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Abstract 4 

Floating offshore wind turbines are recently being considered widely for adoption in the wind 5 

power industry, attracting interest of several researchers and calling for the development of 6 

appropriate computational models and techniques. In the present work, a nonlinear finite 7 

element formulation is proposed and applied to the static and dynamic analysis of mooring 8 

cables. Numerical examples are presented, and in particular, a mooring cable typically used 9 

for floating offshore wind turbines is analyzed. Hydrodynamic effects on the cable are 10 

accounted for using the Morison approach. A key enabling development here is an algorithmic 11 

tangent stiffness operator including hydrodynamic coupling. Numerical results also suggest 12 

that previously empirical hydrodynamic coefficients could be obtained by fully coupled fluid-13 

structure interaction. Convergence rate and energy balance calculations have been used to 14 

demonstrate the accuracy of computed solutions. The introduction of the developed cable 15 

model in a framework for the study of the global behavior of floating offshore wind turbines is 16 

subject of current work. Source code developed for this work is available as online 17 

supplemental material with the paper. 18 
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Introduction 22 

Offshore wind turbines are considered an attractive option in the solution of many issues 23 

associated with onshore turbines (Skaare et al. 2007). In addition to steadier breezes and 24 

higher annual mean wind velocity, they can also guarantee higher energy efficiency. In waters 25 

that are approximately 20 m deep, offshore wind turbines are typically installed on piled or 26 

gravity-based foundations. On the other hand, floating foundations are required to support 27 

wind turbines in waters that are 50–80 m deep. No shallow waters exist on the west coast of 28 

the US and nearly 60% of the estimated US offshore wind facilities are located in waters that 29 

are 60m deep or more (Musial and Ram 2010). Moreover, for aesthetic reasons, it is 30 

sometimes desirable to locate the turbines far off the coast where they cannot be seen. 31 

Therefore, the floating offshore wind turbine (FOWT) technology is becoming a strong 32 

candidate for the extraction of the majority of offshore wind energy in the US (Martin 2011).  33 

Different FOWTs concepts and prototypes have been developed during the last few decades. 34 

In particular, three main concepts can be identified based on the way the wind turbine is 35 

stabilized, namely (i) tension leg platforms, (ii) spar buoy and (iii) barge FOWTs (Jonkman 36 

and Matha 2011). Tension leg platform turbines are stabilized by taut vertical mooring lines 37 

submerging a buoyant platform. In spar buoy systems, stability is achieved using ballasts that 38 

lower the center of gravity of the turbines below the center of buoyancy. Finally, barge 39 

turbines provide a large water plane area to stabilize the turbine through buoyancy. Some 40 

hybrid solutions have also been conceived, combining more than one of the concepts 41 



mentioned above. It should be noted that mooring systems in FOWTs are also required for 42 

station-keeping purposes. 43 

Given their increasing popularity, different modelling tools and techniques have been recently 44 

developed and implemented for the study of FOWTs, such as NREL’s fully-coupled simulator 45 

FAST (Jonkman and Buhl 2007) and the coupled simulator by Hydro Oil & Energy 46 

SIMO/RIFLEX/HAWC (Skaare et al. 2007). These software programs provide a unique 47 

platform coupling the different components of a FOWT. However, whereas quite detailed and 48 

reliable approaches are used to account for aerodynamics and hydrodynamics of the wind 49 

turbine, a simple quasi-static approximation is typically employed for the mooring systems, 50 

neglecting any influence of their dynamics and interaction with water. The need to perform 51 

additional research studies on the behavior of mooring and anchoring systems was clearly 52 

identified by The European Wind Energy Association (EWEA) (2013) and by Matha et al. 53 

(2011). Dynamic interaction between mooring cables and FOWTs can cause the loads on the 54 

turbines to increase as much as 50% (Hall et al. 2013).  55 

Several studies have focused on the definition of models for the study of mooring systems 56 

used in FOWTs. These were mainly aimed at assessing the accuracy and approximations of 57 

different models and their influence on the response of FOWTs. An overview of available 58 

simulation codes and modeling approaches was presented by Cordle and Jonkman (2011). 59 

Matha et al. (2011) proposed a multi-body approach, whereby the mooring lines are divided 60 

into multi-body elements connected by spring-damper elements, and cable-fluid interaction is 61 

accounted for by the Morison approach (Morison et al. 1950), as detailed in the following 62 

section. Additional studies revealed the need to consider more detailed non-linear mooring 63 

system models. Kvittem and Moan (2012) investigated the behavior of a single semi-64 

submersible wind turbine using both linear and nonlinear mooring line models for three 65 



different mooring line configurations. Masciola et al. (2013) coupled FAST with OrcaFlex, a 66 

time-domain program capable of modeling cable dynamics and hydrodynamic loads of 67 

floating offshore vessels. They concluded that the quasi-static mooring approximation can lead 68 

to underestimating peak mooring line loads. Hall et al. (2013) coupled FAST with ProteusDS 69 

(Buckham et al. 2004), a mooring line model incorporating dynamics and cable-fluid 70 

interaction, as well as cable bending and torsional stiffness. Three different floating wind 71 

turbines were analyzed using both quasi-static and dynamic mooring models for different load 72 

cases, namely free-decay tests, periodic steady-state operating conditions and stochastic 73 

operating conditions. It was concluded that quasi-static models are not adequate for evaluating 74 

mooring line loads and may lead to an inaccurate estimation of both blade and tower bending 75 

moments. In a recent study, Masciola et al. (2014) used a lumped-mass modeling approach of 76 

the mooring line for implementation in FAST. The approach was chosen due to its simplicity, 77 

low computational cost, and ability to provide physics similar to those captured by higher-78 

order models. 79 

Another important aspect is related to modeling of the interaction of mooring lines with 80 

surrounding water. An extensive literature survey on the topic, including work related to 81 

offshore oil platforms, (Journée and Massie 2001; Gobat and Grosenbaugh 2006; Frigaard and 82 

Burcharth 1989; Mavrakos et al. 1996; Sarkar and Taylor 2002; Webster 1995; Faltinsen 83 

1990) shows that, due to the slenderness of mooring cables, the Morison approach is 84 

particularly suited and typically employed to evaluate the fluid-cable interaction in mooring 85 

line systems. This approach was therefore used in this study and is described in the following 86 

section. 87 

Recently, Oliveto and Sivaselvan (2014a) extended the 3D finite-deformation beam model 88 

developed by Simo (1985) to include viscous damping, and applied it to describe the dynamic 89 



behavior of flexible cables. The formulation was verified with the commercial software 90 

ABAQUS and validated with shake table tests on electrical conductor cables performed at the 91 

SEESL laboratory at the University at Buffalo (Oliveto and Sivaselvan 2014b). In the present 92 

work, the above 3D beam model is appropriately modified and applied to the static and 93 

dynamic behavior of mooring cables in water. As mentioned above, the interaction of the 94 

cable with the surrounding fluid is accounted for using the Morison approach. Using this 95 

approach, accurate evaluation of the hydrodynamic forces acting on the cable involves the 96 

correct calculation of large cable rotations. Therefore, going beyond previous formulations, 97 

the 3D finite deformation beam formulation proposed here allows for an exact representation 98 

of finite rotations.  99 

The paper is organized as follows. In the following section, the Morison approach is 100 

summarized. Next, the governing equations of the 3D finite-deformation beam model are 101 

described. A new aspect is the introduction in the equations of motion of terms accounting for 102 

fluid-beam interaction. Then, linearization and discretization of the weak form of the 103 

equations of motion is presented, leading to the definition of a tangent operator and a system 104 

of equations solvable by means of an iterative scheme of the Newton type. The main focus in 105 

these sections is the derivation of the tangent operators associated with the hydrodynamic 106 

forces. Finally, examples are presented to investigate the performance of the numerical 107 

implementations. In particular, dynamic analyses were carried out of a cantilever beam in 108 

water and of a realistic mooring system. It is shown that, while they are generally derived from 109 

experiments, the hydrodynamic coefficients needed in the Morison approach can be also 110 

extracted from a fully coupled fluid-structure interaction (FSI) analysis. Full source code for 111 

all these developments is available as online supplemental material with this paper. 112 



The Morison approach for mooring-to-fluid interaction  113 

As is generally done in the literature, the interaction of the mooring cables with the 114 

surrounding water is accounted for in this work using the Morison approach. Additional drag 115 

and inertia forces are used to represent the effects of the water on the cable. Such forces, per 116 

unit length of cable, may be written as 117 

 ( )0 0drag drag w wλ ⊥ ⊥ ⊥ ⊥= − − −f v v v v  (1) 118 

 ( ) 2
0 0.25inertia disturbance Froude Krylov inertia w w wDλ ρ π− ⊥ ⊥ ⊥= + = − − −f f f a a a  (2) 119 

where 0.5drag w DDCλ ρ=  and 20.25inertia w MD Cλ ρ π= ; wρ  = density of water; D = diameter of 120 

the cable; 0⊥v  and w⊥v  = cable and water velocity vectors in the plane orthogonal to the cable 121 

(Fig. 1); 0⊥a  and w⊥a  = cable and water acceleration vectors in the plane orthogonal to the 122 

cable; MC  and DC  = empirical coefficients that can be determined experimentally in a variety 123 

of ways (Journée and Massie 2001). MC  and DC  are influenced by several factors, including 124 

Reynolds number, dimensions of the cable and surface roughness. 125 

If t is the tangent to the cable, the drag force and the additional inertia force act in the plane N 126 

orthogonal to t (Fig. 1). Note that fluid-cable interaction in the tangential direction is not 127 

considered in this model. 128 

The drag force takes into account the viscous terms related to skin friction drag and form drag. 129 

Such force is proportional to the square of the relative velocity between cable and fluid, and its 130 

direction is the same as that of the relative velocity vector. 131 

The additional inertia force is composed of the Froude-Krylov force and the disturbance force. 132 

The Froude-Krylov force is related to the pressure gradient in the accelerating flow around the 133 

perimeter of the cable, and is equal to the product of the mass of water displaced by the cable 134 



and the acceleration of the undisturbed flow. While investigating the behavior of mooring 135 

lines in floating offshore wind turbines, Masciola et al. (2014) assumed that for large water 136 

depths, water acceleration is typically negligible and therefore the Froude-Krylov contribution 137 

to the inertia force can be generally omitted. On the other hand, the disturbance force is related 138 

to the change of flow pressure due to the presence of the cable, and is equal to the product of a 139 

given percentage of displaced mass of water and the relative acceleration between fluid and 140 

cable. The latter contribution vanishes if the acceleration of the fluid is equal, in direction and 141 

magnitude, to the acceleration of the cable. 142 

Governing Equations 143 

The governing equations of the 3D finite deformation beam model used in this paper are 144 

presented, namely kinematics, equilibrium and constitutive equations. The considered 145 

formulation is basically the one originally developed by Simo and Vu-Quoc (1986), and 146 

extended by Oliveto and Sivaselvan (2014a) to include energy dissipation. However, a new 147 

aspect is the introduction in the formulation of a model for the interaction between beam and 148 

surrounding fluid. As described above this is based on the Morison approach. 149 

Kinematics 150 

The motion of the beam is defined uniquely by the position of the line of centroids, x0(S,t), 151 

and a rotation tensor R(S,t), determining the orientation of a moving (current) frame ti(S,t), 152 

attached to the cross section, relative to its initial (reference) position, Ei. In other words, 153 

R(S,t) represents a rigid rotation of the cross section such that  154 

 ( ) ( ), ,i iS t S t= ⋅t R E  (3) 155 



The reference and current configurations of the beam, and their corresponding coordinate 156 

systems, both defined with respect to a fixed global reference system ei, are shown in Fig. 2. 157 

Equations of motion 158 

The equations of motion of the 3D finite deformation beam model considered in this work are 159 

given by: 160 

 0drag inertia A
s ρ

∂
+ + + = ⋅

∂
n n f f a  (4) 161 

 ( )0

S S ρ ρ
∂∂

+ × + = ⋅ + × ⋅
∂ ∂

xm n m I w w I w   (5) 162 

where n and m = force and moment resultants in the current configuration; n  and m  = 163 

distributed applied forces and moments per unit undeformed length of the beam; Aρ and Iρ = 164 

mass and mass moment of inertia per unit undeformed length of the cable; w and w  = 165 

rotational velocity and acceleration vectors, all represented in the current configuration. 166 

Moreover the notation 0 0=a x  is used for cable acceleration.  167 

Note that Eq. (4) and (5) were obtained by adding two terms, namely fdrag and finertia, to the 168 

equations of motion of the geometrically nonlinear beam model (Simo 1985, 1986; Simo and 169 

Vu-Quoc 1988; Oliveto and Sivaselvan 2014a). By omitting the Froude-Krylov term in Eq. (2)170 

, the hydrodynamic forces fdrag and finertia will be taken as 171 

 ( )0 0drag drag w wλ ⊥ ⊥ ⊥ ⊥= − − −f v v v v  (6) 172 

 ( )0inertia inertia wλ ⊥ ⊥= − −f a a  (7) 173 

Constitutive equations 174 

By assuming large deformations but small strains, as is generally done in the literature, the 175 

stress resultants in the reference configuration, Ne and Me, are linearly proportional to the 176 



corresponding strains Γ and curvatures Ω through a constant and diagonal elasticity tensor C 177 

defined as  178 

 diag ,N M =  C C C  (8) 179 

where 180 

 [ ]1 2 1 2[ , , ], , ,N M
tdiag GA GA EA diag EI EI GJ= =C C  (9) 181 

where E = Young’s modulus; G = shear modulus; A = area of the rigid cross section; A1 and 182 

A2 = effective cross-sectional areas for shearing; I1 and I2 = area moments of inertia of the 183 

cross section; and Jt = torsion constant. 184 

A Kelvin-Voigt damping model was introduced in the beam formulation by Oliveto and 185 

Sivaselvan (2014a) in order to account for viscous forms of energy dissipation. The internal 186 

dissipative forces and moments in the reference configuration, Nd and Md, are taken as linearly 187 

proportional to the corresponding strains Γ and curvatures Ω  through a constant and diagonal 188 

tensor Cd defined as 189 

 diag ,N M
d d d =  C C C  (10) 190 

where 191 

 [ ]1 2 1 2[ , , ], , ,N M
d d tdiag GA GA EA diag EI EI GJµ µ η η η µ= =C C  (11) 192 

where μ and η = retardation time constants transforming the elastic moduli E and G into 193 

viscous constants, akin to stiffness proportional damping coefficients. 194 

The constitutive equations, relating the total internal forces and moments to the corresponding 195 

strains, strain rates, curvatures and curvature rates, are given by 196 

 e d N N
d= + = ⋅ + ⋅N N N C Γ C Γ  (12) 197 

 e d M M
d= + = ⋅ + ⋅M M M C Ω C Ω  (13) 198 



Expressions for strains Γ, curvatures Ω, and their corresponding rates Γ and Ω , can be found 199 

in (Oliveto and Sivaselvan 2014a).  200 

Weak form of the equations of motion 201 

The weak form of the equations of motion is obtained by multiplying the equations of motions 202 

(4) and (5) by an admissible variation [ ],u θ=η η η  and integrating by parts. This gives: 203 

 

( )

( ) ( ){ }

0

0

0
0 0

0 0

,

0
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u

L L

u u p p

L L

u drag u inertia

G dS
S S S

dS A dS

dS dS

θ
θ

θ ρ θ

 ∂ ∂ ∂ = − × ⋅ ⋅ + ⋅ ⋅  ∂ ∂ ∂  

 − ⋅ + ⋅ + ⋅ + ⋅ ⋅ + × ⋅ ⋅ 

− ⋅ − ⋅ =

∫

∫ ∫

∫ ∫

η x ηφ η η R N R M

n η m η a η R J W W J W η

η f η f

   (14) 204 

where N=RT∙n and M= RT∙m = reference force and moment resultants; T
ρ ρ= ⋅ ⋅J R I R  =  time 205 

independent reference mass moment of inertia per unit undeformed length of the beam; 206 

T= ⋅W R w  = reference angular velocity vector. 207 

Note the presence in Eq. (14) of fdrag and finertia. Previous formulations of the 3D finite 208 

deformation beam model do not account for these terms. Therefore the derivations that follow 209 

are significantly different.  210 

Linearization of the weak form 211 

The weak form of the equations of motions is linearized and discretized, in time and space, 212 

leading to the definition of a tangent operator and a system of equations to be solved by an 213 

iterative procedure of the Newton’s type. In this process, extensions of Newmark’s time 214 

integration scheme and Newton’s method to large rotations are used. Details of these can be 215 

found in Simo and Vu-Quoc (1988), and Oliveto and Sivaselvan (2014a). If the Newton 216 



iteration counter is denoted by i, and the time step counter by n, the weak form of the 217 

equations of motion at configuration ( ) ( )( ) ( ) ( )
1 0, 1 1, , ,i i i

n n nS t S t+ + + =  φ x R  is given by: 218 

 

( )

( ) ( ){ }

( )
0, 1( ) ( ) ( ) ( ) ( )

1 1 1 1 1
0

( ) ( ) ( ) ( ) ( )
0, 1 1 1 1 1

0 0

( )
, 10

,
iL
ni i i i iu

n n n n n

L L
i i i i i

u n u n p n n p n

L i
u drag n u

G dS
S S S

dS A dS

dS

θ
θ

θ ρ θ

+
+ + + + +

+ + + + +

+

  ∂∂ ∂
= − × ⋅ ⋅ + ⋅ ⋅   ∂ ∂ ∂   

 − ⋅ + ⋅ + ⋅ + ⋅ ⋅ + × ⋅ ⋅ 

− ⋅ − ⋅

∫

∫ ∫

∫

xη ηφ η η R N R M

n η m η a η R J W W J W η

η f η f

 

( )
, 10

0
L i

inertia n dS+ =∫

 (15) 219 

The linear part of equation (15) is then given by 220 

 ( ) ( ) ( )( ) ( ) ( )
1 1 1, , ,i i i

n n nL G G Gδ+ + +
  = + φ η φ η φ η  (16) 221 

where ( )( )
1,

i
nG +φ η  = unbalanced force at configuration ( )( )

1,
i

n+φ η  and ( )( )
1,

i
nGδ +φ η = linear in 222 

the incremental displacement field ( )( ) ( ) ( )
1 1 1,i i i

n n nδ δ+ + +∆φ u θ , leads to the definition of a tangent 223 

operator. This can be decomposed into the geometric and material stiffness terms, the inertia 224 

term, the damping term, and two terms related to the addition of the hydrodynamic forces 225 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )
1 1 1 1 1

( ) ( )
, 1 , 1

, , , , ,

, ,

i i i i i
n G n M n I n D n

i i
FB D n FB I n

G G G G G

G G

δ δ δ δ δ

δ δ

+ + + + +

+ +

= + + +

+ +

φ η φ η φ η φ η φ η

φ η φ η
 (17) 226 

For the derivation of the first three terms, the reader is referred to Simo and Vu-Quoc (1986; 227 

1988), and for the fourth term to Oliveto and Sivaselvan (2014a). The following section 228 

describes the derivation of the terms related to the fluid-beam interaction. The subscripts n, 229 

denoting that a quantity is evaluated at time tn+1, and the superscript i, denoting the Newton 230 

iteration counter are dropped to alleviate the notation.  231 



Fluid-beam interaction tangent operators 232 

The tangent operators related to the fluid-beam interaction are obtained by differentiating the 233 

hydrodynamic forces, fdrag and f inertia, as follows:  234 

 ( ), 0
,

L

FB D u dragG dSδ δ= − ⋅∫φ η η f  (18) 235 

 ( ), 0
,

L

FB I u inertiaG dSδ δ= − ⋅∫φ η η f  (19) 236 

Differentiating Eq. (6) gives 237 

 
( )( )

( ) ( ) ( )

0 0

0 0
0

0

drag drag w w

w w
drag w

w

δ λ δ

λ δ δ

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥
⊥ ⊥

⊥ ⊥

= − − − =

− ⊗ −
− ⋅ −

−

f v v v v

v v v v
v v

v v

 (20) 238 

Considering that shear deformations are small, the velocity of the cable in plane N may be 239 

written as ( ) ( )0 0 0 3 3⊥  = − ⋅ ⋅ ⋅ v v v R E R E , where the notation 0 0=v x is used. Recalling from 240 

Simo and Vu-Quoc (1988) that 241 

 0 h
γδ δ

β
=

⋅
v u  (21) 242 

 ˆδ δ= ⋅R θ R  (22) 243 

where γ  and β  = parameters of Newmark’s time-integration scheme and h = time step, then it 244 

follows that 245 

 
( ) ( )

( ) ( ) ( )

0 3 3

3 0 0 3 3

h
γδ δ

β

δ

⊥

∧

 = − ⋅ ⊗ ⋅ ⋅ ⋅

 + ⋅ ⊗ + ⋅ ⋅ ⋅ ⋅ ⋅ 

v I R E R E u

R E v v R E I R E θ
 (23) 246 

Note that the hat notation denotes the skew symmetric tensor associated with a given vector.  247 



Similarly, water velocity in plane N is given by ( ) ( )3 3w w w⊥  = − ⋅ ⋅ ⋅ v v v R E R E  and, since 248 

wv  is considered constant within a time step, 249 

 ( ) ( ) ( )3 3 3w w wδ δ∧
⊥  = ⋅ ⊗ + ⋅ ⋅ ⋅ ⋅ ⋅ v R E v v R E I R E θ  (24) 250 

Substituting Eqs. (23) and (24) into Eq. (20), this becomes 251 
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( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )
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0

0

3 3

0 0
0

0

3 0 0 3 3

drag w w
drag u w

w

w w
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w

w w

h
γ λ

δ
β

δ

λ

δ
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⊥ ⊥

⊥ ⊥ ⊥ ⊥
⊥ ⊥

⊥ ⊥

∧

 ⋅ − ⊗ −
= − ⋅ − + ⋅ 

⋅ −  
 − ⋅ ⊗ ⋅ ⋅ 

 − ⊗ −
− − + ⋅ 

−  

 ⋅ ⊗ − + − ⋅ ⋅ ⋅ ⋅ ⋅ 

v v v v
f η v v I

v v

I R E R E u

v v v v
v v I

v v

R E v v v v R E I R E θ

 (25) 252 

Furthermore, differentiating Eq. (7) gives 253 

 ( )0inertia inertia wδ λ δ ⊥ ⊥= − −f a a  (26) 254 

Recalling from Simo and Vu-Quoc (1988) that 255 

 0 2
1
h

δ δ
β

=
⋅

a u  (27) 256 

and following the same procedure as for differentiation of velocities, Eq. (26) becomes 257 

 
( ) ( )

( ) ( ) ( ) ( ) ( )

3 32

3 0 0 3 3
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inertia

inertia w w

h
λδ δ
β

λ δ∧
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 − ⋅ ⊗ − + − ⋅ ⋅ ⋅ ⋅ ⋅ 

f I R E R E u

R E a a a a R E I R E θ
 (28) 258 

Substituting Eqs. (25) and (28) into Eqs. (18) and (19), finally leads to 259 
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 (29) 260 
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Linertia
FB I u

L

inertia u w w

G dS
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∫

∫

φ,η η I R E R E u

η R E a a a a R E I R E θ
(30) 261 

Space Discretization of the Weak Form 262 

The finite-element discretization in space of the linearized weak form is performed, as in 263 

(Simo and Vu-Quoc 1986), using the standard Galerkin method. The incremental displacement 264 

field, rotation field and admissible variation are interpolated, on an element basis, using the 265 

same interpolation functions, that is 266 

 ( ) ( )
1

N

i i
i

S N Sδ δ
=

= ∑u u ,      ( ) ( )
1

N

i i
i

S N Sδ δ
=

= ∑θ θ ,      ( ) ( )
1

N

i i
i

S N S
=

= ∑η η  (31) 267 

where N = number of nodes of the element; ( )iN S  = element shape function associated with 268 

node i; iδu  and iδθ  = incremental displacement and rotation fields at node i; ηi = admissible 269 

variation at node i. Furthermore, the rotation tensor R is interpolated as follows: 270 

 ( ) ( )ˆexpS S =  R χ ; ( ) ( )
1

N

i i
i

Nξ ξ
=

= ∑χ χ  (32) 271 

where χ̂  = skew-symmetric tensor associated with the total rotation vector χ . 272 

Substituting these interpolations into the linearized weak form, leads to the following discrete 273 

approximation of the linearized weak form: 274 



 ( ) ( )
, 1

ˆ, , 0   
N

i i ij n n j i
i j=

 ⋅ + ⋅∆ = ∀ ∑ η P φ K R Ω φ φ η  (33) 275 

where iP  = residual or out-of-balance force; j∆φ  = incremental displacement and rotational 276 

field; the discrete tangent operator ijK  = sum of the material stiffness operator, ijS ; the 277 

geometric stiffness operator, ijG ; the inertia operator, ijM ; the damping operator, ijD ; the 278 

operators associated to the hydrodynamic forces, ijFD  and ijFI ; that is 279 

 ij ij ij ij ij ij ij= + + + + +K S G M D FD FI  (34) 280 

Expressions for ijS , ijG , ijM  can be found in (Simo and Vu-Quoc 1988), while the 281 

expression for ijD  was derived in (Oliveto and Sivaselvan 2014a; Oliveto 2013). From Eq. 282 

(29), the discrete drag force operator takes the form 283 

 ij ij
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 
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a b
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0 0
 (35) 284 

with 285 
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 (37) 287 

Moreover, from Eq. (30), the discrete added mass operator may be written as 288 

 ij ij
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c d
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 (38) 289 

with 290 
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Finally, from equation (14), the discrete unbalanced force is given by  293 

 
( )

( )

0

0 0 0      
00

e

i i i i
p pI

w w w
drag i inertia i

A
N N

N N dS

ρ

λ λ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

       = ⋅ − + +      ⋅ ⋅ + × ⋅       
 − − − +    

   

∫
an n

P Ξ
m m R J W W J W

v v v v a a




 (41) 294 

where 295 
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Numerical examples   297 

A series of numerical simulations are carried out to assess the performance of the formulation 298 

described above. A first example involves the free vibration of a cantilever beam in water. The 299 

goal is to compare the Morison approach with fully coupled FSI analysis carried out using 300 

COMSOL (COMSOL Inc. 2013b). Having verified our formulation, in a second example, we 301 

analyze the behavior of a realistic mooring cable subjected to typical wind turbine loads. 302 

Convergence rates and energy balance calculations are presented for each example to illustrate 303 

the performance of the computations. 304 

Free vibration of cantilever in water 305 

The first numerical example consists of statically applying and then instantaneously releasing 306 

a 5 cm vertical displacement at the free end of a cantilever beam immersed in water, which is 307 



initially at rest. The beam considered is cylindrical and characterized by the following 308 

parameters: length, L = 30 cm; diameter, D = 2 cm; Young’s modulus, E = 1 MPa; Poisson’s 309 

ratio υ = 0.3; and mass density, ρ = 1000 kg/m3.  310 

Analysis using proposed formulation 311 

The beam was discretized in space using 60 two-noded (linear) elements. Reduced (one-point) 312 

Gaussian integration was used for the evaluation of the internal force vector, the fluid-beam 313 

force vectors, the material and geometric stiffness matrices, and the fluid-beam matrices, while 314 

two-point Gaussian integration was used for the inertial force vector and the inertia matrix. 315 

The parameters used in the time integration scheme were β=0.25 and γ=0.5. 316 

Two analyses were performed, one with no fluid-beam interaction ( 0D MC C= = ) and the other 317 

using 3.0DC =  and 1.5MC = . The choice of these parameters is based on recommendations 318 

in literature and so as to obtain the best match with the results of a fully coupled fluid-structure 319 

interaction analysis presented in the following section. Furthermore, we demonstrate that these 320 

are consistent with values we can extract from fully coupled FSI analyses. The time step used 321 

was h = 0.002 s. Note that no viscous damping was considered in the analyses so that damping 322 

is entirely due to fluid-beam interaction. 323 

The vertical displacement history of the free end of the beam is plotted in Fig. 3 for the two 324 

considered cases. The figure clearly shows the decay of motion due to the drag force and, as 325 

expected, a period elongation due to the added mass. 326 

The rate of convergence of Newton’s method is given for several time increments in Table 1, 327 

where the norm of the unbalanced force vector Pi at each iteration is listed. The reliability of 328 

calculations was also assessed by verifying the energy balance. The sum of strain energy, 329 

kinetic energy, drag energy and added mass energy should be constant and equal to the initial 330 



strain energy prior to release. Fig. 4(a) and (b) show the energy components for the two 331 

analyses considered. The energy error (Fig. 5) was in both cases smaller than 2.5 × 10 -4. 332 

Fully coupled fluid-structure interaction analysis 333 

In order to verify that the effects of the fluid on the motion of the beam are captured correctly 334 

by the proposed formulation based on the Morison approach, the free vibration problem was 335 

also solved using COMSOL (COMSOL Inc. 2013b). The Fluid-Structure Interaction interface 336 

in COMSOL combines fluid flow with solid mechanics to capture the interaction between the 337 

fluid and the solid structure. The fluid flow is described by the Navier-Stokes equations 338 

(COMSOL Inc. 2013c). 339 

The 3D model of the beam in water defined in COMSOL is shown in Fig. 6. The properties of 340 

the fluid, modeled by a 0.5 m x 0.5 m x 0.7 m square box surrounding the beam, were 341 

density=1000 kg/m3 and dynamic viscosity=0.001 Pa s. The beam was characterized by no 342 

additional damping. An open boundary condition was selected for the fluid walls, meaning 343 

that fluid can both enter and leave the boundaries of the domain shown in Fig. 6. 344 

A Backward Differentiation Formula (BDF) (COMSOL Inc. 2013a) time integration scheme 345 

was used in the analysis, with the same time step used for the proposed formulation, namely 346 

0.002 s. The vertical displacement of the free end of the beam is shown in Fig. 7, where it is 347 

compared to the displacement history obtained using the proposed formulation with 3.0DC =  348 

and 1.5MC = . The results are in good agreement, considering that they are based on different 349 

models. 350 



Evaluation of drag and added mass coefficients from fully coupled FSI analysis 351 

The values of CM and CD were selected based on the following calculations carried out using 352 

the results from COMSOL. Assuming small displacements, the total force at the fluid-beam 353 

interface, acting orthogonally to the undeformed cable, can be evaluated as: 354 

 ( )( ) ( ) ( )2 2

0 0

0.5 sgn 0.25
L L

D M wF DC v S v S dS C D a S dSρ ρ π= − −∫ ∫  (42) 355 

where ( )v S  and ( )a S  =  velocity and acceleration of the beam in the direction orthogonal to 356 

the undeformed beam. 357 

The values of CM and CD can be then evaluated from the following relationships: 358 
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Note that Eq. (43) is obtained by neglecting the second term in Eq. (42) is neglected, whereas 361 

Eq. (44) is obtained when the first term in Eq. (42) is set to zero (Frigaard and Burcharth 362 

1989). 363 

The drag (CD) and added mass (CM) coefficients, obtained by Eqs. (43) and (44), are plotted 364 

as a function of time in Fig. 8. The values of interest are indicated in the figures by black dots. 365 

The added mass coefficient CM is seen to be in the range 1.3-1.7, justifying the use of a 366 

constant value of 1.5 throughout the analysis. The drag coefficient CD appears to be in the 367 

range 1.3-2.1 in the first half cycle of the response ( 0.5sect <  ), and in the range 2.6-4.5 for 368 

the remaining part of the analysis, thus confirming dependence of the drag coefficient on the 369 

Reynolds number and, consequently, on the amplitude of the velocity of motion. This 370 



variability of the drag coefficient explains the differences in Fig. 7 between the response 371 

obtained by COMSOL and that of the proposed formulation, where a constant value of 3.0 was 372 

used for the drag coefficient CD. 373 

In Fig. 9, the force at the fluid-beam interface given by COMSOL is compared to that obtained 374 

with the proposed formulation and the agreement is satisfactory.  375 

Dynamic behavior of a mooring cable 376 

The following example deals with the analysis of a mooring cable of a typical floating 377 

offshore wind turbine. The material and geometric properties of the cable were taken from 378 

Jonkman (2010) as follows: length, L=902.2 m; diameter, d=0.09 m. The mass per unit length 379 

was 77.71 kg/m, the weight in water was 690 N/m, and the equivalent extensional rigidity was 380 

EA=384243 kN. The initial configuration of the cable, shown in Fig. 10, was obtained by first 381 

imposing horizontal and vertical displacements at the right end of an initially straight and 382 

unstrained cable, and then subjecting it to its own weight. The imposed horizontal distance 383 

between the two supports of the cable was 848.67 m, whereas the vertical distance was 250 m.  384 

Starting from this configuration, the right end of the cable, ideally connected to a floating 385 

offshore wind turbine, was subjected to an in-plane horizontal excitation (Fig. 11) 386 

representative of the motion of the platform of the NREL 5 MW - OC3 Hywind reference 387 

turbine (Jonkman et al. 2009), evaluated through the use of the software FAST (Jonkman and 388 

Buhl 2007). 389 

Two analyses were performed, one with no fluid-cable interaction ( 0D MC C= = ) and the other 390 

using 1.5DC =  and 0.5MC = . The latter coefficients were selected based on typical values 391 

assumed in other studies (Yang et al. 2013; Hall et al. 2013). The cable was discretized in 392 

space with 40 two-noded (linear) elements. As in the previous example, reduced (one-point) 393 



Gaussian integration was used for the evaluation of the internal force vector, the fluid-beam 394 

force vectors, the material and geometric stiffness matrices, and the fluid-beam matrices, while 395 

two-point Gaussian integration was used for the inertial force vector and the inertia matrix. 396 

The time step used in the analyses was h=0.0125 s. Again, no viscous damping was considered 397 

in the analyses to isolate the influence of fluid-cable interaction on the response of the cable. 398 

The response in terms of displacements and axial force at midspan (“investigated point” in 399 

Fig. 10) are shown in Fig. 12 and Fig. 13. The damping effect of the drag force is clearly 400 

visible both in the displacement and axial force time-histories. 401 

The rate of convergence of Newton’s method in each analysis is given, for several time steps, 402 

in Table 2. The reliability of computations was again assessed in terms of energy balance. The 403 

energy components for the two analyses considered are shown in Fig. 14, while the energy 404 

error, defined as the difference between the input energy and the sum of the different energy 405 

components, is plotted in Fig. 15. 406 

Concluding remarks 407 

A nonlinear finite element formulation has been developed and applied to the dynamic 408 

analysis of mooring cables used in floating offshore wind turbines. Fluid-cable interaction was 409 

introduced in the formulation using the Morison approach. Two numerical examples have 410 

been presented. In a first example, the Morison approach is compared with fully coupled fluid-411 

structure interaction analysis carried out in COMSOL. While generally based on empirical 412 

data, it is demonstrated in the present work that the hydrodynamic coefficients can be obtained 413 

from fully coupled FSI analysis. In the second example, the dynamic behavior of a mooring 414 

cable typically used for floating offshore wind turbines is analyzed. Energy balance plots, as 415 

well as convergence rates of Newton’s method, illustrate the reliability of computations. It 416 



should be noted that a key and non-trivial aspect in the proposed formulation is the 417 

development of an algorithmic tangent operator including hydrodynamic coupling. Current 418 

and future work involve the inclusion of the cable model in a platform for the full analysis of 419 

floating offshore wind turbines, and subsequent model validation efforts. Source code for all 420 

developments in the present paper is provided as online supplemental material. 421 
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Figure captions list 514 

Fig. 1. Orthogonal plane N, and normal components of water and cable velocities. 515 

Fig. 2. Fixed and moving coordinate systems of beam in reference and current configuration. 516 

Fig. 3. Tip vertical displacement with and without fluid-beam interaction. 517 

Fig. 4. Energy components for beam in free vibration (a) without and (b) with fluid-beam 518 

interaction. 519 

Fig. 5. Energy error for beam in free vibration (a) without and (b) with fluid-beam interaction. 520 

Fig. 6. Cantilever beam model in COMSOL. 521 

Fig. 7. Tip vertical displacement: COMSOL vs proposed formulation. 522 

Fig. 8. Assessment based on analysis in COMSOL of (a) drag coefficient CD and (b) added 523 

mass coefficient CM. 524 

Fig. 9. Fluid-beam interaction force: COMSOL vs proposed model. 525 

Fig. 10. Initial configuration of simply supported mooring cable. 526 

Fig. 11. Imposed motion at right end of cable. 527 

Fig. 12. Response at midspan of cable with and without fluid cable-interaction: (a) horizontal 528 

displacement; (b) vertical displacement. 529 

Fig. 13. Axial force at midspan of cable with and without fluid-beam interaction. 530 

Fig. 14. Energy components for the analyzed cable (a) without and (b) with fluid-structure 531 

interaction. 532 

Fig. 15. Energy error for the analyzed cable (a) without and (b) with fluid-structure interaction. 533 
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Table 1. Convergence rate of Newton’s method. Norm of residual (out-of-balance force) throughout 536 
iteration process. 537 

 fluid-beam interaction no fluid-beam interaction 

Iteration t=1.000 sec t=2.500 sec t=4.000 sec t=1.000 sec t=2.500 sec t=4.000 sec 

1 7.00×10-1 1.69×10-1 3.33×10-1 3.63×10-1 6.77×10-1 7.97×10-1 

2 6.02×10-4 2.15×10-5 1.36×10-4 3.85×10-4 1.31×10-3 1.81×10-3 

3  9.28×10-10  1.07×10-11  4.71×10-11  6.79×10-10 3.24×10-9 3.68×10-9 

 538 
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Table 2. Convergence rate of Newton’s method. Norm of residual (out-of-balance force) throughout 540 
iteration process. 541 

 fluid-cable interaction no fluid-cable interaction 

Iteration t=10.00 sec t=30.00 sec t=50.00 sec t=10.00 sec t=30.00 sec t=50.00 sec 

1 1.63×106 3.92×106 2.38×106 1.57×106 4.39×106 2.54×106 

2 3.87×103 2.27×104 8.72×103 5.00×101 1.97×102 4.80×101 

3 5.95×10-2 1.97×100 2.87×10-1 1.03×10-5 9.38×10-6 7.94×10-6 

4 8.11×10-6 7.54×10-6 7.36×10-6 5.15×10-6   

 542 
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