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Abstract

The moist and cool cloud forests of East Africa represent a network of isolated

habitats that are separated by dry and warm lowland savannah, offering an

opportunity to investigate how strikingly different selective regimes affect spe-

cies diversification. Here, we used the passerine genus Zosterops (white-eyes)

from this region as our model system. Species of the genus occur in contrasting

distribution settings, with geographical mountain isolation driving diversifica-

tion, and savannah interconnectivity preventing differentiation. We analyze (1)

patterns of phenotypic and genetic differentiation in high- and lowland species

(different distribution settings), (2) investigate the potential effects of natural

selection and temporal and spatial isolation (evolutionary drivers), and (3) crit-

ically review the taxonomy of this species complex. We found strong pheno-

typic and genetic differentiation among and within the three focal species, both

in the highland species complex and in the lowland taxa. Altitude was a stron-

ger predictor of phenotypic patterns than the current taxonomic classification.

We found longitudinal and latitudinal phenotypic gradients for all three species.

Furthermore, wing length and body weight were significantly correlated with

altitude and habitat type in the highland species Z. poliogaster. Genetic and

phenotypic divergence showed contrasting inter- and intraspecific structures.

We suggest that the evolution of phenotypic characters is mainly driven by nat-

ural selection due to differences in the two macro-habitats, cloud forest and

savannah. In contrast, patterns of neutral genetic variation appear to be rather

driven by geographical isolation of the respective mountain massifs. Populations

of the Z. poliogaster complex, as well as Z. senegalensis and Z. abyssinicus, are

not monophyletic based on microsatellite data and have higher levels of intras-

pecific differentiation compared to the currently accepted species.

Introduction

Oceanic islands have been extensively used as model sys-

tems to understand genetic and morphological effects of

long-term isolation and divergent selection pressures. The

strong isolation and selection in these settings have often

led to population differentiation, allopatric speciation,

and even species radiations documented for a variety of

archipelagos and organisms (Emerson 2002; Grant and

Grant 2002; Whittaker et al. 2008; Husemann et al.

2014a, 2015a). Similarly, on continents geographic isola-

tion and specific environmental conditions within certain

habitat types can lead to island-like conditions. Such eco-

logical islands occur for example in East Africa, where
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moist forests restricted to isolated mountain ranges (“sky

islands”) are separated from each other by a vast “sea” of

dry savannah (Warshall 1994; McCormack et al. 2009).

In both types of islands (oceanic and ecological), the

level of geographic isolation, geological age, and diverging

ecological conditions may lead to differentiation on inter-

and intraspecific levels (Juan et al. 2000; Measey and Tol-

ley 2011). The moist and cool highlands of East Africa

harbor cloud forests, a habitat type that is strikingly dif-

ferent from the adjacent dry and warm lowland savan-

nahs. Cloud forests occur in isolated patches between 900

and 3500 m, located within a continuous lowland matrix

functioning as a strong dispersal barrier for forest-depen-

dent species (Chapman and Chapman 1996). On the

other hand, the lowland communities experience little or

no such barriers to gene flow (Habel et al. 2014). These

East African mountain massifs line up along the East

African Rift Valley and differ in geographical isolation,

geological age, altitude, and size (White 1978). The isola-

tion of the highland habitats underlies the diversification

of many species groups and has resulted in an accumula-

tion of endemic species, often being restricted to single

mountain massifs (Lovett and Wasser 1993; Fjelds�a and

Lovett 1997; Lovett et al. 2000; Habel et al. 2013).

Most studies focusing on genetic differentiation of East

African species have either focused on the biogeographic

history based on neutral molecular markers (Burgess et al.

2007; Kahindo et al. 2007; Kebede et al. 2007; Cox et al.

2014), or on the divergence of morphological or behav-

ioral traits of species assumed to be under environmental

or sexual selection (Oatley et al. 2011, 2012; Hope et al.

2012; Husemann et al. 2014b). However, the combination

of both phenotypic and genetic data can help to

distinguish differentiation resulting from neutral stochas-

tic processes caused by geographic isolation and selective

processes driven by local environmental conditions (Clegg

et al. 2002; McKay and Latta 2002; Leinonen et al. 2006,

2008, 2013; Sæther et al. 2007; Chenoweth and Blows

2008).

In this study, we use a combination of phenotypic and

molecular markers to understand differentiation processes

in the East African sky island system and use the bird

genus Zosterops, which is well known as “great speciator”,

as our focal group. This genus has undergone an exten-

sive species radiation and comprises a large number of

locally endemic taxa worldwide (Slikas et al. 2000; War-

ren et al. 2006; Moyle et al. 2009; Mil�a et al. 2010; Melo

et al. 2011; Cox et al. 2014). Members of the genus are

found in various environments across most of East Africa

(Zimmerman et al. 1996). The montane white-eye species

complex (i.e., Z. poliogaster) occurs exclusively at higher

elevations, which has resulted in many geographically

isolated populations (Cox et al. 2014). This patchy

distribution caused the formation of distinct population

clusters with unique genetic, phenotypic, and behavioral

traits (Moreau 1957; Borghesio and Laiolo 2004; Mulwa

et al. 2007; Redman et al. 2009; Habel et al. 2013, 2014;

Husemann et al. 2014b, 2015b). Conversely, the yellow

white-eye, Z. senegalensis, can be found in both highland

and lowland habitats (Zimmerman et al. 1996), and the

Abyssinian white-eye, Z. abyssinicus, mostly occurs in

lowland savannahs, open woodland and gardens up to

1800 meters above sea level (Zimmerman et al. 1996).

Based on our data, we try to disentangle the effects of dif-

ferent distribution patterns and divergent ecological pres-

sures driving phenotypic and genetic differentiation in

this genus. In particular, we test the following hypotheses:

• Contrasting distribution settings (population connectiv-

ity in the lowland versus disjunction of highland popu-

lations and taxa) have led to diverging inter- and

intraspecific signatures; and

• Morphological and molecular characters exhibit diverg-

ing differentiation patterns.

Materials and Methods

Study species

The classification of East African Zosterops has been much

debated. In the study region, the genus comprises 14 mor-

phologically distinct taxonomic groups, which have been

conversely split into three (Britton 1980) to seven (Mack-

worth-Praed and Grant 1960) species. The most recent

classification of Zosterops, which we adopt, recognizes at

least three species in the study area (Dickinson 2003; Cle-

ments 2007; van Balen 2008). The Z. poliogaster (also

recently named Z. poliogastrus according the IOC World

Bird List, http://www.worldbirdnames.org) species com-

plex occurs exclusively in the highland forests of East

Africa and is found at altitudes between 1500 and 3400 m

(Fry et al. 2000). Eight subspecies, with completely allopa-

tric ranges, have been described for this species across East

Africa: Zosterops p. poliogaster (N and E Ethiopia), Z. p.

kaffensis (SW Ethiopia), Z. p. kulalensis (Mt. Kulal in N

Kenya), Z. p. kikuyuensis (central Kenya), Z. p. silvanus

(Taita Hills of SW Kenya), Z. p. mbuluensis (S Kenya and

N Tanzania), Z. p. winifredae (South Pare Mts. of N Tan-

zania), and Z. p. eurycricotus (N Tanzania). According to

the recent IOC World Bird List (http://www.worldbird-

names.org), two of the eight subspecies of Z. poliogaster

have been given species rank: Z. kikuyuensis (central

Kenya) and Z. silvanus (Taita Hills). Zosterops senegalensis

has a broad lowland range in sub-Saharan Africa, but

within our study area, the species is restricted to highland

forests, forest edges, and afroalpine scrubland from 1100

to 3400 m (Fry et al. 2000). Three subspecies are described
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for our study area: Zosterops s. jacksoni (N Kenya to N

Tanzania), Z. s. stuhlmanni (NW Tanzania and W Kenya),

and Z. s. stierlingi (Usambara Mts. of Tanzania). Zosterops

abyssinicus is a lowland species, occurring in savannahs, in

woodland, and at forest edges below 1500 m, with occa-

sional records up to 2300 m (Redman et al. 2009). It com-

prises two subspecies within our study area: Zosterops a.

jubaensis (S Ethiopia to N Kenya) and Z. a. flavilateralis

(N Kenya to N Tanzania). In our subsequent analyses, we

assign individuals into the following three main groups:

Z. poliogaster, Z. senegalensis, and Z. abyssinicus. However,

we consider the complex taxonomic relationships and the

potential species status of some populations (see also the

Discussion in this contribution).

Sampling

We sampled populations of the three species (including

most of the subspecies, further details are given in Table 1)

along a latitudinal gradient in East Africa, from central

Ethiopia in the north to northern Tanzania in the south.

Individuals were trapped with mist nets and individually

ringed. In total, five morphological characters from 1223

individuals sampled from 42 locations were measured from

live birds. Feathers and blood were sampled from 385 indi-

viduals for molecular analyses for a subset of 19 locations

(with 34 populations represented by morphological data,

19 populations represented by molecular data, and 14 pop-

ulations for which both molecular and morphological data

was available). All sampling locations are displayed in Fig-

ure 1; further details on sampling locations are provided in

Table 1.

Phenotypic data

We measured five morphometric characters following De

Beer et al. (2001): flattened wing length (mm), tarsus

length (mm), head length (mm), body mass (g), and the

eye-ring diameter (height and width). For the latter mea-

surements, we calculated the eye-ring perimeter (in mm)

as follows:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ w2

2

2p

r

where h and w denote the height and the width of the

eye ring.

Genetic data

Blood or feathers were preserved in pure ethanol and sub-

sequently stored at �20°C until DNA extraction. After

processing, the birds were released unharmed. DNA was

extracted with the Qiagen DNeasyTM Blood and Tissue Kit

(Hilden, Germany), following the manufacturer’s proto-

cols for tissue, blood, and feather samples (De Volo et al.

2008). PCRs were carried out in a thermal cycler (CG1-

96; Corbett Research, Qiagen, Hilden, Germany).

Microsatellite loci were amplified using the Thermozym

Mastermix (Molzym, Bremen, Germany, Brea, CA, USA).

Fragment length analyses were performed with an auto-

mated sequencer (Beckmann Coulter, Brea, CA, USA).

We genotyped the following 15 microsatellites: Cu28,

Zl44, Zl41, Zl22, Zl45, Zl14, Zl54, Zl4, Zl35, Mme12,

Zl18, Zl50, Zl49, Zl4, and Zl37. Further details on primer

sequences and PCR conditions are given in Habel et al.

(2013). All molecular data were taken from previous stud-

ies (Habel et al. 2013, 2014).

Statistics on phenotypic and genetic data

Differences in wing length, tarsus length, head size, body

mass, and eye-ring perimeter among populations were

investigated using one-way analysis of variance, with pair-

wise differences tested using Tukey’s HSD. Potential rela-

tionships between population mean values of these

phenotypic characters were tested with linear regression

models using JMP PRO v. 10 (SAS Institute Inc., Cary,

NC). Biometric data were integrated with genetic data

using discriminant function and principal coordinates

analyses (Bray–Curtis dissimilarity). Individual-based

genetic distances were calculated in GENALEX v. 6.4.1

(Peakall and Smouse 2012) prior to PCoA. Genotypic and

phenotypic spaces (further referred to as ordinate spaces)

were orthogonal and free from multi-colinearity and were

analyzed using linear discriminant analysis in R v. 3.1.2

(R Development Core Team 2014) with an equal prior

setting for each population. To account for model overfit-

ting, we randomly selected 70% of the data to train the

discriminant model and repeated this 1000 times. Finally,

we used general linear modeling with orthogonal sums of

squares and two-way PERMANOVA to test for correla-

tions of genetic, morphometric, and habitat data.

Nestedness analyses were applied to assess the decline

in allele incidences along a geographical gradient as sug-

gested by Habel et al. (2012). We used the nestedness

contribution (the difference in the degree of nestedness of

the total allele 9 site matrix and a matrix where a certain

site has been excluded; Saavedra et al. 2011) as measured

by the NODF metric (nestedness from overlap and

decreasing fill; Almeida-Neto et al. 2008) to infer the role

of each site in the decline of allele diversity. “Seriation”

sorts rows and columns of a matrix of items, here allele

occurrences (rows), among sites (columns) in a way to

maximize the number of presences along the matrix diag-

onal (Leibold and Mikkelson 2002). This diagonal is

equivalent to the first axis of a correspondence analysis.
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Ulrich and Gotelli (2013) and Ulrich et al. (2014) showed

that the rank correlation r of row and column positions

of all nonempty cells in the “seriated” matrix is a conve-

nient measure of directional allele turnover among sites.

Here, we use the respective coefficient of determination

R2 as the test statistic for allele turnover across our

sample localities. Because raw scores of NODF and R2

depend on matrix fill and allele numbers, we used a null

model approach (Gotelli and Ulrich 2012) and compared

observed NODF scores with those obtained from 1000

matrices, where occurrences within the allele 9 site

matrix were equiprobably reshuffled. Low NODF values

Table 1. Overview of the sampling locations. Given are species and subspecies, the country, region, name of location with the number of loca-

tion, altitude, habitat type, and the number of individuals sampled and analyzed (phenotypic analyses N, molecular analyses N*) are listed. Abbre-

viations: E = Ethiopia, K = Kenya, T = Tanzania. Numbers of locations coincide with Figure 1.

Species Subspecies Country/Region Location-Nr. Altitude Habitat N N*

Zosterops poliogaster

Z. poliogaster poliogaster E-Ethiopian Highlands Adis Abeba-1 2337 Cloud forest – 12

Z. poliogaster poliogaster E-Ethiopian Highlands Jimma Hills-2 2082 Cloud forest – 30

Z. poliogaster poliogaster E-Ethiopian Highlands Garuke-3 2082 Cloud forest 20 –

Z. poliogaster poliogaster E-Ethiopian Highlands Fetche-4 1985 Cloud forest 7 –

Z. poliogaster kulalensis K-Mt. Kulal Gatab-5 1850 Cloud forest 80 30

Z. poliogaster kulalensis K-Mt. Kulal Arabel-6 2140 Cloud forest 5 –

Z. poliogaster kikuyuensis K-Aberdares Gatumaini Forest-7 2342 Cloud forest 43 25

Z. poliogaster kikuyuensis K-Mt. Kenya Mt. Kenya-8 2219 Cloud forest 30 20

Z. poliogaster mbuluensis K-Chyulu Hills Simba valley-9 2062 Cloud forest 20 18

Z. poliogaster mbuluensis K-Chyulu Hills Satellite-10 2200 Cloud forest 50 23

Z. poliogaster silvanus K-Taita Hills Ngangao-11 1800 Cloud forest 42 21

Z. poliogaster silvanus K-Taita Hills Mbololo-12 1700 Cloud forest 58 31

Z. poliogaster silvanus K-Taita Hills Chawia-13 1600 Cloud forest 25 26

Z. poliogaster silvanus K-Taita Hills Bura-14 1411 Cloud forest 7 7

Z. poliogaster silvanus K-Mt. Kasigau Mt. Kasigau-15 1600 Cloud forest 42 21

Z. poliogaster eurycricotus T-Mt. Meru Mt. Meru-16 3215 Cloud forest – 8

Z. poliogaster winifredae T-Pare Mts. South Pare Mts.-17 921 Cloud forest – 8

N 429 280

Zosterops senegalensis

Z. senegalensis jacksoni K-Mt. Marsabit Abdul-Ahmed camp-18 1360 Cloud forest 147 18

Z. senegalensis jacksoni K-Mt. Marsabit Bakuli-19 1370 Cloud forest 83 –

Z. senegalensis jacksoni K-Mt. Marsabit Lake Paradise-20 1360 Cloud forest 67 –

Z. senegalensis jacksoni K-Mt. Nyiru Ndadapo-21 2450 Cloud forest 14 –

Z. senegalensis jacksoni K-Mt. Nyiru Surkul�e-22 2550 Cloud forest 56 –

Z. senegalensis jacksoni K-Mt. Nyiru Chima-23 2650 Cloud forest 3 –

Z. senegalensis jacksoni K-Mt. Maralal Ngurumaut-24 2240 Cloud forest 33 –

Z. senegalensis jacksoni K-Mt. Maralal Sordon-25 2450 Cloud forest 18 –

Z. senegalensis jacksoni K-Mt. Maralal Peto-26 2070 Cloud forest 16 –

Z. senegalensis jacksoni K-Mt. Maralal Tilia-27 2160 Cloud forest 8 –

Z. senegalensis jacksoni K-Mt. Maralal Bawa-28 1870 Cloud forest 5 –

Z. senegalensis jacksoni K-Mathews Range Londadapo/Orokaela-29 1870 Cloud forest 11 –

Z. senegalensis stuhlmanni K-Kakamega Forest Kakamega Forest-30 1570 Cloud forest 11 11

Z. senegalensis jacksoni K-Mau Escarpment Eburu Forest-31 2550 Cloud forest 6 7

Z. senegalensis stierlingi T-West Usambaras Ambanbugul-32 1250 Cloud forest 89 –

Z. senegalensis stierlingi T-East Usambaras T-East Usambaras-33 1030 Cloud forest 66 –

N 633 36

Zosterops abyssinicus

Z. abyssinicus flavilateralis K-Mt. Nyiru South Horr-34 1050 Savannah 30 30

Z. abyssinicus flavilateralis K-Kitui Nzeeu River-35 900 Savannah 22 –

Z. abyssinicus flavilateralis K-Foothills of Chyulu Hills Umani Spring-36 650 Savannah 33 39

Z. abyssinicus flavilateralis K-Foothills of Chyulu Hills Dembwa-37 906 Savannah 29 –

Z. abyssinicus flavilateralis K- Foothills of Mt. Kasigau Rukanga-38 630 Savannah 47 –

N 161 61

N total 1223 385
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compared to the null expectations imply higher degrees

of unexpected occurrences of alleles and therefore point

to possible introgression. To test for correlation between

geographical, morphological, and genetic distances, we

calculated Mantel correlations between pairwise geograph-

ical (Euclidean distances), Bray–Curtis allelic and mor-

phological dissimilarity matrices for each species.

For the microsatellite data, we tested for distortions of

microsatellites through stutter bands, large allele dropout

or null alleles using the program MICRO-CHECKER v. 2.0

(Van Oosterhout et al. 2004). The mean number of alleles

(A), AR (allelic richness) (based on the lowest number of

individuals in a population, here N = 7), and locus-speci-

fic allele frequencies were calculated with FSTAT v. 3.1

(Goudet 1995). Percentage of observed heterozygosity

(Ho) and expected heterozygosity (He), tests of HWE

(Hardy–Weinberg equilibrium), and LD (linkage disequi-

librium) were calculated with ARLEQUIN v. 3.5.1.3 (Excoffier

et al. 2005).

Non-hierarchical analyses of molecular variance were

performed with ARLEQUIN using the microsatellite-specific

R-statistics (Slatkin 1995; Selkoe and Toonen 2006). Fur-

thermore, we calculated pairwise Dest values (Jost 2008)

across all populations (excluding Eburu Forest, due to

very small sampling size) with the program SMOGD v.1.2.5.

(Crawford 2010).

We used an individual-based Bayesian approach with-

out a priori definition of groups, applying the program

STRUCTURE v. 3.1 (Hubisz et al. 2009). The batch run

function was applied to carry out a total of 100 runs (10

each for one to ten clusters), that is, K = 1 to K = 10.

Replicate runs allowed us to calculate mean and standard

deviation for predefined K-values. For each run, burn-in

and simulation lengths were 15,000 and 500,000, respec-

tively. Runs were performed under the assumption of no

population admixture and uncorrelated allele frequencies.

As log probability values for K were earlier shown to be

unreliable in some cases (Evanno et al. 2005), we calcu-

lated the more refined ad hoc statistic DK, based on the

rate of change in the log probability of data between suc-

cessive K-values. In a second approach, we calculated

genetic distances among populations using the program

SPLITTREE (MLST databases and software – PubMLST.org)

based on our microsatellite data set. We then used this

genetic matrix to generate ordinary least squares and equal

angle representation with the program SPLITTREE v. 4.11.3.

(Huson and Bryant 2006).

Results

Phenotypic data

Wing length (r = 0.70, P < 0.001) and tarsus length

(r = 0.67, P < 0.001) were strongly positively correlated

with body weight, irrespective of species membership.

Eye-ring perimeter did not significantly depend on body

weight (r = �0.05, P > 0.2), but was moderately posi-

tively correlated with head size (r = 0.27, P < 0.001).

Two-way PERMANOVA revealed significant differences

in morphology among study sites (F18,1166 = 149.9,

P < 0.001) and the three species (F2,1166 = 406.1,

P < 0.001). Highly significant species 9 site interaction

Figure 1. Map of all sampling locations from

where morphological and molecular data were

collected. Numbers of sampling locations

coincide with Table 1.
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terms (F36,1166 = 31.35, P < 0.001) also pointed to

intraspecific morphological differentiation. Principal coor-

dinates analysis revealed that morphological characters

separated Z. poliogaster and Z. abyssinicus (Fig. 2A and

B). Some of the Z. senegalensis populations (Maralal,

Kakamega Forest, Mt. Nyiru, and Matthews range) clus-

tered within Z. poliogaster, while other Z. senegalensis

populations were intermediate between Z. poliogaster and

Z. abyssinicus (Fig. 2B). Zosterops poliogaster populations

showed higher morphological variability compared to

Z. abyssinicus. In particular, populations of Z. poliogaster

from the Chyulu Hills differed strongly from those of the

Eastern Arc Mountains (Fig. 2A).

Regressions of wing length (Fig. 3A and B) and eye-

ring perimeter (Fig. 3C) with longitude and latitude

revealed geographical trends in Z. poliogaster, Z. sene-

galensis, and Z. abyssinicus. Wing length of Z. poliogaster

and Z. senegalensis peaked at intermediate longitude and

latitude (Fig. 3A and B). Eye-ring perimeters of Z. polio-

gaster, but not Z. abyssinicus, increased from northwest to

southeast (Fig. 3C). The high intrapopulation variability

in morphological characters caused an insignificant Man-

tel correlation (r = �0.09, permutation P > 0.5) between

morphological Bray–Curtis and geographical Euclidean

distances. Finally, we observed a significant increase in

wing length (r = 0.93, P < 0.001) and body weight

(r = 0.89, P < 0.001) with the altitude, while eye-ring

perimeter was not significantly related to altitude

(r = 0.47, P > 0.1). Morphometric raw data are provided

in Appendix S1.

Genetic data

Effects from null alleles and large allele dropout were

detected for the loci Zl44, Zl54, Zl35, and Mme12. No

linkage disequilibrium was detected between any pair of

loci after Bonferroni correction. Deviations from HWE

were detected for loci Cu28, ZL41, and ZL45. As only few

loci and populations were out of equilibrium, all data

were included in subsequent analyses.

The number of alleles per locus ranged between 4

(Mme12, Zl54) and 17 (Zl22) alleles, with a mean of 8.9

(�4.5 SD). Among the 133 alleles across all loci, 38

were restricted to single mountain massifs or popula-

tions. Allele frequencies for all loci and populations are

given as Appendix S2. Genetic diversity (average number

of A (alleles), AR, and percentage of expected He

(heterozygosity) and observed Ho (heterozygosity)

showed higher values for the two populations analyzed

for Z. abyssinicus in comparison to populations assigned

to Z. poliogaster (t-test, P < 0.001); however, no further

significant differences among the other taxa were

detected. Values of Genetic diversity measures and

mean values of morphological characters are given in

Appendix S3.

Structure provided the highest support for K = 2

(mean probability values and respective DK-values are

given in Appendix S4), dividing the populations from the

Taita Hills from all other populations analyzed (Fig. 4).

However, as Hausdorf and Hennig (2010) suggest that

clustering in only two groups may sometimes prove mis-

leading results, we also visualized the second best K-value

suggesting five groups (K = 5). Under this model, the

populations were divided into the following five clusters:

(1) populations from the Taita Hills together with Mt.

Kasigau, (2) the Chyulu Hills, (3) all locations from

the central Kenyan highlands including Mt. Kulal, (4) the

lowland species Z. abyssinicus, clustering together with the

Z. senegalensis population from Kakamega Forest, and (5)

populations from the Ethiopian Highlands with individu-

als of Z. senegalensis sampled at Mt. Marsabit. The popu-

lations of Z. poliogaster from Tanzania (Pare Mts., Mt.

Meru) were genetically not clearly assigned to any specific

(A)

(B)

Figure 2. Results of principal coordinates analysis (Bray–Curtis

distances) for the phenotypic data set. The first two axes explain

64.0% and 3.1% of the variance loadings in morphological variability.

(A) different colors indicate the following geographical regions: red:

mountain ranges of the Eastern Arc Mts. (Taita Hills, Mt. Kasigau, Mt.

Meru, and Pare Mts.) and Mt. Meru; blue: Chyulu Hills; brown:

central Kenyan mountain ranges with Mt. Kenya, Aberdares, Mau

Escarpment; black: Kitui; and yellow: Kakamega forest. (B) northern

Kenyan mountain ranges with Mt. Kulal (red), Mt. Marsabit (yellow),

Mt. Nyiru (gray). Triangles: Z. poliogaster; rhombuses: Z. senegalensis;

circles: Z. abyssinicus.
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cluster (remark that these populations are represented by

only few individuals) (Fig. 4). The genetic clusters

obtained from Splittree show identical assignments of the

individuals, with two main groups (individuals from the

Taita Hills including Mt. Kasigau versus all other popula-

tions). Individuals from the three taxa (Z. poliogaster,

Z. senegalensis, and Z. abyssinicus) strongly intermix and

do not form distinct branches. Results are given in

Appendix S5.

AMOVAs (Analyses of molecular variance) suggested

strong genetic differentiation among all species and popu-

lations explaining 78.8% of the molecular variance

(RST = 0.3694, P < 0.0001). The intraspecific differentia-

tion was highest within Z. poliogaster explaining 69.6% of

the variance (RST = 0.3572, P < 0.0001) and lowest for

Z. senegalensis (Marsabit vs. Kakamega Forest, 39.6%

(RST = 0.1372, P < 0.01). We found no significant differ-

entiation between the populations of Z. abyssinicus

(�1.3293, RST = 0.0085, nsec). Dest values ranged between

0.001 and 0.315, with highest divergence between the

populations from Ethiopia and Mt. Kasigau. Pairwise Dest

values are given in Table 2.

Allele occurrences among sites were significantly nested

(observed NODF = 53.7, expected NODF: 33.7 � 0.7,

P < 0.0001). This ordered loss of alleles occurred along a

gradient from northwest to southeast (r = 0.58,

P < 0.01). Only the Pare Mts., Mt. Kasigau, Bura (Taita

Hills), and Simba Valley (Chyulu Hills) differed from this

nested appearance having negative nestedness contribu-

tions and an idiosyncratic number of allele occurrences.

Accordingly, allele turnover among sites was lower than

expected by chance (observed R2 = 0.13, expected

R2 = 0.17).

Combining phenotypic and genetic data

The distribution of alleles among sites was not signifi-

cantly linked with the distribution of morphological fea-

tures. A Bray–Curtis dissimilarity based Mantel test did

not return a significant correlation between morphologi-

cal dissimilarity (body weight, wing and tarsus length,

and head length) of the populations and their respective

genetic dissimilarity (all r < 0.2; P > 0.1). Nevertheless,

A B C

Figure 3. Plots of wing length (mm) (A, B) and eye-ring perimeter (mm2) (C) of Z. poliogaster (red triangles), Z. senegalensis (green squares), and

Zosterops abyssinicus (blue circles) against longitude (A, C) and latitude (B). Regressions in A: Z. poliogaster: r2 = 0.34; Z. senegalensis: r2 = 0.59;

Z. abyssinicus: r2 = 0.16. B: Z. poliogaster: r2 = 0.60; Z. senegalensis: r2 = 0.30; Z. abyssinicus: r2 = 0.21., and C: r2 = 0.47. All P < 0.0001. For

Z. senegalensis, no eye-ring data were available.

Tanzania (16–17)

Taita Hills (11–15)

Chyulu Hills (9–10)

Central Kenyan
Highlands (7–8)

Mt. Kulal (5)

Z.s.–Marsabit (18)

Ethiopia (1–2)

Z.a.–South Horr (35)

Z.a.–Umani Sp. (36)

Z.s.-Kakamega F. (30)

Figure 4. Bayesian structure analyses calculated with the program

STRUCTURE (Hubisz et al. 2009) for all species and populations analyzed

testing K-values from 1 to 10. Results supported by highest ΔK-values

for K = 2 (right plot) and K = 5 (left plot) are presented. Names of

mountain ranges and the respective number of locations coincide

with Table 1.
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the morphological and genetic analyses suggested strong

differentiation among the study regions (Figs. 2, 4). The

intraspecific genetic and morphological differentiation

among the Z. poliogaster populations was as high as the

interspecific differentiation between species.

Discussion

Our data showed strong phenotypic and genetic splits

among the three taxa, but even stronger splits among local

populations within single species. Specifically, strong

intraspecific differentiation was found between isolated

mountain populations of Z. poliogaster. Shallower splits

were detected among the Z. abyssinicus and Z. senegalensis

populations, both thought to represent a comparatively

panmictic distribution. We found significant spatial pat-

terns of phenotypic variation with longitudinal, latitudinal,

and altitudinal gradients in all three species. However,

morphological and genetic traits showed no congruent sig-

nature as expected as we suggested that different traits

(morphology and genetics) evolve under the regime of dif-

ferent evolutionary drivers. In the following, we will dis-

cuss our findings against the background of potential

effects from different distribution settings (disjunction ver-

sus panmixis) and contrasting evolutionary drivers (natu-

ral and sexual selection, and drift); finally, we make some

taxonomic recommendations for this bird species complex.

Effects from disjunction and panmixia

Intraspecific divergence was more pronounced than the

divergence between the currently recognized species. Our

analyses revealed mountain-specific genetic and pheno-

typic clusters for Z. poliogaster, with a main split found

between populations from the Eastern Arc Mountains

(i.e., the Taita Hills with Mt. Kasigau) and all other stud-

ied populations. We further detected shallower splits

among the other mountain populations in line with pre-

vious studies (cf. Habel et al. 2013; Cox et al. 2014); simi-

larly, relatively low levels of intraspecific divergence were

found in the two lowland species (Melo et al. 2011; Cox

et al. 2014). These populations have idiosyncratic allele

distributions as revealed by the nestedness analysis and

formed distinct genetic and phenotypic clusters. Various

studies on other organisms explain such strong genetic

differentiation by long-lasting geographical isolation of

mountain ranges providing long time spans for indepen-

dent evolutionary processes (cf. White 1978; Lovett and

Wasser 1993). Strong within-taxon differentiation for

both genetic and phenotypic traits has already been iden-

tified for many species in East African mountain ranges

(e.g., the Eastern Arc Mts., Fjelds�a and Lovett 1997;

Kebede et al. 2007; Tolley et al. 2011). Relatively long

geological time spans (going back to Miocene/Oliogcene)

of distinct evolutionary trajectories in allopatry are

assumed to be the main drivers of differentiation of these

tropical forest species (Tolley et al. 2011; Measey and Tol-

ley 2011; but see also Cox et al. 2014). This has also been

shown for various animal species (Kahindo et al. 2007),

as for example for the bird species Tiny Greenbul Phyllas-

trephus debilis along an altitudinal gradient in the Eastern

Arc Mts. (Fuchs et al. 2011). Fuchs and colleagues found

that the two distinct subspecies are the product of long-

term isolation and their contact zone is the result of a

recent secondary contact rather than a recent divergence

via disruptive selection across altitudinal gradients.

Similar to the examples in the previous paragraph, the

panmicticly distributed species Z. senegalensis and

Z. abyssinicus show high levels of genetic and phenotypic

substructuring (see Cox et al. 2014). This is rather sur-

prising as local populations of these species are thought

to be connected by high levels of gene flow in the rela-

tively homogenous habitat matrix of the lowland savan-

nahs. Hence, the differentiation may be the result either

of past barriers to gene flow or intrinsic barriers, such as

behavioral isolation which may have occurred gradually

and became strong enough at the edges of the distribu-

tion, similar to what is seen in ring species (e.g., Irwin

2000; Irwin et al. 2005).

Results from our microsatellite analyses support previ-

ous findings based on mitochondrial sequences and AFLP

data (Cox et al. 2014), providing strong evidence for the

polyphyly of Z. poliogaster and the other East African spe-

cies of this genus. As such, white-eye populations on dis-

tinct mountains do not represent a single species that

found itself in a fragmented range, but more likely repre-

sent multiple instances of independent adaptation and

subsequent speciation of lowland populations extending

into high elevation areas (cf. Cox et al. 2014). Once there,

they independently diverged into “high elevation pheno-

types” that share some characteristics (Husemann et al.

2012). Alternatively, the phenotypic similarities may be

the result of morphological conservatism, a phenomenon

predicting that morphological traits remain stable as a

result of similar selective pressures despite strong genetic

divergence (e.g., Austin 1995; Lavou�e et al. 2011). From

our data, it is difficult to distinguish between the two

processes. However, independent of which process has led

to these similar morphologies, the high resemblance of

mountain populations has led taxonomists using external

morphological characteristics, notably plumage to lump

these populations within the same species.
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Effects from natural and sexual selection,
and drift

Phenotypic and genetic variation did not show a congru-

ent pattern of spatial distribution. Our nestedness analysis

pointed to latitudinal and longitudinal, as well as altitudi-

nal relationships for wing length and eye-ring perimeter.

As habitat type gradually changes with altitude (moist

and cool cloud forest at higher elevation versus dry and

hot lowland savannah) our results also suggest differences

in morphological structure among habitat types. Correla-

tions between altitude and the expression of morphologi-

cal characteristics in white-eye bird species have been

previously detected (Moreau 1957). Such clinal changes

have been attributed to gradual variation in ecological

conditions and the resulting selective environment (Storz

2002). However, such geographical clines in morphologi-

cal traits have been interpreted differently, depending on

the type of character (shape of the bill = usage of specific

resources; plumage coloration = sexual selection, Irwin

2000; Irwin et al. 2005). If traits are under sexual selec-

tion, clinal geographical variation may facilitate reproduc-

tive isolation, which can ultimately lead to speciation

(Lande 1982).

Our data suggest that the divergence of the studied

phenotypic traits may be mainly driven by selection and

not stochastic processes, which drive the divergence of

neutral traits, in our case microsatellites (Leinonen et al.

2006, 2008, 2013; Sæther et al. 2007). Phenotypic charac-

ters are known to be under strong environmental (and

sexual) selection in birds (Endler 1982; Hendry et al.

2000; Smith et al. 2001). Thus, our results suggest that

similarities in morphology may most probably be the

result of convergent evolution in combination with mor-

phological conservatism in response to similar ecological

pressures. The importance of eco-geographical phenotypic

variants is further underlined by similar findings in sev-

eral other white-eye groups (cf. Moreau 1957; Mil�a et al.

2010; Melo et al. 2011; Oatley et al. 2011, 2012), which

likewise showed that morphological characters such as

tarsus and head length and body mass are strongly corre-

lated with the distribution of ecosystems. These small-

scale differentiation processes may possibly explain some

of the past taxonomic confusion in this genus.

Toward a new taxonomic arrangement

The taxonomic status of many populations of the genus

Zosterops is under debate. While the genus is generally

recognized as a “great speciator” (Moyle et al. 2009; Melo

et al. 2011), comparatively few species are described from

East Africa. This is partially due to the lack of good phe-

notypic characters distinguishing the species and the high

variation that is found within populations (Zimmerman

et al. 1996; Fry et al. 2000). However, after a series of

genetic and phenotypic studies (Habel et al. 2013, 2014;

Cox et al. 2014; Husemann et al. 2014b, 2015b), we now

have strong evidence for the polyphyly of most species in

this species complex, with a relatively clear differentiation

into distinct taxa, which likely evolved in the wake of col-

onizations of isolated mountain blocks (vast geographical

distances in combination with behavioral flightlessness)

and subsequent independent adaptation to local highland

conditions (Cox et al. 2014).

Based on our data, we suggest to divide Z. poliogaster

into at least three distinct species, which have partially

been suggested as valid species in the past: (1) Zosterops

silvanus including the populations from the Taita Hills

and Mt. Kasigau, supported by mtDNA sequences (Cox

et al. 2014) and a high proportion of private alleles in

microsatellites (this contribution), as well as the pheno-

typic and bioacoustic data presented here and in Huse-

mann et al. (2014b), (2) Zosterops mbuluensis from

Chyulu Hills, supported by mtDNA sequences (Cox et al.

2014), microsatellites, and phenotypic data presented here

and in previous studies, and (3) Z. kikuyuensis from the

central Kenyan highlands (i.e., the Aberdares and Mt.

Kenya) supported by mtDNA and microsatellite data, but

also by morphological data (this contribution, also see

Cox et al. 2014). This taxonomic treatment was already

suggested by Collar et al. (1994) for Z. silvanus, and for

Z. mbuluensis and Z. kikuyuensis by Zimmerman et al.

(1996), and was supported by the results of Cox et al.

(2014). However, the taxonomic re-assignment suggested

here is based on the phylogenetic species concept (De

Queiroz 2007), and further evidence is necessary to prove

this taxonomic split according the classical biological spe-

cies concept. The status of Z. senegalensis, of which some

populations show strong phenotypic and genetic similari-

ties (microsatellites this study, mtDNA Cox et al. 2014)

with Z. poliogaster, remains questionable and requires

critical evaluation by including additional populations.
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Appendix S1. Raw data of morphological measurements;

Wing length (mm), tarsus length (mm), body weight (g)

and eye ring length and height (mm).

Appendix S2. Allele frequencies of all populations and

microsatellite loci analysed. Site numbers coincide with

other supplementary material, figures and tables of the

article.

Appendix S3. Summary data of sample sites, with species,

subspecies, exact geographical location, altitude, and

mean values of all genetic and morphological characters

analysed: Total number of alleles (A), allelic richness

(AR), number of private alleles restricted to single moun-

tain massifs (AP), percentage of expected heterozygosity

(He) and observed heterozygosity (Ho). Site numbers

match with those of Fig. 1.

Appendix S4. Mean probability values with standard

deviations calculated based on ten runs each for K = 1–
10, and respective ΔK-values.
Appendix S5. Neighbornet generated with the program

Splitstree.
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