analysis, we sought to identify candidate genes for SUDEP
using gene-based association analyses. The study analytic design is
outlined in the Supplementary Fig. 2.

2.2. Study Participants

The 18 DNA samples from people who had died of SUDEP sometime
after DNA donation were selected from DNA archives at the National
Hospital for Neurology and Neurosurgery, London (n=8), the Epilepsy
Research Centre, Melbourne (n = 5), the Royal College of Surgeons in
Ireland, Dublin (n = 2), the Institute of Life Science, Swansea (n = 2),
and the Royal Hospital for Sick Children, Glasgow (n = 1). The cause
of deathwas classified into definite, probable, or near-SUDEP, according
to the most recent proposed system: definite SUDEP required post
mortem examination, without an identified toxicological or anatomical
cause of death (Nashef et al., 2012). Details of SUDEP cases are given in
Supplementary Table 1.

Epilepsy controls (n=87)were patients from the National Hospital
for Neurology and Neurosurgery, London (n = 71) and the Epilepsy
Research Centre, Melbourne (n = 16), who had had whole-exome se-
quencing for other projects and were alive at the time of selection.
These controls remain at risk of SUDEP. We applied previous incidence
data from a comparable group of people with chronic epilepsy,
reporting a SUDEP incidence of 5.9/1000 patient-years (Nashef et al.,
1995), to the number of years that our cohort of epilepsy control sub-
jects have already lived with epilepsy (summed minimum epilepsy
duration = 2563 years). This suggests that 15/87 would have been
expected to have succumbed to SUDEP, whilst, in fact, none have.
Thus, the epilepsy control group is enriched with those at lower risk.
For all epilepsy cases, we reviewed epilepsy diagnosis (Berg et al.,
2010), age at onset of first seizure, presence of intellectual disability
(Supplementary Method 2), anti-epileptic drug (AED) treatment, and
presence of convulsive or nocturnal seizures over the 12-month period
prior to death or latest follow-up. Details of the statistical analyses ap-
plied are provided in the Supplementary Method 3.

WES data of disease control samples (pre-QC, n = 3,263; post-QC,
n = 1,479; Supplementary Fig. 2) were obtained from the University
College London exomes consortium (UCL-exomes, detailed in the Sup-
plementary Method 4). The disease control samples had no diagnosis
of epilepsy or cardiac disease.

2.3. Whole-exome Sequencing

All epilepsy samples were sequenced using either Agilent's
SureSelect Human All Exon V1 (38 Mb, n = 42) and SureSelect
Human All Exon V5 (50 Mb, n = 56) or Illumina's Nextera Rapid
Capture Exome kit (37 Mb, n = 16). For the disease control samples,
NimbleGen's SeqCap EZ and Illumina's TruSeq Exome capture technology
were also used. Sequencing was performed on Illumina HiSeq2500 or
GAIIx sequencing systems.

We used amulti-sample joint calling strategy across all SUDEP cases,
epilepsy and disease control samples to mitigate problems caused by
the heterogeneity of sequence capture kits. One major confound in
case–control variant burden analyses can arise when either single-
sample calling, or multi-sample calling in different batches, is used to
generate the variant calls. Standard practice in single-sample calling is

http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1. Individual-level quality control flowchart for the SUDEP, epilepsy control, and non-epilepsy disease control samples used in this study. Abbreviations:WES, whole-exome sequencing;
SUDEP, sudden unexpected death in epilepsy.
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to call non-reference alleles only; calling of all sites is possible but im-
practical. In order to merge such single-sample calls into one dataset,
variants not called in one sample need to be assumed as either homozy-
gous reference, or set to missing. In contrast, multi-sample calling
routinely calls homozygous reference genotypes, but only for variants
with at least one non-reference allele in the entire sample. Our multi-
sample joint calling strategy across all cases and controls as a set
enabled us to distinguish between homozygous reference and missing
genotypes (Kumar et al., 2014), and provides the basis for standardized
QC across aggregated data, essential for case–control designs (Winkler
et al., 2014). Details of the variant calling pipeline are given in
Sergouniotis et al. (2014) and Supplementary Method 5.

2.4. Genome-wide Burden Analysis

Aiming to estimate the burden of mutations at genome-wide level,
we chose thresholds for variant QC metrics to maximize specificity over
sensitivity, accepting loss of power to detect a significant association in
favour of a reduced type I error rate (Supplementary Method 6.1).
Individual-level QC filtering generated samples with similar technical
sequencing metrics, including overall call rate, singleton rate, and per-
individual heterozygosity (Supplementary Method 6.2). After inspection
of the population substructure by multidimensional scaling analysis, as
implemented in PLINK (Purcell et al., 2007), only samples of clear
European ancestry were retained (Supplementary Fig. 1).
For the genome-wide burden analysis of variants in SUDEP, we
focussed on variants with the highest likelihood to be pathogenic by
selecting rare (minor allele frequency (MAF) ≤0.5%), protein-changing
variants (Supplementary Method 8). The variant selection procedure
for the genome-wide burden analysis is detailed in the Supplementary
Method 8.1. We chose this strategy because variant pathogenicity is
inversely correlated with the frequency of the non-reference allele in
the general population (Coventry et al., 2010), with prediction of variant
deleteriousness being more reliable for exonic and splice-site variants
than for non-coding variants (Shihab et al., 2015). Using the selected
variants, we then assigned to each individual an overall ‘burden score’,
calculated by summing the scores for deleteriousness of every selected
variant carried per individual, where the deleteriousness of each variant
was determined using the Combined Annotation Dependent Depletion
method (CADD v1.1) (Kircher et al., 2014, Supplementary Method 7).
The CADD method has been proven to achieve high sensitivity in iden-
tifying known pathogenic variants. To minimize batch effects between
the different WES samples and cohorts, only variants sequenced in
more than 80% of the SUDEP cases and the two control cohorts were
retained. This strategy was enabled by our joint calling strategy across
all cases and controls, and ensured that only variants sequenced in the
majority of each of the testing groups were used to calculate the per-
individual burden scores. This batch correction method is equivalent
to a cross-sample coverage-based correction method, and is not equiv-
alent to the filtering of poorly genotyped variants aimed at removing
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unreliable genotypes. The threshold of 80% was selected to obtain the
lowest variability of all observed per-individual burden scores (Supple-
mentary Method 8.1 and Supplementary Table 5).

We employed the two-tailed Wilcoxon rank-sum test, as imple-
mented in Stata (http://www.stata.com), to compare per-individual
burden scores and the number of variants per individual of the SUDEP
cases against those of the two control cohorts, as well as epilepsy con-
trols versus disease controls. The threshold for statistical significance
was corrected for six tests using the Bonferroni method (two burden
tests for three testing groups; α = 8.3 × 10−3).

2.5. Gene-based Association Analysis

For the gene-based association analyses, we performed association
tests based on comparison of the numbers of non-reference protein-
changing variants alleles exclusive to cases versus those exclusive to
controls, a well-established unique variant approach (Cohen et al.,
2004; Wain et al., 2014). This approach, together with refining based
on the predicted deleteriousness (scaled CADD score ≥15, Supplemen-
tary Method 7), maximizes the power of the gene-based association
tests (Ladouceur et al., 2012). Variant and individual-level QC was
performed as for the genome-wide burden analysis (Supplementary
Method 6). To help dissect out genes more likely conferring risk to
SUDEP than to epilepsy, we excluded variants present in the epilepsy
control cohort. The variant selection procedure is detailed in the Supple-
mentary Method 8.2.

Empirical data show that the performance of rare variant association
methods depends upon the underlying assumption of the relationship
between rare variants and complex traits (Ladouceur et al., 2012). We
employed a one-tailed burden test of an increased rare allele rate in
cases (described in the supplementary information of Purcell et al.
(2014)) and the two-tailed C-alpha test (Neale et al., 2011), which al-
lows for risk and protective variants, as implemented in PLINK/SEQ
(https://atgu.mgh.harvard.edu/plinkseq). An adaptive permutation
procedure was used to assess P-values for all association tests (swapping
of phenotype label across individuals; genes dropped from further per-
mutation if clearly not associated). We used the PLINK/SEQ estimate of
the smallest achievable empirical P-value for a gene (I-value) to adopt
an adjusted Bonferroni correction for multiple testing, by correcting
only for the number of genes for which there was power to detect asso-
ciation (I b 10−3) (Kiezun et al., 2012). Based on the observed cumulative
allele count in the SUDEP cohort for the tested genes, and a Bonferroni-
corrected significance threshold, the epilepsy controls did not provide
sufficient power to detect associations, andwere not used in this compo-
nent of the study. Confirmatory Sanger sequencing in the SUDEP samples
was performed for variants in genes surpassing the adjusted threshold for
significance.

2.6. Funding

Funding support was provided by Dravet Syndrome UK, the Katy
Baggott Foundation, the Epilepsy Society and the Wellcome Trust and
EpiPGX (European Union 7th Framework Programme Grant 279062);
the Wales Epilepsy Research Network is funded by The National Insti-
tute of Social Care and Health Research (NISCHR), Epilepsy Research
UK and theWaterloo Foundation; supportwas provided by theNational
Health andMedical Research Council of Australia. S.B. was supported by
the Polytechnic University ofMarche, Italy, with a one-year research fel-
lowship. N.S. was supported by a UCL Impact Studentship, in conjunc-
tion with Epilepsy Society. J.N. was supported by the Swiss National
Science Foundation-Fellowships for prospective researchers and the
SICPA Foundation, Prilly, Switzerland. The UCL Institute of Child Health
receives funding as part of GOSH UCL Biomedical Research Centre. This
work was partly undertaken at UCLH/UCL, which received a proportion
of funding from the Department of Health's NIHR Biomedical Research
Centres funding scheme.
3. Results

3.1. Clinical Phenotype

Eighteen people who died of SUDEP and 87 epilepsy controls were
included in subsequent analyses. Demographic and clinical data of
these two groups are summarized in Table 1. Eight SUDEP cases fulfilled
the criteria for “definite” and 10 were classified as “probable” SUDEP.

The SUDEP group was compared to the living epilepsy controls for
the following known clinical risk factors for SUDEP (Hesdorffer et al.,
2011; Lamberts et al., 2012): gender, epilepsy syndrome classification,
age at first seizure, epilepsy duration, total number of AEDs taken, sub-
jects living alone in the 12-month period before last appointment or
death, convulsive or nocturnal seizures in the 12-month period before
last follow-upor death.Nominally significant differenceswere observed
only for gender (72%males in SUDEP group versus 41% in living epilepsy
controls, P=0.021) and convulsive seizures in the 12-month period be-
fore last follow-up or death (present in 72% of SUDEP cases versus 42%
of living epilepsy controls, P = 0.021). However, none of these differ-
ences remained significant after correction of the threshold for statisti-
cal significance using the Bonferroni method (for the eight known risk
factors stated above; α = 6.3 × 10−3).

Amongst all the epilepsy cases, there was a subset of people with
Dravet Syndrome: 30 living Dravet Syndrome cases (26with, fourwith-
out, SCN1A mutation) and six people with Dravet Syndrome (all with
SCN1A mutation) and SUDEP, four definite and two probable SUDEP.
There was no significant difference in the distribution of the known
clinical risk factors for SUDEP or in AED treatment, including exposure
to sodium-channel blockers, between people with Dravet Syndrome
whodied of SUDEPand the livingDravet Syndrome cases, after correction
formultiple testing (Supplementary Table 2). Details of SCN1Amutations
are presented in the Supplementary Tables 3 and 4.

3.2. Genome-wide Burden of Rare Deleterious Variants

After individual-level QC, 18 SUDEP, 87 epilepsy, and 1,479 disease
control samples were included in subsequent analyses (Fig. 1). Variants
with at least one non-reference allele in any of the SUDEP, epilepsy, and
disease control samples were selected for the analyses (n = 89,512;
Supplementary Fig. 2). The 89,512 variants represented 1707 genes of
the human reference genome with non-reference alleles in the SUDEP
samples, 5464 genes with non-reference alleles in the epilepsy controls,
and 13,887 genes with non-reference alleles in the disease controls
(union = 13,999 genes). Details of coverage are given in the Supple-
mentary Result 10.

We observed a significantly increased genome-wide burden
score per individual in the SUDEP cohort when compared to epilepsy
(P = 5.7 × 10−3) and non-epilepsy disease controls (P = 1.2 × 10−3)
(Table 2; Fig. 2, Supplementary Table 6). The number of variants per in-
dividual showed suggestive over-representation against the epilepsy
controls (P = 0.022), and significant over-representation against
disease controls (P = 4.1 × 10−3) (Table 2, Fig. 2). Although there
was also a significant difference in the number of variants between
the two control cohorts (P = 6.1 × 10−3), the genome-wide burden
score did not differ. This genome-wide burden suggests an extensive
polygenic contribution to SUDEP causation.

Post hoc analysis removing all post-QC SCN1A variants showed that
the genome-wide burden was not biassed by the enrichment of both
the SUDEP and the epilepsy cohorts with Dravet Syndrome patients
bearing SCN1A mutations (comparison against epilepsy controls:
P = 6.3 × 10−3; disease controls: P = 1.4 × 10−3).

3.3. Gene-based Association of Unique Deleterious Variants

Gene-based association tests were performed for all genes with at
least one non-reference allele in either SUDEP cases or disease controls

http://www.stata.com
https://atgu.mgh.harvard.edu/plinkseq


Table 1
Demographic and clinical features of SUDEP cases and living epilepsy controls.

SUDEP cases (n = 18) Living adult epilepsy controls (n = 87) Uncorrected P-value (test)

Mean age at last recorded follow-up/death, years (SD) 29 (18) 35 (16) 0.198 (t-test)
Gender, n = male (%) 13 (72) 36 (41) 0.021 (Fisher's exact)
Epilepsy syndrome classification, n (%) DS 6 (33) 30 (35) 0.423 (Pearson χ2)

Focal S. 5 (28) 25 (29)
Focal U. 4 (22) 7 (8)
GGE 1 (6) 14 (16)
UE 2 (11) 11 (13)

Median age at first seizure occurrence, years (IQR) 2.5 (0.9–13) 2 (0.5–7) 0.332 (Wilcoxon rank-sum)
Median epilepsy duration, years (IQR) 20 (10–38) 30 (19–43) 0.086 (Wilcoxon rank-sum)
Intellectual disability, n (%)a 10 (56) 38 (45) 0.402 (Pearson χ2)
Total number of AEDs taken, median (IQR) 8 (5–11) 8 (4–10) 0.997 (Wilcoxon rank-sum)
Subject living alone in the 12-month period before last follow-up/death, n (%)a 2 (12) 6 (7) 0.617 (Fisher's exact)
Convulsive seizures in the 12-month period before last follow-up/death, n (%)a 13 (72) 35 (42) 0.021 (Fisher's exact)
History of nocturnal seizures in the 12-month period before last follow-up/death,
n (%)a

5 (33) 34 (42) 0.775 (Fisher's exact)

The Bonferronimethodwas applied to correct for the following known risk factors for SUDEP: gender, epilepsy syndrome classification, age atfirst seizure, epilepsy duration, total number
of AEDs taken, subjects living alone in the 12-month period before last appointment or death, convulsive or nocturnal seizures in the 12-month period before last follow-up or death. The
threshold for statistical significance after Bonferroni correction was set to α = 6.3 × 10−3. Abbreviations: SUDEP, sudden unexpected death in epilepsy; DS, Dravet Syndrome; Focal U.,
Focal unknown aetiology; Focal S., Focal symptomatic; GGE, Genetic Generalised Epilepsy; UE, Unclassified Epilepsy (Berg et al., 2010).

a Missing data: intellectual disability (n= 2); subject living alone in the 12-month period before last follow-up/death (n= 3); convulsive seizures in the 12-month period before last
follow-up/death (n = 3); history of nocturnal seizures in the 12-month period before last follow-up/death (n = 8).
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(373 genes in the SUDEP cases; 10,319 genes in the disease controls;
union=10,405). The threshold for statistical significancewas corrected
for 32 tests using the adjusted Bonferronimethod (two association tests
for 16 genes with I b 10−3; α = 1.56 × 10−3). Five genes harbouring
Sanger-confirmed variants were significantly associated with SUDEP
when compared to the 1479 disease controls (Table 3). Themost strongly
associated genewas SCN1A (C-alpha P=1.61× 10−4), followed by LGI1
(lowest P=3.12× 10−4), SMC4 (lowest P=5.39× 10−4), COL6A3 (low-
est P = 7.27 × 10−4), and TIE1 (lowest P = 1.48 × 10−3). Sanger se-
quencing failed to confirm one of two variants of the PIK3C2A gene. We
note that we considered only SCN1A variants that passed the same QC fil-
tering applied to every otherWES-derived variant in any other gene. Cov-
erage statistics for theWES target intervals within the genes are given in
Table 3.

4. Discussion

SUDEP is themost devastating outcome in epilepsy. Whilst a number
of risk factors and terminal pathophysiological phenomena have been
determined, the cause of SUDEP remains unknown. There appear to be
environmental risk factors, and evidence for genetic susceptibility.
Given evidence for heterogeneity of genetic risk, we proposed that
genetic risk is spread across the genome. We show that, in people
Table 2
Genome-wide burden analysis results based on 89,512 quality-control filtered, protein-changi

SUDEP patients Epilepsy controls

(n = 18) (n = 87)

M Mdn IQR (Q1–Q3) M Mdn IQR (Q1–

Test groups

Per-individual burden scores 309.2 313.3 54.3
(284–338)

282.7 276.3 47.2
(257–30

N. of variants per individual 110.2 108.5 18
(102–120)

104.1 101 18
(96–114

Post hoc analysis excluding SCN1A variantsb

Per-individual burden scores 308.2 312.6 54.3
(284–338)

282.2 276.3 46.5
(256–30

Threshold for statistical significance after Bonferroni correction was set toα=8.3 × 10−3. Abb
terquartile range; Q1, lower (first) quartile; Q3, upper (third) quartile; N., number.

a All P-values are two-tailed.
b Post hoc analysis excluding 31 SCN1A variants present in any of the testing groups.
who have succumbed to SUDEP, there is a higher burden of deleterious
genetic variants, with a higher cumulative deleteriousness score, com-
pared to the burden in people with epilepsy who had not succumbed
to SUDEP, and compared to the burden in people without epilepsy.
Gene-based analysis in this group of SUDEP cases identifies some possi-
ble candidate genes that may carry some of the excess burden in this
small sample. Our results provide further evidence for genetic suscepti-
bility to SUDEP.

The identified genetic susceptibility is spread across the genome.
Deleterious variants exclusively present in the exomes of this SUDEP
group were found in 373 genes in the human genome. One of these
genes is associated with cardiac arrhythmia (CACNB2, Supplementary
Table 5 and Supplementary Result 11). No other genes previously impli-
cated in sudden cardiac death emerged. There are some genes that in
our small SUDEP group appear overburdened (n=5), but no one single
gene, nor one single pathway, emerges as common to all SUDEP cases.
Our findings require confirmation in an independent cohort. Taking
the known genetic heterogeneity of syndromes associatedwith a higher
risk of SUDEP togetherwith ourfindings,we suspect that there is indeed
not one culpable pathway or gene set for SUDEP. Studies of other SUDEP
case groups might identify additional sets of risk variants. Even though
observational studies reportmutations in SUDEP in candidate genes, we
note that single candidate gene studies have not revealed a robust
ng, and rare variants.

Disease controls Wilcoxon rank-sum test P-valuesa

(n = 1479)

Q3) M Mdn IQR (Q1–Q3) SUDEP vs.
epilepsy
controls

SUDEP vs.
disease
controls

Epilepsy
controls vs.
disease controls

18 vs. 87 18 vs. 1479 87 vs. 1479

4)
270.3 268.4 73.5

(233–306)
5.7 × 10−3 1.2 × 10−3 0.023

)
99.29 98 24

(86–110)
0.022 4.1 × 10−3 6.1 × 10−3

3)
270.3 268.4 73.5

(233–306)
6.3 × 10−3 1.4 × 10−3 0.028

reviations: SUDEP, sudden unexpected death in epilepsy; M, mean; Mdn, median; IQR, in-



Fig. 2.Violin plots of the burden score and variant number per individual. Plotted are the per-individual burden scores (A) and the number of variants per individual (B) of each test group.
A violin plot is a box plotwith thewidth of the box proportional to the estimated density of the observed data (proportion of caseswith given ordinate value). Themaximumdensity of the
group-specific data distribution is indicated by the largest width of the violins. The density trace is plotted symmetrically to the left and the right of the box plot for better visualization. All
violins have the samefixedmaximumwidth. Thewhite dot is themedian, the thick black vertical bar represents the interquartile range (IQR), and the thin black vertical bar represents 95%
confidence intervals.
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association with SUDEP in humans (Bagnall et al., 2014). We propose
that an overall increased burden of deleterious variants in a highly
polygenic background is important in rendering a given individual more
susceptible to SUDEP.

Some deleterious variants we have identified may per se contribute
to, or be the cause of, the epilepsy, as well as increasing SUDEP risk. This
may be the case, for example, for some SCN1A mutations that were
already known in the Dravet Syndrome cases and held responsible for
the condition. It is unlikely that these single mutations were solely re-
sponsible for SUDEP in these cases, as SUDEP is not universal in Dravet
Syndrome, although a higher frequency of SUDEP is well recognised to
occur (Sakauchi et al., 2011). Notably, SCN1A emerged as a burdened
gene even when considering only WES-derived variants that passed
variant selection. The exclusion of many SCN1A variants considered
causal before QC is due to our strict and conservative QC, emphasising
specificity above sensitivity. Nevertheless, SCN1A still emerged as a
Table 3
Gene-based association analysis results.

Gene Cytoband
GRCh37

Cumulative non-reference
allele count (cumulative
minor allele frequency, %)a

Mean average cov

SUDEP
cases

Epilepsy
controls

Disease
controls

SUDEP
cases

Epilep
contro

(n = 18) (n = 87)b (n = 1,479)

SCN1A 2q24.3 2 (5.56) 18 (11.19) 4 (0.16) 51× 44×
LGI1 10q23.33 2 (5.56) 0 (0) 2 (0.08) 90× 67×
PIK3C2A 11p15.1 2 (5.56) 1 (0.61) 1 (0.04) 81× 58×
SMC4 3q25.33 2 (5.56) 0 (0) 1 (0.05) 92× 57×
COL6A3 2q37.3 2 (5.56) 0 (0) 5 (0.19) 77× 63×
TIE1 1p34.2 2 (5.56) 0 (0) 4 (0.14) 85× 58×

Shown are six genes significantly associated with SUDEP when compared to the 1479 di
(α = 1.56 × 10−3) are highlighted in grey. Sanger sequencing failed to confirm one variant f
Abbreviations: SUDEP, sudden unexpected death in epilepsy; GRCh37, Genome Reference Con

a Cumulative counts and frequencies are the summed counts and frequencies of the non-ref
b Cumulative counts and frequencies for the epilepsy controls are given for comparison only

⁎⁎⁎ All P-values are based on adaptive permutations. Burden P-values are one-tailed; C-alpha
burdened gene. A possible dual role in both disease and SUDEP causa-
tion may apply to variants in other genes as well.

SUDEP genetics is an important area, andwemust acknowledge lim-
itations to our study. The number of individuals who succumbed to
SUDEP is small. Whilst there are new efforts to address this problem,
to date case recognition and ascertainment (Smithson et al., 2014),
collection of suitable samples and difficulties in obtaining WES data
from certain types of material, have hampered progress and limited
numbers. Dravet Syndrome is over-represented in both SUDEP and
epilepsy control groups compared to the general population of people
with epilepsy, thoughwenote that SUDEP is alsomore common inpeople
with Dravet Syndrome than in the overall population of people with
epilepsy. Whilst we cannot exclude the possibility that any individual in
our epilepsy control might succumb to SUDEP in the future, none has
yet despite an expectation that a proportion might have been expected
to do so, such that our epilepsy control group is enriched with those at
erage Percent of target bases
with 10× or greater coverage

18 SUDEP cases vs.
1479 disease controls

sy
ls

Disease
controls

SUDEP
cases

Epilepsy
controls

Disease
controls

Burden
P-value⁎⁎⁎

C-alpha
P-value⁎⁎⁎

75× 87% 81% 89% 1.21 × 10−4 1.61 × 10−4

45× 80% 78% 68% 3.12 × 10−4 3.12 × 10−4

69× 93% 90% 87% 3.12 × 10−4 3.34 × 10−4

36× 79% 73% 63% 5.39 × 10−4 5.39 × 10−4

51× 83% 84% 76% 7.27 × 10−4 7.27 × 10−4

37× 71% 70% 59% 1.48 × 10−3 2.01 × 10−3

sease controls. P-values surpassing the Bonferroni-corrected threshold for significance
or the PIK3C2A gene shown in red; the gene is not considered as associated with SUDEP.
sortium Human genome build 37.
erence alleles.
. Association tests were not performed, as explained in the text.
P-values are two-tailed. Genes are ranked by the C-alpha P-value.



1069C. Leu et al. / EBioMedicine 2 (2015) 1063–1070
lower risk of SUDEP. Although a significantly higher prevalence of male
gender and convulsive seizures in the 12-month period before last
follow-up or death was observed in the SUDEP cases compared to the
epilepsy controls, these differences do not survive correction for multiple
comparisons. Nevertheless, the differences merit some discussion. Male
gender has been associated with a 1.4-fold increased risk for SUDEP in a
combined analysis of case–control studies (Hesdorffer et al., 2011).
Other previous studies did not confirm this association (Walczak et al.,
2001; P-Codrea Tigaran et al., 2005; Vlooswijk et al., 2007) and more
recently amousemodel of SUDEPdid not showsignificantly different sus-
ceptibility to seizure-induced respiratory arrest between males and
females (Faingold and Randall, 2013). Overall, the difference in the pro-
portion of males in the SUDEP and epilepsy control groupsmay therefore
not be biologically relevant, and is not in any case statistically significant
after correction for multiple comparisons. The difference in convulsive
seizure frequency between the SUDEP and epilepsy control groups is
also not significant after correction for multiple comparisons, but it is
interesting to speculatewhether genome-wide burden of deleterious var-
iants is an explanation thatmight underlie this epidemiologically-derived
risk factor, tying epilepsy severity into genomic burden.

The burden test used in our genome-wide burden analysis is sensitive
to linkage disequilibrium (increased type I error rate). The comparatively
small epilepsy control dataset may mean that we have not adequately
filtered out deleterious variants related to epilepsy causation rather
than to SUDEP in our gene-based association analyses only. The associ-
ated genes may contribute to both epilepsy and SUDEP causation. We
used different tests for the gene-based association analyses: replication
of the results in an independent sample using the same statistical tests
is needed. Our strategy focuses on deleterious rare variants: other types
of genetic variant may also influence SUDEP risk. We did not undertake
functional studies, but such studies are likely to prove extremely chal-
lenging, requiring not only construct complexity or multiple knock-ins,
but also a whole animal model, as agonal changes in SUDEP typically
occur outside the brain.

The finding of genome-wide increased burden of deleterious vari-
ants, rather than the individual genetic results, needs replication. If sub-
stantiated, these results provide scope for individualised risk estimates
of SUDEP in people with epilepsy, with direct consequences for use of
current strategies to reduce risk through improved seizure control or
environmental measures, and may also assist with recurrence risk esti-
mation in affected family members. The results highlight the value of
exome sequencing in people with epilepsy: one test can provide in-
sights into possible genetic causation, pharmacogenomic variants and
outcome risk estimation. Overall, the findings provide new perspectives
into SUDEP.
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