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Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator
experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse
through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of
the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in
the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper,
mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density
profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation
results presented in this paper confirm that the frequency modulation profiles and the density modulation
profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper.
This technique opens new possibilities to quantitatively diagnose the plasma wakefield density at known
positions within the plasma column.
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I. INTRODUCTION

When a driver is fired into an underdense plasma, it will
generate a large amplitude longitudinal wave in the electron
density profile, now widely known as a plasma wakefield
[1–3]. Due to gradients in the electron density profile, the
driver beams induce electric fields up to tens or hundreds of
GV/m [4–7]. This is three orders of magnitude higher than
the electric field produced in conventional accelerators.
If the wakefield is driven by a short laser pulse [8,9], a

beat wave [10–12], an electron [13–15], or a proton beam
[16,17], all of which propagate with speeds near the speed
of light in vacuum, the wakefield also propagates with
approximately the same speed as the driver. The large
accelerating gradient and high propagation speed of the
wakefield makes it possible to use plasma as a basis for a
particle accelerator [18–20].
Before 2006, the core part of a plasma accelerator, i.e.,

the wakefield structure itself, had never been imaged in
experiments. The first snapshot of the wakefield was taken
using the frequency domain holography method [21]. It
used two long chirped pulses to copropagate with the

wakefield, as demonstrated in Refs. [22–25]. The phase
modulation of the pulse was retrieved from a spectrometer.
From the phase modulation profile, the image of a plasma
wakefield was obtained. This major advance in diagnostic
development has since allowed much greater understanding
of the underlying physics. However, one limitation is that
the probe pulse copropagates with the wakefield, and so
there is an averaging effect of the retrieved wakefield
profile. Therefore, it is not possible to diagnose the
evolution of the wakefield along the propagation direction.
In 2014, the same group demonstrated a new plasma

wakefield diagnostic technique which used two long
chirped pulses fired at a certain angle relative to the laser
pump pulse [25], which is called the frequency domain
streak camera. By measuring the phase modulation of the
probe pulse, this technique successfully produced the
longitudinal evolution of a wakefield in a single shot. It
is useful to detect where the bubble in the wakefield is
formed. However, the transverse structure of the wakefield
is convolved in the probe’s phase modulation. Because this
technique does not provide the transverse structure infor-
mation, there is insufficient information in the data pro-
duced in this technique to quantify the wakefield density
modulation.
In other experiments, images of plasma wakefields were

obtained using shadowgraphy technique [26,27]. In these
elegant experiments, probe laser pulses were fired across
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the wakefield in the perpendicular direction. The transverse
intensity profiles of the probe pulses represented the second
derivative of the wakefields’ electron density profiles with
respect to position. This allowed the crossing point to be
chosen along the propagation distance of the driver.
However, because the plasma wakefield propagates with
a speed near the speed of light in vacuum, the relative
longitudinal position of the probe changes while it is still
interacting with the wakefield. This makes it quite difficult
to obtain quantitative data from this technique.
In this paper, a novel technique to image and diagnose

plasma wakefields, using the concept of photon acceler-
ation, is presented. When photons propagate in a plasma
wakefield, their frequencies change according to the
gradient of the wakefield’s density profile relative to the
photons’ positions. This phenomenon was first predicted
by Wilks et al. [28] and further developed in Refs. [29–32].
By measuring the frequency modulation of the photons,
one can retrieve the electron density modulation profile in
the wakefield.
In a previous study [33], pioneering results of simulated

measurements using photon acceleration using a long
copropagating probe pulse were presented. As in frequency
domain holography, the setup introduces an averaging
effect, which was accounted for in the description of its
strengths and limitations. In order to avoid the averaging
effect, a new study is presented here where the probe pulse
is allowed to propagate with an oblique angle relative to the
wakefield. This oblique crossing angle makes it possible to
obtain the density modulation profile of the wakefield at
certain positions and diagnose the evolution of the wake-
field along the propagation distance, thereby overcoming
one of the limitations of the previous methods. This
technique is also complementary to the frequency domain
streak camera technique [25] by providing the quantitative
information of the electron density modulation in the
wakefield.
If the angle is set correctly, the velocity of the probe

pulse in the wakefield’s longitudinal direction is the same
as the wakefield’s group velocity and the longitudinal
position of the probe pulse will not change relative to
the wakefield. Therefore, an inverse Abel transform [34]
can be applied, with the assumption that the wakefield has a
cylindrical symmetry. However, the correct angle is not
always achievable, especially for the case where the
wakefield’s speed is greater than the probe’s speed. For
different crossing angles, the probe pulse’s relative longi-
tudinal position changes while crossing the wakefield and
an ordinary Abel transform cannot be applied.
In this paper, an expression of a modified Abel transform

is derived so that it can be applied for more general crossing
angles with its inverse transformation. Results of the
simulated measurements are presented for various wake-
field amplitudes, frequencies of the probe beam, and
crossing angles. In the simulations, two electron density

profiles of the wakefield were obtained. The first were
obtained directly from the electron density profiles in the
simulations, and these are called “actual” profiles through-
out this paper. The second were calculated from the
electric field profiles of the laser pulse in the simulations.
These profiles are called “measured” profiles. The “actual”
and “measured” terms will be used often in this paper.
These two types of profiles are then compared to confirm
the agreement between them. Analysis of the limiting
conditions, including the diffraction effect and error-
dependence on the angle of incidence, are also discussed.
This paper is organized as follows. In Sec. II, a derivation

of a transformation for cylindrically symmetric objects with
oblique crossing angle is derived. The simulations’ param-
eters are presented in Sec. III. Section IV provides the
results of the simulations and discussions of the results and
the limiting conditions. Finally, in Sec. V, conclusions of
this paper are presented.

II. THEORETICAL ANALYSIS

A. Forward transform

It is well known that if a photon propagates through a
medium with varying refractive index in space, the wave-
length of the photon changes while its frequency remains
constant. This does not happen if the medium is moving. In
this case, the refractive index of the medium varies in both
space and time. Thus, it changes the frequency and wave-
length of photons that propagate in it.
When a plasma wakefield is generated in a plasma, the

electron density variation gives different refractive indices
at every position and time. If a laser pulse propagates in the
wakefield, the frequency is shifted by the amount [29,32]

Δω
ω0

≈ −
ω2
p

2ω2
0

c
n0

Z
∞

−∞

∂n
∂ζ dt ð1Þ

where Δω=ω0 is the fractional change of the frequency
relative to its initial central frequency and ωp represents the
plasma frequency. The variable ζ ¼ z − ct denotes the
moving longitudinal position where z and t the position
and time in the lab frame. The variables n and n0 are the
electron density profile and its initial density, respectively,
and c is the speed of light in vacuum. The expression is
integrated for the whole interaction time in the lab frame.
The configuration of a probe pulse at oblique angles to

the plasma is shown in Fig. 1. The laser pulse propagates
with angle θ and speed vg, and crosses the wakefield which
propagates in the z-direction with speed up. The laser pulse
acts as a probe and is assumed to have very low power so
that it leaves the wakefield relatively undisturbed. The goal
in this section is to derive the relation between the
frequency shift of a photon in the laser pulse and the
electron density modulation profile of the wakefield.
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By taking t ¼ 0 when the photon is closest to the
wakefield’s axis, the position of the photon in the wakefield
in cylindrical coordinates is

rðtÞ ¼ ½ðvgt sin θÞ2 þ y2�1=2;
xðtÞ ¼ vgt sin θ;

ζðtÞ ¼ ζ0 þ ðvg cos θ − upÞt; ð2Þ

where rðtÞ denotes the distance from the wakefield’s axis, y
is the shortest distance from the axis, and ζ0 represents the
probe’s longitudinal position when it is at the shortest
distance from the axis.
In this case, the wakefield density profile is assumed to

have a cylindrical symmetry. By defining fðr; ζÞ≡
ð−ω2

pc=2ω2
0n0Þð∂n=∂ζÞ and Fðy;ζ0Þ≡ðΔω=ω0ÞðvgsinθÞ,

Eq. (1) can be written as

Fðy; ζ0Þ ¼ vg sin θ
Z

∞

−∞
f½rðtÞ; ζðtÞ�dt: ð3Þ

Using Eq. (2) and expanding f½rðtÞ; ζðtÞ� around ζ ¼ ζ0
using Taylor’s series, the function can be written as

f½rðtÞ; ζðtÞ� ¼
X∞
j¼0

∂jf
∂ζj ½rðtÞ; ζ0�

½ðvg cos θ − upÞt�j
j!

: ð4Þ

Substituting fðr; ζÞ from Eq. (4) to Eq. (3) and t ¼
x=vg sin θ from Eq. (2) yields

Fðy; ζ0Þ ¼
X∞
j¼0

aj

j!

Z
∞

−∞

∂jf
∂ζj ðr; ζ0Þx

jdx ð5Þ

where a≡ ½ðcos θ − up=vgÞ= sin θ� indicates how much the
photon shifts horizontally relative to the wakefield.
The integration in Eq. (5) is an integration for x while the

function f is expressed in r. From Eq. (2), variable x can be
substituted as x ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − y2

p
. The � sign on x allows the

integral to be split into two parts. The first integrates from
r ¼ ∞ to r ¼ y for negative x and the second from r ¼ y to
r ¼ ∞ for positive x. Odd values of j make the integrand
signs for negative x and positive x the same. It therefore
follows that the integrations for negative x cancel the
integrations for positive x for odd values of j. It is important
to note that this is not the case for even values of j, because
the integrations for negative and positive x have the same
values. Rewriting Eq. (5) in terms of r gives

Fðy; ζ0Þ ¼ 2
X∞
j¼0

a2j

ð2jÞ!
Z

∞

y

∂2jf
∂ζ2j ðr; ζ0Þ

ðr2 − y2Þjffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − y2

p rdr:

ð6Þ

This allows Eq. (6) to be calculated for known distri-
butions of fðr; ζÞ. Further simplification can be made using
a pseudodifferential operator with a Fourier transform [35].
One property of a Fourier transform is that one can
transform ∂jf=∂ζj into ðikÞj ~f where the tilde represents
the Fourier transform of f, i.e., ~fðr;kÞ¼R

∞
−∞fðr;ζÞe−ikζdζ.

By applying a Fourier transform on fðr; ζÞ and Fðy; ζ0Þ in
both the ζ and ζ0 directions, Eq. (6) is rewritten as

~Fðy; kÞ ¼ 2

Z
∞

y

X∞
j¼0

ð−1Þj
ð2jÞ!

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − y2

q �
2j ~fðr; kÞrdrffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − y2
p :

ð7Þ

The variable ~Fðy; kÞ represents the Fourier transformation
of Fðy; ζ0Þ, or ~Fðy; kÞ ¼ R∞

−∞ Fðy; ζ0Þe−ikζ0dζ0.
The Taylor’s series of a cosine function is

cos x ¼ P∞
j¼0ð−1Þjx2j=ð2jÞ!, so the series terms in Eq. (7)

can be substituted by a cosine function. Thus, the equation
can be simplified as

~Fðy; kÞ ¼ 2

Z
∞

y
cos

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − y2

q �
r ~fðr; kÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − y2

p dr: ð8Þ

This expression is similar to an Abel transformation
[36–38] except that it contains a cosine factor in the
integral. The zero value of the variable a turns Eq. (8)
into an Abel transform. It represents the special case where
the probe pulse propagates perpendicularly relative to the
wakefield.
To obtain Fðy; ζ0Þ, Eq. (8) is simply transformed using

the inverse Fourier transform. Most importantly, the equa-
tion applies for any case where measurements are made in

FIG. 1. The configuration considered in this paper: the laser
probe pulse crosses the wakefield at an arbitrary oblique angle.
The y-axis is pointed out of the page. By obtaining the phase or
frequency modulation of the pulse, one can obtain the density
modulation profile of the wakefield at the crossing point.
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cylindrically symmetric objects using nonperpendicular
probes.

B. Inverse transform

When performing the measurement, one is mostly
interested in obtaining the profile of fðr; ζÞ. To do this,
one first measures Fðy; ζ0Þ and then one inverts it using the
inverse transform of Eq. (8). This is

~fðr; kÞ ¼ −
1

π

Z
∞

r

∂ ~F
∂y ðy; kÞ cosh ðka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − r2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − r2
p dy: ð9Þ

To verify Eq. (9), it is easier to start from Eq. (8) and
rewrite it in the form of

~Fðy; kÞ ¼ −2
Z

∞

y

sin ðka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − y2

p
Þ

ka
∂ ~fðr; kÞ

∂r dr ð10Þ

by using partial integration and assuming that
limr→∞r ~fðr; kÞ ¼ 0. Then taking the y-derivative of
Eq. (10) yields

∂ ~Fðy; kÞ
∂y ¼ 2y

Z
∞

y

∂ ~fðs; kÞ
∂s

cos ðka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − y2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 − y2
p ds: ð11Þ

Substituting Eq. (11) into Eq. (9) gives

~fðr; kÞ ¼ −
2

π

Z
∞

y¼r
y
Z

∞

s¼y

∂ ~fðs; kÞ
∂s

cos ðka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − y2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 − y2
p

×
cosh ðka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − r2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − r2
p dsdy:

Then by changing the order of integration, one obtains

~fðr; kÞ ¼ −
2

π

Z
∞

s¼r

∂ ~fðs; kÞ
∂s

×
Z

s

y¼r
y
cos ðka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − y2

p
Þ cosh ðka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − r2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 − y2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − r2
p

× dyds: ð12Þ

It can be shown that the y-integration on Eq. (12) is π=2 and
does not depend on s, r, k, and a (see Appendix A). Thus,
from Eq. (12), one can write

~fðr; kÞ ¼ −
2

π

Z
∞

s¼r

∂ ~fðs; kÞ
∂s

π

2
ds ¼ ~fðr; kÞ; ð13Þ

which confirms that Eq. (9) is the inverse of Eq. (8).
The inverse transformation in Eq. (9) can be imple-

mented using 3-points Abel transformation with some

modifications [39]. Details of the implementation tech-
nique are given in Appendix B.

III. SIMULATION PARAMETERS

Simulations using the OSIRIS 3D code [40–42] were
performed. OSIRIS is a fully relativistic particle-in-cell code
that can simulate plasma and electromagnetic waves and
has been extensively benchmarked against experiments in
laser plasma accelerators over the past two decades.
These simulations were performed to model realistic

conditions expected in experiments and to check the
accuracy of the measurements. In the baseline parameters
of the three dimensional simulations, a cold plasma was
used with a density of n0 ¼ 2 × 1019 cm−3. The simulation
window contains 9750 × 400 × 300 cells each with size of
ð12 × 120 × 120Þ nm3. One particle per cell was used and
this was found to be sufficient for these purposes (the
simulations were repeated using a larger number of
particles per cell and gave similar results). A moving
window simulation was deployed. Periodic boundary con-
ditions were used in the transverse direction.
The driver of the wakefield was an electron beam which

had a spherical Gaussian shape with σr ¼ 4.4 μm and peak
density of ne ¼ 0.33n0 to drive the wakefield amplitude
around ∼0.53n0. Each of the electrons in the driver beam
propagated with momentum of p=mec ¼ 45 × 103, where
me was the mass of an electron. The probe pulse was a
plane wave with wavelength of 400 nm, duration of 53 fs
and normalized intensity of a0 ¼ 0.01. The probe crossed
the wakefield with an angle of θ ¼ 20o. In the simulation,
5 slices of the probe pulse were taken. The slices crossed
the center of the wakefield at the propagation distance of
s ¼ 28; 39; 49; 60, and 67 μm after the driver entered the
plasma. These parameters were chosen to minimize the
computational cost of the simulations. Each simulation
took around 8000 CPU hours to finish in average. Figure 2
illustrates the simulation and slicing of the electric field,
taken from the actual results of the simulation.
To determine the accuracy of the measurement over

some parameters, the density of the driver beam was varied
from 0.1n0 to 0.35n0, the crossing angle from 25° down to
5°, and the probe’s wavelength from 260 to 800 nm.
From the simulation results, the electron density profile

was obtained, nðr; ζÞ, as a function of r, distance from its
axis, and ζ, longitudinal position in the moving frame. It is
emphasized here that these profiles are labeled the “actual”
density profiles. Besides obtaining the actual density
profile, the frequency profiles of the sliced laser probe
pulse, Δωðy; ζ0Þ, were also obtained as a function of the
transverse position, y, and longitudinal position, ζ0. From
this frequency profile and the known simulation parame-
ters, the measured electron density modulation profiles
were calculated from Eq. (9) and implemented using
3-points Abel transformation method as described in
Appendix B. These density profiles are labeled the
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“measured” profiles. The actual and the measured density
modulation profiles are compared to see how well those
values agree.
To extract the frequency profile of the laser probe pulse

in the simulation, a Wigner transform was used, as
described in Ref. [33]. This gives flexibility in the choice
of 2D phase or frequency extraction methods in real
experiments. These include single-shot supercontinuum
spectral interferometry [21,22,25], frequency domain inter-
ferometry [43,44], SPIDER [45], etc. Therefore, analysis of
the accuracy and precision in real experiments need to be
combined with error analysis from the chosen method.

IV. RESULTS AND DISCUSSION

A. Results of measurement simulations

In the simulations, the wakefield amplitude did not
significantly change during the interaction with the probe
pulse. Also, the amplitude of frequency modulation of the
laser pulse is not significantly different between the slices

FIG. 2. Illustration of the simulation, taken from the actual
results of the simulation. The left picture show the sliced
wakefield in the electron density profile at x3 ¼ 0. The right
picture illustrates the initial electric field profile of the probe
pulse. The red line on the right picture shows one of five planes
where the slice of the electric field crosses the wakefield at the
propagation distance s ¼ 28 μm after the driver entered the
plasma. The axes x1, x2, and x3 in this illustration are different
from the axes x, y, z in the previous figure where in this
illustration the laser probe pulse propagate parallel with x1-axis.
While in Fig. 1, the probe pulse propagates not parallel
to any axis.

FIG. 3. Shape of the electron density modulation profile as a function of position (a) obtained directly from the simulation results and
(b) calculated from the probe’s frequency profile for a linear wakefield and (c)–(d) for a nonlinear wakefield. The distortion at the front
and at the back on (d) is because the intensity of the pulse at that point is low, hence reduces the accuracy of the retrieved frequency.
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taken along the plasma column. The 2D frequency profile
of the slice of the laser pulse that crosses the center of the
wakefield at s ¼ 28 μm was obtained shortly after it had
interacted with the wakefield for the cases of small and
large wakefield amplitudes. Figure 3 shows the comparison
between the measured electron density modulation profiles
from the laser pulse and the actual density modulation
profiles for both cases.
As seen in Fig. 3, the measured electron density profiles

share similar shapes with the actual density profiles shortly
after the probe pulse crosses the wakefield. However, as
the pulse propagates, the measured density profile from the
probe pulse changes its shape. The amplitude of the
modulation also decreases, as seen in Fig. 4. Therefore,
measuring the density profile after the laser pulse prop-
agates some distance could lead to inaccurate measure-
ments. This is an unwanted diffraction effect and can be
mitigated in real experiments using 4f image relaying
setups [46]. Another unwanted effect is dispersion which
can be eluded by avoiding transmissive optics in the
experiment.
Before the diffraction effect on the measured profile

becomes significant, a comparison was made between the
peaks and troughs values of the measured and actual density
modulation profiles. Figure 5 shows the peaks and troughs
values of the actual and measured density modulation
profiles from 5 slices along the plasma column. These
actual and measured values show excellent agreement.
In order to do a quantitative comparison for various

driver beam densities, crossing angles, and frequencies of
the probe pulse, the average values of the amplitudes of the
measured and actual density modulation profiles were
computed for each case. The amplitude here was defined
as half of the difference between the peak and the trough
values. The relative error between the actual and the
measured values were also computed for each set of
parameters.
For various driver beam densities, the comparison

between the actual and the measured values is shown in

Fig. 6(a) and their relative errors are in Fig. 6(b). The
figures show that the relative errors of the measurement do
not have any particular trend for the driver beam density
less than or equal to 0.35n0. This is where the wakefield

FIG. 4. Evolution of the measured density modulation profile resulting from diffraction after the interaction with the wakefield. (a) The
profile when it just finishes interacting with the wakefield, (b) when it propagates 18 μm from the previous picture and (c) after it
propagates 36 μm from the first picture. The shape of the modulated profile is changing and decreases in amplitude as it propagates
further from the interaction point.

FIG. 5. Comparison between actual density modulation profile
peaks (dots) and troughs (stars) with the measured density
modulation profile (squares and circles). Solid and dash lines
show the average values of the peaks and troughs of the actual
density modulation profile, respectively. The top picture shows
the comparison for small wakefield amplitude and the bottom
picture for large wakefield amplitude.
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FIG. 6. Comparison of the measured and actual amplitude of the density modulation profiles for (a) various driver beam’s densities and
(b) the relative errors; (c) various probe’s frequencies and (d) the errors; (e) various angles and (f) the errors. The measured values are
calculated from the frequency modulation profiles of the laser probe pulse using Eq. (9). The actual values are obtained directly from the
electron density modulation profiles in the simulations.
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amplitude reaches ∼0.64n0. It should be noted that none of
these errors exceed 10%.
The next comparison is varying the probe’s wavelength

from 260 to 800 nm, while the other parameters remain the
same as the baseline parameters. The comparison values
and the relative errors are shown in Figs. 6(c) and (d). These
indicate that the error values do not change significantly as
the probe’s frequency increases. Therefore the error is
independent of the probe’s wavelength.
Another comparison was also done to check the depend-

ency of the crossing angle with the measured values using
800 nm probe. This comparison was made with three
different values of driver beam density and was designed to
cover the linear and nonlinear regimes of the wakefield.
The results of this comparison and the errors are shown in
Figs. 6(e) and (f). For ne ¼ 0.15n0 and ne ¼ 0.25n0,
decreasing the crossing angle increases the relative error.
This is because when the angle decreases, the interaction
length between the wakefield and the probe pulse becomes
longer. If the interaction length is comparable to the
diffraction length of the modulated part of the pulse, the
frequency modulation’s amplitude of the laser pulse
decreases because of diffraction, hence increases the
relative error. For all cases in Figs. 6(e) and (f), most of
the relative errors are less than 10%, except when the
crossing angle θ ≤ 10° because of diffraction. This dif-
fraction effect will be discussed in the next subsection.

B. Measurement constraints

A photon acceleration diagnostic with oblique angle has
several constraints and limitations that can make the
measurement results inaccurate. In the previous paper
[33], several limitations in doing the measurement using
photon acceleration with a copropagating probe pulse have
been discussed. These include maximum propagation
distance to avoid photon trapping and maximum intensity
of the probe pulse to avoid stimulated Raman scattering.
More details can be found in Ref. [33].
In this oblique crossing angle setting, there are more

additional constraints. Some of those are apparent in the
results provided in the previous subsection. In this sub-
section, these new constraints are discussed in greater detail
to provide a realistic guide to realize this measurement
technique in the laboratory.

1. Diffraction

Consider the electric field of the probe as a function of
position, U0ðr; tÞ ¼ jU0ðr; tÞjeik·r−iω0t. As it crosses the
wakefield, the probe will experience a phase and frequency
modulation. Thus, the modulated electric field profile can
now be written as Uðr; tÞ ¼ U0ðr; tÞeiΔϕðr;tÞ, where
Δϕðr; tÞ is the phase modulation resulting from laser-
wakefield interaction. If the modulation is small enough,
it can be approximated as

Uðr; tÞ ≈U0ðr; tÞ þ iU0ðr; tÞΔϕðr; tÞ: ð14Þ

From the equation above, the modulated part of the probe
can be regarded as a new wave propagating in the same
direction with approximately same frequency, but with
amplitude profile of jU0ðr; tÞjjΔϕðr; tÞj.
In the photon acceleration case, when a very wide probe

crosses a small wakefield, the probe pulse will have a
modulated part with a size approximately the same as that
of the wakefield. Because the modulated part has the
smaller size, it will diffract faster than the unperturbed
part of the probe. This diffraction effect reduces the phase
and frequency modulation of the pulse if the interaction
length is larger than its diffraction length. In order to
minimize the diffraction effect, the crossing angle, θ,
should be large enough to keep the interaction length
short, or

sin θ ≳ λ0ffiffiffi
π

p
rp

ð15Þ

where λ0 is the probe’s wavelength and rp is the wakefield’s
radius.
In the simulated cases, the crossing angle should be

θ ≳ 8°. This explains why the relative errors start increasing
when θ ¼ 10° and increase significantly when the crossing
angle is set to be 5° for any simulated driver densities as
shown in Fig. 6(f).

2. Error dependence on angle

It is interesting to see how the measurement error is
related to the angle of incidence. As seen later in this
subsection, the error analysis on the angle can set the upper
limit of the crossing angle.
In order to simplify the analysis, it is assumed that the

wakefield has a perfect sinusoidal in the longitudinal
position and a Gaussian profile in the transverse position.
Although this is not the case for nonlinear wakefield and
some other cases (e.g., non-Gaussian transverse profile of
the driver), it is still useful to quantify the error. For this
simplified case, the frequency shift of the laser pulse has a
similar profile and can be written as

Δω
ω0

¼
�
Δω
ω0

�
max

sinðωpζ0=cÞe−y2=r2p ð16Þ

where rp represents the radius of the wakefield at which the
value drops to 1=e of the axial value. Other variables are as
introduced before. Applying the inverse transformation in
Eq. (9), the wakefield density is obtained as

Δn
n0

¼
�
Δn
n0

�
max

sin ðωpζ=cÞe−r2=r2p ð17Þ

where
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�
Δn
n0

�
max

¼−
2ffiffiffi
π

p ω2
0cvgsinθ

ω3
puprp

e
1
4
ω2
pa2r2p=c2

�
Δω
ω0

�
max

: ð18Þ

Notice that the oblique crossing angle raises an exponential
effect in ðΔn=n0Þmax for large absolute value of a. Defining
fm ≡ ðΔn=n0Þmax makes the equation simpler.
If there is an error in quantifying the angle, the

contribution of this error from Eq. (18) is

δfm
fm

¼
�
ω2
pr2p
2c2

cosθ−up
vg

sinθ

up
vg
cosθ−1

sinθ
θþ θ

tanθ

�
δθ

θ
: ð19Þ

In most cases of plasma wakefield accelerators, both the
probe and the driver travel with speed near the speed of
light, so it can be assumed that up=vg ≈ 1. Thus, Eq. (19)
can be written in a simpler form,

δfm
fm

≈
�

θ

tan θ
þ ω2

pr2p
2c2

�
1 − cos θ
sin θ

�
2

θ

�
δθ

θ
: ð20Þ

Figure 7 shows how the error contribution from the
angle [the term inside the right angle brackets in Eq. (20)]
grows as the crossing angle grows for various values of
β≡ ω2

pr2p=2c2. The graph shows that the error contribution
grows faster as the crossing angle increases.
From the graph, one can choose the maximum angle that

could give reasonable error contribution from the angle.
One possible choice of maximum angle is when the error
contribution from the angle reaches 2. Other values can be
chosen with trade-off between error and the maximum
angle. For the simulated cases in this paper, the error from
quantifying the angle is doubled when θ ≈ 60°.

V. CONCLUSIONS

The first quantitative theoretical and simulation studies
of photon acceleration diagnostics with oblique crossing

angle on plasma wakefield have been presented. A small
intensity probe pulse crosses the wakefield at certain
positions with a defined angle of incidence. By choosing
the interaction point between the probe and the wakefield, it
has been shown here that one can obtain an image of the
plasma wakefield density modulation profile at that point.
Therefore, it is possible to detect the evolution of plasma
wakefield along the propagation distance.
Results from our simulated measurements show that the

density modulation measured from the frequency modu-
lation profiles of the probe pulse agrees with the actual
electron density modulation profiles to within 10% relative
error. The constraints that set the lower and upper limit of
the crossing angle to minimize errors to obtain electron
density modulation profiles are also discussed in this paper.
These are the diffraction effect and error dependency
analysis on the crossing angle. By considering the con-
straints, one can determine the optimal parameters in both
laser and beam-driven wakefield accelerators to extract the
density modulation profile as a function of position along
the plasma column.
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APPENDIX A:

In this part, it will be proven that the y-integral on
Eq. (12) is constant, i.e.,

I ¼
Z

s

y¼r
y
cos ðka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − y2

p
Þ cosh ðka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − r2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 − y2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 − r2
p dy ¼ π

2
:

FIG. 7. Relative error contribution from the angle to the
wakefield density measurement for various values of β≡
ω2
pr2p=2c2 in Eq. (20).
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Substituting x2 ≡ y2 − r2 and thus xdx ¼ ydy into the
equation above gives

I ¼
Z ffiffiffiffiffiffiffiffiffi

s2−r2
p

x¼0

cos ½ka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs2 − r2Þ − x2

p
� cosh ðkaxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðs2 − r2Þ − x2
p dx:

Now substitute x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − r2

p
sin θ to the equation above so

it can be simplified into

I ¼
Z

π=2

0

cosðb cos θÞ coshðb sin θÞdθ;

where b≡ ka
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 − r2

p
. Using the representation of cosine

and hyperbolic cosine in exponential form, the integral can
be further simplified into

I ¼ 1

2

Z
π=2

−π=2
cos ðbeiθÞdθ:

Taking the derivative of I with respect to b yields

∂I
∂b ¼ −

1

2

Z
π=2

−π=2
eiθ sin ðbeiθÞdθ

¼ 1

2ib
cos ðbeiθÞjπ=2

−π=2
¼ 0:

Zero derivative of I means that value of I does not depend
on b. Thus, the integral can be evaluated at limit b → 0 to
get the value of the integral,

I ¼ lim
b→0

1

2

Z
π=2

−π=2
cos ðbeiθÞdθ ¼ π

2

as used in Eq. (13).

APPENDIX B:

The inverse of modified Abel transformation in Eq. (9)
contains singularity when y ¼ r. The modified 3-points
Abel inversion can be employed to overcome this problem
in the implementation.
First, the integral term in Eq. (9) is split into several

integrals with spacing Δr,

fðrjÞ ¼ −
1

π

X
i≥j

Z
yif

yi0

F0ðyÞ
cosh

�
ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − r2j

q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 − r2j

q dy;

where rj ¼ jΔr, yif ¼ iΔrþ Δr=2, yi0 ¼ iΔrþ gijΔr,
and

gij ¼
	
0 if i ¼ j
−1=2 otherwise:

Note that the second argument, k, and the tilde hat from
~fðr; kÞ and ~Fðy; kÞ in Eq. (9) are dropped for the sake of
simplicity. The term ∂ ~F=∂y is denoted by F0.
Substituting rj ¼ jΔr and y ¼ iΔrþ δΔr to the integral

gives

fðrjÞ

¼−
1

π

X
i≥j

Z
1=2

gij

F0ðiΔrþδΔrÞ coshðkaΔr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiþδÞ2−j2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðiþδÞ2 − j2
p dδ:

The term F0ðiΔrþ δΔrÞ and the hyperbolic cosine term
can be expanded using Taylor series around iΔr to the first
order. The expansions are

F0ðiΔrþ δΔrÞ ≈ F0ðiΔrÞ þ F00ðiΔrÞδΔr
and

cosh
�
kaΔr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðiþ δÞ2 − j2

q �
¼ Cij þ Sijδ;

where F00 is the second derivative of the function F
relative to y, Cij ¼ cosh ðkaΔr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 − j2

p
Þ, and Sij ¼

sinh ðkaΔr
ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 − j2

p
ÞkaiΔr=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
i2 − j2

p
.

Substituting these two expanded terms in the integral and
keeping only the first order terms of δ leaves us an
analytically integrable expression. Evaluating the integral
analytically leaves us the equation below,

fðrjÞ ¼ −
1

π

X
i≥j

fF0
iCijB

ð0Þ
ij þ ½F00

iΔrCij þ F0
iSij�Bð1Þ

ij g;

where Fi is a shorthand for FðiΔrÞ and

Bð0Þ
ij ¼

8>>>>>><
>>>>>>:

0 ; i ¼ j ¼ 0 or i < j

ln

�
2iþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ1Þ2−4j2

p
2i

�
; i ¼ j ≠ 0

ln

�
2iþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2iþ1Þ2−4j2

p
2i−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2i−1Þ2−4j2

p
�

; i > j

Bð1Þ
ij ¼

8>><
>>:

0 ; i ¼ j ¼ 0 or i < j

Dþ
ij − iBð0Þ

ij ; i ¼ j ≠ 0

Dþ
ij −D−

ij − iBð0Þ
ij ; i > j;

with D�
ij ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ði� 1=2Þ2 − j2

p
.

In quadratic interpolation, the first and second derivative
of the function F can be expressed as

F0
i ¼ ðFiþ1 − Fi−1Þ=2Δr

F00
i ¼ ðFiþ1 þ Fi−1 − 2FiÞ=Δr2:

Inserting this F0
i and F00

i terms yields
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fðrjÞ ¼ −
1

πΔr

X
i≥j

	
Fi½−2CijB

ð1Þ
ij �

þ Fi−1

�
−
1

2
CijB

ð0Þ
ij þ CijB

ð1Þ
ij −

1

2
SijB

ð1Þ
ij

�

þ Fiþ1

�
1

2
CijB

ð0Þ
ij þ CijB

ð1Þ
ij þ 1

2
SijB

ð1Þ
ij

�

:

The 3-points Abel inversion method is similar with the
technique described in Ref. [39], except that the hyperbolic
cosine term is also expanded in this method.
Another problem that may arise in the implementation is

that the hyperbolic cosine term can amplify the high
frequency noise. This problem can be solved simply by
choosing a cutoff value, kc and set k ¼ 0 when k ≥ kc.
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